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MULTIVARIATE DISTRIBUTIONS WITH
EXPONENTIAL MINIMUMS!

By JaMEs D. EsaRY AND ALBERT W. MARSHALL
Naval Postgraduate School and University of Rochester

The multivariate distribution of a set of random variables has expo-
nential minimums if the minimum over each subset of the variables has an
exponential distribution. Such distributions are shown equivalent to the
more strongly structured multivariate exponential distributions described
by Marshall and Olkin in 1967 in the sense that a multivariate exponential
distribution can be found that gives the same marginal distribution for
each minimum. The basic application of the result is that in computing
the reliability of a coherent system a joint distribution for the component
life lengths with exponential minimums can be replaced by a multivariate
exponential distribution. It follows that the life length of the system has
an increasing hazard rate average distribution. Other applications include
characterizations of multivariate exponential distributions and the deriva-
tion of a positive dependence condition for multivariate distributions with
exponential minimums.

1. Introduction. We will say that nonnegative random variables 7, ---, T,
have a joint distribution with exponential minimums if

(1.1) P[min,., T, > t] = e~*1*, t=0,

for some 2, > 0 and for all nonempty sets / C {1, ---, n}. Inreliability theory
nonnegative random variables can be used to represent the life lengths of the
components in a system. Noting that the life length of a series system is the
minimum of its component life lengths, the definition abstracts a familiar prop-
erty of components whose life lengths have independent, exponential distribu-
tions—that the life length of each series system that can be formed from the
components has an exponential distribution.

For our purposes the most important example of a distribution with exponential
minimums is the multivariate exponential distribution introduced by Marshall
and Olkin (1967a). Random variables U,, - - ., U, having this distribution can
be generated by letting

(1.2) U,=min{S,:iel}, i=1,...,n,

where the sets J are the elements of a class _# of nonempty subsets of {1, - - -, n}
having the property that for each i, i ¢ J for some J e _#, and the random vari-
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ables S, J € _/#, are independent and exponentially distributed. In this paper we
will say that U,, ..., U, have a multivariate exponential distribution if they have
the same joint distribution as a set of random variables generated by (1.2), be-
cause such distributions play a central role in our results. If a set of component
life lengths U,, - - -, U, has a multivariate exponential distribution, then the ran-
dom variables S,, J e _J, ordinarily represent independent, exponential times
to occurrence for various causes of component failure. There can be a cause of
failure for each component separately, for each pair of components simultane-
ously, and generally for each subset of components simultaneously. Also for
each component there must be a cause of failure for some set of components to
which the component belongs.

We will say that the joint distributions of 7, ---, T,, and of U,, ..., U, are
marginally equivalent in minimums if
(1.3) P[min,., T, > 1] = P[min,., U; > 1], tz0,
for each nonempty set / C {1, ---, n}. Two joint distributions for component
life lengths that are marginally equivalent in minimums are indistinguishable
insofar as the distribution of the life length of any series system that can be
formed from the components is concerned.

The principal result of this paper (Theorem 4.1) is thatany T, - - -, T, having
a joint distribution with exponential minimums can be marginally equated in
minimums to some U,, ---, U, having a multivariate exponential distribution.
The result extends (Corollary 4.3) to show, in effect, that even for the purpose
of computing the reliability of a redundant system, component life distributions
with exponential minimums can be replaced by multivariate exponential life
distributions. ’

In Section 2 we make some additional remarks about distributions with ex-
ponential minimums and multivariate exponential distributions, and their places
in a hierarchy of multivariate distributions with similar properties. The principal
result follows from two lemmas concerning the relative reliabilities of all the
systems, series and redundant, that can be formed from the same set of com-
ponents. These lemmas, with some necessary preliminaries, appear in Section 3.
The main result is given in Section 4, and Section 5 is devoted to some sample
applications of it.

2. Joint distributions with exponential properties. We are primarily con-
cerned in this paper with the class of joint distributions having exponential
minimums and the class of multivariate exponential distributions. However, it
will be helpful in interpreting and applying the results to consider a hierarchy
of classes of joint distributions with similar properties. ’

We can consider nonnegative random variables T,, ---, T, whose joint dis-
tribution satisfies one of the following conditions:

(@) Ty, ---, T, are independent and each T, has an exponential distribution.
(b) Ty, ---, T, have a multivariate exponential distribution.
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(¢) Min,., a;T, has an exponential distribution for all ¢, >0, i =1, ---, n,
and all nonempty sets / {1, - - -, n}.

(d) T, ---, T, have a joint distribution with exponential minimums.

(e) Each T,, i =1, ..., n, has an exponential distribution.

REMARK 2.1. Each of the classes of joint distributions defined by the condi-
tions (a), (b), (c), (d), () can be regarded as a legitimate class of multivariate
distributions in the sense that each class has the properties:

(P,) If the joint distribution of T,, -- -, T, is in the class, then the joint dis-
tribution of any subset of T, - .., T, is in the class.

