The Annals of Statistics
1988, Vol. 16, No. 1, 236-253

A DYNAMIC SAMPLING APPROACH FOR DETECTING A
CHANGE IN DISTRIBUTION

BY DAVID ASSAF
The Hebrew University

The problem of detecting a change in drift of Brownian motion is
considered in the Bayesian framework with the time of change having a
(prior) exponential distribution. To the well known problem of finding an
optimal stopping rule for “declaring a change,” we add the option of continu-
ously controlling the sampling rates—resulting in controlling the variance
coefficient of the process. The combined problem of finding an optimal rate
function (dynamic sampling) together with an optimal stopping rule is solved
and explicit expressions for the quantities of interest are derived.

The dynamic sampling procedure is shown to be significantly superior to
constant rate sampling. The comparison is most favorable when the expected
time until change tends to infinity, where the relative efficiency between the
two procedures tends to infinity.

1. Introduction and summary. Let {x(¢); ¢ > 0}, x(0) = 0, be Brownian
motion with drift coefficient p and variance coefficient 62 > 0. The process starts
with drift coefficient u = p,, but at some time T' the drift coefficient changes to
p = py. The time of change T is unknown, but is assumed to have a (prior)
exponential distribution with mean A~! (A > 0). The parameters p,, p,, 0> and
A are all known. Occasionally, in accordance with some stopping rule, we “raise
an alarm” indicating that we have evidence that the change has already
occurred. The process is assumed to reset itself every time such an alarm is
raised. The object is to find a stopping rule which, in some sense, minimizes both
the probability of a false alarm and the expected delay (i.e., the time elapsed
between the actual change and the sounding of the alarm).

To fix ideas, think of a machine with continuous production (ice cream, for
example). At some point in time, the quality of production suddenly deteriorates
and we want to find that point as quickly as possible after it occurs. Once the
change is declared, the machine is checked, fixed if needed, and production with
good quality starts again until the next change. As another example, consider
testing for air or water pollution using a test tube.

Information regarding the quality of production is obtained by continuous
sampling. We may, for example, decide to continuously sample 2% of the total
production. The process {x(¢); ¢ > 0} is a result of this sampling.

Let 7 be a stopping time. Denote by a = P(7 < T') the probability of a false
alarm and by 8 = E(7 — T')™" the expected delay. The optimal stopping problem
may formally be set up as that of finding a stopping time r which minimizes
for some fixed 0 < a < 1.
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OPTIMAL STOPPING PROBLEM.
Find inf B
T
subject to P(r<T)=a.

The solution to the optimal stopping problem may be found in the last
chapter of the book by Shiryayev (1978). Different variations of the problem,
including discrete formulations, cases in which some of the parameters are
unknown, non-Bayesian formulations and others, have been studied by many
authors. See for example Ashir and Muni (1975), Bather (1967) and Pollak and
Siegmund (1985). For an up to date survey and a more complete list of
references, see Pollak (1985, 1987).

In this paper the following problem is studied: Suppose that in addition to the
optimal stopping time, we are allowed, at no additional cost, to vary the sample
size as we like as long as on the average we do not sample more than before. In
the machine production example, we may, as one possibility, sample 1% half the
time and 3% the other half, rather than sampling 2% all of the time. (In the air
pollution example, we may increase or decrease the amount of air flowing into
the tube.) Can such a “dynamic sampling” procedure improve the performance,
i.e., give a lower value of B for fixed a?

Think of 6% as the variance due to sampling error when sampling at some
standard rate a = 1. Then sampling with rate a(t) results in variance coefficient
o2/(a(t)) (see Section 6, Comment 3). The rate at time ¢, a(t), is naturally
nonnegative (the case a = 0 is discussed later) and may depend on the history of
the process up to time ¢ [i.e.,, on {x(s); 0 < s < ¢} and on {a(s); 0 < s < t}]. The
total sample size up to time ¢ is then [{a(s)ds and the average sample size per
unit time is given by

-}L‘a(s)ds.

For given stopping time 7, denote by C(7) the total sample size during the
time from O to 7, that is,

C(r) = jo "a(2) dt.

