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THE DIMENSIONALITY REDUCTION PRINCIPLE
FOR GENERALIZED ADDITIVE MODELS!

BY CHARLES J. STONE

University of California, Berkeley

Let (X,Y) be a pair of random variables such that X = (X,,..., X,)
ranges over C = [0,1]”. The conditional distribution of Y given X = x is
assumed to belong to a suitable exponential family having parameter 7 € R.
Let n = f(x) denote the dependence of n on x. Let f* denote the additive
approximation to f having the maximum possible expected log-likelihood
under the model. Maximum likelihood is used to fit an additive spline
estimate of f* based on a random sample of size n from the distribution of
(X, Y). Under suitable conditions such an estimate can be constructed which
achieves the same (optimal) rate of convergence for general ¢/ as for J = 1.

1. Introduction. In Stone (1985) a variety of parametric, nonparametric,
and semiparametric statistical models involving an unknown function f were
discussed with an emphasis on the flexibility, dimensionality, and interpretability
of the various models. Also, a heuristic dimensionality reduction principle was
informally introduced.

Consider, in particular, a pair (X,Y) of random variables, where X =
(X),...,X,)€R? and YER; here Y is called a response variable and
X,,..., X, are referred to as predictors. Let f be a function such that f(x)is a
specific attribute of the conditional distribution of Y given X = x; f is called the
response function. Let f* be the “best” additive approximation to f. If f itself is
additive, then f* = f. But even if f* differs somewhat from f, f* may be useful
in practice especially because of its greater interpretability.

Consider additive estimates of f* based on a random sample of size n from the
distribution of (X, Y). According to the dimensionality reduction principle, under
suitable smoothness conditions on f* and appropriate mild auxiliary conditions
on the distribution of (X,Y), the optimal rate of convergence for general J
should be the same as that for & = 1. In the paper cited above a precise result to
this effect was obtained when f is the regression function of Y on X. Here an
analogous result will be obtained in a setup that includes logistic regression as a
special case.

The setup involves an exponential family of distributions of the form
e My +6:Amy(dy) subject to some restrictions which will be described in Section 2.
The mean p of the distribution is given by p = by(n) = —bjy(n)/b}(n); corre-
spondingly n = b; '(p), the function b; ! being called the link function.
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DIMENSIONALITY REDUCTION PRINCIPLE 591

Consider now a model for the joint distribution of (X,Y) in which X € C =
[0,1]7 and the conditional distribution of Y given X = x belongs to the above
exponential family with n = f(x); correspondingly E(Y|X = x) = by( f(x)), x €
C. This model is called an exponential response model in accordance with
terminology introduced by Haberman (1977). The expected log-likelihood for the
model is given by

Ala) = E[b(a(X))Y + by(a(X))]
= E[b(a(X))by( (X)) + by(a(X))].

If f is linear, the model is called a generalized linear model [see Nelder and
Wedderburn (1972), McCullagh and Nelder (1983), and Dodson (1983)]. If f is
additive, it is called a generalized additive model in accordance with terminology
introduced by Hastie and Tibshirani (1984).

Let the assumption that the conditional distribution of Y given X = x be-
long to the exponential family be replaced by the weaker assumption that
E(Y|X = x) = by( f(x)) for x € C. Let f* be the best additive approximation to
f; that is, the additive function that maximizes A(-). The purpose of this paper is
to verify that under suitable conditions; the dimensionality reduction principle
holds for estimation of f*; and that the optimal rate of convergence can be
achieved by a natural and practicable estimate involving the use of maximum
likelihood to fit an additive spline. -

2. Statement of results. Consider an exponential family of the form
el my+bamy(dy) where the parameter n ranges over R. Here » is a nonzero
measure on R which is not concentrated at a single point and

feb|(n)y+bz(n),,(dy) =1 for —o0 <17 < 0.

The function b, is required to be twice continuously differentiable and its first
derivative b] is required to be strictly positive on R. Consequently, b, is strictly
increasing and b, is twice continuously differentiable on R. The mean p of the
distribution is given by p = by(n) = —by(n)/b}(n). The function b, is continu-
ously differentiable and bj is strictly positive on R; so b, is strictly increasing on
R. Given any positive constant 7, there are positive constants ¢, and M such
that

fe’yeb"")y”’Z"')u(dy) <M for |n| < n,and |¢] < ¢,.

Finally, it is required that there be a subinterval S of R such that » is
concentrated on S (i.e., »(S¢) = 0) and

(1) b/(n)y + b)(n) <0 forneRand y € S.
[If b7 = 0, then (1) holds automatically.] It follows from (1) that
(2) b7(n)bs(n,) + b3(n) <0 for n,n, € R.