(P;) If the joint distribution of T}, - - ., T, is in the class, the joint distribution
ofU, ..., U,isin the class, and (T}, - --, T,) and (U,, - - -, U,,) are independent,
then the joint distribution of 7, ..., T,; U,, - - -, U,, is in the class.

Each class of joint distributions defined by (a), (b), (c), (d), (¢) can be regarded
as an extension of the class of univariate exponential distributions in the sense
that each class has the property.

(P,) If the joint distribution of T, ..., T, is in the class, then each T;, i =
1, - .-, n, has an exponential distribution.

In addition the classes of joint distributions defined by (b), (c), (d) have the
important property.

(P,) If the joint distribution of T, - .., T, is in the class and U; = min,, ; To

j=1,..-,m, where I, --., I, are nonempty subsets of {1, -.., n}, then the
joint distribution of U,, - .-, U, is in the class.
Classes of joint distributions that have property P, are of special interest in
reliability theory, since if the life lengths of a set of components have a joint
distribution in the class,. then the life lengths of any set of series systems built
from the components have a joint distribution in the class. []

It is immediate that each implication in the chain

(2.1) @=®)=(©) = () =1()

is valid, with the possible exception of (b) = (c¢), which is readily checked. It
is possible to find examples of bivariate distributions that satisfy conditions (b)
but not (a), (¢) but not (b), (d) but not (c), and (e) but not (d). Thus the classes
of joint distributions defined by the conditions are distinct. In these examples
it is convenient to describe the distribution of nonnegative random variables
T,, T, by the survival function

(2.2) F(t, ) = P[T, > 1, T, > 1,], £=0,4,=>0.

EXAMPLE 2.2. Let F(1,, t,) = exp[— A, — A t, — Ay max (4, 1)], 4, + 4, >0,
A+ 23,>0,4,=0,24,=0, 2, = 0. This is the bivariate version of the mul-
tivariate exponential distribution. The distribution occurs if T, = min (S, S,,)
and 7, = 'min (S,, S,;) where'S,, S,, and S, are independent with the exponential
distributions P[S, > t] = e~%!, P[S, > t] = e7 %', P[S, > t] =euf, t > 0. If
any of the parameters 4,, 4,, or 4, is zero, then the corresponding random variable
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S;, S;, or S, can be omitted from the constructive representation or regarded
as degenerate at infinity. []

If 2,, > 0 in Example 2.2, then the distribution satisfies (b) but not (a).

EXAMPLE 2.3. Let F(t,, ;) = exp[—&,t, — &1, — max (&1, E,1)], & + & >
0,§,+&>0,6,=0,i=1, ...,4. This bivariate distribution was considered
by Marshall and Olkin (1967a) and by Fréchet (1951) in the special case &, = 0,
§, = 0. The distribution occurs if T;, = q,U,, ¢, >0, and T, = q,U,, a, > 0,
where U,, U, have the bivariate exponential distribution described in Example
2.2. Then §, = /a,, §, = Ala,, & = Ayla,, &, = Ayla,. [

If§,> 0,6, >0, and & + &, in Example 2.3, then the distribution satisfies
(c) but not (b).

EXAMPLE 2.4. Let F(1,, 1) = pexp[—&,t, — &1, — max (&, 1, £,.) ]+ (1 — p) X
eXp[—mty — 9ty — MaX (751, 9 1y)], & + 6> 0,6, +6,>0,6,=20,i=1, ...,
40+ 10>0,9,+79>0,9=0,i=1,...,4,0 < p < 1. Thedistribution
occurs as a mixture, T, = U,, T, = U, with probability p, T, = V,, T, = V, with
probability 1 — p, of two bivariate distributions, for U,, U, and V,, V,, of the
type described in Example 2.3. ]

If &, + & =9 + 7, and &, + &, = , + 7, in Example 2.4, the distribution
satisfies (€). If in addition &, + &, + max(§;, £,) = 7, + 7, + max(p,, 7,), the
distribution satisfies (d).

Leté, =6, =n,=9n=c>0and§, = § = 5, = 5, = 0. Then the distribu-
tion satisfies (e) but not (d).

Let§, =6, =¢6,=¢& =c¢ >0 and n=1n==¢ 1n,=0, p,=2c. Then the
distribution satisfies (d). If T}, T, have this distribution, then the distribution
of T,/2, T, is of the same form but with &, = &, = 2¢, §, = §, =cand 5, = 7, =
2¢, 9, = 0, , = 2¢. The distribution of T,/2, T, does not satisfy (d). Thus the
distribution of T, T, satisfies (d) but not (c).

In the bivariate case, condition (b) says that the survival function must have
the form of Example 2.2. On the other hand, distributions with the weaker
property (c) certainly need not have the simple form of Example 2.3, and Ex-
ample 2.4 exhibits a very special distribution with exponential minimums.

