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ASYMPTOTIC THEORY OF A TEST FOR THE CONSTANCY
OF REGRESSION COEFFICIENTS AGAINST THE RANDOM
WALK ALTERNATIVE

BY SELJ1 NABEYA AND KATSUTO TANAKA

Hitotsubashi University

The LBI (locally best invariant) test is suggested under normality for the
constancy of regression coefficients against the alternative hypothesis that
one component of the coefficients follows a random walk process. We discuss
the limiting null behavior of the test statistic without assuming normality
under two situations, where the initial value of the random walk process is
known or unknown. The limiting distribution is that of a quadratic func-
tional of Brownian motion and the characteristic function is obtained from
the Fredholm determinant associated with a certain integral equation. The
limiting distribution is then computed by numerical inversion of the char-
acteristic function.

1. Introduction. In this paper we are concerned with the model
Ye=xB+ z{y + g,
B, =B._, + u, t=1,2,...,

where (i) {y,} is a sequence of scalar observations, whereas {x,} and {z,} are
scalar and p X 1 nonstochastic, fixed sequences, respectively; (ii) {¢,} and {u,}
are independent of each other and are iid. with E(e,) =0, E(e?) = 02> 0,
E(u,) =0 and E(u?) = o2 > 0; (iii) {B,} starts with B,, which is assumed to be
a known or unknown constant, whereas y is a p X 1 unknown constant vector.
The above model (1.1) belongs to a class of the so-called state space, or Kalman
filter, models developed in control engineering for representing a stochastic
behavior of a dynamical system (see, e.g., Jazwinski [7]). The model (1.1) with
62> 0 is also regarded as representing coefficient instability in time-series
regression and is often referred to as a varying coefficient regression model (see,
e.g., Nicholls and Pagan [10]), where one component B, of the coefficient vector
(B,, ') varies over time following a random walk process.

The problem we deal with here is to test if B, really exhibits variation
following (1.1). To be more specific we consider testing for the constancy of S,,
which is equivalent to testing the hypothesis 62 = 0. In Section 2 we suggest the
LBI (locally best invariant) test for

1.1)

(1.2) Hy: p=02/02=0, against H;: p > 0,
assuming normality on {y,}.
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TEST FOR CONSTANCY OF REGRESSION COEFFICIENTS 219

The remaining parts of this paper concentrate on the asymptotic null distri-
bution of the test statistic without assuming normality. Due to the invariance
principle the problem essentially reduces to finding the distribution of a quadratic
functional of Brownian motion. In Section 3 we introduce a homogeneous
integral equation of the second kind and consider the associated Fredholm
determinant, which yields the corresponding characteristic function. Section 4
gives some examples of the asymptotic distribution by making the regressors x,
and z, in (1.1) more specific. It is of interest to notice that two situations where
the initial value B, is known or unknown give different results. The relevant
references in this field are Anderson and Darling [1], Varberg [11], Kac, Kiefer
and Wolfowitz [8] and de Wet and Venter [3]. The distribution function can be
obtained by applying Lévy’s inversion formula numerically and upper percent
points are tabulated in Section 5. The finite-sample distribution of the test
statistic is also examined there by simulations.

Concluding remarks are given in Section 6, where it is noted that com-
puterized algebra has been useful in the present work.

2. Locally best invariant test. In this section we derive the LBI test for
the constancy of B, by assuming both ¢, and u, to be normal. Noting that
Yy =x,By + 2[y + x(u, + -+ +u,) + ¢, the observation vector y = (y,,..., yp)
has the distribution

(2°1) Yy~ N(xBO + ZY’ 052(IT + prATDx))’

where I, is the T X T identity matrix, x = (xy,...,%7), ¥ = (Yp+--»Y,)» Z =
(245+..5 27), D, = diag(x,,..., xp) and

1 1 1
Ap= ((min(s, ) = [+ 2 1 2
1 2 - T

Here we assume that rank(x, Z) = p + 1 < T, which is the identifiability condi-
tion for B8, and y. Then we consider the testing problem (1.2) and suggest the
LBI test under two situations where B, is known or unknown.