Although (1) seems quite restrictive, it and the other requirements mentioned
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above are satisfied in most of the familiar exponential families, including the
following five examples [see also Wedderburn (1976)].

ExaMPLE 1 (Normal). The normal distribution with mean p and fixed vari-
ance o2 is of the required form with b,(n) =1/02, by(n) = —7%/2¢%, and
S = R. Here b,(n) =n and b; '(p) = p.

EXAMPLE 2 (Binomial-logit). The binomial distribution with parameters
n, and 7, with 0 <7 <1, is of the required form with b,(n) =1, by(n) =
—nylog(l + e"), and S =10, n,]. Here by(n) =n.e"/(1 +e") and b;'(p) =
log(p/(n, — 1)) = logit(p/n,) = logit(x).

ExaMPLE 3 (Binomial-probit). The binomial distribution from Example 2
can also be put in the required form with p = by(n) = n,®(n) and n = b; '(p) =
® (u/n,) = ® !(7), ® being the standard normal distribution function. To do
so, take b,(n) = log(®(n)/(1 — ®(7))), by(n) = nylog(l — ®(n)),and S = [0, n,].

ExAMPLE 4 (Poisson). The Poisson distribution with mean p > 0 is of the
required form with b,(n) =1, by(n) = —e", and S = [0, o0). Here p = by(n) = e”
and n = by '(n) = log(p).

EXAMPLE 5 (Gamma). The gamma distribution with parameters a (fixed)
and A is of the required form with b,(n) = —e™", by(n) = —an, and S = (0, ).
Here p = by(n) = ae” and 5 = by '(p) = log(p/ ).

Geometric and other negative binomial distributions can also be put in the
required form.

Let (X, Y) be a pair of random variables, where Y € R and X = (X,,..., X))
ranges over C = [0,1]7.

CoNDITION 1. The distribution of X is absolutely continuous and its density
£ is bounded away from zero and infinity on C.

The conditional distribution of Y given X = x is not required to belong to the
exponential family described above, but the following conditions are required to
hold.

ConDITION 2. Pr(Y € S) =1.
ConDITION 3. E(Y|X = x) = by( f(x)), x € C, where f is bounded on C.

CoNDITION 4. There are positive constants ¢, and M, such that

E(e™|X=x) <M, for|t|<t,and x € C.
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Let o/ denote the collection of additive functions a on C such that E|a(X)| <
oc. Each a € &7 can be represented in the form

J
(3) a(xla""xJ) = Qy + Zaj(Xj)’
1

where Ea (X;) = 0for 1 <j < J. Clearly ¢, = Ea(X). It follows from Lemma 1
of Stone (1985) that under Condition 1 the functional components a;, 1 <j <,
are essentially uniquely determined (i.e., uniquely determined up to sets of
Lebesgue measure zero); and there is at most one continuous version of each such
function. If a is essentially bounded (i.e., bounded except on a set of Lebesgue
measure zero), then so are its functional components.

Set )

Aa) = [[bi(a(x)by f(x)) + by(a(x))](x) dx.

It follows from Lemma 1 in Section 3 that — 0 < A(a) < o for a € /. The
following theorem will be proven in Section 3. Here almost everywhere means
except on a set of Lebesgue measure zero.

THEOREM 1. Suppose that Conditions 1 and 3 hold. Then there is a function
f* € o such that A(f*) = max, . ,A(a); f* is essentially uniquely determined
and essentially bounded. If f € o/, then f* = f almost everywhere.

The function f* from Theorem 1 is referred to as the best additive approxima-
tion to the response function f; it can be represented in the form

J
(. x,) =f + ij*(xj):
1

where Ef*(X;) =0for1 <j <.

Let g be a nonnegative integer, let « € (0,1] be such that p = ¢ + a > 0.5,
and let M, € (0, ). Let J# denote the collection of functions % on [0,1] whose
gth derivative, h‘?) exists and satisfies the Holder condition with exponent a:

|RD(¢) — BD(t)| < My|lt' — t|* for0 <t ¢ <1.

ConpITION 5. ff € forl <j <.

Let N denote a positive integer and let I,,, 1 < » < N, denote the subinter-
vals of [0,1] defined by I,,=[(r —1)/N,»/N) for 1 <v <N and Iyy=
[1— N',1]. Let ¢’ and ¢” be integers such that ¢’ > ¢ and ¢’ > ¢” > —1. Let
& denote the collection of functions s on [0,1] such that

(i) the restriction of s to Iy, is a polynomial of degree ¢’ (or less) for 1 < » < N;
and, if q” > 0,
(i) s is @”' times continuously differentiable in [0, 1].
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A function satisfying (i) is called a piecewise polynomial; if ¢’ = 0, it is
piecewise constant. A function satisfying (i) and (ii) is called a spline. Typically,
splines are considered with ¢” = ¢’ — 1 and then called linear, quadratic or cubic
splines according as ¢’ = 1, 2, or 3. The N — 1 points 1/N,...,(N — 1)/N are
called interior knots.

