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FISHER’S INFORMATION IN TERMS OF THE HAZARD RATE!

By BRaADLEY EFRON AND JAIN M. JOHNSTONE

Stanford University

If {g4()} is a regular family of probability densities on the real line,
with corresponding hazard rates {hy(¢)}, then the Fisher information for 8
can be expressed in terms of the hazard rate as follows:

A ho\*
-%Ef(g—:)&:f(;z)go, 0 eR,

where the dot denotes d/36. This identity shows that the hazard rate
transform of a probability density has an unexpected length-preserving
property. We explore this property in continuous and discrete settings, some
geometric consequences and curvature formulas, its connection with martin-
gale theory and its relation to statistical issues in the theory of life-time
distributions and censored data.

1. Introduction. Fisher’s information for the parameter § in a family of
density functions g,(t) on the real line is defined to be

(11) 5= /_ww[iﬁ—g] £o(t)

where the dot indicates differentiation with respect to 6,

(1.2) &o(t) = ’;—ogo(t)~

This definition assumes that we are dealing with a family of continuous distribu-
tions on the real line for which the partial derivative (1.2) exists, see Section 5a.4
of Rao (1973), Section 2.6 of Lehmann (1983) or Section 1.7 of Ibragimov and
Has’minskii (1981). The parameter § may be a p-dimensional vector, in which
case

sio= [0 200

and 4, is the p X p Fisher informatiort matrix. The results which follow hold
for the matrix case, after the obvious notational changes, but for the sake of
simple exposition we will take 6 real-valued.
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The survival function, or right-sided cumulative distribution function (right
cdf) corresponding to density g,(¢) is

(1.3) G,(t) = /, “gs(s) ds = Prob){T > t),

T indicating a generic random variable with density g,(¢). The hazard rate for
T is then defined to be

8(t)

(1.4) m(t) = G

Hazard rates are useful in discussing life-time distributions. They have the
interpretation

(1.5) ho(t)A = % = Prob{T €[¢,¢t +A)|T > ¢},

50 hg(t)A equals the probability of dying in an infinitesimal interval (¢, ¢ + A),
conditional upon survival until time ¢. See Chapter 2 of Cox and Oakes (1984) or
Chapter 1 of Kalbfleisch and Prentice (1980) for nice discussions of the hazard
rate.

Our central result is an expression for the Fisher information in terms of the
hazard rate:

o) - /_”w[,’:m gty it |h(e) = som0)]

In other words one can replace the usual score function (3/38)log gy(t) =
8o(t)/8¢(t) in (1.1) by its hazard rate analog (3/38)log hy(t). [However,
J28s(t)hg(t)/hy(t) dt does not usually equal 0, while

/_w ,,(t)g"gt; dt=0

under mild regularative conditions.] Formula (1.6) is simple and easy to derive,
but it has interesting statistical and probabilistic implications, which are the
main topic of this paper.

ExXaMPLE 1. (a) The negative exponential density: g,(¢) = (1/8)e™" ¢ for
t>0, so go(t)/go(t) = (¢t —0)/6% In this case hy(t)=1/6, A o(8)/he(t) =
—1/6, and (1.6) gives 5, = [°84(¢)(1/60%)dt = 1/62.

(b) The proportional hazards model of survival analysis [e.g., Cox and Oakes
(1984), Chapter 7, and Efron (1977)], sets hy(¢; 2) = Y(2; 8)h(t), where z is a
covariate vector, A(t) an arbitrary baseline hazard rate and § may be a vector.
In this case 9 log hy(t; 2)/36 = 9 log Y(z; 6)/36 does not depend on ¢ If no
censoring is present, then % = (3y/30)(dy/360) /y? where prime denotes
transpose. For the popular log-linear form y(z; §) = e?®, %, = zz’. If the covari-
ate z is time varying, z = 2(t), then %, = E2(T)2(T).
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EXAMPLE 2. Standard Gaussian distribution: gg(t) = ¢(¢ — 6), where
o(t) = 2m) "% /2 Then (1.2) gives £, = 1 = [®_(t — 6)%p(t — 0) dt. In this
case (1.6) produces an identity involving Mills’ ratio,

) ¢(t - 0) 2
1. 1= t—0) - —————— t—0)dt
(17) f,w[( )~ e gy | PO
where ®(t) is the standard normal cumulative [% ¢(s) ds. This example and its
generalization to translation families appears in Gill (1980), page 128.

Equahty (1.6) says that the functional transformation gy(¢)/g,(t) —
hy(t)/hy(t) preserves length in the L, norm ||b||2 = [*_ b(t)> g,,(t) dt. Section 2,
which concerns the case where T is contlnuous discusses a pair of length-pre-
serving linear transformations on the L, space defined by g,. Equality (1.6) is
then seen as a special case of a more general result [which appears in James
(1986)], holding for L, functions b(T) of a continuous variate T

(1.8) var{b(T)} = E[b(T) - B(T)]", where b(¢) = E{b(T)|T = ¢}.

EXAMPLE 3. Suppose g(t) = t* ‘e !/T, for t > 0, so T has a gamma distri-
bution. By considering — T instead of T, we can let b(t) = E{b(T)|T < t} in
(1.8). Then (1.8) gives for b(¢) = t the (apparently new) identity

T -T,,,(T)
3.

v

(1.9)

where T, (t) is the incomplete gamma function [/s’e~° ds.

To derive (1.6) from (1.8), choose b(¢) = g4(t)/ge(t). Then

o &g s G0
. "0=3 <t>f igisigﬂ“) - ng
(1'11) b(t) _ B(t) _ g0(t) G0(t) _ ilo(t)

g(t)  Gy(t)  hy(t)’

and (1.8) gives (1.6). (Regularity conditions for this argument appear in Remark
A, Section 4.)

There is a more statistical way to look at (1.6) and (1.8). These results are
closely related to the left-to-right conditioning calculations which arise in sur-
vival analysis and censored data, for example in the Kaplan-Meier estimate, the
log-rank (or Mantel-Haenszel) test and Cox’s proportional hazard model. [See
Miller (1981), Cox and Oakes (1984) and Kalbfleisch and Prentice (1980).] Our
results for the case where T is discrete, Section 3, will be proved using the
left-to-right conditioning argument. Because of the connection with survival
analysis, the generic random variables T will be referred to as “life-times,”
though of course this has no bearing on the results.
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Unified formulas covering discrete and continuous cases are given in Section 4,
using the language of counting processes and martingale theory. For example, a
martingale argument generalizing that of Section 3 gives a probabilistic proof of
(1.6). Among various remarks we present an application of the deviations lemma
of Section 3 to Greenwood’s formula and an extension to binary trees that
includes decomposable models for contingency tables.