Let us consider first the case for 8, unknown. From (2.1) the testing problem
(1.2) is seen to be invariant under the group of transformations: y — ya +
xb + Ze, By > aBy,+ b, y > ay + ¢, 02 > a%? and p — p, where 0 < a € R},
b€ R and ¢ € RP. The subsequent discussion follows Kariya [9]. Choose a
TX(T-p-1) matrix H such that H'H=1;_, ; and HH = I -
(%, Z)(x, ZY(x,Z))"Y(x, Z) and put w = H'y. Then we have

(2.2) w-~ N(O, 052(17'-1;—1 + (I)(P)))’

where ®(p) = pH'D,A;D H, and the statistic s(w) = w/||w| is a maximal
invariant. Let P,(-) be the distribution of s(w) and put

(I + B(p)) |-T-2-572

w'w

(23) fr(s(w)lp) = lIp_,_y + ®(p)| "1

b
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Wthh is the probablhty density of P,(-) with respect to Py(:). The rejection
region of the LBI test is now obtained as

d lo s(w
(2.4) g fr(s(wip) > constant
dp =0

(see Ferguson [5], page 235), which yields

y'MD,A,D .My
(2.5) R, = My, > constant,
where
(2.6) M=Ip - (x,2)((x, 2)(x,2)) \(x, 2).

When B, is known and assumed to be zero without any loss of generality, the
LBI test is shown to have the rejection region (2.5) with

(2.7) M=1,-2(22)"'z.

In the following sections we concentrate on the derivation of the asymptotic
null distribution of R, in (2.5) as T — co.

3. Invariance principle and the Fredholm determinant. Under H, in
(1 2) we have R, = ¢ MD _A;D, Me/e Me, where ¢ = (¢y,..., e;) and the ¢, are
iid. with E(e,) = 0 and E(ef) = ¢2. Since the null distribution of R, does not
depend on o2, we put o2 = 1. Then e¢Me/T converges in probability to 1.
Therefore we consider the quadratic form in e,

(3.1) Sy = £MD,A;D,Me/c(T),

for some scaling factor ¢(T'). The following theorem gives the asymptotic
distribution of S as T — 0. The theorem seems to be easier to apply to the
present problem than the theorem of de Wet and Venter [3]. It is mainly due to
the referee who has weakened the hypotheses of the authors’ original theorem
and kindly permitted the authors to use it in the present paper.

THEOREM 1. Let By = (By(Jj, k), T=1,2,..., be T X T real symmetric
matrices and assume that

j ok
(32)  Jlim max (B, k) - (T—,_;)

where K(s, t) is a continuous and symmetric function on [0,1] X [0,1] and is
positive definite in the sense

flflK(s, t)f(s)f(¢) dsdt >0,

for all continuous functions f(t) defined on [0,1].
Let D()\) be the Fredholm determinant associated with the integral equation
of the second kind,

(3.3) f(2) = A jo 'K(s, t)f(s) ds.

=0,
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Then the characteristic function of the limiting distribution of ¢Bre/T is given
by
Jim E(e®*Br/T) = (D(2i0)) .

LEMMA 1. Let f(t) be a continuous real-valued function on [0,1] such that
J&F(8)? dt = 7% > 0. Then we have

g 25

where L(-) denotes the probability law of -

(3.4) - N(0, 2),

PRrROOF. Since f(t) is bounded for ¢ € [0,1], the Lindeberg condition is
satisfied. We have also

o EAab)- £ - fora-r

hence the conclusion (3.4) follows. O

LEMMA 2. Let f|(2),..., f(t) be continuous real-valued functions on [0,1]
such that

(3.5) [1®)f(t)dt =8, (Kronecker’s delta).
0

Then we have, for the limiting distribution of a random vector,

7 25

ProoF. Consider f(¢)=c,f(¢) + - +cn'fn(t) for any real c,,...,c, and
apply Lemma 1. Then we have

B £l

in view of (3.5). Hence the conclusion (3.6) follows. O

(3.6)

l=1,..., n

—>N(O Zc,),

=1

LEMMA 3. Let Hp = (Hyp(J, k))) be a T X T real symmetric matrix such
that

|Hp(j, k) <8, j,k=1,...,T.
Then we have

E(‘%S'HTS ) < (1 ++2)s.