Throughout this paper, we restrict the discussion to @ and 7 satisfying
Er < w0 and EC(7) < o (see Section 6, Comment 4). Assuming naturally that
the decision process a(t) is probabilistically reset whenever x(¢) is and applying
a standard renewal-reward argument, the long-run average sample size per unit
time is given by EC(71)/Er. We keep this value equal to some level of sampling
v = O (typically, y = 1) and thus set up the dynamic sampling problem:

DYNAMIC SAMPLING PROBLEM.
Find inf 8

a,T

subject to P(r<T)=a
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and

A heuristic derivation of the optimal @ and 7 for the dynamic sampling
problem is given in Section 2. The performance of the resulting policy is
approximated by a family of suboptimal policies in Section 3, where expressions
for EC(7), ET and B are also derived. A rigorous proof of optimality is then
given in Section 4.

Some numerical aspects are discussed in Section 5. These include comparisons
between the dynamic sampling procedure and previous results obtained for fixed
sampling rate a(t) = y. The comparisons show the dynamic sampling procedure
to be significantly superior to the fixed rate one. The comparison is most striking
when A — 0, where the optimal delay tends to infinity in the fixed rate case
while tending to a finite constant in the dynamic sampling case. A slightly
different comparison shows the relative efficiency between the two procedures to
tend to infinity as A — 0.

Some additional comments and indications of possible extensions of these
results are discussed in Section 6.

Models allowing for sampling at different rates have been studied, mainly in
problems of quality control where several levels of sampling are permitted. The
possibility of continuously controlling the variance in a similar context is
discussed by Bather (1976). It seems that the only paper in which this possibility
is mentioned regarding the detection problem is by Girshick and Rubin (1952),
who discuss a discrete case version and allow a sample/do not sample scheme.

Theorems and techniques in stochastic processes used in this paper may be
found in texts such as It and McKean (1965), Karlin and Taylor (1975, 1981)
and Ross (1983). For the results used in stochastic control and dynamic program-
ming, see Dynkin (1963), Fleming and Rishel (1975) and Strauch (1966).

2. Preliminary results and heuristic arguments. Denote by F, the o-field
generated by the history of the process up to time ¢. It is well known [see Arrow,
Blackwell and Girshick (1949)] that the process {y(¢); ¢t > 0} defined by y(¢) =
P(T < t|F,) contains all relevant information, and we, thus, consider the problem
in terms of this process. Shiryayev (1978) proves that y(t) is a time homogeneous
diffusion process with state space [0,1] and derives its drift and variance
coefficients as

(1) p(y) =M1 -y),

(2) o%(y) = 2a(y)py*(1 - )",
where

) p- 2l bo)

and, naturally, y(0) = 0.

REMARK 1. Shiryayev (1978) computes the coefficients (1) and (2) for the
constant sampling rate a(y) = 1. This derivation, as well as others to follow,
easily extends to arbitrary sampling rates and the proofs are omitted.
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REMARK 2. The sub-o-fields generated during time intervals with a = 0 are
trivial and the process y(t) is then a deterministic one. This corresponds to the
situation in which no random fluctuations due to sampling are present, and the
change is a result of the prior exponential only.

LeEMMA 1. For any stopping time 1
(4) a=1-Ey(r),
(5) B=E [ y¢)adt.
0

PRrOOF. A rigorous proof for the case a =1 is given in Shiryayev (1978).
Intuitively (4) follows, since by definition y(¢) = P(T < t|F,), so that Ey(t) =
P(T < 1) =1 — a. The representation of 8 by (5) also follows intuitively from
the definition of y(¢) because if the process is at y for A¢ units of tlme then the
resulting expected delay is yAt. O

The following lemma is used in this paper and may be of independent interest
as well.

LEMMA 2. For any stopping time
Ey(7)
N

(6) Er=8+

Proor. Let {2(¢); ¢ > 0} be a diffusion process with drift coefficient u(z)
and let 7 be a stopping time (as always assumed, E7 < o0). Dynkin’s formula
with the identity function u(z) = z states that

(7) Ef "w(2(t)) dt = Ez(r) - 2(0).
Substitute the process y(¢) in (7) and use (1) to obtain
(®) E [\t - x(6)) dt = Ey(r) - (0).
Since y(0) = 0, (8) becomes

(9) AEr - \E [ 'y(¢) dt = Ey(r),

from which (6) follows directly, using Lemma 1. O

For a heuristic derivation of the optimal policy, we make the two conjectures:

1. There exists an optimal stopping time which is stationary in y.
2. There exists an optimal sampling rate function which is monotone nonde-

creasing in y.
Conjecture 1 is reasonable since the problem is basically time homogeneous.
Conjecture 2 seems reasonable since the value of y(¢) measures our current
suspicion that the change has already occurred. It is natural, then, to try and
obtain information quicker as our suspicion becomes higher.
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Due to continuity of paths and (4), it is evident that the only stopping time
which is both stationary and satisfies the constraint P(r < T) = a is the
stopping time 7(a) given by

(10) m(a) = inf{¢; y(¢) =1 - a}.
(6) may now be written as
l-a

(11) B=Er(a) - ——.

Since (1 — a)/A is constant, it follows that minimizing the expected delay 8 is
equivalent to minimizing the expected cycle time E7(a). The dynamic sampling
problem may thus be equivalently represented as: Find

(12) inf Er(a)
subject to

EC(7(a))
u O

Using standard constrained optimization arguments, the problem may equiv-
alently be written in an unconstrained form as: Find

(14) il;f{E'r(a) + kEC('r(a))}
(15) inf{E jo "1 + ka(2)) dt}

for some £ > 0.
ForO<y<1-alet

(16) H(y) = int {E [*(1 + ka(1)) diy(0) = 5|

denote the optimal value function for the problem. Formal substitution into the
optimality equation for this case [see Fleming and Rishel (1975), Chapter 6]
yields the quantity to be minimized as a function of a as

(a7) inf {1+ ka + s(NH() + 10X (NH(7)}.

Substituting the values of p(y) and ¢%(y) from (1) and (2) yields, after some
simple rearrangements,

(18)  1+M1-)H(y)+ inf {a[k+py*(1 - 2)"H"(5)]}.

Since (18) is linear in a, it follows that the optimal value of a is either zero or
infinity, depending on the sign of the quantity & + py%(1 — y)2H"(y).

The function H(y) is unknown at this stage, but is explicitly derived later in
this paper. The proper regions, however, may readily be deduced from conjecture
2, and the optimal policy may, thus, be summarized as: There exists a value
0 < 3y, <1 — a such that no sampling is performed in the interval [0, y,), while
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sampling with an infinite rate is performed in the interval (y,,1 — «). A change
is declared as soon as the process reaches 1 — « for the first time.

The correct value of y, naturally depends on v, including the case y, = 1 — a,
when y = 0. The explicit form of this dependence, as well as the dependence of y,
on k in the alternative representation, is discussed later.

In order for the preceding “policy” to have a manageable form, two basic
questions still need to be answered. The first question regards the interpretation
of sampling at an infinite rate. This may be solved by setting some high rate L
and letting L — oo. It turns out to be computationally more convenient to set
the rates as a(y) = AM/[py(1 — y)], with M — oo. The second question regards
the sampling procedure around y,, which may be resolved by the approximation:
Set 0 <e<y, and use a =0 in [0, y,—¢] and @ = o in [y,1 — a). The
sampling rates in the interval (y, — ¢, 3,) depend on the “direction” of the
process, and we set @ = 0 when the process is “moving to the right” (from y, — ¢
to y,) and as @ = oo when it is “moving to the left.” A rigorous formulation of
this procedure using stopping times is given in Section 3.

Rather than proving optimality for the 0-co policy directly, its performance
is approximated and the limiting value function is derived. This value function is
then shown to, indeed, be the optimal one in Section 4.

3. The A(M,¢, y,) policies. Throughout this section, we fix a, 0 < a < 1.
Consider a family of policies {A(M, ¢, y,); M > 1, e <y <1 — a}:

1. The stopping time 7 [= 7(a)] is defined by

(19) r=inf{t: y(¢) =1 - a}.

2. The sampling rates using A(M, ¢, y,) are given for y & (y, — &, ¥,), by
0, O<y=<y—s

(20) a(y)={__AM
—_ Yo<y<l-—a.
py(1 - y) °

For y = y(t) € (3, — & Jp), define the Markov time u = u(¢) by
u=sup{0 <s <t y(s) =y —eor y(s) = )}
and let a(y) = a(y(t), u, y(u)) be defined as
0, y(u) =y —¢
(21) a(y) = AM

m, ¥(u) = 5.