Geometrical aspects of (1.6) and (1.8) dominate in the concluding Sections 5
and 6. Although the identity (1.6) is stated for one-parameter families {g,}, the
functional transformation from density g(¢) to hazard rate h(¢) = g(¢)/G(t)
depends only on the density g, and not on the family to which it belongs.
Choosing different one-parameter families (“curves”) through g, one sees that
the linear transformation A, £4(¢)/84(t) — ho(t)/hy(t) depends only on g.
This suggests that we think of A, as a length-preserving linear transformation
from a tangent space at g to a tangent space at h. Since in the identity g is
essentially arbitrary, these tangent spaces are infinite dimensional. Section 5
tries to make this precise.

Formula (1.6) has other geometric consequences. Section 6 applies it along
with extensions derived in Lemma 2.1 to compute the statistical curvature [cf.
Efron (1975)] of one-parameter families of distributions specified in terms of
hazard functions A(?).

The survival analysis literature contains much related work. Identity (1.6) is
at least implicitly known, since the inverse of the right side of (1.6) appears as
the asymptotic variance of the MLE of @ [see, e.g., Borgan (1984)]. James (1986,
1987) emphasizes (1.8) in the study of estimating equations with censored data.
Ritov and Wellner (1988) have independently studied the operators A and B of
our Section 2 (their R and L), derived (1.8) and given applications to informa-
tion calculations for regression models for survival data.

In summary, this paper is a set of analytic, statistical and geometric varia-
tions on the theme laid out by (1.6) and (1.8). Beyond verifying these our
purposes are (i) to understand more fully the mapping g(t)/g(t) — h(t)/h(2),
its inverse and its length preserving properties, (ii) to derive the discrete analog
of (1.8) in a way that suggests the relation with martingale theory, (iii) to
understand the statistical basis of (1.6), especially its connection with familiar
arguments from the theory of life-time distributions and censored data and (iv)
to explore geometric implications—nonparametrically via infinite-dimensional
isometries and parametrically through curvature calculations for hazard models.
Whether (1.6) or (1.8) dominates depends on whether the viewpoint is parametric
or nonparametric. Although martingales and counting processes appear, they are
not given their full due, in view of the elegant and sophisticated treatment of
Ritov and Wellner (1988).

2. Continuous case. We begin with a direct analytic proof for the general
version of the information identity ., = E[Ay(T)/hy(T)]?, namely that
var{b(T)} = E[b(T) — b(T)]? (1.8), in the continuous case where T has den-
sity function g4(¢) on the real line. Section 3, which concerns the discrete case,
gives another proof of the main result based on more intuitive probability
calculations.
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The subscript 6 plays no role in the identity (1.8): We now assume simply
that g(¢) is a probability density function with respect to Lebesgue measure and
that G(t) = [g(s)ds, h(t) = g(t)/G(¢t). Thus, let L,(g) be the space of
functions which are square integrable with respect to the density g. For a and
b € Ly(g) let (a, b) denote the inner product [®_a(t)b(t)g(t)dt. For any a
and b in L,(g) define transformed functions

B(s) = — [To(0)e(2) ae
)= g(t) dt,
1) G(s) /s

a(t) = /lwa(s)h(s)ds.

We will be interested in two relateq linear transformations on L,(g),
(Ab)(s) = b(s) - b(s),
(Ba)(t) = a(t) — a(¢).
(Our mnemonic: A adjusts for “advance” times, B for “backward” times.)
The proof of (1.8) consists of showing that A and B are essentially adjoint

and inverse transformations, from which (1.8) follows as a length-preserving
identity for functions in L,(g).

(2.2)

LEMMA 1. For functions a and b in L,(g),

(2.3a) (Ba, by = (a—d,b)y=(a,b—b) = (a, Ab),
(2.3b) i=d+a

and

(2.3¢) b=5b+b— Eb,

where Eb = [*_b(t)g(t) dt. (The proof of Lemma 1 appears below.)

Thus, A and B are adjoint transformations. Results (2.3b) and (2.3¢) show
that A and B are also inverses in the following sense:

(2.4a) ABa=A(a—-d)=(a—-a) - (a-a)
=a
and
(2.4b) BAb=B(b-b)=(b-5)-(b-b)
= b — Eb.
Our main result (1.8) follows immediately from (2.3a) and (2.4c),
(2.5) var{b} = (b, BAbY = (Ab, Ab) = E[b — b]".

Let LJ(g) be those functions b in L.(g) having Eb = [2,.b()e(t)dt = 0. If
a € Ly(g), then b= Ba=a—de L)g). [This follows from (2.3a), taking

b(t) =1=b(¢)] Then b — b = Ab = ABa = a according to (2.4a). Substituting
b=a—dand b- b=a in (2.5) gives another form of identity (1.8),

(2.6) E{a?} = E{a - &)
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In summary, the transformations A and B have norm 1 on L,(g) and the
restriction of A to LY(g) equals B~! and provides an isometry of LY g) onto
L,(g). This development makes it look like A ranges over a space of dimension
one greater than B. For the discrete situation, discussed in Section 3, we will see
that A and B actually range over spaces of the same dimension.

PRrROOF OF LEMMA 1. For a and b (and hence the conditional expectation b)
in L,(g), we apply Fubini’s theorem:

(d,b) = ftb(t)[fsqa(s)h(s)ds]g(t) dt
= j;/lzsa(s)h(s)b(t)g(t) dtds

- [a()a(5) G(ls) IRgroe:

= Ja(s)b(s)g(s) ds = (a, b),
verifying (2.3a). [Formula (2.7) shows that @ € L% g): ||d|| = sup{(a, 5)/||b||:

b € L*g)} < |la|| < .] Formulas (2.3b) and (2.3c) are also based on an inter-
change of integrations; we shall consider only (2.3c) here:

b(s) = fh(t)G(t)[/ b(u)g(u)du]dt

- f f Z((?) b(u)g(u)dtdu

u<s

+f / G(t) b(u)g(u) dtdu.

