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ADAPTIVE NONPARAMETRIC PEAK ESTIMATION?

By HANS-GEORG MULLER
University of California, Davis

It is shown that consistent estimates of the optimal bandwidths for
kernel estimators of location and size of a peak of a regression function are
available. Such estimates yield the same joint asymptotic distribution of
location and size of a peak as the optimal bandwidths themselves. Therefore
data-adaptive efficient estimation of peaks is possible. In order to prove this
result, the weak convergence of a two-dimensional stochastic process with
appropriately scaled bandwidths as arguments to a Gaussian limiting process
is shown. A practical method which leads to consistent estimates of the
optimal bandwidths and is therefore asymptotically efficient is proposed and
its finite sample properties are investigated by simulation.

1. Introduction. The nonparametric estimation of peaks of a regression
function is a reasonable approach whenever we do not have much knowledge of
the form of the regression function besides that there is a peak whose coordi-
nates are of interest. Obtaining information about the location and size of such a
peak is sometimes a central issue in practical curve estimation. In longitudinal
studies we can use these “longitudinal parameters” to classify and compare the
nonparametric curve estimates for different subjects; see Jorgensen, Nielsen,
Keiding and Skakkeback (1985), where this idea is applied to longitudinal
endocrinological data, Silverman (1985), where the estimation of peaks of bacte-
rial growth curves is considered and Miiller (1985), where results on consistency
and the asymptotic distribution of estimated peaks are derived and further
references can be found. Estimated peaks can replace ordinary parameters in
parametric regression models for the purposes of classification and discrimina-
tion of samples of curves and often have the additional advantage of being
interpretable from a subject-matter point of view.

We consider kernel estimates of a regression function in the fixed design
regression model, i.e., the given measurements are (x;, y;), i = 1,..., n, where
the (x,) are fixed sites of measurement and the (y;) are the outcomes of noisy
measurements. The following model is assumed:

(1.1) yz,n = g(xl,n) + Ei,n, i = 1,..., n,

where g is the unknown regression function assumed to be in #*([0, 1]) for some
k>0 and (e; ,) are the measurement errors which are assumed to form a
triangular array of ii.d. random variables with expectation 0 and variance o?
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Abbreviating, we write ¢; instead of ¢; , (and analogously for y;, and x;). We
require that 0 < x, <x, < -+ <x, <L

Given any nonparametric estimates g(-) of g(:), we can find estimates of
location and size of a peak by reading location § and size g(0) off the estimate
8(+). With 4(-) being the kernel estimate,

X —UuU

(12) #o - 5 & [ k(555 du,

where dy =0, d,=1and x;,<d;<x;,,,,1 <i<n-—1, K is the kernel func-
tion and b is the smoothmg parameter called bandwidth. This approach was
investigated in Miller (1985). There the question of bandwidth choice for peak
estimation was left open. However, this is a crucial problem for practical
applications, especially the estimated size of a peak depends strongly on the
chosen bandwidth. Enlarging the bandwidth usually decreases the size of a peak
(oversmoothing). Since a peak in a curve is a local phenomenon, global band-
width choice by cross-validation or related criteria like the one proposed by Rice
(1984a) [compare also the recent work of Burman (1985), Hall (1983), Marron
(1985) and Stone (1984) for density estimation as well as Hardle and Marron
(1985), Speckman (1985) and Wahba and Wold (1975) for nonparametric regres-
sion] may not be appropriate. It is then a natural approach to resort to local
bandwidth choice specifically designed for the estimation of peaks.

It can be shown that the asymptotic distributions of § and 2(6), appropri-
ately scaled, are normal. The mean squared errors (MSE), derived from the
asymptotic bias and variance of the limiting distributions, can be minimized w.r.
to the bandwidths, separately for location and size of a peak. Inserting the
resulting optimal local bandwidths, we obtain the optimal joint limiting distribu-
tion of location and size. The optimal bandwidths depend on unknown quantities
like some higher derivative of the regression function g and the variance o2. The
question arises whether the optimal limiting distribution can be achieved by a
fully data-adaptive method, i.e., if an efficient estimator in this sense exists. By
showing that a two-dimensional stochastic process with appropriately scaled
deviations of location and size, having the respective bandwidths as arguments,
converges weakly to a continuous Gaussian limiting process, we conclude that it
suffices to produce consistent estimates of the optimal bandwidths for location
and size to achieve efficiency. Such estimators are plentiful and the optimal
limiting distribution will then be in force.