In the literature, a number of bivariate distributions have been discussed which
have exponential marginals but fail to have exponential minimums. See, e.g.,
Gumbel (1960) or Marshall and Olkin (1967 b).

Using the above examples, we can give bivariate illustrations of the fact that
any Ty, ---, T, having a joint distribution with exponential minimums can be
marginally equated in minimums to some U, ..., U, having a multivariate
exponential distribution. Specifically, with 2, = §, 4+ & — min(§,,§,), 4, = &, +
§, — min(§,, §,), and 2, = min(§,, §,), one can easily check that the bivariate
exponential distribution (Example 2.2) is marginally equivalent in minimums to
the distribution of Example 2.3. It is also marginally equivalent in minimums
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to the distribution of Example 2.4 under the constraints required for that distri-
bution to satisfy (d).

We remark that with sums playing the role of minimums, there are conditions
analagous to (a) through (e) which are appropriate for normal distributions. In
the normal case, (b) is replaced by the condition that the random variables have
a multivariate normal distribution and (c) is replaced by the condition that all
linear combinations of the random variables are normally distributed. Since
these conditions coincide, the analogy between the exponential and the normal
cases is only partial. Of course, the essential ingredient in both cases is a func-
tion ¢ of n variables (the minimum or the sum) such that if X}, ..., X, are in-
dependent random variables with distribution in some class, then o(X;, - - -, X,))
is a random variable with distribution in the same class.

3. Measures on coherent structure functions. A function ¢(x) = ¢(x,, - - -, X,,),
where x, =0orl,i=1, ..., n, and ¢(x) = 0 or 1, is a coherent structure func-
tion of order n if ¢ is non-decreasing in each of its arguments and ¢(0) = ¢(0, - - -,
0) =0, ¢(1) = ¢(1, - -+, 1) = 1. Coherent structure functions are used in re-
liability theory to relate the performance of two-state systems (system function-
ing if ¢ = 1, failed if ¢ = 0) to their, also two-state, components (ith component
functioning if x, = 1, failed if x, = 0). The definition permits a coherent struc-
ture function to be constant in some but not all of its arguments. Thus the class
of coherent structure functions of order n describes all the coherent systems that
can be formed using at least one and no more than n components.

To introduce random performance for the components of a system, the de-
terministic indicator variables x,, -- -, x, could be replaced by binary random
variables X, - - -, X,. In this case the reliability of a system is the probability

that it functions, i.e.
(3.1) PI$(X) = 1] = T, p(X)P[X = x] .
From (3.1) it is easy to see that if ¢,, ¢, are structure functions of order n, then
(3.2) $ < ¢, implies  P[¢(X) = 1] = P[¢y(X) = 1]
andifxVy=1—(1 —x)(1 —y)=x+y— xyforx,y=0o0rl, then
(3.3)  P[$X) V $:X¥) = 1] = P[p(X) = 1]

+ P[gy(X) = 1] — P[$(X)$(X) = 1] .
Equations (3.2) and (3.3) express familiar relationships between the reliabilities

of two systems that are formed from the same components. The following lemma
is in part a converse to the preceding remarks.

LeEMMA 3.1. Let m(¢) be a nonnegative function defined for all coherent structure
functions of order n and such that:
() $1< ¢y implies m(¢)) = m(py) .
(b) m(gyV $)) = m(¢y) + m(gy) — m(1 ) -
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Then there exists a nonnegative function w(x) such that

(©) m(¢) = Zxw(x)¢(x)

forall coherent structure functions of order n. Note: Since ¢(0) = 0 for all coherent
structure functions, w(0) can be defined arbitrarily.

PROOF. An elementary, but involved, proof that (c) holds can be made
by an induction on the length | of ¢ as [ decreases from n to 1, where | =
MiNy, 4x)=1) 271 %;- The details would be a departure from our main purpose,
and are omitted. []

The application of Lemma 3.1 that concerns us occurs in a context that requires
some additional definitions and observations.

A path set of a coherent structure function is a set of indices P C {1, ..., n}
such that ],.,x; = 1 implies ¢(x) = 1. A path set is minimal if it properly
contains no other path set. A minimal path set corresponds to an irreducible
collection of components which by all functioning insure that the system func-
tions. A coherent structure function can be defined by listing its minimal path
sets P, ---, P, and then represented by

(3.4) $(x) = Iiep, %V oo+ V ILicpp X: -

The representation (3.4) corresponds to forming a series system from the com-
ponents in each minimal path set and than placing the series systems in parallel.