REMARK 3. The policies A(M, ¢, y,) have an obvious “physical” interpreta-
tion, namely, do not sample at all until reaching the level y, for the first time.
Whenever reaching y,, sample at rate AM/[py(1 — y)] until the level reaches
1 — a, in which case a change is declared, or drops a bit to y, — ¢, in which case
sampling is stopped until y, is reached again.
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Expressions and bounds for EC(r), ET and B are next derived. The deriva-
tions are fairly standard and some technical details are omitted. A convenient
reference to the concepts and techniques used is Karlin and Taylor [(1981),
Chapter 15].

The basic behavior of y(t) when applying the A(M, ¢, y,) policy is: It starts
at 0 and moves deterministically to y,. Whenever at y,, the process behaves like
a diffusion process until hitting either y, — ¢ or 1 — a. The drift coefficient is
p(y) = A1 — y), while the variance coefficient is given by (2) and (21) as

(22) o?(y) = 2AMy(1 - y).
Upon reaching y, — ¢, the process moves deterministically back to y, and a new
“inner” cycle begins. Once 1 — a is reached, a change is declared and an
“external” cycle begins with the process reset at 0.

Consider one such inner cycle. Since

2p(y) 1
23 S LAS—
(28) o*(y) My
it follows that the scale density is given by
(24) s(y)=y7%
while the scale function is given by
yi=s
(25) S(») =15
with
(26) ) .
=

Note that 0 < § < 1.
The probability of hitting 1 — a before y, — ¢, starting at y,, is given by

S(J’o) = S(y —¢)
S(1-a)-S(y-¢"
Thus the expected number of inner cycles is given by
S - a) = S(y —¢)
v S(J’o) - S(J’o —¢)
The Green function for an inner cycle is given by
2(S(y) — S(3 — £))(SQ - @) = S(x))
(8(1 = @) = S(3 — &))o*(¥)s()

(27)

(28) N=

Yo— €Y< Yoo
2(S( %) — S(3% — €))(S(1 - a) — S(¥))
(81— a) = S(3 — £)o*(y)s(¥)

(29) G(y) =

b

B=<y<l-a



DETECTING A CHANGE IN DISTRIBUTION 243

Derivation of EC(t). By the definition of the A(M, ¢, y,) policies, a = 0
except for the inner cycles. Applying Wald’s equation, we have

(30) EC(r) = [ "Na()G(5) dy,

with a(y) = AM/[py(1 — y)]. Note that by (2),

[2a()]/[0%()] = 1/[py*( - 3)7].
The portion of the integral from y, — ¢ to y, is given by
I = /yo (S(l - a) - S(yo))(s(y) ~ S(% - 82)) d
n=e (S(%) = S(3 — ¢£))ps(»)¥*(1 - y)

Obviously, I, > 0. Since S(y) < S(y,) for ¥ <y, and 1/[s(y)] =y® < 1, we
have

(31)

S(y) - S(yo ~¢)
&) (SCo) — S0~ Ns(2) = ¥

so that, from (25),

1(1- -y d
(33) 0<I, L1 0 =% I AN
p 1-4 »w-ey*(1—y)

The upper bound on I, may thus be computed explicitly [see (38) for a sim-
ilar computation]. An obvious approximation for the integral part is
¢/[ 21 — ¥)?]. In any case, the upper bound is an O(¢) term.

The portion from y, to 1 — « is given by

_ l—as(l_a)_s(y)}_ 1
L= '/;'o s(y) P y2(1 — y)?

For 0 <8 <1and y, <y <1 — a, the following inequalities are straightfor-
ward:

(34)

1_ 1—8_ 1-6
(35) (1—8)y§(1—a—y)s( a)y_s o4 <l-a-y.

Using (35), it follows that
8 —a l—a-— o l1-—a-—
X —-———y2 dy <. /1
P % yA1-y) p(l —-8)Jy  y2(1- y)

From (33) and (36), we have

(36)

(37) EC(r) = %fy‘”“ﬁ dy + O(¢) + 0(3).
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Taking the limits ¢ = 0, § - 0 and computing the integral explicitly yields
the limiting value of EC(7) as

(38) EC(7) = %[(1 -—a- yo)%l(l_—fi:o) +(1- 2¢x)10g(

0

u—@u—%w}

aY

Derivation of Ev. Et is composed of the first hitting time of y, (starting at
0), given by

39 t 11 !
( ) O_Aogl__yo,

plus the expected accumulated times during the inner cycles, given by
1 11—y +e 1-a

40 t,=N|-logl —— | + G(y)dy|.