The main results are compiled in Section 3, whereas Section 2 contains some
preliminaries and definitions. Auxiliary results and proofs are in Section 4. One
special data-adaptive method which produces consistent estimates for the opti-
mal bandwidths is investigated in Section 5. We show by simulation that this
method is advantageous compared to a global bandwidth choice for peak estima-
tion. Application of weak convergence methods in curve estimation was intro-
duced by Abramson (1982) and Krieger and Pickands (1981), who analysed local
bandwidth choice in density estimation, and was also used by Bhattacharya and
Mack (1987) and Miiller and Stadtmiiller (1987a) in nonparametric regression.
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2. Stochastic processes connected with peak estimation. We need some
notation. Denote weak convergence in a function space [compare Billingsley
(1968)] by = as n » . We write —, and —, to denote convergence in
distribution (resp. in probability) as n — co; the bounds o(-) and O(-) and the
bounds in probability o,(-) and O,(-) are always as n — oo. In the following, we
apply kernel functions K satisfying for some integer £ > 0,

Support (K) c [-1,1],

[K@wia={g 170, Kew(-LD,

(2.1)
and denote the class of kernels satisfying (2.1) by .#,. The following kernel
estimates with special bandwidths are considered:

x—u ,
(22) &(x,s) = w Ef (m)duyi, Jj=0.
z 1

For the sake of simplicity it is assumed that the interpolating sequence (d;) can
be chosen equidistantly, i.e.,

(2.3) d,—d,_,=1/n, i=1,...,n

This assumption can be weakened considerably by introducing a design density
which describes asymptotic nonequidistancy.

We assume that the curve g has a unique global maximum at some 8§ € I C
(0, 1), where I is a.compact interval chosen in order to avoid the discussion of end
effects arising in nonparametric curve estimation near the endpoints 0 and 1 [see
Rice (1984b) or Gasser and Miiller (1984)], i.e., g(x) < g(#) for all x # 6,
x € [0,1]. As estimators of the location of the peak we consider

(2.4) d(s) = inf{x el: g(x,s) = Ongiclgl(x, s)}

for s € [s,, s,], where 0 < s, < s, < 0o are given [compare Miiller (1985)]. As
estimators of the size g(8) of the peak, we use g( b(s), t) for t € [¢,, t,], where
0 < t, <t, < oo. Note that the scaling of the bandwidth for the estimation of
the size of the peak is different from the scaling of the bandwidth for the
estimation of the location. These scalings are reasonable by Lemmas 8 and 9 of
Section 4 which show that under some mild regularity conditions, using twice
continuously differentiable kernels of order &,

skg(k+1)(0)Bk o2v(1)
g(2)(0) ’SSg(Z)(0)2 ’

(25)  nMCRI(f(s) — ) 5y N[ -

where

(2.6) B, = (-1)*[K(v)o*do/k!, V® = fK“>(o)2do
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and
2

1) M (a(0(s), 1) - £(0) = 4| (0B, T,
where
(2.8) V= fK(u)2do

[compare Parzen (1962) and Eddy (1980) for similar results in density estima-
tion]. It should be noted that s,, s;, t,, ¢, have to be chosen in such a way that
the corresponding intervals contain certain “optimal” values s*, t* [see (2.11)
and (2.12) below].

From these limiting distributions we derive thé asymptotic mean squared
errors

. c,2V<1) (k+1) 0 2
(29)  lim n2*/CEIE(§(s) - 0)” = st R - ( 2) 2
n—oo s°g@(0) g(0)
and

o2V

(210)  Tim 22/ 0E(2(8(s), £) - £(9))" = — + £*g*(0)° B},

Assuming g®(8) # 0, g**Y(8) # 0 and minimizing w.r. to s (resp ¢) yields

(2.11) s LA R tivel
. st=|—————— , respectively,
2kg**1(0) B2
o2V 1/2k+1)
(2.12) th=|————
2kg ™ (0)’ B

These are the optimal constants for the bandwidths, but s*, t* contain the
unknowns o?, g)(0) and g**(8) and are therefore not known either.