Let (X, Y)),(X,,Y;),... denote independent pairs, each having the same
distribution as (X,Y) and write X; as (X,,..., X;,). Consider the random
sample (X}, Y,),...,(X,,Y,) of size n. Let N, denote a positive integer and let
«/, denote the collection of functions a on C of the additive form (3) where the
functional components a;, 1 <j < J, are such that a; € &, and Lia;(X;;) =0
A function in &7, is called an additive spline.

Let [, (a) = Z"[bl(a)(X )Y; + by(a(X)))], a € #,, denote the log-likelihood
function corresponding to the random sample of size n If f e, and [ ( f ) =
max, ., l,(a), then f, is called the maximum likelihood additive splzne estimate
of f*. It follows from Lemma 14 in Section 4 that under Condition 1 and
the condition on N, in Theorem 2, except on an event whose probability
tends to zero with n, f exists and has a unlque representation in the form
f (Xyeees Xy) = fno + ZJf;U(x ) with Z”f;,j( = 0 for 1 < j < J. The functions
f,, ;» 1 <j<d, are referred to as the component functions of fn; and f;o is
referred to as the constant term.

The rate of convergence of f; to f* will now be determined. To this end, given
positive numbers a, and b, for n > 1, let a, ~ b, mean that a,/b, is bounded
away from zero and infinity. Given random variables Z,, n > 1, let Z, = O,(b,)
mean that the random variables b;'Z,, n > 1, are bounded in probability or,
equivalently, that

lim hmsup Pr(|Z,| > cb,) =

c—> 00

also let Z, = O,(b,) mean that the random variables b, 1Z,, converge to zero in
probability or, equivalently, that

lim Pr(|Z,| > ¢b,) =0 forall ¢ > 0.

Let ||¢|| denote the L? norm of a function ¢ on C, defined by |¢||* =
E¢*(X) = [,9%(x)g(x)dx. For 1 <j <dJ let ||h||; denote the L* norm of a
function A on [0, 1], defined by | A||% = ER*(X)) = folh2(x )&;(x,) dx;. Here g; is
the marginal density of X. It follows from Condltlon 1 that g;1s bounded away
from zero and infinity on [0 1].

Recall that o is the number of predictors; f* is the best additive approxima-
tion to the true response function f; p is the assumed measure of smoothness of
f* (roughly speaklng, the degree of a derivative of f* that is assumed to be
bounded); n is the sample size; N, — 1 is the number of interior knots; f is the
maximum likelihood additive sphne estimator of f*; fnl, ., I,y are the compo-
nent functions of f; and f,, is its constant term. Set y =1/(2p + 1) and
r = py. Given a nonnegative integer m, set r,, = (p — m)y. The proof of the next
result will be given in Section 4.
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THEOREM 2. Suppose that Conditions 1-5 hold and that N, ~ n". Then

(foo = £8)" = Op(n727),

Fal m 2 .
(m) _ (fj*)‘ ’||j= O,(n~%n) for0<m<gqandl <j<d,

nj

and
I, = F*12 = Op(n™2").

Theorem 2 lends theoretical support to the use of generalized additive models
and to maximum likelihood additive spline estimators. It shows that the same
rates of convergence can be achieved when there are multiple predictors as when
there is only one predictor. It is clear from the results in Stone (1982) for J = 1
that these rates (except possibly that for the constant term) are optimal.

Burman (1985) has recently introduced a selection rule for the parameter N, of
the maximum likelihood additive spline estimator of f*; it depends on the sample
data but not on any assumed measure of smoothness of f*. According to his main
result, which complements Theorem 2, this selection rule is asymptotically
optimal in a natural sense that also does not depend on any assumed measure of
smoothness of f*.

Previously, Hastie and Tibshirani (1984) introduced a procedure for fitting
generalized additive models that involves “running line smoothers” and a “local
scoring method” instead of splines and the usual maximum likelihood method.
Through a number of examples involving real data, they demonstrated the
usefulness of their procedure in uncovering nonlinear predictor effects. In this
connection, see also Hastie (1984).