222 S. NABEYA AND K. TANAKA

Proor. Put
1 1 X C g, 2 .
Q = TSHTe = i Z HT(], ])Ej + ? Z HT(J’ k)ejek
j=1 1<j<k<T
= Ql + Q2°
Then we have clearly
4 T(T - 1)
E(Q) <8 and E(Q}) < 5———8°<28%

hence we have
E(Q)) <E(Q.) + E(Q:) <8 +v28=(1+2)83,
by using Schwarz’s inequality. O )

Proor oF THEOREM 1. From the assumption (3.2) and Lemma 3, we have

1 1 7 j kR )
—&Bre — — K -0,
T T JE; . ( T'T
in probability; hence it suffices to consider the case B,(j, k) = K(j/T, k/T).
Let 0 <A, <Ay < -+ be the eigenvalues associated with the kernel K(s, t)
and f,(t), fo(?),... be the corresponding eigenfunctions satisfying (3.5). Note
that in the sequence {A;} the same eigenvalue is listed according to its multiplic-
ity, which is defined as the maximum number of linearly independent eigenfunc-
tions corresponding to it. Since K(s, t) is continuous, so are f,(t), fy(¢),...; and
Mercer’s theorem asserts that
0

K(s,t) = X & fl(s)fl(t)

= 1

with uniform convergence for (s, t) € [0, 1] X [0,1].
Let

n

K, (s,t) = E fl(s)fl(t) n=12,...,

= 1

and put B{ = (K (j/T, k/T ))) Then we can conclude from Lemma 2 that

n 1
(—E'B,}”)e) - L( Y — )
=1 7\1
where v,, v,,... are NID(0, 1), since

1

1 no1 T j 2
— e B{®Me = — -
Applying Lemma 3 again, we have

1 hiad 1

\—/
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The characteristic function of £ ,0?/A; was found to be (D(2i8))"*/% by
Anderson and Darling [1] and Varberg [11], where

o0 A

D(A)=T1 (1 - —)
=1 )\1

is the Fredholm determinant associated with the integral equation (3.3), which

completes the proof. O

Because of Theorem 1 the limiting distribution of &Bye/T does not depend
on the common distribution of &’s as long as E(e,) =0 and E(&?) = 1. This
implies that the invariance principle holds in Donsker’s sense (see Billingsley
[2]), and we have

L( y 10,2) = L(/lflK(s, t) dw(s) dw(t)),
=1 M 0 /o
where w(t) is Brownian motion with E(w(¢)) = 0 and E(w(s)w(t)) = min(s, t).
Now we apply Theorem 1 putting By = MD,A;D .M /c(T). Because of the
above invariance principle, we may assume that ¢, €,,... are NID(0, 1) as far as
the limiting distribution is concerned. If we factor A, as A, = C;'Cy, where

1 e 1
CT= ... . )

then we have

L( —;;e’BTs) - L( 01 fo 'K (s, t) dw(s) dw(t))

1 101
L(—T-e' ;e) > L(f0 [K*(5, 1) duo(s) dw(t)),
where we put B} = C;D.MD.C}/c(T) and we assume that the conditions of
Theorem 1 are also satisfied for B} and K*(s, t).

The problem has now been reduced to obtaining the Fredholm determinant
D(M) associated with the kernel K(s,t) or K*(s, t), which is the main issue
discussed in the next section.

4. Some examples of the asymptotic distribution. Here we consider the
asymptotic distribution of (2.5) or (3.1) by specifying the regressors x,: 1 X 1 and
z,;: p X 1in (1.1). The following three cases are examined in this paper:

(A) x,=t™, m>—-1/2,and p =0;
B) x,=1forall tand z,=t™, m = 1,2,3,4;
(C) x,=1forall t and z, = (¢, ¢%).
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In each case we consider B} = C; D, MD.C}/c(T) with M defined in (2.7) or
(2.6) according to whether the initial value B, is known to be zero or unknown
and find its uniform limit choosing c¢(T') appropriately. For case (A) with 8, =0
we have, putting ¢(T) = T?™*1,

T x? T (yT)y™"
Bi(j k)= ¥ —== Y S,
T l=max(Jj, k) C(T) !=max(Jj, k) T

and thus the corresponding kernel is

1 2m+1
(4.1) Ki(s,t) = 5 [1 - (max(s, £))*™*"].
Similarly, the kernel KJ(s, ¢) for case (A) with unknown S, is
1 . 2m+1 2m+1
(4.2) K3(s,t) = 35— [(min(s, )" = (st)""],

putting ¢(T') = T?™*1 as well. It is noted that the kernels (4.1) and (4.2) satisfy
the requirements in Theorem 1 if m > —1/2. As for cases (B) and (C) the
corresponding kernels have the form