In order to investigate the behavior of the deviations (6(s) — ) and
B 6(s), t) — g(0) jointly, we define the two-dimensional random process

X (s) ) _ ( nk/C+d(4(s) — 0)

(2.13) Y(s, 1) nk/@k+( g (4(s), t) — g(0))

on [s,, s,] X [¢, t,]
We are interested in the limiting distributions of (;( (";St))

s=s* and ¢=1t* and for consistent estimators § —, s* and 3 -, t*. The
“theory developed in this paper also covers the case of the estimation of a
minimum and can also be applied to the estimation of extrema of some deriva-
tive of g. In this case we would employ kernel estimators for the derivatives of g
[see Gasser and Miiller (1984)].

), especially for
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3. A functional limit theorem. The following assumption will be needed
repeatedly.

ASSUMPTION A. Let g € €%*'([0,1]) for some k > 1, El|g|" < oo for some
r>2+2/k and K€M, N %2 Let K® be Lipschitz continuous on R and
g®(8) <o0.

In the following, we refer to the function space D, described by Bickel and
Wichura [(1971), Section 3] for ¢ = 2. For ¢ = 1 this coincides with the space D
[see Billingsley (1968)].

THEOREM. Under Assumption A and if the kernel K is symmetric,

X,.(s) X(s)
(Yn(s, t)) = ( ¥(2) ) on D([s,, s51) X Dy([54> 551 X [tas 1),

where the limiting process is a continuous Gaussian process with expectation
EX(s) = —s*g®*"2(0)B,/g*(0),
EY(t) = tig®(0)B,

[ for B, see (2.6)] and with covariance structure

cov(X(s,), X(s,)) = ;f_szég?—;(_ﬂ)_?(fK(l)(i)K(l)(i) do + o(l)),

81 Sg

v

cov(Y(1,), Y(t5)) = %(/K(%)K( t

cov(X(s,), Y(8,)) =0

)do + 0(1)),

2

for any s,, s, € [5,, 8] and £, £, € [t ts]
Especially, for any given a,n > 0, there exist 8 > 0 and n, € N so that for
any n > n, we have simultaneously

(3.1) P( sup \Yn(sl, t,) — Y, (sq, tz)l > a) <7
|t — 1 <8, b, €[ Lo 5]
|y — 8| <8, 51, 82€[84, S6]

and

(32) P sup 1X,(5)) — Xy(52)| > o] <.

81— 521<8, 81, 52 € [Sas 55]

The proof is in Section 4. Using Slutsky’s theorem we obtain the following as
an immediate consequence.
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COROLLARY 1. Under Assumption A, assuming K is symmetric,

( X,.(s) ) R M([—skg‘k“)(ﬂ)Bk/g@)(ﬂ)}
Y, (s, 2 k(R ’ ’
(33) (8, ) tkg®(0)B

2
| VO/e®(8)’st 0
0 V/t?

for s € [s,, s,] and t € [t,, t,], [ for B,,V and V¥, see (2.6) and (2.8)]. For
consistent estimates 6 —, ¢ and P20 -, 8Y(0) for j=2,k,(k+1), we
obtain

1 ( |82(6) |s2/ VL2 0

é 0 t/ V2
(3.4) . )
X,(s) | _ | —s@“(0)Bg™(0) |\ | [[0} |
Y(s, t) - thg®(§)B, ? o)

where I is the identity matrix.

Applying this result we can construct asymptotic confidence regions for peaks,
assuming that consistent estimates 6 —, ¢ and g® - g®(0) are available and
that we either can neglect the bias in the asymptotlc distribution since B, or

g%**1(f) is small, or that further consistent estimates 246) -, g%(6) and
g“”l)(o) — g%*+1(9) are employed For 6, we adopt a proposal of "Rice (1984a),

(3.5) 8= 2(n Z (%= %-1)"

If the regression function g is Lipschitz continuous, it follows immediately by
the law of large numbers that

(3.6) 6 —>p0.

T(he following lemma shows the existence of consistent estimators g¢)(f) —
g"(0).

LEMMA 1. Under Assumption A, setting b = tn=/@*+"* D qssuming for
some 0 <v<k+1that KeM,, N %, K is Lipschitz continuous on R

and defining

nood xX—Uu
») = CK® )
gv (x) by+1 i§1 _[dth ( )duyw

we obtain

(3.7) &M(6(s),t) », g"(0) uniformlyins € [s,,s,], t € [t,,t,].
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The main application of the theorem is

COROLLARY 2. Under Assumptzon A, assuming K is symmetric, for any
consistent estimates § -, s* (2.11) and £ -, t* (2.12), the asymptotic distribu-

tion of [ "(st)] is the same as that of [Y ("(*s t*)], i.e., the corresponding peak
estimates are asymptotzcally efficient. The asymptotic distribution is given by
(3.3), replacing s and t by s* and t*.