The coherent life function =(t) = «(t,, -- -, t,), t, 2 0,i = 1, - - -, n, correspond-
ing to a coherent structure function ¢ can be defined through a representation
analagous to (3.4), i.e.,

3.5) o(t) = max,_, ., min; ..,

where P, - .-, P, are the minimal path sets of ¢. The life function of a coherent
system gives the life length of the system as a function of the life lengths of its
components. The properties of coherent life functions are discussed in Esary
and Marshall (1970). It is easy to see from (3.4) and (3.5) that if z,, 7, correspond
to ¢,, ¢,, then:

(3-6) PSSy,
3.7 min (7, 7,) corresponds to ¢, ¢, ,

max (7, 7,) corresponds to ¢, V @, .

The dual of a coherent structure function ¢ is the coherent structure function
¢” defined by ¢”(x) = 1 — ¢(1 — x). For example, the dual of a series system
is a parallel system built from the same components and conversely. It is easy
to see from the definition of ¢? that:

(3'8) ’ ¢1 = ¢2 = ¢1D = ¢2D )
(3'9) - (¢ vV $,)” = $.°¢," .
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The dual =” of the coherent life function = that corresponds to ¢ is the coherent
life function that corresponds to ¢”.

In this paper the relevant way of introducing random performance for the
components in a system is to represent their life lengths by nonnegative random
variables T}, - - -, T,. In this case the reliability function or survival probability
of a system is

(3.10) F(t) = P[«(T) > 1], t=0.

If F_ is absolutely continuous on [0, ¢) for some ¢ > 0, then F (0) = 1, and an
initial hazard rate, i.e.

_dF.(n
dt lt=o

(3.11) ar) = L (—log F(n)| = ,
dt t=0

exists for F_. The derivatives in (3.11) should be interpreted as derivatives from

the right.

REMARK 3.2. It is shown in Esary and Marshall (1970), Application 5.3, that
ifeach T, i =1, ..., n, is an absolutely continuous random variable, then =(T) is
an absolutely continuous random variable for each coherent life function t of order n.
The same argument can be used to show that if each T, i =1, -- -, n, is abso-
lutely continuous on [0, ¢), then each 7(T) is absolutely continuous on [0, ¢). []

LeEmMA 3.3. LetT,, .-, T, be nonnegative random variables with a joint distribu-
tion such that an initial hazard rate a(z) exists for F (1) = P[t(T) > {] for each
coherent life function t of order n. For each coherent structure_ function ¢ of order
n let m(¢) = a(rP) where t corresponds to ¢, the dual of ¢. Then m is nonnega-
tive and satisfies conditions (a) and (b) of Lemma 3.1.

Proor. It is immediate from (3.11) that m is nonnegative, since all survival
probabilities F(7) are non-increasing in .

To show that m satisfies (a) observe that 7, < 7, implies that F, (1) < F, (1),
12 0. Since F, (0) = F, (0) = 1, it follows from (3.11) that r, < 7, implies that
a(t)) = a(r,). Let r,, 7, correspond to ¢,, ¢,. Then from (3.6) and (3.8)

6= go= 9" = 9" =1, = )” = a(r,”) £ a(r,”) = m(¢,) < m(¢,) .

To show that m satisfies (b) observe that Fi,. .., ., (1) = F. (1) + F. (1) —
Frinceyep(f)s £ = 0. Tt follows from (3.11) that a{max (z;, )} = a(r,) + a(7,) —
a{min(r,, 7,)}. Let z,, r, correspond to ¢,, #,. Then from (3.7) and (3.9)
min (z,?, 7,”) corresponds to ¢,°¢,” = (¢, V ¢,)”, and max (r,”, 7,”) corresponds
to ¢,” V ¢,” = (¢:4,)”. Thus

m(¢, V ¢,) = a{min(z,”, 7,%)}
= a(r,®) + a(z,’) — a{max(z,?, 7,°)}

= m($,) + m(¢y) — m($,8,) . i

4. Marginal equivalences. If U, ..., U, have a multivariate exponential
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distribution, i.e., can be assumed to be generated by (1.2) from a family of
independent random variables S,, Je _#, with the exponential distributions
P[S, > t] = e %' t > 0, 2, > 0, then it is immediate that

4.1) P[min, ., U, > t] = e, t=>0,
with
(4.2) N1 = 2ise s A

where AI) = {Je _#: In Jis not empty}.

Now suppose T, - - -, T, have a joint distribution with exponential minimums.
Then from (1.1) and (1.3), the construction of U}, - - -, U, which are multivariate
exponential and marginally equivalent in minimums to T,, ..., T, begins with
the solution of the system of equations

(43) /‘ll = Z(J: InJ is not empty} '2.1 ’

where 7 and J range over the class of nonempty subsets of {1, - - ., n}. The solu-
tion is for the 4,’s in terms of the given g,’s. If 4, > 0 foreachJ C {1, ..., n},
then independent, exponential random variables S, can be generated, as above,
for those J such that 4, > 0. Then U,, ---, U, generated in accordance with
(1.2) will have a multivariate exponential distribution and be marginally equiva-
lentto T}, ---, T,. Asindicated, in this construction # is the class of nonempty
subsets of {1, - - ., n} for which 4, > 0.