(4.3) K*(s, t) = min(s, £) + kélgk(s)¢k(t),

putting ¢(T') = T, where the conditions imposed on £, and v, will be described
later. ‘
In the following discussion we derive the Fredholm determinants for the
previous kernels, thereby obtaining the asymptotic distributions. Case (A) is
discussed in Section 4.1, whereas cases (B) and (C) are treated in Section 4.2.

4.1. Case (A). Let us consider the integral equation
(4.4) () = A ['K*(s, £)f(s) ds,

and first deal with K* = K. The Fredholm determinant D,()\) associated with
K} is obtained as follows. Suppose that a continuous function f(¢), not identi-
cally equal to zero, satisfies (4.4) with K* = K¥ for some A > 0. Then such f(¢)
satisfies the homogeneous, differential equation

2
(45) 17(8) = = 1(8) + NP () = 0,
with the boundary conditions
() _
(4.6) }1_13(1) S = 0, f(1) =o0.

Conversely, given any A # 0, (4.5) has a unique (except for a constant multiple)
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solution f(¢) satisfying the first condition in (4.6), which is given by

VA
(4.7) f(z) = t(2m+l)/2J[1/2(m+1)]—1 mt'nﬂ)y
where J,(2) is the Bessel function of the first kind defined by
2y e (=224)"

J -

(2) = ( ) kzok'l‘(u T E+1)

(see Watson [12], page 40). The other boundary condition f(1) = 0 implies
&=

4.8 J; —_—
(4.8) [1/2(m+1)1—1( ——

and it can be shown that f(¢) in (4.7) is a solution to (4.4) with K* = K} if A
(# 0) satisfies (4.8).

Thus we have proved that A # 0 is an eigenvalue of Kj(s, t) if and only if
(4.8) is satisfied. We now have the following theorem.

THEOREM 2. In case (A) with B, = 0 the limiting null c.f. $,(0) of Ry/T?*™*!

is given by (D(2i0))~1/2, where
A [1/2(m+1)]~1
( 2(m + 1) )

is the Fredholm determinant associated with Ky in (4.1).

VA

m+1

1
(49) D(A) = I‘(m)'][l/2(m+l)]—l

Proor. From Watson [12], page 498, we have

(2/2)" = 22
dJ,
(2) = T + 1) 1) 1;[ rj
where r; < r, < --- are the positive zeros of J(z). Therefore, for A # 0, (4.8) is
equivalent to
e A
0= 1|1 - —————| = right-hand side of (4.9),
j=1 (m+1)°r?

which implies that all the zeros of (4 9) are simple. We have also shown that f(¢)
satisfying (4.4) with K* = K} is unique for every A ; = (m+1D)%r? j=1,2,.

up to a constant multiple, and thus D,(A) in (4.9) is the Fredholm deternunant
associated with K7, thereby completing the proof. O

Note. If we work with K(s, t) instead of K*(s, t) in (4.1), then we have
K(s, t) = s™t™min(s, t); and we arrive naturally at the same Fredholm determi-
nant (4.9). In the following examples we work only with K*(s, ¢), which is
simpler than K(s, ?).
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The c.f. ¢,(0) corresponds to the limiting distribution of
(e2+2°m(e + &))" + -+ +T2™(gy + -+ +eT)2}/T2'"+2,
or
{(ey+2mey + -+ +T™ep)" + 27y + -+ +T™ep)" + - +(T"‘eT)2}/T2’"+2.
In the case m =0 we have Dy(A) = cosyA = [12,(1 — A/((j — 1/2)7)?) and
¢,(8) = (cosy2i8)~'/2. For this case Erdés and Kac [4] gave an explicit expres-

sion for the distribution function Fj(a), but we present a much simpler
expression for Fy(a) by using the method of Anderson and Darling [1],

© [ _ -2j-1/2
(4.10) F(a) =2/2 }:( 1./2)@(—1——/),

o\ J . Va

where ®(-) is the standard normal distribution.