(40 |3 T2 4 a8

For0<6<1,0<y<1—aand 0<e<y,let g=2g(¢8) =1 - 8)(y —
¢)’. Apply the inequalities

l—a—-y+e (1-a)=(p—-¢"" 1l-a-y+e

(41) < — 5 < —
: € % "= (5% —e) g £
and

2

x
(42) x—?slog(1+x)5x, 0<x<1,
to obtain

1 1—y,+e¢ 11-a-y,

43 N-log| ———— | = =———— + O(¢) + 0(9).
(43) o 2| - L2 4 000 + (o)

For the second term in (40), apply (32) and (35) to obtain

(44) [y 1::NG( ) dy = O(ed) + O(8).

Upper and lower bounds for ¢, may easily be obtained from the corresponding
inequalities applied. Taking the limits ¢ = 0 and § — 0 yields the limiting value

(45) E lb( ! )+1_a_%]
= —|lo .
T gl—yo 1=y

REMARK 4. A person observing the y(t) process when the A(M, e, y,) policy
is used in the limiting sense, will see the process travelling smoothly from 0 to y,,
reaching y, after time ¢,. The process will then appear to be “standing at y,” for
some time (with expected value (1/A)[(1 — a — ¥,)/(1 — 3,)]) and then suddenly
“shooting in no time” to 1 — a.
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REMARK 5. For large M, the behavior of the y(¢) process during the inner
cycles may be approximated by Brownian motion with zero drift. This may be
better motivated by taking a(y) = M/[2py*(1 — ¥)?], which yields a constant
variance 02(y) = M and a uniformly bounded drift. Applying standard conver-
gence theorems, one may then use the simpler forms of hitting probabilities and
the Green function to derive the limiting quantities (38) and (45) more easily.

Derivation of B. Applying Lemma 2, the limiting value of B is easily
computed as 8 = ET — (1 — a)/A, that is,

1 1 ay,
(46) 'B=X[log(1—y0)_ l—yo}'

An appropriate O(e) + O(8) should be added when using an A(M, ¢, y,)
policy. The exact formula for the added term is, of course, the same as for Er.

REMARK 6. An alternative derivation of the limiting value of B is offered by
Lemma 1. As the process travels from 0 to y,, we have y(¢) = 1 — e~*. Upon
reaching y,, we have y(¢) = y, for an expected time of (1/M)[(1 — a — 3,)/(1 —
yO)] rrhus’ by (5)’

to =\t y() 1 -—a- yO
47 =[°1- t+ =
(47) B=[fa-edt+ T

which may be checked to equal (46).

I

4. Proving optimality. Taking Lemmas 1 and 2 into account and applying
standard arguments as in Section 2, the dynamic sampling problem may equiv-
alently be set up as: Find

(48) }znf{E'r + k,EC(7) — kyEy(7)}
(49) me[ [+ ka(®) dt -k, y(f)]

for some positive £, and &,.
For0<y<1,let

(50) F() = B[ [+ kia(®) dt = by y(0)n(0) = 5]
be the value function when using the A(M, ¢, y,) policy in the limiting ¢ — 0,
M — o sense, and with 1 — a = y,, that is, with r defined as
(51) = inf{t; y(t) = 3 }.
The value of F(0) is essentially computed in (38) and (45). Using similar
methods, it may readily be shown that for 0 <y, <y, <1,
Fy(y) — ka1, 0<y<x
(52) F(y) = {F(y) — ka2, Yo=<Y=Dn>
_k2y7 n=y=< 1,
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where
1 1-y
(53) R(5) = 310t 12| + L),
=y
F(y) = 1_ L(5, »)
N 0
k -y)1-2
(54) + _1[(1 _ 2y)10g( Yy ) _ (yl y)( %) log( Yo )
p 1- Y1~ Y 1-y
Y=Y N
+(2y, -1 lo ( )]
F ! )y1_yo gl_yl
and
1y—=%
L - _7t J
( ) (yO’ yl) A 1 _yo )
55
k, 1-2y, (yl(]- - yo) ”
+—(n —Y)—— + 2y, — Dlog| ———1|.
p [( ! O)yo(l‘_yo) @ ) @ - )%

For y, =y, > 0 (the no sampling case), the middle F(y) — k,y, term is
omitted in F(y). An additional case may occur when y, =y, = 0. This corre-
sponds to immediate stopping (and no sampling) for all 0 <y <1, and the
appropriate value function is F(y) = —k, .