ProOF. It is sufficient to show that X, (§) — X,(s*) =, 0 and Y,($, t -
Y,(s*, t*) =, 0. By (3.2), for any given a,1 > 0 there is a 8 > 0 s.t. for suffi-
ciently large n,

P(|X,(8) — X,(s%)| > a) < P18 = 5% < 8,|X,(8) = X,(s7)| > o)
+P(|$ — s*| > §) < 27,
and an analogous result follows for Y,($, £) from (3.1). O

The estimate 65 and the kernel estimates of the derivatives of g at 6 given in
Lemma 1 can be employed for efficient peak estimation. A specific procedure and
its finite sample properties are discussed in Section 5. It is interesting to note
that location and size of a peak are asymptotically uncorrelated. The latter is
due to the symmetry of the kernel K which is used for the estimation of the size
and is orthogonal in the L? sense to any scaled version of K@, the kernel which
is implicitly used for the location.

4. Auxiliary results and proofs. This section contains a sequence of auxil-
iary results which lead to the proof of the theorem and of Lemma 1. The starting
point is an investigation of local bias and variance and of asymptotic normality
of estimates g{/)(x, s) (2.2).

LEMMA 2. Letk>1, g€ ¢ and K€ M, N €’ for givenj and k. Then
(4.1) var(£)(x, 8)) = n~2/@k+D+Dg= @I+ Dg2V (1 + o(1)),
where V) = [KY(v)?dv and
(4.2) Egﬁj)(x’ S) — g(j)(x) = n_k/(z(k"'j)"'l)skg(k“'j)(x)Bk(]_ + 0(1)),
where B,, is defined in (2.6).

PRrOOF. Similar considerations as in Gasser and Miiller (1984) yield

) ) 1 (X —u
B8V (x,s) — gV(x) = T me( )g(u) du

(?~3) +O( 21) - gV(x),

and (4.2) follows by a Taylor expansion; compare (2.2). (4.1) follows by a direct
integral approximation of the variance. O
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LEmMA 3. Under the assumptions of Lemma 2,
nk/(2<k+j)+1)(§}j>(x, s) — gm(x))

(4.4) . ) .
-, A/(skg(k+1)(x)Bk, s~ @J+ 1)02V(1)).

PROOF. (£Y/)(x,s) — EgY)(x, s)) is a weighted average of a triangular array
of independent random variables with weights

bj+l

1 d X —Uu
45 (x) = ' ‘”( ) ,
(45) wi(x) = g [, KO 5= ) du

where b = sn~'/®**)+1) By the assumptions, observing (4.1) and (4.2), Linde-
berg’s condition for the central limit theorem holds. O

Applying Lemmas 2 and 3 we obtain a result on the weak convergence of
8(x,s)1in s for x fixed.

LEmMA 4. If g€ $**(I) and K € M, 0 €7*', k > 1, we have for any
x € I, defining H,(s) = n*/@*D+D( 50U (x, 5) — gl)(x)) that

(4.6) Hy(s) = H(s) on€([s,,s,]),
where H(s) is a Gaussian process defined by
(4.7) EH(s) = s*g**)(x)B,
and
o2 u u
4.8 H(s,), H - KU)(—)KU’)(—)d
(48)  cov(H(s), H(s,)) = g [KO| = K| - | du

for s;, sy € [, S}

Proor. Writing
H,(s) = n*/@&040([g0(x, 5) = Bg(x,5)] + [E&Y(x, 5) - g9(2)])
= n,l(s) +Hn,2(s)a say,

we show by direct calculation of variances and covariances similarly to (4.1),
applying Lemma 3 and the Cramér—Wold device, that

