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For the critical and subcritical Galton-Watson processes with immi-
gration, it is shown that if the data were collected according to an appropri-
ate stopping rule, the natural sequential estimator of the offspring mean m
is asymptotically normally distributed for each fixed m € (0, 1]. Further-
more, the sequential estimator is shown to be asymptotically normally
distributed uniformly over a class of offspring distributions with m € (0, 1]
bounded variance and satisfying a mild condition. These results are to be
contrasted with the nonsequential approach where drastically different
limit distributions are obtained for the two cases: (a) m < 1 (normal) and
(b) m = 1 (nonnormal), thus leading to a singularity problem at m = 1.
The sequential approach proposed here avoids this singularity and unifies
the two cases. The proof of the uniformity result is based on a uniform
version of the well-known Anscombe’s theorem.

1. Introduction. Branching processes provide useful models in cell kinet-
ics, population growth and other related areas. The estimation problem for
Galton-Watson processes with immigration has been discussed extensively in
the literature. The pioneering work in this area is due to Heyde and Seneta
(1972, 1974). If m denotes the mean of the offspring distribution of the
process and 1, its estimate, defined for instance in (2.2), it is known that the
limit distribution of %, is subject to a threshold theorem, where m plays
the crucial role of a threshold parameter. In particular, it can be shown that
the limit distribution of 7, is drastically different for the three cases m <1
(subcritical), m = 1 (critical) and m > 1 (supercritical). The supercritical pro-
cesses belong to the so-called regular nonergodic family studied by Basawa and
Scott (1976, 1983) among others. The supercritical case will not be considered
here. This paper is concerned with the two cases m < 1 and m = 1. It will be
useful to develop a unified approach for estimation which does not require the
prior information as to whether m < 1 or m = 1. We propose to use sequen-
tial approach to achieve this.

It will be shown that 72, has a limiting normal distribution for m < 1 and
a nonnormal limit distribution for m = 1. If one therefore wishes to obtain a
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confidence interval for m, m € (0, 1], one faces the problem of the singularity
at the endpoint m = 1. In a similar situation dealing with the first-order
nonexplosive autoregressive processes, Lai and Siegmund (1983) discussed a
sequential approach which enables one to establish the asymptotic normality
of the least squares estimator of the autoregressive parameter for stationary
and unstable cases, thus avoiding the singularity at the endpoint in their
problem. This suggests the question as to whether a similar sequential ap-
proach will resolve the singularity problem in the estimation of m,m € (0, 1]
for the branching processes. We show in this paper that the answer is in the
affirmative.

Our estimate 72, in (2.2) is based on the full information on both genera-
tion sizes {Z,} and the immigration process {Y}}, j =1,2,...,n. Furthermore,
M, is the maximum likelihood estimate for a large class of offspring and
immigration distributions, and consequently it is fully efficient; see, for in-
stance, Hall and Heyde (1980). In the literature, the estimation of m by 7,
based on the full information has been considered by Nanthi (1983) and
Venkataraman and Nanthi (1982). Using only the partial information on {Z;}
alone, it is possible to estimate m and study the properties of the estimators;
see Heyde and Seneta (1972, 1974), Wei and Winnicki (1990) and the refer-
ences therein. The efficiency properties of the latter estimate are not known at
this stage. Our main goal in this paper is to use a simple and fully efficient
estimate 71, to develop a sequential approach which unifies the two cases
m < 1 and m = 1. The stopping rule we use is related to the observed Fisher
information as in Lai and Siegmund (1983). Extension of the sequential
approach to the estimate of m based only on the {Z} is a possibility, but it will
not be considered in this paper.

Motivation for the sequential estimate of m is discussed in Section 2. Some
basic, nonsequential limit results are derived in Section 3. Section 4 contains
asymptotic normality of the sequential estimator for each fixed m < 1 and
properties of the stopping time used here. Section 5 contains uniform asymp-
totic normality of the sequential estimate of m established uniformly over a
class of offspring distributions. The results of Section 5 were obtained indepen-
dently by the first author.