THEOREM. For proper choice of y, < y,, F(y) is the value function for the
dynamic sampling problem as set up in (49), i.e.,

66)  F(o)= intE[ [0+ kiale) = kyx(ro(0) = 5]

The choice of y, and y, as functions of k, and k, is as follows.

Case l. If
Ak, 12 ) 1
m— < - c—
(57) . E’
then
Ak, \ /2
58 =|—
(58) Yo ( P )
and y, <y, < 1 is the unique solution to the equation
(59) F{(y) = —k,.
Case 2. If

Ay )2 1 ! nd Ak, >1
— — — >
(60) ; > A, a 9 ,



DETECTING A CHANGE IN DISTRIBUTION 247

then
1
(61) yo=y1=1_m-
Case 3. If
(62) Aky <1,
then
(63) o=h=

ProorF. We prove the theorem for Case 1 only. The arguments for the two
remaining cases are similar and somewhat easier.
Note first that F(y) is continuous. Next differentiate to obtain

(64) Fy(y) = — =)’

o k, %(1 - ) 1-2y  1-2y
(65) F{(y) = BETS 7[2 Og( a _yo)y) -y  wa-x) |
Also, |
1
(66) Fy(y) = XL =)
(67) L P —
=g y(1-y)*

Since Fy(y) = —1/[AM1 — %)), F{"(y) <0 and F{(y) > —c0 as y—> 1, it
readily follows that the solution of (59) for y, is indeed unique and satisfies
Yo < 1 < 1. The choice of y, and y, also results in continuity of F’ as well as
continuity of ¥’ at y, (F" is evidently not continuous at y,).

Since F(y) is attained as a limit of given policies, it suffices to prove that it
satisfies the optimality conditions as inequalities [this follows from general
theory; see Dynkin (1963), Fleming and Rishel [(1975), Chapter 6] and Strauch
(1966)]. We begin by showing that the stopping region defined by 7 is optimal.
For this, we need to prove that forall a >0, y, <y <1,

(68) 1+ ka+ DF(y) =0
and that forall0 <y < y,,
(69) F(y) < —ky,
where 2
d 2 d
a_ — 2(1 — -
(70) D® = u(y) @ TrY 1-) &

is the stochastic operator corresponding to sampling at rate a.
To prove (68), note that F(y) = —k,y for y; <y < 1 and (68) thus becomes

(71) 14 ka—k,A1-y)>0.
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Since the left-hand side is minimal for @ = 0 and y = y,, it suffices to show
that

(72) Aky(1-y) <1,

that is, :

73 F(y) = - < —k,.
_ )= sy =

By the definition of y,, we have Fy(y,) = —k,. Also, by continuity of F’ at
y(),

(74) Fy (%) = F{ (%)
To prove (73), it thus suffices to show
(75) F(y) <F'(y), X»<y<n

Inequality (75), however, follows easily from (58), (66), and (67).

The proof of inequality (69) follows along similar lines. Since F(y,) = —k, ¥,
it suffices to prove F'(y) > —k, for all 0 < y < y,. However, F'(y,) = F/(y,) =
—k,, hence, it suffices to prove F’(y) < 0 for all 0 <y < y,, which in turn
follows directly from (66) and (67).