The system of equations (4.3) has a pattern which facilitates solution, e.g. in
the bivariate case

= A+ Ay
Pa = Ay + Ay
Pay = A+ Ay + Ay
where the subscripts should be interpreted as lists of elements in the sets / and

J of (4.3). The question is whether the 2’s obtained will always be nonnegative.
The following theorem answers this question.

THEOREM 4.1. Let T, - .-, T, be random variables whose joint distribution has
exponential minimums. Then there exist random variables U,, - .., U, with a mul-
tivariate exponential distribution such that the joint distribution of T, - - -, T, and
U, .-, U, are marginally equivalent in minimums.

Proor. Since the distribution of each T, i =1, ..., n, is exponential and
thus absolutely continuous it follows from Remark 3.2 that the distribution of
=(T) is absolutely continuous for each coherent life function = of order n. Thus
from (3.11) an initial hazard rate a(r) exists for each coherent life function ¢
of order n. Then it follows from Lemma 3.3 that m(¢) = a(z?) satisfies the

hypotheses of Lemma 3.1. Then from Lemma 3.1

@ _ a(r) = m(¢”) = Lx w(x)$"(x) ,
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where w is nonnegative, for all coherent life functions r of order n, where ¢
is the dual of the coherent structure function ¢ corresponding to z. According
to Lemma 3.1, w(0) may be chosen arbitrarily. It is convenient here to choose
w(0) = 0.

For each nonempty I C {1, - - -, n} let ,(t) = min,., #,. Since Ty, -.., T, have
a joint distribution with exponential minimums, then P[z(T) > 1] = e #1*,t > 0,
¢y > 0, from (1.1). From (3.11), a(r;) = p;. The coherent structure function
corresponding to 7, is ¢,(x) = [],e; X;. By its definition ¢,°(x) = 1 if and only
if x;, = 1 for some i e I. Thus from (i)

(ll) K= erA(I) W(X)
where A(]) = {x: x, = 1 for some i € I}.

ForeachJc {1, ..., n}let 2, = w(x’) = O where x,” =1if ieJ, x7 =0 if
i¢J. Then (ii) can be written as
(iii) ‘ 1= 2e_sin 455
where A1) ={Je _#:In Jisnot empty} for £ = {J: 2, > O}.

For the empty set E, 1, = w(0) = 0, by our choice of w(0). Thus _~# isa class
of nonempty sets. Since p;, > 0 for all nonempty 7/, and in particular g, = p;, > 0
when I = {i}, then from (ii) there exists a J containing / such that 4, > 0. Thus
foreachi =1, ..., nthere existsa Je 2 such that ieJ. Thus _Z, as defined
above, has the properties required of a class _# to be used in generating a mul-
tivariate exponential distribution by means of (1.2).

Now corresponding to the sets J € _Z construct independent random variables
S, with exponential distributions P[S, > t] = e"%, t > 0. Let U, = min{S,:
ieJy,i=1,...,n. Then U, ..., U, have a multivariate exponential distri-
bution from (1.2). From (4.2) and (iii), 7, = g, for all nonempty I. It follows
from (4.1) and (1.1) that T, ..., T, and U,, .- -, U, are marginally equivalent
in minimums. [J

We will say that the joint distributions of T, ..., T, and U,, ..., U, are
marginally equivalent in coherent life functions if

(4.4) P[<(T) > 1] = P[z(U) > 1], t=0

for each coherent life function = of order n. The reliability interpretation of
marginal equivalence in coherent life functions is the same as the reliability
interpretation of marginal equivalence in minimums, except that general, redun-
dant systems now take the place of series systems.

THEOREM 4.2. The joint distribution of the random variables T, - .., T, is mar-
ginally equivalent in minimums to the joint distribution of the random variables U, - - -,
U, if and only if the joint distribution of T,, - .-, T, is equivalent in coherent life
functions to the joint distribution of U,, - .., U,

ne

Proor. (if) Marginal equivalence in coherent life functions implies marginal
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equivalence in minimums because the class of coherent life functions of order
n includes the functions z,(t) = min,, ¢, for all nonempty sets I C {1, - - -, n}.

(only if) Consider some coherent life function 7 of order n. Let P, ---, P,
be the minimal path sets of the structure function ¢ corresponding to z. Let
t;(t) = min,.,. t;, j=1, ..., p. Then from (3.5) by the standard inclusion and
exclusion argument

P[=(T) > 1] = 2%, P[t(T) > 1]
— k=1 P[min{z(T), 7,(T)} > 1]
+

() P[min {e(T), - - -, <(T)} > 1], t=0.