Since
h(t)  &(t) 91
G(t)  G(1)* E(W)
we get
_5(3) = fu<sb(u)[G( ) 1]g(u)du+ fuzs (u)g(u) du[G( ] 1]

=b(s) +b(s) -
which is (2.3¢). O

3. Discrete case. Results (1.6) and (1.8) require minor modifications when T
is discrete. This section discusses the discrete case. A probabilistic proof of the
main result is given, emphasizing the connection of (1.6) and (1.8) [now (3.8) and
(3.16)] with familiar martingale arguments from survival analysis. Some aspects
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of the structure of the linear transformations A and B are seen more clearly in
the discrete case.
Suppose then that T can take on N possible values,

(3.1) Probo{T=i} =g0,l" i=1,2,..., N,

Efilgo’,- = 1. The parameter 6 will usually be omitted from the notation,
&:; = 8, ;- The right cdf

(3.2) Gi = Go’i = E go,i
) j=i
is the probability T > i. The ith discrete hazard is
8,i
3.3 h,=hy ,= —.
( ) i 9, Go,i

Let T, T;,..., T, represent an independent and identically distributed (iid)
sample from the discrete distribution (3.1), and let

(3.4) s; = #{T, =i}, i=12,..., N,

be the number of counts in category i. Also define

(3.5) n;= Zsj, i=1,2,...,N,
J=i

son; = #{T,>i}.
We then have the following elementary result.

LEMMA 2 (Left-to-right identity). The probability of observing counts s =
(815 Sgy---5 Sy) 1S

(36) (

N

N ni n,—s
M= 11 (3o -

n!
!

s;1s,! .. spy!

i=

Proor. The left side is the usual multinomial expression. The right side is
obtained by successive conditioning beginning at the left end of the time scale: If
n; of the life-times T}, Ty, ..., T, are known to exceed i — 1, then the number s;
dying at time i is conditionally binomial,

(8.7) sils;_1 ~ s;|n; ~ Bi(n;, h;).
Multiplying the successive binomial densities (3.7) gives the right side of (3.6). O

Barlow, Bartholomew, Bremner and Brunk (1972) give a likelihood-based
derivation of Lemma 2 on pages 104 and 105.
The left-to-right identity leads directly to a discrete version of (1.6),

o ae 240 £ (1) 5

i=1\8i i1\ B
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The continuous case can be thought of as the discrete case with A, — 0, in which
case (3.8) — (1.6). Here are the steps from (3.6) to (3.8):

If /; indicates the score function (derivative of the log density with respect to
) of the ith term on the right side of (3.6), then

. Si - nihi ki

13

Given n,, [; has conditional mean 0 and variance nhi1 — k)" h,/h;)?,
according to (3.7).
Let v(n) indicate the “total conditional variance”

N

(3.10) o(n) = Y var(ln;) = g nh(1 - hi)_l(ﬁi/hi)z.

i=1
}'l 2
hi )

LN I, is the derivative of the log density of the entire sample s with respect
to 0.
The Fisher information

Since En; = nG,, the unconditional expectation of v(n) is

N A2 N
(811) E(v(n)) = n ¥ Gyl k)" ( h) "Lt

i=1

i

)

i=1

equals E{v(n)}, by a standard left-to-right martingale conditioning argument.
[This point is explained below, in the derivation of the discrete analog (3.16) of
(1.8).]

Equating (3.11) with n.#, gives result (3.8). O

The discrete version (3.16) of the general result (1.8) requires one more lemma.
Let :

(3.12) D;=s,—ng, and d;=s;,— nh,,

so D; is the deviation of the count s;, (3.4), from its unconditional expectation
ng; and d; is the deviation of s; from its conditional expectation nh;, (3.7).
(Notice that £D; = 0 and dy = 0.) Our results follow from a lemma relating the
D; to the d,.

LeMMA 3 (Deviations lemma). For any vector b = (b,, b,, ..., by), we have

N N
(3.13) Z Db, = Z da;,
i=1 =1
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where a = (a,, a,..., Ay_1, Ay) IS given by

- - 1

Gi+1 Jzi+l
fori=1,2,..., N — 1, while ay is arbitrary. Moreover, letting Eb = LN  g.b,,
the inverse transformation from a to b is given by
(3.15) bi - Eb = ai - di [dt = Z hjal],
J<i
fori=1,2,..., N.

(The indeterminacies could be removed, e.g., by decreeing that ay = 0 = Eb.
The proof of the deviations lemma appears later in this section.)

THEOREM. For vectors b and a related as in (3.14) and (3.15),

(3.10 ¥ (b~ BbYe = T alg(1 - hy).

i=1

ProOOF. The variance of the left side of (3.13) is
N N
(3.17) var{ Yy bis,-} =nY g(b,— Eb)’
i=1 i=1

according to standard multinomial calculations. Let s; = (s, sy, .-, ;), and turn
now to the right side of (3.13). From (3.7) s;|s;_, ~ Bi(n;, A,), so that {d;a;} are
martingale differences and hence conditionally uncorrelated. Since Enh; =
nG;h; = ng,, it follows that

var(Xa,d;) = EX var(a;d,s;)
= nZg(1 — h;)al. o
The theorem is a discrete version of the length-preserving identity (1.8), which
we saw was a generalization of our main result (1.6). Let b, indicate the discrete

variate taking value b; with probability g;, and likewise a;, A, etc. Then the
theorem can be written as

var{br} = E{[l - hT]a%‘} = E{[l - hT][bT - BT]2}

(3.18) =E{1 _lhT[bT—ET_IF}-
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The last form of (3.18), which follows from the identity

b i) bi - Ei—l
a;=0o; i T R,
is exactly (1.8), except for a correction factor 1/(1 — A;) necessary in the
discrete case. [The Fisher information result (3.8) uses b; = g,/8; a;=

A — h) N hy/hy)]

PROOF OF DEVIATIONS LEMMA. If formula (3.13) is true for n = 1 it is true in
general, by additivity. Therefore, it is enough to prove (3.13) for n = 1, in which

case only a single life-time T € (1,..., N} is chosen. The identity becomes
(3.19) by — Xbg; =ar - )y h;a;,
i<T

or by — Eb = ar — Gy which is just the definition (3.15) of b in terms of a.
Substituting for {a;} its definition (3.14) in terms of {b,}, the difference between
the left and right sides of (3.19) becomes
(3.20) bT_Eb_ (bT_ET) + Z hi(bi—i)i).
i<T