2. Motivation. Let Z, denote the nth generation size of a Galton-
Watson process with immigration. We then have the representation

anl
(2.1) Z,= Y é 14+ Y, n=12,...,
k=1

where £, _, , is the number of offspring of the kth individual belonging to the
(n — 1)th generation and Y, denotes the number of immigrants in the nth
generation. Suppose that {¢, ;,}, n=1,2,..., k=12,..., and {Y,}, n =
1,2,... are two independent sequences of independent and identically dis-
tributed (i.i.d.) random variables. The initial state Z, is a random variable (not
depending on m) which is independent of {¢, ;} and {Y,} and has an arbitrary
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distribution. The offspring and the immigration distributions are assumed to
be unspecified with means m and A and variances o2 € (0, ) and aY € (0, ),
respectively. It is assumed that a sample {Z,, (Z,, l), i= ..,n} is
available. Let %, be the o-field generated by {Z,,, ¢, _ L Yo l<i < n,j > 1}
Our primary goal is to make inferences regarding the oﬁ'sprmg mean m. Our
aim is to study the sequential approach and give a unified method of inference
for the critical and subcritical cases m < 1.
It is clear from (2.1) that a natural estimate of m is

(2.2) i, = (Z Z) Y (Z - Y).
i=1 i=1

Suppose we assume the power-series offspring and immigration distributions;

we can then show that /, in (2.2) and A, =n ~1Xr Y, are maximum

likelihood estimators of m and A, respectively Thus, for a large class of

distributions, 7, in (2.2) is the maximum likelihood estimate of m. From now

on, we shall not make any specific distributional assumptions regarding ¢ and

Y, but consider 72, in (2.2) as a reasonable estimate with which to work.
Consider the stopping rule N, defined below by

(2.3) N, = inf{n >1:YZ, > 002},
i-1

where ¢ > 0 is chosen appropriately. One can motivate using (2.3) via the
theory of fixed-width confidence intervals [see Chow and Robbins (1965)]. Note
that (2.3) assumes that o2 is known. If 02 is unknown, we can replace it by a
strongly consistent estimate 6?2 of 0% for m < 1 (to be shown later) defined by

-1 N 2
(2.4) 52 = {i e } y Bzl 2 T)
ol zL)?] S a+zy)’

We shall denote the resulting stopping time by N,. We shall show that the

limit distribution of My and N, 88 ¢ > o is normal for both the cases

m<1land m=1. Furthermore we shall show that 7 n, is asymptotically

normally distributed uniformly over a class of offspring “distributions with
< 1 and satisfying other conditions (see below).

3. Basic limit results. In this section we give some asymptotic results
concerning the estimators /71, and 62 defined in Section 2. The first theorem
of this section (Theorem 3. 1) concerns the strong consistency of 62 for
0 < m < 1, which provides a foundation for consideration of the unknown o
case in Section 4. Theorem 3.2 gives the limit distribution of /%, for0 < m < 1
and m = 1, respectively.
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Before we state the first theorem, let

(1+Z )

1

Z,_ +1’
(3.1)

n
ei=2;,—-mZ;_,-Y, and I,=3 Z_,
i=1

THEOREM 3.1. Assume the model (2.1). If E£ | < «, then for each m < 1,

62 ->0% a.s.asn - x,

where 6?2 is as defined in (2.4).

Proor. By algebraic manipulations note that

n g2 — g?Z, “ zr
R P R RO
S1(1+2Z,_ ) i1(1+2,_,)°
3.2
(3.2) ez
-2(m, —m)z———
i= 1(1+Z1 l)

Note that {L7_(e? — 0%Z,_))/QA + Z,_ )%, %), (Z0_16:Z,_, /A + Z,_ )%, F)
and {X7_,¢;, &,} are martingales. Slnce V, - o for each m <1, by the strong
law of large numbers for martingales [e.g., Hall and Heyde (1980), Theorem
2.18], for each m < 1,

n —_ 2
e —0?Z,_,

vViy ——— 50 as,
1 +2z_ )
_lzl—ll——»O a.s.
211+ 2Z,_)°
and
i=1€;
(3.3) (h,—m) = L 50 as.asn - .

n

In view of (3.3), it suffices to show for each m < 1 that

2

(3.4) VY, —m)? Z ———)0 a.s.asn — o,
iz1 (1+2,_,)°

For m <1, (3.4) follows easily from (3.3) and the ergodicity of {Z,}. As for
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m = 1, for some suitable & € (0, 1) write
no Z2,