Cha-Yong Koo and I have recently developed a tentative procedure for fitting
generalized additive models based on cubic splines and maximum likelihood; it
allows for subjective decisions about the number of knots and their placement
and about restrictions on the various component functions that they be linear in
one or both tails. The procedure has been implemented numerically using
B-splines [see de Boor (1978) and Section 4] and GLIM [see Baker and Nelder
(1978)]. We have applied the procedure to the real data sets treated by Hastie
and Tibshirani and constructed plots of point estimates of component functions,
plots of confidence interval estimates of these functions, and residual plots (our
plots of the point estimates are smoother than but otherwise very similar to
theirs). After examining these plots, we find the procedure to be a promising tool
for the analysis of data involving a response variable and one or more predictors.
Some of this work is reported in Stone and Koo (1986).

3. Proof of Theorem 1. Throughout this section it is assumed that Condi-
tion 1 holds and that f is bounded.

LEMMA 1. Given T > O there exist e > 0 and A > 0 such that
bl("?)bzz(n()) + b2("l) <A —¢n| for|ny < Tandn €< R,
bl(n)b;;(no) + b2("7) <A- £|b1("7)| for gl < T and n € R,
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and

bi(m)bs(m) + by(m) = (1 + A)(by(n)by(m) + by(n)) — A
for nol < T, |ny| < T, and n € R.

PrROOF. Set ¥, (1) = by(n)by(ny) + by(n). Then ¥, (n) =0 and ¥, (n) =
bY(m)by(ny) + by(n) < 0 by (2). Since b7, by, and b, are continuous, there is a
8 > 0 such that ¥,(n) < —& for |no| < T and |y| < 2T. Consequently, ¥, (1) <
¥, (2T) < —8T for n > 2T and ¥, () > 6T for n < —2T. Therefore ¥, (1) <
¥, (2T) — 8T(n — 2T) for n > 2t and ¥,(n) < ¥, (—2T) + 8T(n — 2T) for
n < —2T. The first result follows easily from these two inequalities. The second
result follows from the first result, since b} is continuous and strictly positive on
R. (Replace 1, by 1, + 1 in the first result.) The third result follows from the
second result.

Let T now be an upper bound to f on R. It follows from Lemma 1 that

(4) A(a)sA—af|a|g, a€.

LEMMA 2. Let Z be a random variable having mean zero. Then E|Z| <
2E|u + Z| forallu € R.

ProoF. Let Z*(Z7) denote the maximum of Z(—Z) and 0. Then Z = Z* —
Z and |Z|=Z"+Z,s0 EZ*=EZ  =E|Z|/2. If u>0, then [u+2Z|>Z"
and hence Elu + Z|> EZ* = E|Z|/2. Similarly if u <0, then Elu+ Z| >
E|Z|/2. This yields the desired result.

Let v and V denote positive constants such that v < g < V on C. Then
v<g;,<Von[01]forl<j<d.

LEMMA 3. Leta € /. Then

2V '
flajl = E(A - Aa)) forl<j<d.

PRoOOF. Acéording to (4), [lalg < (A — A(a))/e. Let 1 <j<dJ. By the
definition of .7, there is a u € R such that
1 A — A(a)
+al< < - <—".
Jlu+ < flal < - flalg <

VE

Consequently, by Lemma 2,
1 2 2V 2V
Jlaji <= flalg; <= flu+ajlg; < — flu+ aj < (4 - Ala))

as desired.
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Let ||¢]||,. denote the L* norm (supremum) of ¢.

LEMMA 4. Let M, be a real constant. Then there is a positive constant M,
such that the following holds: If a € & and A(a) > M,, there is an a € &/ such
that A(a) = A(a) and @], < M,.

ProoF. In the following argument, M,, M,,... denote unspecified positive

constants which can be defined in terms of M,, v, V, A, ¢, and J.
Choose a € & with A(a) > M,. It follows from Lemma 3 that

f éaj(xj)

According to the definition of A(a), thereis an X, € [0,1] such that if & = a, +
a,(X,), then

J
5) flbl i+ %:aj(xj))b3( [(Z),...r %)) + by
Xg(Xy,...,x,)dxy -+ dx; > Aa).
Consequently, by the first conclusion of Lemma 1
J
2
and hence || < M,. It follows from (5) that

/[bl(ﬁ + iaj(xj))b:g( f(X,,...,x,)) + b,

Xg(Xyyeuyxy)dxy -+ dx, > —M,.