An elementary calculation gives

hi(bi - Bi) = —(zi - Bi—l)’
showing that (3.20) equals 0, so (3.13) and (3.14) are true. This shows the
transformation A: (b)Y, - {a; = b, — b;}¥7' and B: {a}N7' -
(b, = a;— @}, are inverse in the sense that ABa = a and BAb = b — Eb,
completing the proof. O

We have so far supposed the n observations to be identically distributed. Now
suppose each observation has its own fixed covariate vector z;, i = 1,..., n. Let
s; = Xj_12;I(T; = i), where I(T; = i) equals 1 or 0 as T; does or does not equal ;
s; is the sum of the z, assigned to index i. A simple generalization of the
deviations lemma is obtained by multiplying (3.19) by z; (with T replaced by T})
and summing over j.

LEMMA 4. Let e;=s;,— hX;.;s; and E;=s,— gX}_z;. Then for se-
quences a and b related as in (3.14) and (3.15), we have

N N
(3.21) Z Eibi = Z eiai.
i=1 i=1
Lemma 3 is the special case of Lemma 4 wherez, = zy= -+ =2z,=1.

We illustrate Lemma 4 using hypothesis tests in the proportional hazards
model A,(t, z;) = e®’*h(t) and an example derived from Cox and Oakes (1984),
page 98. For brevity, assume that there are no ties in the observed life-time
variables T;. Hence N = n and s; = 2, where j(i) is the individual with T} = i.
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Let g; be the empirical distribution putting probability g, =1/n on the n
distinct outcomes, and let a; equal the censoring indicator §; [§; = 0 or 1 as the
observation (z;, T) is or is not censored]. Let & be the set of exact failure times
and %, = {J: T; > i} the risk set just before i. The size of #; isn;=n —i + 1.
Then (3.21) becomes

b

1
(3.22) 2;b; = Yy (zj(,-) -—Y zj) =,
i=1 ic9 n; jeaq,
say, where b, = a, — @, =8, -~ L;_; jcol/n, (Recall that b, = 0.)

The right side of (3.22), corresponding to conditional deviations, is the usual
score statistic for testing the null hypothesis § = 0. In the two-sample case,
where z;, = 0 or 1 according as i belongs to group 0 or 1, U reduces to the
log-rank or Mantel-Haenszel statistic.

If the censoring pattern is independent of the covariates, a permutation test
of H, is possible. The mean and variance (and other aspects) of the null-hypothe-
sis permutation distribution can be read off from identity (3.22): For example,
EU = 0and Cov(U) = (n — 1) 'X(2; — 2)(2; — 2)'Tb2.

For the two-sample problem, Prentice and Marek (1979), following Prentice
(1978), use a version of (3.22) to define and interpret a class of censored data rank
tests beginning with interesting sets of coefficients b; (considered only at exact
failure times).

Andersen, Borgan, Gill and Keiding (1982) discuss the connection of the
Prentice-Marek statistics with the counting process approach to censored sur-
vival data. The calculations in their Section 3.4 are closely related to those
leading to Lemma 4.

4. Extensions and remarks. We have taken two distinct approaches to
interpreting identities (1.6) and (1.8). An analytic viewpoint was illustrated in
the continuous case in Section 2, while a probabilistic approach was presented
for the discrete case in Section 3. Although important simplifications justify the
separate discussion of discrete and continuous cases, we summarize here for
completeness the direct generalization (of both approaches) to general distribu-
tions F, = P(T < t) on R.

Write G, = P(T > t) and G, = P(T > t), respectively, for the left and right
continuous versions of the survivor function, and

(4.1) H, s
) t (0, ] GS ’

for the cumulative hazard up to time ¢. The definitions (2.1) become

(4.2) 5(s) = Gi/

(s,00

b0 dE,  a(t) = [

(— oo,

a(s) dH,.
t]

(We take 0/0 = 0.) For Lemma 1, we replace the two inner products in (2.3a),
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respectively, by

(b, 8= [6()B()dF,  (a,a’),= [a(s)a'(s)(1 - AH(s)) dF,

where AH(s) = H(s) — H(s — ) measures jumps in the cumulative hazard. [The
subscripts “ld ” and “Ih” identify Fisher’s information metric expressed respec-
tively in log-density and log-hazard coordinates at the distribution F: For more
details in the discrete case see Remark O of Efron and Johnstone (1987).]
Identities (1.8) and (3.16) become

(4.3) f(b(s) — Eb)*dF, = fa2(s)(1 — AH(s)) dF,.

The probabilistic approach rests on the methods of counting processes [see,
e.g., surveys by Andersen, Borgan, Gill and Keiding (1982) and Andersen and
Borgan (1985)]. For iid observations T,..., T, from F, the number of “deaths”
just after ¢ is N,= #{T, <t} and the number at risk just before ¢ is Y, =
#{T, > t}. Corresponding to the earlier D, and d;, we now track unconditional
and conditional deviations via the cumulative processes

(4.4) U=N-nF, M=N,- Y, dH,.

(-‘ 0, S]
The zero mean process U, is tied down to 0 at + oo, while M, is the fundamental
martingale of counting process theory [Aalen (1975, 1978) and Gill (1980)]. The
deviations lemma states

(4.5) [b.dU,= [a,am,

for functions b, a related by either @ = b — b or b = a — G. The basic identity
(4.3) is obtained by taking variances in the deviations lemma, using the expecta-
tion of the predictable variance process of M, on the right side.

The discrete information identity (3.8) is proved by decomposing the multino-
mial experiment into a sequence of binomial subexperiments and adding the
expected conditional information in each subexperiment given its predecessors.
The referees note that this approach extends to more general dominated families
{Fy} < v, where now Fy(dt) = go(t) dv(t). For n =1, if T > ¢, calculate the
information (conditional on the strict past) in the Bernoulli experiment from ¢ to
t + dt “observe T € dt with probability dHy(t) = hy(t)dv and T & dt with
probability 1 — dHy(¢).” Adding the infinitesimal experiments gives an extension

of (1.6) and (3.8):
ilo ? haGo dV ilo ? fo dV
jﬁf}? 1—AH=-/h_ 1-AH,
0 0 0 0
Basawa and Rao (1980) give references to the large literature on such conditional

variance calculations in inference for stochastic processes. Related material
leading to the identity (1.6) using information processes and locally asymptoti-
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cally normal experiments appears in Jacod (1989) and Greenwood and
Wefelmeyer (1989), respectively.