Vil(m, -m)?Y ————
ic1 (L+2,_,)°

o el

n Z2_
X|:Z i—1

— VoI, +n)" "7,
i=1 (1 + Zi—1)2

Since Z;>2Y,, i>1, Q+n/I)> <1 +n/Z71Y)2 >0 +A"Y)? as. as
n — o by strong law of large numbers (SLLN). Moreover,

[f Z?,

———— VoYL, + n) " < n(I, + n) Y2
L d+z_) ) ( )

-0 a.s.asn — o,

since V, > = a.s. and by Cauchy—~Schwarz inequality n*(I, + n)~! < T, which
implies n?/A 91, + n] ! <n B Y/A-9T - 0 as. as n > © by Theorems
2.16, 2.22 and Corollary 2.21 of Wei and Winnicki (1989). Also, by SLLN for
martingales (X 7¢;)?/(I, + n)'** > 0 a.s. Hence, (3.4) follows from (3.5) and
the above arguments. Hence the theorem. D

The next theorem gives the limit distribution of %, for the cases m <1
and m = 1. The proof is omitted; see Sriram, Basawa and Huggins (1989) for
details.

THEOREM 3.2. Assume the model (2.1). For the estimator ., defined in
(2.2),

N(0,0?), ifm <1,

n 1/2
Y Z,_ ) m,—m) - 1/2
(i=1 I ) = {Y(1) — 2} {le(t)dt} , ifm=1,
0
as n — », where Y(¢) is a nonnegative diffusion process with a generator,
which is obtained as a weak limit of the process Y,(¢) = Z,,,,/n as n — .

REMARK 3.1. The result in Theorem 3.2 shows that drastically different
limit results obtain for the cases m <1 and m = 1. This phenomenon is
analogous to a similar result for autoregressive processes corresponding to the
stationary and unstable cases discussed by Lai and Siegmund (1983).

In the next section we show that if we replace n in Theorem 3.2 by N, given
by (2.3) for the case of known o, then the limit distribution as ¢ — « turns out
to be N(0,0?) for both m <1 and m = 1, thus avoiding the singularity at
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m = 1. It is also shown that a similar result holds if we replace n by N,
(defined below) for the case of unknown o

4. Asymptotic normality of 7y and ritg,. In this section we will be
concerned with the limit distribution of n, and m g for m < 1. Now, since
Z;,>2Y fori>1wehave L7Z,_, > X}~ 1Y»-)ocas as n — o, From this we
have that P (N, < o} =1 for all m<1. Obvxously, P {hmc_,w =} =1
for all m < 1. Similar results hold for N as well, since 62 » 0% a.s.as n — .
The following theorems give the limit dlstrlbutlon of iy and Mg.

THEOREM 4.1. For each fixed m < 1 and N, defined in (2.3), we have

N, 1/2
(4.1) (Z Zi—l) (hy, —m) —p N(0,0%) asc— .
i=1
THEOREM 4.2. Assume that E¢} 11 <. Suppose the stopping time N, is
defined by N, = inf{n > 2: £?_,Z,_, > c62), where 62 is as in (2.4). Then for
each fixed m < 1,
12

(4.2) p N(0,1) asc — o.

NL‘
Y z._
i=1

c

The proof of Theorems 4.1 and 4.2 depend on a lemma which is similar to
condition (2.6) of Proposition 2.1 of Lai and Siegmund (1983). It is worth
pointing out that the conclusion of Lemma A holds uniformly over a whole
class of offspring distributions with m € (0, 1] and bounded variance, where as
in Lai and Siegmund (1983) the corresponding result holds when the distribu-
tion of the error terms is fixed and only the autoregressive parameter varies.
Lemma A will be used heavily to establish the asymptotic normality of 7 N,
uniformly over a whole class of offspring distributions. The proof of Lemma A
is given in the Appendix.

LEMMA A. Assume the model (2.1). Then for each & > 0,

(4.3) lim sup P, { wn28), Z,_, forsomen > k} =0,
k—’erG i=1

where supremum is taken over F € G, ={F: Ep(¢,,)=m €(0,1] and
Varp(¢, ) = 0? € (0, 0]} with o2 < » and known.