To complete the proof of the theorem it remains to show that F(y) “cannot
be improved” in the continuation region [0, y;). Formally, this amounts to
proving that forall ¢ > 0,0 <y <y,

(76) 1+ ka + DF(y) = 0.
[Note that this is simply (68) for the continuation region.] Inequality (76) is
implied by the pair of inequalities
(77) 1+ w(y)F(y) 20,
(78) ky + py3(1 - y)'F"(y) 2 0,
which we next show to hold for all 0 < y < y,. .
(i) Take 0 < y < ¥, Then p(y)F'(y) = —1 and (77) holds as equality. Also,
—-p —p Ak,

2 _ 2 1wy =_£2 N2 = - =
(79) py*(1 - y)°F"(y) N E RSN, k,,

so that (78) holds.
(ii) For y, <y <y, we have py* (1 — y)*F"(y) = —k, and (78) holds as
equality. It remains to verify that (77) holds. In this case, we have

p(¥)F(y)
Ak, wl-y)) 1-2y (1-2%)1-y)
(80) 7[2(1 - y)log( a- yo)y) y 0(1 = %)
_ o

1—}'0'
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Thus, p(¥)F' (%)= —1, so (77) holds at y = y,. To complete the proof, it is
sufficient to show that p(y)Fy(y) is nondecreasing for y > y,. Now

(r(»)F/(y))
(81) _&[21 (y(l—yo))_g__l_ 1-2y ].+ 1
- % %0 =) 1-y

+
y ¥ w(l-x%)
Omitting the (nonnegative) logarithmic term, it suffices to show
Ak, 1-2y, 1 )\kl(2 1)

82 —1 + > —
(62) P Yl-%) 1-% »p 2

+
y Y
but (82) is obvious since it holds (as equality) for y = y, and its right-hand side
decreases with y while its left-hand side is constant. O

5. Numerical aspects and results. In this section, we check some proper-
ties of the dynamic sampling procedure via the limiting expressions (38), (45) and
(46) for EC(7), E7 and B. In practice, this may mean that our choice of M and &
is such that the limiting expressions are sufficiently close to the corresponding
actual ones. The values of M (or § = M) and ¢ needed to obtain a given
approximation may be calculated using the exact expressions or, more easily,
using the appropriate bounds derived in Section 3. It is perhaps worth noting
that for given M and e, the performance of the bounds depends on the values of
the parameters A and p as well as on the values of @ and y (though y,).
Examination of this behavior reveals that special care is needed around the
extreme values, most notably around A = 0 and y, = 0.

Consider first given values of 0 < a <1, A > 0 and p > 0. Straightforward
examination of (38), (45) and (46) reveals that as functions of y,, EC(7)
decreases while Et and B increase. In fact, EC(7) - 0 as 11 — a and
EC(t) » o as y,|0. E7, on the other hand, remains bounded (and bounded
away from zero) for all 0 < y, < 1 — a. Thus, as a function of y,, EC(7)/E7 is
monotone decreasing and tends to infinity as y, {0 and to zero as y,11 — a. Asa
result, the equation EC(7)/Er = y has a unique solution y, = y,(y) for each
y=0.

Furthermore, for fixed 0 < a < 1, the relation may be written as

EC(7) A
(83) | T = 28,

where g is decreasing as discussed previously. The solution of y, as a function of
A, ¥ and p is thus given by

(84) Y = g“(;—p)-

In particular, it follows that y, decreases as a function of y and p and increases
as a function of A. Once Yy, is determined for given level y, the expected delay 8
is readily computed using (46).

A second type of computation, needed for comparing efficiencies, requires the
average sampling rate y for obtaining a given expected delay. This is done by
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first solving (46) for y, and then substituting in (83) to compute the correct y.
Since all formulas are explicit, all computations are easily programmed on a
calculator.

Asymptotic behavior. (i) as A | 0. Note first that EC(7) does not depend on
A while Er is a multiple of 1/A. Thus, EC(7)/Er tends to zero as A — 0 as long
as all other quantities remain fixed. To obtain interesting results, take 0 < a < 1,
p > 0 and y > 0 fixed and change y, as A — 0 so as to keep EC(7)/Er equal to
y. From the previous discussion, it follows that y, must then tend to zero with A.
For small values of y,, however, the following approximations may be used:

_ l1l-a
(85) EC(7) = ; %
l-«a
(86) Er= N
l1-a
(87) B= x Xo-
To keep EC(7)/Et = v, we thus need
(88) Yo = MN/vp,
which results in an approximate value for S,
_ l-a
(89) B=——

Thus as A — 0, the expected delay remains bounded in the dynamic sampling
procedure. This is in contrast to the results for the fixed rate procedure, where
the delay tends to infinity as A — 0.