We will not discuss asymptotics here, save to remark that in the case where F
is uniform on [0, 1], the relation (4.5) goes over, as n — o0, to

f bdW. = f adW, (equality in distribution),

where W° and W are, respectively, standard Brownian bridge and standard
Brownian motion on [0,1]. This identity may be derived directly using the
Doob-Meyer decomposition of Brownian bridge [see, e.g., Khamaladze (1989) for
suggestive related material]. A standard tool for results of this sort are the limit
theorems of Rebolledo (1978, 1980).

REMARK A (Regularity conditions). Equality (1.6) and its analog for § € R”?
hold if the score function exists in L?(g,(¢) dt) and the interchange

o d ds d s
[ 5gens)ds = 55 [Teils)

in (1.10) is valid. A standard set of sufficient conditions [cf. Ibragimov and
Has’minskii (1981), pages 65 and 67] is that on a neighborhood of 6§, the function
¢ - \/g‘p(t) be continuous for Lebesgue almost all ¢ and continuously root-
mean-square differentiable in L2(dt).

REMARK B (Multiparameter case). As remarked in Section 1, the extension
of (1.6) to vector-valued 8 is trivial. By contrast extension to multidimensional t
is not straightforward (except in the limited sense of Remark C) because the
total ordering is lost. Perhaps the most obvious choice for the multivariate
failure rate of a density g(¢,, ¢,), namely r(¢,, t,) = g(t,, t;,)/P(T, > t,, T, > t,},
fails because r(¢,, t,) does not even uniquely determine g(t,, ¢,) [see, e.g., Puri
and Rubin (1974)]. An alternative is to consider vector-valued analogs of the
hazard, such as the “hazard gradient” v, log P(T > t), discussed for example by
Marshall (1975).

REMARK C. Identity (1.8) is written for functions of a real-valued continu-
ous variate T. There is a simple extension for the case when one wishes to make
explicit the dependence of T = T(x) on an abstract sample point x € Z. Alter-
natively, we may think of T(x) as imposing a (semi) ordering on Z. If R(X)is a
random variable with finite variance, if the density of T(X) is absolutely
continuous, and if R(t) = E[R(X)|T(X) > t], then

VarR(X) = E[R(X) - B(X)],

where, by an abuse of notation, R(X )= R(T(X)). This equation is verified by
considering the conditional mean R(¢) = E[R|T = t], noting that R(?)=
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E[R|T > t]; and applying (1.8) to R(T):
VarR = E Var(R|T) + Var R(T)
- EE|(R - R)|T| + E[R(T) - B(T)]*
=E(R-R)".

REMARK D. The left-to-right identity yields other martingale results. For
any value of ¢,

Ri = e¢az(s¢_n¢hi)_nzkt’ ki = log{(l — hi)e_¢aihz + hie¢ai(1_h;)}’

has conditional expectation 1 under (3.7), so R,, R,R,,...,II"R; is an exponen-
tial martingale with expectation 1. Evaluating E{IIVR;} = 1 from the uncondi-
tional multinomial distribution of s gives the following identity:

N
(4.6) 1= ) ge*™ %, K, =Yk,

i=1 Jj<i
Differentiating (4.6) twice with respect to ¢ is another way to derive the theorem
(3.16). [Note: This exponential martingale should be distinguished from the
Doléans martingale &(M), =TI1,_,(1 + AM,)exp(M;) [see, e.g., Rogers and
Williams (1987)] which would yield here I1;_,[1 + ¢a,(s; — n;h;)]]

REMARK E. The total conditional variance v(n), (3.10), is closely related to
Greenwood’s formula for the variance of an estimated survival curve. The
deviations lemma leads at least in the uncensored case to a simple derivation of
Greenwood’s formula that avoids the usual appeal to Taylor series approxima-
tions and the “delta method.” The “life-table” or “actuarial” estimate for
G, =Tl,.,(1—-h)is éi =TI1,.;(1 — h;) = n;/n, where as before ;= s,/n . By
introducing b; = n"'I{j > i} — n"'G,, we find

GAl_Gt=ZDjbj, D,=Sj_’lgj.
J

Apply the deviations lemma (with a; = —G,I{j < i}/nG,,,):

s;—nh;
(4.7) G,-G=-GY —~—"*-.
j<i nGj(l - hj)
By taking conditional variances
nh

(4.8) v(n) = GI L .
j<i (nGj)2(1 - hj)
Substituting A ; and Gj for the unknowns in (4.8) gives Greenwood’s formula
— R S;
var(éi) =Gl ) :

j<i nj(nj - Sj) ’

Miller (1981), page 45. Formula (4.7) is a special case of the stochastic integral
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F1G. 1. Random walks down a binary tree. Each item begins its walk at the top parent node p,. At
each successive parent node p; (circles), the item descends left or right with probability h; or 1 — h;,
until it finally arrives at a terminal node t, (squares). The marginal probabilities of the terminal
nodes are g, 8, 83,... . The left diagram is the tree representation of a five-cell multinomial
distribution. The right diagram shows a more complicated tree structure.

identity G — G = —Gf(G_/G)dM/Y [in the notation of (4.4) with G the
Kaplan—Meier estimate] derived by Aalen and Johansen (1978), Gill (1980) and
via product integrals in Gill and Johansen (1987) and applied to Greenwood’s
formula.

REMARK F. The discrete situation discussed in Section 3, can be thought of
as a random walk down a particularly simple binary tree shown on the left side
of Figure 1. Results similar to the deviations lemma hold for arbitrarily compli-
cated binary trees. Such trees could model survival distributions in experiments
where the group of experimental subjects is subdivided (perhaps repeatedly and
perhaps according to treatment or covariates) as observation proceeds over time.