(Hn,l(sl)”"’ Hn,l(sm)) -4 #(0,C)

for any s,,..., s,, € [s,, s,], where the elements of the covariance matrix C are
as given by (4.8). Lemma 2 (4.2) implies that EH, ,(s) - s*g**/)(x)B, and
therefore the proof is completed according to Theorem 8.1 of Billingsley (1968) if
we show the tightness of H, ,(-). The tightness of H, ,(-) is shown by means of
Theorem 12.3 of Billingsley. As in the proof of Lemma 3.1 of Miiller and
Stadtmiiller (1987a) one shows by means of the mean value theorem that
E|\H, (s,) — H, ((s,)|> < c|s, — s,|* for any s, s, € [s,, 5,] and some constant
¢ > 0, using the “intermediate kernel” K j(x) = (j + K Y)(x) + xKY+I(x). O
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Next we discuss uniform convergence of g{9(x, s) which will be employed to
derive the asymptotic distribution of §(s). The deterministic and the stochastic
parts of the maximal deviation are analysed separately.

LEMMA 5. Let Ke#,N %/ for sdme k>1,0<j<k, and g€ ¢/(I).
For any l > 0 we have

SuplEgl(j)(x’ S) — g(])(x)|
(49) xel
= 0(sn—l/(2(k+l)+1) + s*jn—1+j/(2(k+l)+1)).

ProoF. Observe that (4.3) implies

B8 (x,5) - 89(x)| < [1K(w)][g(x — ub) — 8(x)|du + O[(nb”) )
uniformly in x. O

The following result is adapted from Miiller and Stadtmiiller [(1987b), Lemma
5.2] and the following remarks. «

LEMMA 6. Let m(-) be a moving weighted average r(x) = LI_ w(x)g; in the
model (1.1), i.e., assume (&) = (€, J1<;<n, form a triangular array, and let
E|e,|” < oo for some r > 2. Assume for some 8 > 0 and 1 € (0, r — 2), that for
constants ¢, L, M > 0 and a sequence (a,), the following conditions are satis-
fied:

(1) Squl,xgeIIwi(xl) — wy(x,y)| < Ljx, — x2|8 forx,, x, € L.

(i) max, _; _Jwi(x)| = en~' uniformly for x € L

(i) n"""max, _;_,|w(x)|logn < a,/M uniformly in x.

(iv) Cr wi(x)? log n)'/? < a,,/M uniformly in x.”

Then

(4.10) sup [(x)| = Oy(a,).

xel

Combining Lemmas 5 and 6, choosing a, = O(((log n)/nb%/*1)!/%), where the
weights w;(x) appearing in i(x) are given by (4.5), one obtains the following.

LEMMA 7. Under Assumption A, we have forj = 0,1,2 and for l > 0,
sup [&{(x,s) — g(x)|
xel

= O (sn~ VDI 4 p=14j/2k+D+1]g=)
(4.11) P(

+ ((log n)n—1+(2j+1)/[2(k+1)+1]8_(2j+1))1/2)

= 0,(1) uniformlyins € [s,,s,].
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Now we are ready to derive the asymptotic distributions of 0(s) and of
8o(8(s), t).
LeEMMA 8. Under Assumption A, it holds for any s € [s,, s,] that
_skg(k+l)(0)Bk OZV(I)
g(2)(0) ’ s3g(2)(0)2 ’

k/(2k+3)( ( )_ 0) ./V

where VO and B, are defined in (2.6).

ProoF. Lemma 7 for [ =1, j = 0,1,2 implies that
(4.12) sup|8((x,s) — g¥(x)| = 0,(1) uniformly jn s € [s,, s,].

xel
Since g®(8) < 0, g@(-) is continuous and g(f) is a unique maximum of g(-), it
follows from (4.12) for j = 0 that
(4.13) sup |d(s) - 0| = 0,(1).
sE€[s,, 5]

By a Taylor expansion [compare Miiller (1985)] we find [observing g((6) =
g(8) = 0],
(4.14) 6(s) — 0= (gM(0) - £(8,5))/(8%(8)) + R,(s),
where
(80(0) — 8°(0,5))(£2(8) — 2(6*(s), 5))

g2(0)8(6*(s), s)
and 6*(s) is an intermediate value between 8 and 6(s). The result follows from
Lemma 3 (choosing j = 1) via

(4.16) sup nk/CRIR (s)] = 0,(1)

SE€[s,, s3]

(415)  R,(s) =

and
sup [(g@(0) — 82(6*(s),s))/82(0%(s),s)| = 0,(1),
s€[s,, sp]

which is a consequence of (4.12) for j = 2 and (4.13). O

LEMMA 9. Under Assumption A, we have forany s € [s,, s;] and t € [¢,, t,]
that
2

nk/(2k+l)(g0(é(s), t) - g(ﬂ)) Sy N tkg(k)(a)Bk, GT

Proor. By a Taylor expansion,

80(0,8) — 84(0(s),t) = 182(6(s),t)(8(s) - 0)2 for some mean value §(s).
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We conclude by (4.11) for [ = 0, j = 2 and by (4.13) and the continuity of g®(-)
that

(4.17) |82(6(s), t) — g?(0)| = 0,(1) uniformly in s and ¢.