Since Ty, .-+, T, and U,, ..., U, are marginally equivalent in minimums, then
Plz(T) > t] = P[t;(U)>1],t=0,j=1, ..., p. Also, noting that min {z(t),
7,(t)} = min,, pjupy tis then P[min {r (T), ,(T)} > t] = P[min{r,(U), z,(U)} > 1],
t=0,j,k=1,...,p, and so on. Thus it follows from the expansion that
P[t(T) > ] = P[z(U) > ], t = 0. [

CoROLLARY 4.3. LetT,, --., T, be random variables whose joint distribution has
exponential minimums. Then there exist random variables U,, ..., U, with a mul-
tivariate exponential distribution such that the joint distributions of T, - .-, T, and
U, ---, U, are marginally equivalent in coherent life functions.

Proor. This corollary is an immediate consequence of Theorems 4.1 and
4.2.

REMARK 4.4. Coherent life functions can also be defined through the repre-
sentation r(t) = min;_, ... , max,, xjto where K, - . ., K, are the minimal cut sets
of the structure function ¢ corresponding to r. See Esary and Marshall (1970).
We cansay thatT,, -.-, T,and U,, - - -, U, are marginally equivalent in maximums
if P[max,., T, > t] = P[max,., U, > t],t = 0, for eachnonempty I {1, - - -, n}.
An argument parallel to the proof of Theorem 4.2 can then be used to show
that marginal equivalence in maximums and marginal equivalence in minimums
are thesame. Thus marginal equivalence in minimums, maximums, and coherent
life functions are all the same. []

Theorem 4.1 allows for the possibility that dependent random variables T, - - -,
T, are marginally equivalent in minimums to independent exponential random
variables U,, ---, U,. This is indeed a real possibility, as is illustrated by the
following example.

ExAMPLE 4.5 Let H be a bivariate distribution function with the properties
@ Hu,1)=u,0=u<l,b)H(1,v) =9, 0=v<1, (€) Hu,u) =u?, 0 Z
u < 1. Then F(t, t,) = H(e™", e~2) is a survival function marginally equivalent
in minimums to G(¢,, 1,) = e~17%2, t, > 0, 1, = 0. Properties (a), (b) and (c) are
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satisfied if H has a density equal to 2 in the shaded area and density zero else-
where, as illustrated in Figure 1 or 2 below.

U
G ) tz:) (n

03 3 (0,4) (1,3

) %00 o

FiG. 1 Fi1G. 2

One can check that Figure 1 leads to the survival function

F(t,, ;) = 2 exp[—t, — max (t,, 1;)] — exp[—2 max (¢, t,)]
+ [max (e~1 — L, 0)] — [max(e~‘2 — , 0)]*

+ [max(ef2 — e=®s — £, 0)F — [max (et — e~z — L, 0)]
A somewhat longer expression is derivable from Figure 2. []

The two survival functions derived from Figures 1 and 2 in Example 4.3 satisfy
condition (d) of Section 2 but not condition (c).

It is possible to say that T, ---, T, and U,, ---, U, are jointly equivalent in
minimums if min,., . T, and min,., U, j =1, - . -, m, have the same joint distribu-
tion for nonempty I, ---, I, {1, ---, n} and all in, and to similarly define
joint equivalence in maximums and coherent life functions. As with marginal
equivalence these three notions are the same, but they are also the same as or-
dinary equivalence between two distributions. On the other hand, it is possible
to consider special joint equivalences between two distributions that do not reduce
to ordinary equivalence. For example let T,, T, have the distribution derived
from Figure 1 or Figure 2 in Example 4.5. Then min (7, T,) and max (T, T,)
have the same joint distribution as min (U,, U,) and max (U,, U,), where U,, U,
are independent copies of T,, T,, if and only if H(u, v) + H(v, u) — H(u, u) =
H(u, 1)H(1, v) + H(v, 1)H(1, u) — H(u, 1)H(1, u) forall0 < u < v < 1, a con-
dition which is satisfied in both figures.

5. Sample applications. The following applications are intended as examples
of how the main results of the paper can be used.

5.1. Acharacterization of multivariate exponential distributions. In keeping with
(2.2) the joint distribution of nonnegative random variables T,, - .., T, can be
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described by the survival function

(5'1) F(t)zﬁ(tv“‘, n)=P[T1>tv"‘aTn>tn]’
620, -,1,20.

If U, ..., U, have a multivariate exponential distribution, i.e., can be assumed
to be generated by (1.2) from a family of independent random variables S,, J e _#
with the exponential distributions P[S, > 1] = e"%*, + > 0, 4, > 0, then it is
immediate that the survival function G of U,, - - -, U, can be written as

(5.2) G(t) = exp[— T ,c , 4, max,, ;] .