Suppose that n items independently walk down a binary tree, according to
the probability mechanism described in the caption of Figure 1. Let

s; = # {items ending at terminal node ¢},
n; = # {items passing through parent node p;},
49
(49) S, = # {of the n, items that descend left from node p;},

Notice that Sjn; ~ Bi(n;h;) as in (3.7). A generalization of the deviations
lemma applies to binary trees,

i J

the sums being over all terminal nodes i and parent nodes j, respectively, with
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the vectors b and a related as follows:

a;= > &b/ Y ga— X &b/ Y &

i(<Lyj | <L)j <Ry | i<R)j
(4.11)
b= X (1-hj)a;— ¥ ha,
J(> L J(>R)i

The notation i(< L)j indicates terminal nodes ¢, that can be reached by
descending left from parent node p;; likewise j(> L)i indicates parent nodes p;
such that a left descent can lead to ¢,, etc.

Results (4.10) and (4.11), which will not be proved here, lead to the following
variance identity:

(4.12) Zgibiz = ZGjhj(l - hj)ajz', G = > 8>
i J (<)J
analogous to the theorem, (3.16).
The probability G, = X, .,;g; of all terminal nodes descended from the parent
J can be estimated by éj in the obvious way. A generalization of Greenwood’s
formula (that applies even when the random walks are censored) is

— é 1 S 61’
Va.r{log Ej} = —[n;
y

j j/<jnj/ _Sj'

where §;, is —1 or +1 according as the left or right path through node ;' is
taken on the way to node j.

The covariates version of the deviations lemma (Lemma 4) generalizes in an
obvious way and can be exploited for permutation tests and construction of a
Prentice—Marek class of statistics as described after (3.22).

A further virtue of the binary (and general) tree viewpoint is that many
complex probability models can be quite simply represented in terms of random
walks down trees. A trivial example occurs in Figure 1(b) if we replace parent
node p; by a terminal node ¢,. Adding the constraint A, = h,, = h,, produces
the independence model for a 2 X 2 contingency table. The standard MLEs of
the terminal cell probabilities are obtained from A, = S,/ n, hy,=
(851 + S52)/(ng; + nyy). In general, closed-form maximum likelihood estimates
of cell probabilities are easily obtained, even under more general equality
restrictions on the transition probabilities &;. The approach can be extended to
include the class of “decomposable models” introduced by Goodman (1970) and
Haberman (1974) for complete multiway contingency tables.

5. A geometric view. We have seen that the hazard rate identity (1.6) is a
special case of the isometry relation (1.8) in which b = g,/g,, @ = hy/h,. There
is, however, a more fundamental connection between the linear transformations
A and B and the nonlinear hazard transform H: g(¢) — g(t)/G(%) defined on
the set of probability density functions on R. First, a heuristic account.

We fix a density g and linearize H about g. Suppose that b has mean 0,
[2,0(2)g(t) dt = 0, and that for sufficiently small ¢, g - (1 + ¢b) is a probability
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density. [If {g,} is a one-parameter family of densities, then b = 8o,/8s, 18
particularly interesting choice for b.] A simple calculation shows that

(5.1) H[g: (1 +¢b)] =H(g) - [1+eAb] + o(e),

where Ab=b— b as in (2.2). In other words, A is a logarithmic Gateaux
derivative [e.g., Huber (1981), Chapter 2] of H about the fixed density g.

Now let G indicate the inverse of H, mapping a hazard rate A into the
corresponding density g. Another simple calculation shows that

(5.2) . G[h- (1 + ea)] = G(h) - [1 + eBa] + o(e),

for ¢ > 0, where a(t) is any function for which A - (1 + ea) is a hazard rate
when ¢ is sufficiently small. In other words, B of (2.2) is a logarithmic Gateaux
derivative of G = H™ L,

These expansions indicate that the mutual invertibility of A and B follows
from the mutual invertibility of G and H (inverse function theorem). Further-
more, B and A are also adjoints, and hence length preserving. Thus, roughly
speaking, the spaces of log densities and log hazards are not merely diffeomor-
phic, but also isometric. The Riemannian distance between two log densities is
not changed under transformation to log hazards, even though the transforms
are far from rigid.

In the remainder of this section we attempt a more formal geometric descrip-
tion of these phenomena. The (log) hazard function representation of a probabil-
ity measure provides an alternative set of “coordinates” on the space of density
functions. The hazard transformation applies to any density function; being thus
nonparametric, it suggests an infinite-dimensional treatment. The operators A
and B assume the role played by Jacobian matrices for change of coordinates in
finite-dimensional situations.

Let 2 be the set of finite (nonnegative) measures on (%, #) equivalent to a
o-finite measure p. We assume that 2 C R. The map @ — 2(dQ/dn)'/? identifies
2 with the subset % = {u: u> 0a.e. (p)} of the Hilbert space Ly(p). We recall
some facts collected by Dawid (1975, 1977) (see also the references mentioned
therein). The induced metric on £ is Hellinger distance

dQ 1/2 dQ’ 17272 ,
5] T e

If § > Q, is a smooth one-parameter curve in 2, then p(Qy, Q. 45) = iy’ db,
where ‘

0*(Q Q) =4f

is =4 [0/g [06] dp= [[3(108 80)/96] gy, &0 = %‘

Further the subset 2 of 2 consisting of probability measures corresponds to a
subset of a sphere: % = {u € Ly(p): ||lu|| = 2, u > 0 a.e. (p)}. '

We ignore technical difficulties (Remark G) and think of %, % and the sets
F% to be defined below as manifolds modeled on Hilbert space [see Lang (1972)
for infinite-dimensional manifolds].
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Foh
Fa

m =M
a a

Fic. 2(a). The %, and #, representations are defined by mappings F* of (5.3) and F* " of (5.4)
from the space of probability measures regarded as a subset of the sphere in Ly(p).

For a manifold .#" embedded in L,(p), define the tangent space T, 4" as the
collection of all L,(n) functions v for which there is a curve ¢ - u(e) in A~
satisfying ||u(e) — p — ev|| = o(e). It is easy to check that T % = L,(pn) and
T = {veE Ly(p): foudp = 0}.

Thus, the induced information metric for £ is just that induced on a sphere
of radius 2 in Hilbert space. The geodesic (shortest path) curve in & between
distributions P, and P, is a great circle through P, with distance p* given by
p* = 2c0s ™ [(p, py)"/ dp), where p; = dP,/dp.