Proor oF THEOREM 4.1. Note that

INC
(4.4) L/ (my,—m) =¥ (& -m) /Iy
i=1

The desired result would follow from an application of the random sum central
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limit theorem [see Billingsley (1968), Theorem 17.1, page 146] once we show
that

(4.5) Iy /co® > 1 as.asc — oforeach m < 1.
From (2.3) it follows that
Iy_.< co? < Iy,

which in turn implies that I;,cl_ ,co?2 > 1as. as ¢ > , provided we show that
for each m < 1,

(4.6) Zy 1 Y Z,_,-0 as.asc— o.
=1

Since N, - « a.s. for all m < 1, the result (4.6) follows from Lemma A. Now,
(4.5) follows easily. O

PrOOF OF THEOREM 4.2. Replace N, in (4.4) by N,. Use the definition of
N, the fact that oy, — o” as. for each m < 1, the random sum central limit
theorem Lemma A and argue as in Theorem 4.1 to get the desired result. O

We now state some properties of the stopping time N, defined by (2.3). The
proofs are omitted; see Sriram, Basawa and Huggins (1989) for details.

THEOREM 4.3. For the model (2.1) and stopping time N, defined by (2.3),
the following hold as ¢ — :

(i) foreachm <1,c !N, > (1 — m)a2/A a.s.
and

(i) form =1, c"'/2N, >, inf{t: [(Y(s)ds = 1},
where Y(s) is as defined in Theorem 3.2.

5. Uniform asymptotic normality of N The main result of this

section is the uniform asymptotic normality of 7 (Theorem 5.2 below). Here
the uniformity is with respect to a class of distribution functions %, where

Fc {F:f_ (x —m)dF(x) = 0and f_ (x —m)? dF(x) = of € (0,)

for some m € (0, 1]}

and satisfies the conditions

sup (x—m)zdF(x) =0(l) asa >
Fe F (x—m)|>a}

(5.1)

and inf of > 0.
FeF
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The method of proof of the main result is a very natural one. Our approach is
motivated by the observation that

Xia1Zi

(5.2) m,-m= 3 (§-m) iZi_l
i=1

Jj=1

(randomly stopped average of i.i.d. random variables) where {¢;} denotes the
number of offspring of the jth individual disregarding the generations. We
first state a version of the uniform central limit theorem (CLT) for i.i.d. mean
zero r.v.’s which was originally due to Parzen (1954) [see also Datta (1990)],
and use it to obtain a uniform version of the well-known Anscombe’s theorem.
The main result is then obtained as an application of the uniform Anscombe’s
theorem. Incidentally, it was pointed out by the referee that a uniform version
of Anscombe’s theorem is implicitly used in Siegmund (1982) in a way that
somewhat resembles Theorem 5.1 below. We begin with the statement of the
uniform CLT and a definition of the uniform version of uniform continuity in
probability (u.c.i.p.), often referred to as Anscombe’s condition.

LEMMA 5.1 (Uniform CLT). Let

sc {G: " xdG(x) = 0 and j_°° 22dG(x) =2 = o2 € (o,oo)}.

Assume further that SUpg c 4 fix> ogaf%>/08) dG(x) = 0o(1) as @ — ». Define
S, =X .X;, where X, X,,... are i.i.d. random variables with distribution
function G € £. Then for each real number x,

(5.3) lim sup |Py{(s%n) "8, <z} - ®(x)| =0,
no® ged

where ® is the standard normal distribution function.

Note. For the family # in Lemma 5.1, the condition (5.1) (with m = 0)
implies the extra condition assumed in Lemma 5.1. This fact is used in our
main theorem.

DErFINITION 5.1. A sequence W,, n > 1, of random variables is said to be
u.c.i.p. uniformly over a class « of distribution functions if and only if for
every ¢ > 0, there is a § > 0 for which

(5.4) (s;uI;PG{OE;eE;S|Wn+k—Wn|>e}<s forall n > 1.
c <k<

The proof of the next lemma and Theorem 5.1 below follow along the same
lines as that of Example 1.8 and Theorem 1.4 of Woodroofe (1982). Hence, we
omit the proofs.