(i) As A = oo0. To keep EC(7)/Et = vy, we need y,11 — a. The expected
delay is then approximately

(90) p=1liog 5] - -,

which is of hyperbolic form 8 = ¢/A (¢ = 1.4 for a = 0.1). The approximation in
(90) also holds when no sampling at all is done [check that in this latter case
Er = (1/M)log(1/«) and use Lemma 2]. As a result, (90) holds for any sampling
procedure, in particular, for the fixed rate one. The improvement obtained by the
dynamic sampling procedure thus loses its effect as A — oo.

Numerical results. The expected delay when sampling at constant rate
a = 1 is given in Shiryayev (1978) as
—Au

1 e er(x — D[ 0 ue _A
(91) B = ; '/;/(l—a) x2 (_/; (u _ 1)2+A du) d’X?], A= o .

The integral tends (slowly) to infinity as A = 0 (for any fixed 0 <a <1,
p > 0). The values in the second row of Table 1 were computed by numerical
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TABLE 1
A 100 10 1 0.1 0.01 0.001 0.0001 0
B (fixed rate) 0.0138 0.131 0.869 2.63 4.70 6.78 8.85 oo 0
B (dynamic sampling) 0.0138 0.125 0.649 1.01 0931 0.905 0.901 oo 09
v needed (efficiency) 0.999 0.577 0521 0364 0210 0.137 0.102 e 0

integration of the integral in (91) using the DBLIN subroutine. The upper limits
of integration were set up as finite ones (very large though for small values of A),
which indicates that the actual values are even slightly higher than those given
in the table.

The table makes the comparison between fixed rate and dynamic sampling
procedures, with parameters set as a = 0.1 and p = 1. In the first row, different
values of A are considered. The second row lists the results of the numerical
. integration of (91) for the expected delay with @ = 1. The third row is the
expected delay using the dynamic sampling procedure with the same average
rate y = 1. The last row is the computation of the y needed in the dynamic
sampling procedure for obtaining the same expected delay as the a = 1 proce-
dure yields (for example, the dynamic sampling needs 0.21 on the average to
obtain an expected delay of 4.70 for A = 0.01). The relative efficiency of the
dynamic sampling procedure is thus ~ 2 for A =1 and ~ 7 for A = 0.001. As
A — 0, the relative efficiency tends to infinity, while as A — oo, the relative
efficiency tends to 1.

All numbers are rounded off to three significant digits. Values in the second
row are approximate lower bounds as mentioned previously.

6. Additional comments.

1. The dynamic sampling model is suitable for problems in which the variance
is due to sampling error, and large samples which lead to smaller variance are
possible.

2. In many problems a 0—co sampling procedure will not be a practical one
and some additional constraints relating to (frequent and large) changes in
sampling rates may be present. The solution of the unconstrained problem
described in this paper may then serve as a bound on performance and as a
reference value.

3. The optimal solution in other models may, in some cases, be an obvious
generalization of the present one. For example, if bounds on sampling rates are
present [say a, < a(t) < a,], then the optimal solution is an a,-a, one [see
(18)]. Similarly, if the “production” rate is some number R, then a more
appropriate model may be set up by taking the variance coefficient of {x(¢); ¢ > 0}
as [6%2/a(t)][1 — a(t)/R]. It may readily be checked that a 0-R policy is
optimal in this latter case as well.

4. Throughout the paper, only finite-expectation stopping times were consid-
ered. In view of Lemma 2, with a suitable truncation if needed, it is clear that a
stopping time 7 with E7 = oo cannot be optimal for minimizing 8 in any
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B(A)

P

Fic. 1.

reasonable sense. Similarly, a sampling rate procedure with EC(7) = oo will not
be optimal except for the trivial case y = oo, which leads to y, =0 and 8 = 0.

5. Consider fixed 0 <a <1, p>0 and y > 0. For any A, let B(A) be the
expected delay in the optimal dynamic sampling procedure with EC(7)/Er = v.
Then, B(A) - 0as A — oo and B(A) = (1 — a)/yp as A — O (see Section 5). It is
perhaps surprising that B8()\) is not monotone (as is also apparent from the third
row of Table 1). The schematic form of B(A) is sketched in Figure 1.
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