We now describe two families of isometric representations of #. The first
family is studied by Amari (1982, 1985) in a finite-dimensional setting, and the
second involves the hazard transformation and the operators A and B. Let A4~
be a subset of L%(%, %, 1) and consider mappings F: 4" — #(%), the class of
Z-measurable real-valued functions on Z. Let 4" = FA4". The two families are
defined by [see Figure 2(a)]

u\2
log 5) , a=1,
5.3 Fu =
( ) u 2 u l-a 1
Y b ¢ b
1—a(2) *
2 o/ U\2
log(—) —1ogf (—) dp, a=1,
(5.4) Fo 'y = L2
) 2 1-a
exp{ Fl"‘u}, a#1
l—-a

(We make the convention that [*gdp = [, . &dp.)

Table 1 summarizes the motivating special cases and the special notation used
for each. The notation highlights the special role of the log-density and log-hazard
representations (a = 1). The values @ = 1,0, — 1 are most important, but other
values can occur [e.g., « = +1/3 in Kass (1984)].



56 B. EFRON AND I. M. JOHNSTONE

TABLE 1
Important special cases of the two families of representations

« Name Space Definition Typical element Tangent space
4, Fa L 1,2, = LYg" du)
1 Logdensities & Fa I=logg T %= LY(gdp)
Root densities 2 Foq u
—1 Densities 9 F o g=u%/4
M, Fohy m, T Mo = Ly(h* g dpy)
1 log hazards M F. g m T, M = Ly(gdp,)
—1 hazards H F Ll h

Discrete cases. Formula (5.4) shows that F~%"u(s) = g(s)/G(s + ). When
AG(s) # 0, this differs from the traditional form of the hazard rate A*(s) =
8(s)/G(s —), being instead equal to A*(s)/(1 — AH(s)). Since all densities
considered are equivalent to p, this can only occur at an atom of p. If there is an
atom at the upper limit of the support of u, then F* *y is undefined there. This
is important in the finite discrete case of Section 3 in which p is supported on N
points: Then ./, becomes an (N — 1)-dimensional manifold.

Tangent spaces. We use the mapping F to carry the Hilbert manifold
structure of A" to #' = FA". [Thus, ¢ = (F)"! is a “chart”.] Fix u € 4" and
tangent vector v € L,(p); the derivative of F at u is the linear mapping F, ,
defined as usual by F, (v) = lim,_,e ![F(u + ev) — Fu], where the limit is
taken pointwise to give a function in %(Z’). Then the tangent space to 4" at
p=Fu is T,/ =F, (T,#). When F,, is one-to-one on T,4", the inner
product of a, a’ € T,#" is defined by

(5.5) (a,a’, = {(Fs,) 'a,(Fy,) 'a’),,

where ( -, - ), is the usual inner product of L u) Thus, the length of a curve

0 - p, in ./V' ' in the information metric is given by [{py, Pp)y, 2df, where

po € T, A" [Informally, p, = (3/30)py, but more carefully, if u,, = (F)"'p,,
= F\,(3/30)up)]

We can now explicitly describe the tangent spaces corresponding to the
various representations. First, Fj L= (#/2)"° and T,.S,” L,(g*dp) with the
associated inner product. This is the “a- expectatlon” of Amari (1985). For
probability densities the tangent space T;.%, is the subspace of v € Ly(g*dp)
for which (v,/,), =0 when a # 1 and <v 1), = fogdp =0 when a = 1. We
denote these spaces by LI(g* dy)

Second, the hazard maps F* "u are unchanged if u is replaced by cu, so we
make them one-to-one by restriction to #. Calculation shows

(5.6) Fllo=2A(u"") = A(Fi0),
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o,h
TU P
. F?u \
T Iz =L%g%d Aa =
o Fa = H(9%dp) _* . Ly(gh*"du,)=T Mz,
[e3
B

a

Fic. 2(b). The tangent spaces at l,, m, are images of the tangent space T, % at u under the
derivatives F%,, F¢ ! Operators A and B (and their a-family generalizations) arise as derivatives of
the log-hazard transform and its inverse.

where Ab = b — b is our basic operator from (2.2). For general a, we find from
(5.4) that

l1—«a
Fohy = (—2 )F""hu - Fylo.

From Sections 2 to 4, A is an isometry of LY(gdp) on L,(g(1 — AH) dp) with
inverse (and adjoint) given by the operator B of (2.2), (3.15) and (4.2). It follows
that T, # = Ly(g(1 — AH)dp) and that {(a, a’),, = faa’g(l — AH)du is the
induced inner product. We shall write dp, = (1 — AH) dp, mindful that p, = p
in the continuous case.

Role of the operators A and B. The mapping from [, to m, in Figure 2(a) is
given by L* = F*"o(F*)~1. From the chain rule, the derivative of L* at [, is
found for a # 1 to be

b
Ly, b=mA|— L,(g*~
(57) *lub m, ( l., ) be 2(g dp‘)

= Ab.

[Of course, L ,b = Ab, as shown in (5.6).] It follows that A, is an isometry of
T,¥%, on T,#, with inverse B, defined in the obvious way. Figure 2(b)
summarizes the tangent spaces and the isometries between them.

This section began with identities (5.1) and (5.2) suggesting that A and B
were logarithmic Gateaux derivatives of H and G. Relation (5.7) expresses this
formally: The derivative of H is A _,, which is related to the derivative A of M
exactly as is suggested by (5.1). [In related work, Gill and Johansen (1987),
Theorem 14, study the (compact) derivative of the map from hazard measures
to survival (multiplicative interval) functions. Our mapping H is obtained from
theirs by composition with integration and differentiation; the derivatives will
be connected by the chain rule.]

To summarize, we have constructed isometric representations .#, and .#, of
the collection of probability measures equivalent to a fixed measure p on R. We
have described the corresponding tangent bundles (collections of tangent spaces)
explicitly and shown that the inner products induced by carrying over the
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information metric correspond to the natural Hilbertian inner product on these
tangent spaces. For the spaces .#, this is well known; for .#_ it depends
essentially on the identity (1.8) and its extensions in Sections 2 to 4.

What is the value of all these isometric representations? Dawid, Amari and
others have shown that each representation %, suggests a different notion of
straight line (affine connection) and a corresponding measure of curvature. These
curvature measures are used to study loss of information and second-order
efficiency of (for example) the maximum likelihood and minimum cross-entropy
methods of estimation in finite-dimensional parametric models, as in Efron
(1975), Efron and Hinkley (1978), Amari (1982) and much related work. [See
Kass (1988) and Amari, Barndorff-Nielsen, Kass, Lauritzen and Rao (1987) for
surveys.]