LemmMa 5.2. Consider the class & and S,,, n > 1, as defined in Lemma 5.1.
Then S =S,/(Wno), n > 1, is u.c.i.p. uniformly over the class <.
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THEOREM 5.1 (Uniform Anscombe’s theorem). Assume the conditions of
Lemma 5.1. Let 7,, ¢ > 0, be integer-valued random variables for which

(5.5) lim sup Pgf|7./[c0] — 1] >¢} =0
C > Ge‘f

for 8 > 0. Then for S} defined in Lemma 5.2,

(5.6) lim sup IPG{S;’: <x} - CD(x)| =0.

We now return to the model (2.1). The principal result is:

THEOREM 5.2. Define i, n > 1, by (2.2) and N, by (2.3). For the class &
satisfying condition (5.1), we have

1/2 L
N " iy —m
Ppi| X Ziy| —— <=z
i=1 g

PROOF. Let Tc = ):,N;lzi_l, Xi = (ft - m), Sn = E?=1Xi and use (5.2) tO
write

lim sup =0.

— @(x)

N 172
¢ my —m
(5.7) ( Z Zi—l) Sl S::,
i=1

(23
where S is as defined in Lemma 5.2. The theorem follows immediately from
Theorem 5.1 once we have verified condition (5.5). To this end, let 6 = o2 in
Theorem 5.1. By definition (2.3), 7, > co 2. Therefore
Pp{l(co?) ', = 1] > &) < Pp{(ea?) 'r, — 1> )
< P, F{ >¢€ }
N,-1

(5.8) sPF{ZNc_1>s( Y Zi_l),chk+ 1}

N,-1
Zy,_1 Y Ziy
i=1

i=1
+P{N, <k +1}
< PF{Zn >¢), Z;_, for some n > k}
i=1
+ P{N, <k +1}.
Use Lemma A to choose a large & (and fix it) so that

(5.9) sup PF{Zn >¢ey, Z;_, for some n > k} <eg/2.
Fe&¥ i=1



ESTIMATION FOR BRANCHING PROCESSES 2241

For the fixed % and using Ez(Z,) = O(i) for all F € %, we have

n

Pr(N, <k +1) sPF( Y. Z,_, > co? for some n < k)

_

< PF( YZ,_ > 00'2)
i=1

k
< (002)“1EFZ Z;_4

i1
(5.10) =0(k?)/(co®) >0 asc—>»

uniformly over #. The required result follows easily. Hence the theorem. O

A remaining question is whether the uniformlty of Theorem 5.2 holds when

o? is unknown, as in Theorem 4.2. It is conjectured that the unlformlty

continues to hold for N defined in Theorem 4.2 for the case of unknown o2
APPENDIX

Proor oF LEMMA A. Recall that we set I, = X 7_,Z, ,. Write

AL Z,‘f’_ Z?2 ) n 12
(A1) 1_3_(1,,+n)2[+ﬂ] (I+n)[ EHY)]

Since 1 + (n/L7.1Y;) > 1+ A~ as. as n - o, uniformly over F € G, _ (de-
fined in Section 4) it suffices to show that

2

n 2
(A2) lim sup Pp{Z2>68%) (Z,_, + 1)] forsome n >k} = 0.
ko peq, i=1

Let M, = Z2/(I1, + n)% Then
m?Z% + (o + 2mA)Z, + EY?

A3 E{M Z} = <M, +¢,
( ) { n+1| n] [In+1+(n+1)]2 = n gn

which satisfies condition (1) of Robbins and Siegmund (1971) for ¢, = {(¢2 +
2M)Z, + EY?/[I,,, + (n + D]°. Now apply Proposition 2 of Robbins and
Siegmund (1971) to get

(A.4) P{maic M, > 52} 5,6"2{EMk +EY g,,} >0 ask o
nz n=~k
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uniformly over F € G, since

o0 ) In 1 —In o _2
EY {,<(c2+2)EY = +EY2EY (n+1)
n=k (v ) nek [Log + (B +1)]° it

2 * -2 2 (% -2
s(al+2,\)fo[(k+1)+x] dx+EYlka dx

— 0 as k — o, uniformly over F € G,

and

EM, < EZ}_ /[L,_, + kP’ + (0 + 20)EZ,_ /[ I, + k)’ + k2EY?
k
< - <E(02+20) Y Z,_,/[k + L] + kEY?
i=1

— 0 as k — o uniformly over F € G, . |
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