For general m (> —1/2, + 0) it seems difficult to obtain the distribution
function explicitly, but we do have that ¢,((m + 1)8) converges to (1 — i0)~/2
as m — 0. Therefore we obtain the following result.

COROLLARY 1. The limiting null distribution of (m + 1)Ry/T?™*! tends, as
m - o0, to x%(1)/2.

From Corollary 1 it is of some interest to compare the limiting null distribu-
tions of (m + 1)R,/T?™*! with x?(1)/2. On the basis of the Maclaurin expan-
sion of ¢,((m + 1)), we obtain

COROLLARY 2. The cumulants up to the fourth order of the limiting null
distribution of (m + 1)R;/T*™*! are
. m+1 8(m + 1)°
1T T onTs T @Gm+3)am+5)’
24(m + 1)°(12m + 17)
" @2m+ 3)(4m + 5)6m + 7)

Ky

Case (A) with unknown B, proceeds in much the same way. We consider the
integral equation (4.4) with K* = K} in (4.2), which leads us to the differential
equation (4.5) with the boundary conditions

(4.11) f0) =0, f(1)=o.
By the same argument as that leading to Theorem 2 we have the following
theorem.

THEOREM 3. In case (A) with unknown B, the limiting null c.f. ¢,(0) of
Rp/T?*™*1 is given by (Dy(2i0))~ /%, where

im 4+ 3 X ¥y 1-[1/2(m+1)]
(412) Dy(A) = 1‘(2(1’,:—+1))J1—[1/2<m+m( m+ 1 )/( 2(m + 1))

is the Fredholm determinant associated with K} in (4.2).




TEST FOR CONSTANCY OF REGRESSION COEFFICIENTS 227

In the case m =0 we have DyA) =sinVA /VA =12 (1 — A/(j?r?)) and
¢,(0) = (siny2i0 / y2i0)~'/2, which is also the c.f. for the limiting distribution of
the Cramér—von Mises statistic, and the corresponding distribution function was
given by Anderson and Darling [1].

Returning to general m (> —1/2, # 0), we note that

lim Dy((m + 1)*A) = 2J,(YX) /YA
m— oo
and obtain the following results.

COROLLARY 3. The limiting null c.f. of (m + 1)?R,/T?™*! tends, as m -
o0, to

- -1/2 o _; E oy 12
(13) {wl(m)} ={ ( o/z)} '

V2i0 ,Z-O k(% + 1)!

COROLLARY 4. The cumulants up to the fourth order of the limiting null
distribution of (m + 1)’R,/T?™*! are

m+1 (m+1)°
T am+3) " (m+ 3 6m+5)’
8(m + 1)°
7 (am+ 3)’(6m + 5)8m + 7)
) 24(m + 1)"(32m + 27)
4

" dm+ 3)“(6m + 5)*(8m + 7)(10m + 9)

In Figure 1 the probability densities corresponding to ¢,((m + 1)) for m = 0,
2, 4 and oo are drawn whereas those corresponding to ¢,((m + 1)?8) are shown in
Figure 2 for the same values of m. These were calculated by applying Fourier’s
inversion formula numerically. It is seen that the distribution for the former is
shifted to the left as m becomes large and the shape is drastically changed for
m = oo, which is x2(1)/2. In Figure 2 the distribution is shifted to the left quite
smoothly as m becomes large. The percentiles of these distributions will be given
in Section 5.

4.2. Cases (B) and (C). The kernel K*(s, t) treated here is of the form given
in (4.3). We assume

(1) &x(s), k=1,...,r,and Y,(¢), k= 1,..., r, are continuous and each set is
linearly independent in the space C[0,1].

If 1 and/or a linear function of ¢ belong to the space of linear combinations of
Y(2), k= 1,..., r, then we can assume without loss of generality that they are
the last one or two members of y,(¢), in which case we can assume the linear
independence of y%(¢), k=1,...,q, whereas ¥{(¢) =0, k=q + 1,...,r, with
0 < r — g < 2, assuming the twice differentiability of {’s. Thus we assume
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T T T T

' 0.00 0.20 0. 40 0.60 0.80 1.00

FiG. 1. Limiting probability densities of (m + 1)R;/T*™*! in Theorem 2.