Gwenammplex Oy =---=sn,let L={, - i}={1,---,n}, I,=
{iy -+, 1.}, -+ = {i,}. Then it is agaln immediate that for any t in the sim-
plex the survival functlon of Uy, ---, U, can be written in the specialized form

(5:3) G(t) = exXpl—1t;, e rap Al eXpl—(t, — 1) e iy As] -
exp["(’i,, - ti,,_l) ZJe/u,,) XJ]
= I3 P[miniEIj U, > tij - ti,-_l] >
where as before #(/) = {Je _#: I n Jis not empty} and ¢, = 0.

APPLICATION 5.1. Let Ty, - .-, T, be nonnegative random variables such that:

(a) The joint distribution of T}, ..., T, has exponential minimums.
(b) On each simplex 0 < , = --- < t; thesurvival function FofT, ..., T,
satisfies

F(t) = I} P[minielj T, > L, — tij_l] .
Then T,, ---, T, have a multivariate exponential distribution.

Proor. It follows from (a), by Theorem 4.1, that there exist U}, - - ., U, with
a multivariate exponential distribution which is marginally equivalent in mini-
mums to the joint distribution of T, ..., T,. Let G be the survival function of
U, -+, U,. Thenfrom (b)and (5.3), F = G on each simplex. Thus F = G and
T, --., T, have the same multivariate exponential distributionas U,, - - -, U,. [J

Application 5.1 can be used to show thatif 7, - . ., T, are nonnegative random
variables such that;

(c) each n — 1 dimensional marginal distribution of the joint distribution of
T, ---, T, is a multivariate exponential distribution,

(d) the survival function F of T}, - .., T, satisfies

F(sl-l-t, coey Sy 1) = F(sy, - -+, 5,)E(2, )
forall 5,=20,...,5,=20 and >0,

then T}, - .., T, have a multivariate exponential distribution. This confirms a
result of Marshall and Olkin (1967a, Lemma 2.2 and page 39).

Application 5.1 can also be used to show that if T, ..., T, are nonnegative
random variables such that;
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(e) P[T, > s]<1forsomes, >0,i=1,...,n,
(f) oneachsimplex0 <1 < ... < t;, the survival function FofT, ..., T,
has the form

F(t) = exp[_(gltil + o+ Enti,‘)] ’
where §,, ---, £, depend only on the simplex ,

then Ty, - --, T, have a multivariate exponential distribution.

5.2. IHRA distributions for system lives. A nonnegative random variable T
has an increasing hazard rate average (IHRA) distribution if {—log P[T > f]}/t is
non-decreasing in ¢. A component or system whose life length has an IHRA
distribution undergoes deleterious aging or wearout in one of the possible
stochastic senses that can be given to the term wearout. Exponential distribu-
tions, for which {—log P[T > t]}/t is constant in ¢, are boundary members of
the class of IHRA distributions. It is shown in Birnbaum, Esary, and Marshall
(1966, Theorem 4.2) that the class of IHRA distributions is the closure, under
limits in distribution, of the class of distributions for (T, ---,T,), n = 1,2, ..,
where 7 is a coherent life function and T, - - -, T, are independent, exponentially
distributed random variables.

REMARK 5.2. If z is a coherent life function of order n, and U,, - - -, U, have
a multivariate exponential distribution, then (U, - .-, U,) has an THRA dis-
tribution. The remark can be proved by assuming that U,, - . ., U, are generated
according to (1.2) so that U; = min{S,: i e J} where S,, J € _Z, are independent,
exponentially distributed random variables. In effect each component in the
coherent system described by 7 is replaced by a series system of new components
whose life lengths are represented by the S,’s. It is easily seen that result is a
new coherent system with independent, exponentially distributed component
life lengths. Thus «(U,, ---, U,) has an ITHRA distribution by the previously
mentioned result of Birnbaum, Esary, and Marshall (1966). []

APPLICATION 5.3. If ¢ is a coherent life function of order n, and T}, ..., T,

have a joint distribution with exponential minimums, then z(7,, ..., T,) hasan
IHRA distribution.

Proor. This application is immediate from Corollary 4.3 and Remark 5.2. ]

5.3. Positive dependence. Random variables T,, ..., T, are associated if
Cov [f(T), 9(T)] = 0 for all pairs f, g of non-decreasing functions for which the
covariance in question exists. It is shown in Esary, Proschan, and Walkup
(1967, Theorem 5.1) that if T, ..., T, are associated, then:

(5°4) P[Tl > t, ‘”’Tn> tn] g H?:l P[Ti > ti]’
§ —00§ti<+00,i=1,---,n.
(5'5) P[Tlé by =o e Tné tn] = H?=1 P[Tié ti]’

—o <L L +oo,i=1,.--,n.
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We will say that random variables that satisfy (5.4) are positively right quadrant
dependent and that random variables that satisfy (5.5) are positively left quadrant
dependent. In the bivariate case (5.4) and (5.5) are equivalent and define the
notion of positive quadrant dependence introduced by Lehmann (1966). It is
often reasonable to suppose that exposure to a common service environment will
produce some kind of positive dependence, such as association or positive quad-
rant dependence between the life lengths of the components in a system.

