Open Access
September, 1986 A Minimum Distance Estimator for First-Order Autoregressive Processes
Chamont W. H. Wang
Ann. Statist. 14(3): 1180-1193 (September, 1986). DOI: 10.1214/aos/1176350058

Abstract

In this paper we construct a class of minimum distance Cramer-von Mises-type estimators for the parameter in the first-order stationary autoregressive time series. The estimator is proved to be asymptotically normal under appropriate assumptions. The proofs involve some results of independent interest.

Citation

Download Citation

Chamont W. H. Wang. "A Minimum Distance Estimator for First-Order Autoregressive Processes." Ann. Statist. 14 (3) 1180 - 1193, September, 1986. https://doi.org/10.1214/aos/1176350058

Information

Published: September, 1986
First available in Project Euclid: 12 April 2007

MathSciNet: MR856814
zbMATH: 0607.62102
Digital Object Identifier: 10.1214/aos/1176350058

Subjects:
Primary: 62L10

Keywords: bounded functionals on $L_2$-spaces , conditional expectation , Lipschitz condition , Randomly weighted empirical processes , stationary and ergodic processes

Rights: Copyright © 1986 Institute of Mathematical Statistics

Vol.14 • No. 3 • September, 1986
Back to Top