By Lemma 8, it follows that n2*/@¥+3(g8 (6, t) — 8,(0(s), t)) has a nondegener-
ate limit distribution and therefore

(4.18) n*/@0] 89, ¢) — 8(8(s), t)| = 0,(1),

so that Lemma 3 (j = 0) implies the result. O

In order to investigate the tightness of the process [;{ Z(') ] [see (2.13)], we

observe that owing to the continuity of g,(-,-), {=10,1, on I X [¢,,¢,], the
function 0( ) can be normalized so that X,(-) € D([s,, sb]), Y (-, t) € D(s,, s))
and Y, (s, ) € €([t,, t,]). For a sequence of processes Z,(-,-) € Dy[s,, ;] X
[t,, t,]) we apply the following tightness condition, which is a consequence of
Billingsley (1968), Theorem 15.5 and of Bickel and Wichura (1971), Theo-
rem 2.

TIGHTNESS CONDITION. The sequence Z(-,-) € Dy[s,, s,] X [, t,]) is
tight if:

(1) Z,(s0, ) is tight for some fixed s, € [s,, s,] and ¢, € [¢,, t,].
(i) For any given @, n > 0 there exist a § > 0 and an integer n, s.t. for all
n>n,

(4.19) p sup |Z,(s1,t) = Z,(55, )| > a| < 7.
181 —52]<8, 51, 5, €[5, 5]
It —8]<8, &, (€[ ¢,, 8]

The limiting process is then continuous with probability 1.
We apply this criterion to the processes
Z,, (8,t) =AX,(s) + pY,(s,t) forany A, p.
LeEMMA 10. Under Assumption A, Z,, W75 +) is tight.

Proor. By (4.14),

k/(2k+3)

| Xo(81) — X(s2)| < W@f“(e,sl) - 80, s,)]|

+nk/(2k+3)| Rn(sl) - Rn(s2) |

Since the processes H,(-) of Lemma 4 are in ¢([s,, s;,]), we can apply Theorem
8.2 of Billingsley (1968), Lemma 4 (choosing x = #) and (4.16) to obtain the
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existence of a 8’ > 0 s.t. for large n, given a and 7,

a n

(4.20) P sup  AlX,(s) — X,(sp)|> = | < =

[s) =8| <8 2 2

$1, 82 €[84, ]

Therefore the processes X,(-) satisfy (i) of the tightness condition, and it
follows by Lemma 8 that X,(-) is tight. Since by Lemma 8 the finite-dimensional
distributions of X,(-) converge weakly, it follows that X,(-) converges weakly
and we conclude by the continuous mapping theorem (see Billingsley) that
sup, ., <,,n°*/®**3(0(s) — 0)* has a limiting distribution. Therefore,

(4.21) sup n*/CED(d(s) — )" = o,(1),

S, <S<s,

|Yn(31: t,) — Y, (s, t2)| = nk/@kﬂ)(léo(é(sl): tl) - éo(é(sz)a t1)|
+ lgo(é(sz)’ tl) - go(é(sz)a tz) I)

=1+ 1I, say.
I<2 sup n*/CkD|g(d(s),t) — 8,(0,¢)]
S,<8<8,
t,<t<t,
- - 2
< sup |8(0(s),t)| sup (6(s)— 6) nt/@k+D = 0,(1)
S, <8<8 $,<8<s,
tost<t,

for some mean value (s) between 6(s) and 6 by (4.21), (4.13) and Lemma 7
(choosing I = 0 and j = 2).
II <2 sup n*/@k*D|g(6(s), t) —8o(8, )| + n*/ k1| g.(8,¢,) — &,(8, t,)|-

S, <S<s,
t,<t<t,

The first term is treated as I above and seen to be 0,(1). For the second term we
use Lemma 4 and Theorem 8.2 of Billingsley (1968) to conclude that for given
a, 7 there exists 6” > 0 s.t. for large n