In the next section, we exploit the .#, (log-hazard) representation to derive
simple formulas for statistical curvature when models are specified in terms of
finite-dimensional families of hazard rates.

REMARK G. According to Bickel (1984), tangent spaces (and cones) were
introduced into nonparametric statistics by Koshevnik and Levit (1976). They
play an important role in the study of semiparametric models [Bickel, Klaassen,
Ritov and Wellner (1989)].

A technical difficulty arises in pursuing our analogy with finite-dimensional
manifold theory: The set 2 is not open in the norm topology of L,(p), and
standard forms of the inverse/implicit function theorems (used in studying
submanifolds) assume smoothness in an open neighborhood of the point of
interest. Note, however, that 2 is to a first approximation open in the sense
needed for compact differentiability: If K C Ly(p) is compact and x, € 2, then

sup ||(x + k), — xo — tk|| € o(2).
keK

Reeds (1976) gives relevant implicit function theorems for (and many applica-
tions of) compact differentiability.

6. Statistical curvature in terms of hazard rates. The previous section
emphasized the log-hazard representation of probability distributions or models.
Here we use the identities of Section 2 to compute the statistical curvature of
finite-dimensional models specified in terms of hazard rates.

To keep notation simple, we focus on one-parameter families # of density
functions {g,(s)}, 8 € ® C R, and write I, = log g, I, = 31,/90, i, = 921,/d02.
[We assume the regularity conditions of Remark A and that [, exists in
L?(gy(t) dt).] Let My denote the covariance matrix under 8 of (I, ;). Efron’s
(1975) curvature y? is defined in the log-density representation as det M,/
Suppose now that & is specified in terms of the corresponding hazard rates &,
and /or log-hazard rates m, = log h,. Again dots denote d/36, and the cumula-
tive hazard Hy(t) = [t hy(s)ds. The next result describes how to compute
curvature.



FISHER’S INFORMATION AND HAZARD RATES 59

PROPOSITION 6.1. Suppose that m, and m2 € L% g, dt) and that
3%/30% thy = [t3*h,/96% k = 1,2. Then

(6.1a) El} = Em,
(6.1b) El,i, = Emg,ii, + Em2H,,
(6.1c) Ei} = Em2 + 2Em2H,.

Proor. Of course, (6.1a) is just (1.6). For identity (6.1b), differentiate the
relation

o= 1y — [ 1hge™ = Biir,

with respect to 6 to obtain
(6.2) ly = rivg — /.(ﬁz0+rh§)e'"9=Br'r'z0—;zg,
where @ was defined at (2.1). Use (2.3a) and (2.6) (B is an isometry) to find

Elyi, = Emyiiy — EBrgmi.
Now from (2.3b),

—Brivg= —1itg + ;lo= g = /.’hohoz _/"-Lo=H0-
To get identity (6.1c), rewrite I, as B(ri, + m3) — m2 in (6.2). Thus,

(6.3) Ei? = E[B(r, + m3)]* + Eml — 2Em3B(r, + mj).

In the final term on the right side, expand B(ri, + mj) as ry + mj —
(ry + m%)~ and note that

(1 + 13) "= [ (12 + r3)em = [ 0%/06%™ = H,

This and the isometry property (2.6) applied to the first term of the right side of
(6.3) yield identity (6.1c). O

ExampLEs. Clayton (1983) and Efron (1988) have studied estimation of
parametric classes of continuous hazard functions of the form

h(t) = exp|a’x(2)],
where a is a p X 1 vector of unknown parameters and x(t¢) is an observed
p-dimensional time-dependent covariate vector. Proposition 6.1 and its multi-
variate extension (Remark H) simplify curvature calculations for such models, as
we illustrate in two particular cases.

1. Suppose the hazard rate is a known constant apart from.a jump of
unknown size at a known time ¢,:

+ 6, 0<t<t,,
my(t) = log ko) = { v

c, t>t,.
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Since we assume ¢ known, we can without loss set it to 0 (by rescaling time via
f=et). Then m,=1I{t <t), my=0 and Hy = ¢t A t, + (t — t,),,
where ¢ = e’. It follows that %, = 1 — e~ %, where a = H(t,) = ¢t, and Ei; =
2Elyl, = 2(F, — ae™?). As the following table shows, the curvature for even a
single observation is very small here:

a=¢e, 02 04 06 08 10 2 4 6 8 10
y? 0.015 0.027 0.036 0.042 0.046 0.043 0.013 0.002 0.0003 < 0.00005

2. If the log hazard is assumed linear
m(t) =log h(t) = a; + ayt, t>0,

then G(t) is the survival function of the Gompertz distribution [Johnson and
Kotz (1970), page 271; and Read (1983)], corresponding to the random variable

1 Z e
T~——log(1+—), 0=—,

ay 0 ay
where Z is a standard one-sided exponential variate. If a, is assumed known, the
curvature of the one-parameter family indexed by «; vanishes since 8 = e* is
the natural parameter of a one-parameter exponential family and curvature is
invariant to reparametrizations of either parameter space or sample space. If a,
is assumed known, the curvature in a, is found from the formulas m,(¢) = ¢,
m,(t) =0, d kH /3*a, = Bf{s*e™* ds. The curvature is evaluated numerically, as
it involves integrals K(a, m)(#) = [fe (1 + w)* 'log™1 + w) dw for
(a,m) =(1,2), (2,2), (2,3) and (2.4). Asymptotic values are used at 0 and co.

6 0 005 010 02 05 10 2 5 10 20 oo
y2 0 0062 0.082 011 015 0.19 024 035 048 064 1

REMARK H [Multivariate version of (6.1)]. Let {g,} be a smooth family of
densities indexed by a multidimensional parameter § = (6*). Define I, = log gy,
l,=0ly/36,, l;;= 3%,/30,30; and similarly for m, =logh, and H, = ['h,
define m;, m,, H;, H,, etc. The method of Proposition 6.1 shows that

Elllj = Emimj,
Eliljk = Emimjk + EHimimk,

Reeds (1975) and Amari (1987) give the extension of statistical (exponential)
curvature to the multidimensional case, and the formulas above would be used in
calculating these curvatures from a hazard function form of the model.
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