(i) ¢4(t), k=1,...,r, are continuous in [0,1] and ¢}(¢), k=1,...,r, are
continuous in (0,1); furthermore, ¥%(t), £ = 1,..., q, are linearly independent,
whereas y}(¢) =0, k=q+1,...,r,where0 <r— g < 2.

Then the integral equation with the kernel (4.3) is equivalent to the nonhomoge-
neous differential equation

(4.14) F/(8) + MF(8) = Aki ani(8),

10

T
0.00 0.10 0. 20 0. 30 0. 40 0.50

F16. 2. Limiting probability densities of (m + 1)?Ry/T?™*! in Theorem 3.
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with the boundary conditions

(4.15) 0) =1 T apt0),

(416) 1) =2 T adi),

where

(4.17) a, = fo‘gk(s)f(s)ds, E=1,...,r.

The Fredholm determinant associated with the above K *(s, t) is obtained as
follows, by modifying the technique of Kac, Kiefer and Wolfowitz [8]. For given
A # 0 the general solution to (4.14) is

q
(4.18) f(t) = cicosyAt + cosinyA t + Y a,g,(2),
k=1

where g,(t) is a special solution of gf/(t) + Ag.(t) = AY}(¢). Note that (ii)
implies that cosyA ¢, sinyA ¢ and &g(t), k=1,..., q, are linearly independent.

Substituting f(¢) from (4.18), we regard (4.15), (4.16) and (4.17) as a system of
r + 2 linear homogeneous equations in a,,...,a,, ¢; and c,. Then it can be
shown that A # 0 is an eigenvalue of K*(s, ¢) if and only if the system has a
nontrivial solution. We now have the following theorem.

THEOREM 4. Let K* be given by (4.3) and assume (i) and (ii). Let M(\) be
the (r + 2) X (r + 2) coefficient matrix of the system of linear homogeneous
equations in a,,..., a,, ¢, and c, given by (4.15), (4.16) and (4.17) for f(t) in
(4.18). Further assume

-] }\ lj
(iii) det M(A) = AT (1 - -—) ,
J=1 >‘j
(iv) rankM(Aj)=r+2—lj, j=12,...,

where o (+ 0) and B are constants, l; are positive integers and A, j = 1,2,...,
are the nonzero solutions to det M(\) = 0. Then the Fredholm determinant D()\)
associated with K*(s, t) is

b

(4.19) D(A) = ﬁdetM(A) ~ 11 (1 - XA—) .

J=1 j

As an illustration let us take case (B) with B, = 0. Then B} = C,MC;/T
with M in (2.7), and letting T — oo, we have, for m > 0,

2m + 1
2(1 _ sm+1)(1 _ tm+1).

(m+1)

(420) K3i(s,t) =min(s,¢t)+1—-s—¢t—
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We put
2m + 1 el
gl(s) = m+ 1 (1_8 )’ ‘52(3):1’ £3(S)= - S,
¥i(2) = - (T =™, Ada(t)=1-t¢,  Y5(t) = 1.

m+1
The general solution corresponding to (4.18) is

f(t) = ccosyA t + cosinyA t + alm/X/ts”‘“lsim/X(t —s)ds,
"

where p is any constant. Evaluating the determinant of the 5 X 5 coefficient
matrix M(A) for m = 1,2, 3,4, we obtain the following theorem.

THEOREM 5. In case (B) with B, = 0 the limiting null c.f. $5(0) of Ry/T is
given by (Dy(2i0)) /2, where

3
Dy(A) = }\T/i(Sin\/X — VA cosyA), m=1,
20 A
= wn —2/A + (1 + A)sin/A + ‘/X(l - E)cosﬁ), m=2,
126 A2 4N A2
N2 (2_2>‘+‘é‘)smfx+fx(—2+?—ﬁ)cosﬁ), m =3,
864 A3
=z VA(=12 + 20) + |6 + 6A — 2N2 + E)sin\/x
A
A6 —4N+ — — — =
+VA |6 m 42)cos»/)7), m =4,

is the Fredholm determinant associated with K3 in (4.20).