«a n
(422) P sup plY, (s, ) — Y(se, t)| > = | < —.
It = (<8, 1, 1, €[4, 1, 2] 2
|81 —82]<8", 51, S, €[ 54, Sp]
(4.20) and (4.22) yield (ii) of the tightness condition; (i) follows from Lemmas 8
and 9.0

PrOOF OF THE THEOREM. The weak convergence follows from Lemmas 8, 9
and 10. Lemma 10, (4.20) and (4.22), implies that the limiting process is continu-
ous with probability 1. Lemmas 8 and 9 show that the limiting process is
Gaussian and give the expectations. Applying the Cramér-Wold device and
calculating the covariances directly [compare the approach in Miiller (1985)],
observing that K@ is antisymmetric and applying (4.14), (4.16) and (4.18), yields
the limiting process of the theorem. O
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Proor oF LEMMA 1. Apply (4.13) and an extension of Lemma 7 to the case
J=v,l=».0

5. A practical procedure for adaptive peak estimation. We assume here
that Assumption A of Section 3 is satisfied for 2 = 2. As discussed in Section 3,
the basic idea is to substitute consistent estimates of o, g®(6) and g®(8) into
the minimizers s* (2.11) and ¢* (2.9) of the MSE. Such an approach is asymptoti-
cally justified by (3.6) and Lemma 1. The aim of this section is to propose a
practical algorithm for adaptive peak estimation and to compare its finite
sample properties with a more standard procedure by simulation. We will use
polynomial kernel functions K,, € #, N €* [compiled, e.g., in Miiller (1984)],

3:5----(2u+1) .
Ky (x) = 926—[n/2) (1-x%), p=1,...,4,

K (x) = 12(3 — 10x% + Tx*),
plus the asymmetric kernels
K3 (x) = 35(3 — 3x — 10x% + 10x® + 7x* — Tx°)
and
K (x) =0.1367(15 — 105x2 + 189x* — 99x9)
—0.2099( — 5x + 35x° — 63x® + 33x7).

First we discuss an algorithm for the adaptive estimation of the location of
the peak. From Lemma 2 we see that the optimal local bandwidth (w.r. to MSE)
for the kernel estimate g{"(x, -) of the first derivative at a fixed point x is

(5.1) bF(x) = s*(x)n" V7,
where

(5.2) s*(x) = (302V®/4g®(x)?BE) ",
provided that g®(x) # 0, so that by (2.11),

(5.3) s* =s%(0).

The location of an extremum is the same as the location of a zero of the
derivative, i.e., it holds that

(5.4) 0(s) = b(s),
where
(5.5) f,(s) = inf{x € I: §(x,s) = 0}.

Defining 65 as in (3.5) and

(5.6) 5(x) = ((363(v/48)()*B3)" A 5,) V 50
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it follows (using Lemma 2) that
8(x) -, s*(x), 8(x) €[ss, 5],  3(:) € ¢([a,b])

for all x € I and all n. Defining
0;(3) = sup{x el 8V(x,s) = 0},

f, = inf{x € I: (x, 8(x)) = 0},
it follows from 80(6,, 3(6,)) = 0 that b, € [6,(5(6y)), b,(5(6,))] and since 01(3)
and 02(3) behave identically w.r. to weak convergence and convergence in
probability, 03 and 6( s(é )) behave identically according to (5.4). It follows from
(3.6) and the uniformity of the convergence (3.7) that §( 03) -, §%(0) = s* and,
therefore, 0(3(4 )) and 0 are asymptotically efficient by Corollary 2.

This means that it is an efficient procedure to locate a zero in the kernel

estimate of the first derivative of the regression curve using consistently esti-
mated optimal local bandwidths. For the size of the peak, it follows that

(5.8) i=( ‘ZV/4g<2>(.5?3)232)1/5

satisfies £ —, t*. Therefore, (03, 1,90(03, £)) are efficient estimates of the peak
coordinates.