REMARK 5.4. If U,, ---, U, have a multivariate exponential distribution, then
U, ---, U, are associated. Again assume that U,, - .., U, are generated accord-
ing to (1.2), so that U; = min{S,: i e J} where the S,, Je _J# are independent.
Then the remark follows immediately from results given in Esary, Proschan,
and Walkup (1967, Theorem 2.1) that independent random variables are as-
sociated, and property P, of association, that non-decreasing functions of as-
sociated random variables are associated. []

APPLICATION 5.5. If T,, ..., T, have a joint distribution with exponential
minimums, then

(a) P[Ty> t, -+, T, > 1] = It PIT, > 1, 120.
(b) PIT,<t, -, T,< ]2 T[m PIT. < 1], 120.

If T, ..., T, have a joint distribution such that min, ., a, T, has an exponential
distribution for alla¢; > 0, i =1, ---, n, and all nonempty sets / C {1, - - -, n},
thenT,, ..., T, are positively right quadrant dependent and positively left quad-
rant dependent.

Proor. Suppose that the joint distribution of T, ..., T, has exponential
minimums. Using Theorem 4.1, let U,, - .-, U, have a multivariate exponential
distribution that is marginally equivalent in minimums to the joint distribution
of T, ..., T,. Then from Remark 5.4 and (5.4)

P[Ty >t ---,T,>1t] = P[min,_, .., T, > 1]
= P[mini=l,,,,m Ui > I] = P[Ul >t -, Uﬂ > t]
= It PLU, > 1] = 1132, PIT: > 1], t=0.
Thus Ty, ---, T, satisfy (a). The proof that T, ..., T, satisfy (b) is similar,
using that part of Remark 4.4 that says that marginal equivalence in minimums
is the same as marginal equivalence in maximums.
Now suppose that a,T,, ---, a,T, have a joint distribution with exponential
minimums for alla; > 0,i =1, ..., n. Then from (a)
P[T1> tl) ""Tn>tn]:P[alT1>t’ ""anTn>t]
= I Pla, T, > 1] =TI PIT > 1],
t,=0,i=1,...,n, wherea;t; = t. ThusT,, ..., T, are positively right quad-
rant dependent. That T,, ..., T, are positively left quadrant dependent follows
similarly from (b). ]
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The bivariate distributions derived from Figures 1 or 2 in Example 4.5 have
exponential minimums and so satisfy conditions (a) and (b) of Application 5.5,
but neither distribution is positive quadrant dependent. From (5.4) positive
quadrant dependence would require that H(u, v) = H(u, 1)H(1,v), 0 < u < 1,
0 < v £ 1, a condition not satisfied by either figure.

On the other hand we suspect that distributions that satisfy condition (c) of
Section 2 have stronger dependence properties than positive right and left quad-
rant dependence.

REFERENCES

[1] BarLow, RICHARD E. and PROSCHAN, FRANK (1965). Mathematical Theory of Reliability.
Wiley, New York.

[2] BirRNBAUM, Z. W., Esary,J. D.and MARSHALL, A. W. (1966). A stochastic characterization
of wear-out for components and systems. Ann. Math. Statist. 37 816-825.

[3] BiIrRNBAUM. Z. W., EsAryY, J. D. and SAUNDERs, S. C. (1961). Multi-component systems
and structures and their reliability. Technometrics 3 55-77.

[4] EsAry, J. D. and MARSHALL, A. W. (1970). Coherent life functions. SIAM J. Appl. Math.
18 810-814.

[5] Esary, J. D., PrRoscHAN, F. and WaALkUP, D. W. (1967). Association of random variables
with applications. Ann. Math. Statist. 38 1466-1474.

[6] FRECHET, M. (1951). Sur les tableaux de corrélation dont les marges sont données. Ann.
Univ. Lyon Sect. A Ser. 3 14 53-77.

[7] GumseL, E. J. (1960). Bivariate exponential distributions. J. Amer. Statist. Assoc. 55 698-
707.

[8] LEnMANN, E. L. (1966). Some concepts of dependence. Ann. Math. Statist. 37 1137-1153.

[9] MARsHALL, A. W. and OLkIN, L. (1967a). A multivariate exponential distribution. J.
Amer. Statist. Assoc. 62 30-44.

[10] MARSHALL, A. W. and OLKIN, L. (1967b). A generalized bivariate exponential distribution.

J. Appl. Probability 4 291-302.

DEPARTMENT OF OPERATIONS DEPARTMENT OF STATISTICS
RESEARCH AND UNIVERSITY OF ROCHESTER
ADMINISTRATIVE SCIENCES ROCHESTER, NEW YORK 14627

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA 93940