ProOOF. We consider the case m = 2. The other cases can be treated simi-
larly. It may be shown that, for some constants a (# 0) and 8, det M(A) is aA?
multiplied by

3

G(z)=-2z+ (1 + 2%)sinz + (z - z—3—)cosz,

where z = VA . Note that every zero of G(2) is real because nonzero z% = A is an
eigenvalue associated with K3(s, ¢) in (4.20). Let r;, j = 1,2,..., be the positive
zeros of G(z). Then the rank of the 5 X 5 coefficient matrix M(r}?) is 4, which
implies that /; = 1 in assumption (iv) of Theorem 4. It may also be checked that
every nonzero solution of G(z) = 0 is simple by showing that there exists no
nonzero solution common to G(z) = 0 and G'(z) = 0. Finally, we show that (iii)
of Theorem 4 holds. The function G*(z) = 20G(z)/2° is even and analytic for
all z with G*(0) =1 and with the zeros +r;, j=1,2,.... Furthermore,
G*'(2)/G*(2) is bounded on the squares C,, & = 1,2,..., with the vertices at
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2kw(+1 + i). Hence, by a theorem of Weierstrass (see Whiétaker and Watson
[13], page 137), we have the infinite product expression for G*(z), resulting in
(iii) with 7; =1, j = 1,2,..., which establishes the theorem. O

For case (B) with unknown B, we have B} = C,MC4/T with M in (2.6), and
letting T' — oo leads to
(m+1)° 2m + 1

Ki(s,t) = min(s, t) + ¢| — 7S + 3

sm+1

(4.21)
2m + 1
2

+ tm+1(s _ sm+l).

m
Proceeding in the same way as before, we obtain the following theorem.

THEOREM 6. In case (B) with unknown B, the limiting null c.f. ¢,0) of
R,/T is given by (D2i0))'/2, where

12
D,(A) = ——2—(2 — VAsin/A — 2cosyA ), m=1,
45
=% (/}T(l - —)sm‘/_ Acosx/_) m=2,
224 4\ A2
= X (4 2A + VA 2+—é__16)51n‘/_
A2
+(—4+2>\——2—)cos1/7\_), m=3,
1350 722 A3
= —-}\?—(\/7\_(6 4\ + T0 " E)sm\/_
A8 -
+(—6A+2A2—-g)3cﬁ), m = 4,

is the Fredholm determinant associated with K7 in (4.21).

As for the last case (C) the kernel K} for 8, =0 is

K*(s,t) = min(s,t) + 1 — s + 252 — 1953 — ¢

+28%(1 — 652 + 5s%) + 10£3(— 1 + s? — 8s?),
whereas the kernel K¢ for 8, unknown is

K*(s, t) = min(s, t) + ¢(—9s + 18s% — 10s3
hzg)  Kie:0)=min(s,0) + )

+6t2(3s — 852 + 5s%) + 10t3(—s + 352 — 25®).

THEOREM 7. In case (C) the limiting null c.f.s ¢5(8) of Ry/T for By =0
and ¢(9) of Ry/T for unknown B, are given by (Dy(2i6))~ /% and (Dg(2i0)) /2,
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TABLE 1
Upper percent points of the limiting distribution

Tail
Prob. m=0 m=1 m=2 m=3 m=4 m = o0
1. Case for (m + 1)Ry / T2™*! in Theorem 2 [cf. (m + 1)K¥]
0.100 1.19582 1.26250 1.28938 1.30392 1.31303 1.35277
0.050 1.65574 1.76929 1.81462 1.83905 1.85433 1.92073
0.010 2.78746 3.01575 3.10636 3.15508 3.18551 3.31745
0.001 4.48646 4.88668 5.04519 5.13034 5.18351 5.41378
2. Case for (m + 1)’Ry / T?™*! in Theorem 3 [c.f. (m + 1)2K}]

0.100 0.34730 0.29090 0.27572 0.26867 0.26460 0.24939
0.050 0.46136 0.38306 0.36207 0.35233 0.34671 0.32576
0.010 0.74346 0.61125 0.57592 0.55955 0.55010 0.51494
0.001 1.16786 0.95484 0.89800 0.87168 0.85651 0.80003

respectively, where
2

A
}\ -2+ E)cosx/)?),

8640 A A 2A
X 2+§+‘/}T(-2+ —1—2—)s1m/5\_+(—2+ —3—)005\/7\_)

are the Fredholm determinants associated with K} in (4.22) and K¢ in (4.23),
respectively.