Following these considerations, the practical procedure to be presented now
consists of four steps:

(5.7)

1. Estimation of local optimal bandwidths for a kernel estimate g{" of g".

2. Location of a zero 6 of g using the local bandwidths of step 1.

3. Estimation of the local optimal bandwidth of the kernel estimate g, of g
at 4.

4. Computation of §0(03) using the bandwidth of step 3.

For local bandwidth choice steps 1 and 3 a modified version of a procedure by
Miller and Stadtmiiller (1987a) is used. The asymptotically optimal global
bandwidths b*, w.r. to integrated MSE for estimating gY), j = 0, using a kernel
K where K € M, N €, satisfy the asymptotic relations

(59) j, k/bO,k+j = dj,k

with known constants d; , depending only on the kernel functions used, and the
relation between optimal local and global bandwidth for j =1 and 2 =2 is
given by

) %
(5.10) b (x) = br,z( [2®w)* du/g®(x) )

[compare Miiller and Stadtmiiller (1987a)]. Therefore, we use the estimated local
bandwidths

7y

(5.11) Bz(x) = d1,2b0,3

0(2) ) A 1.4) v 0.6

( (1/N)ZN ,8®(i/N)°
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for the kernel K, where we choose N = 200 and b, , is the global bandwidth
determined by the Rice criterion with the kernel K3, i.e., the minimizer of

267K 5 (0)

(6.12) R(b) = = 3 (5= 4x)) + 2220,

i=1

w.r. to b, where g(-) is defined in (1.2). The cutoff points 0.6 and 1.4 are chosen
arbitrarily in order to avoid too extreme local bandwidths in accordance with
experiences in Miiller and Stadtmiiller (1987a). The lower cutpoint is only very
rarely attained in procedure (5.11), but making it too small would lead to
outlying bandwidths and estimates. The upper cutpoint seems to be less impor-
tant. For the given kernels we find d, , = 0.7083. For the estimation of 2®)(-) in
(5.11) we use the kernel K§? and the global bandwidth b, , = d, 35, 5, where 5 ;
is the minimizer of (5.12) using the kernel K, and d, ; = 0.6788.

TABLE 1
Performance of a practical procedure for adaptive peak estimation. Number of Monte Carlo runs
200. Number of observations 50, equidistantly in [0,1]. Curve used is g = 1 + 3exp((x — 0.5)2/0.01).
Coordinates of the peak are (0.5,4.0). Small numbers denote powers of 10 by which to multiply.

Variance

o2 =025 6Z=05 o2=1.0
Average
bandwidth 115271 1.2807! 1.4037!
for location
Average
bandwidth 479272 571072 712272
for size
Average
estimated 0.5005 0.5012 0.5012
location
Average
squared error 1.247°4 1.893°* 2.860~*
for location
Average
estimated 3.909 3.887 3.861
size
Average
squared error 8.34172 155071 3.3327!

for size
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TABLE 2
Performance of a nonadaptive procedure for peak estimation choosing one global bandwidth by the
Rice criterion. Minimization of (5.12) on the interval [0.25,0.75]. Same design as in Table 1 (same
random numbers); kernel K,,.

Variance

o2 =025 62 =05 =10
Average .
bandwidth 6.2562 7.34672 8.97472
chosen
Average
estimated 0.5010 0.5010 0.5007
location
Average
squared error 1.811°4 2.480 4 3.369 4
for location
Average
estimated 3.813 3.769 3.705
size '
Average
squared error 1.0067! 1.9107! 375871
for size

The algorithm step 3 is completely analogous. Employing for the kernel K,
the bandwidth

(1/N)ZN,8@(i/N)*\ 7
89(6,)

(513)  b,(d;) = d, ,b, 4 A14| V06|

where 6, is the estimated zero resulting from step 2, 30’4 is the minimizer of
(5.12) using the kernel K,, and d,, = 1.028. We obtain the adaptive estimate
8(0,) of the size of the peak.

The algorithm was tested in a Monte Carlo study where the function g(x) =
1 + 3exp(—(x — 0.5)2/0.01) [symmetric peak at (0.5,4.0)] and the residual vari-
ances o2 = 0.25, 0.5, 1.0 were used. The results are given in Table 1.

The local bandwidths chosen become larger with increasing ¢ and the
squared errors for estimated location /size get worse with increasing o2 as is to
be expected. The corresponding values for a locally nonadaptive procedure
choosing one global bandwidth by the Rice criterion (5.12) and reading location
and size of the peak off the estimated curve are given in Table 2.

A comparison of the finite sample behavior of the adaptive method with this
nonadaptive method shows a clear advantage of local adaptation which usually
leads to smaller squared errors.
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