Dy(A) = -9%9(2+x+ \/X(—z— g)sim/x +

De(") =

The percentiles of the limiting distributions will be given in the next section.
These limiting distributions are all unimodal though not drawn here to save
space.

5. Numerical and simulation results. Using Lévy’s inversion formula
numerically, the upper 10, 5, 1 and 0.1 percent points are tabulated in Tables 1
and 2 for the limiting null distributions of the following statistics:

Table 1: (m + 1)R;/T?™*! in Theorem 2 and (m + 1)2R;/T?™*! in Theo-
rem 3;

Table 2: R;/T in Theorems 5, 6 and 7.

In carrying out the numerical integration we have used Simpson’s formula, the
upper limit of the integral and the number of subintervals being chosen so that
the error of the resulting value is at most one unit in the last decimal.

We also examine finite sample properties of the statistic R under H,. In
Figure 3 the “exact” distribution functions of (m + 1)2R,/T?™*! in Theorem 3
are drawn for (m,T) = (0,30), (4,30), (4,50) and (4,100) together with the
corresponding limiting distributions as T — oco. The “exact” distributions were
obtained by simulations based on 10,000 replications. As is seen from Figure 3,
the sampling distribution for m = 0 is quite close to the limiting distribution
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TABLE 2

Upper percent points of the limiting distribution of Ry/T

Tail
Prob. m=1 m=2 m=3 m=4

| 1. Case for Theorem 5 (c.f. KJ) 3. Theorem 7 (c.f. K¥)
0.100 0.19270 0.30223 0.42137 0.52002 0.09035
0.050 0.24810 0.40511 0.57380 0.71276 0.11050
0.010 0.38533 0.65895 0.94917 1.18721 0.15939
0.001 0.59245 1.04038 1.51287 1.89959 0.23301

2. Case for Theorem 6 (c.f. K¥) 4. Theorem 7 (c.f. K¥)

0.100 0.11922 0.13049 0.15147 0.17181 0.07146
0.050 0.14789 0.16416 0.19394 0.22254 0.08595
0.010 0.21775 0.24724 0.29917 0.34826 , 0.12048
0.001 0.32308 0.37287 0.45802 0.53776 0.17183

even for T = 30 and thus the latter may be used as an approximation for
moderate sample sizes. When m = 4, the approximation, however, is not good
enough. It seems that the sample size should be more than 100 for good
approximation. Though not shown here, the situation is almost the same for the
distributions of (m + 1)R;/T2?™*! in Theorem 2. As for the distributions of
R,/T in Theorems 5, 6 and 7 it was also observed that T greater than 100 is

desirable for the approximation to be accurate.

The test statistics described above take the form of W= V/U, where W, U
and V are all positive and W is independent of U, which converges in probability
to 1 under H,. W and V have the same limiting distribution, but it was found,

0.10 0.

20

0.30 0. 40

Fic. 3. Sampling distribution functions of (m + 1)>Rp/T*™*! in Theorem 3.
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though not shown here, that the sampling distribution of V is closer to the
limiting distribution than that of W. The distribution of W is more con-
centrated than that of V or the limiting distribution. This fact is partly seen in
Figure 3, where the sampling distribution for m = 0 crosses the limiting distribu-
tion at some point around 0.2 and becomes numerically larger after that point.
The sampling distributions for m = 4 are all located below the limiting distribu-
tion in Figure 3, but the former cross the latter eventually. This may be
explained by the fact that Cov(U,V) > 0 and Var(W) < Var(V)/E%U) ~

Var(V).

6. Concluding remarks. We have shown that the LBI test statistic derived
under normality converges in distribution, withqut assuming normality, to a
quadratic functional of Brownian motion and that the c.f. for the functional can
be obtained from the Fredholm determinant. Some examples were also shown on
how to obtain the Fredholm determinant, which is usually computationally
burdensome. It might be mentioned that computerized algebra is useful for this
purpose. Actually we have used the computer package REDUCE developed by
Hearn [6] to check our results. It was also effectively used to obtain cumulants
as given in Corollaries 2 and 4. '

In this paper we have examined only cases where one component of the
regression coefficients is subject to vary over time. The extension to more general
cases has not been done yet, but will be possible by the present approach.
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