According to the first conclusion of Lemma 1, the quantity in brackets in (6) is
nonpositive. Thus by Condition 1,

J
/[bl(ﬁ + zaj(xj))bg( [(%,e00,2,)) + by
2
xg(x)dxy -+ dx; > —Mj
and hence, by the third conclusion of Lemma 1,
J
/ [bl 7+ Za,—(x,-))bg( f(x)) + b,
2

‘ xg(x)dx, -+ dx; > —M,.
Observe that if |a, + a,(x,)| > M,,, then

[1bi(a(x))by( f(x)) + bya(x)]g(x) dxy -+ dx, < =M.

g(x) dxy -+ dx; < M.

J
u+ Zaj(xj-)”

}g(fl,...,xJ)dx2 <o dxy > Ala)

J
u+ %:aj(xj)) - A}

(6)

J
u+ Zaj(xj)) —A

J
u+ Zaj(xj)”
2
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Define @, on R by d,(x,) = a, + a,(x,) if |a, + a,(x;)| < M,, and &,(x,) =u
otherwise. Write d,(x,) = a, + a,(x,), where fa,g, = 0. Then |a, + a,(x;)| <
M,, for x € [0,1] and hence

(7) |a@ol < My,

and ||@,||,. < M,,. Also, if a is defined by

J
a(x,,...,x,;) =a,+ a(x,) + Zaj(xj)’
2

then
(8) A(a) = Aa).

By similarly modifying a;, 2 < j < J, we obtain a € o where (7) and (8) hold as
well as

(9) @i, <M, forl<j<d.

J

By (7) and (9), ||a||,, < M,. This completes the proof of the lemma.

LEMMA 5. Given a positive constant M, there are positive constants M and
M;; such that if a; € o/ and ||a)||,, < M, forj = 1,2, then

2

d
—Mj|la, — a,))® < JEA(m1 +(1-t)ay) < —Mglla, — ay)|> for0<t<1.

Proor. Since
2

d
;it-EA(tal + (1 — t)az)

= f(al - a2)2[b’1'(tal + (1 = t)ay)by(f) + by(ta, + (1 - t)a2)]ga
the desired result follows from (2) and continuity.

ProOF oF THEOREM 1. It follows from (4) that the numbers A(a), a € «,
are bounded above by A. Let L denote the least upper bound of these numbers.
Let a,, k > 1, denote a sequence of elements of .« such that lim,A(a,) = L. By
Lemma 4 it can be assumed that ||a,||, < M, for £ > 1. It now follows from
Lemma 5 and the definition of L that ||a, — a,| — 0 as k, &’ — oo and hence
that ||a, — f*|| = 0 for some essentially bounded function f*. By Lemma 1 of
Stone (1985), f* can be chosen to be in 7. Clearly A(f*) = L. Suppose that
fesand A(f) = L. 1t follows by an argument similar to a portion of the proof
of Lemma 4 that f is essentially bounded and hence from Lemma 5 that
If —=f*l = 0. Thus f* is essentially uniquely determined. Observe that, for
1, € R, the function ¥ on R defined by ¥(n) = b,(n)by(n,) + by(n) has a unique
maximum at n = 7,. The last statement of the theorem is a simple consequence
of this observation.
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4. Proof of Theorem 2. Throughout this section it is assumed that Condi-
tions 1-5 hold and that N, ~ n”.

LeEmMA 6. Let M, be a positive constant. Then there are positive constants
M, and Mg such that

—Mlla — f*|* < A(a) = A(f*) < —Mglla — f*)I
for all a € 7 such that ||a||,, <

Proor. Given a € &/ with |a|, < M,, set a'” = ta + (1 — t)f*. Then

4| o
dt

t=0

and hence
Aa) = A(f) = ['(1 - t) A(a(“) dt.
Since || f*||.. < oo, the desired result now follows from Lemma 5.

LEMMA 7. There is a positive constant M, such that ||a||,, < MyN,)/?||a| for
n=>1anda €,

PrOOF. In this proof it can be assumed that [a;g, = 0 for 1 <j < J. Observe

that
J 2
lal)? = fa% = al+ [ Za,-(x,-)) &(x) dx.
1
By Lemma 1 of Stone (1985) there is a positive constant M, such that
J 2 J
/(Zaj(xj)) g(x)dx > Mwaa,Q'gj-
1 1

Let 1 <j < J. By Lemma 11 of the same paper there is a positive constant M,
such that

sup |a (x )I <M11N/ jg_/ lan/alzgj

x,€l,,

for 1 <» < N, and hence ||a j||2 < M,,N, [a’g,. The desired result follows from
these observations.

According to (4), Lemma 5, and the definition of &7, there is a unique f,} € &,
such that A(f;) = max,c ., A(a).

Lemma 8. [/ = *I* = O(N, ) and ||} = f*ll,, = O(N*?).

Proor. By Lemma 5 of Stone (1985), a result due to de Boor (1968), and
Condition 5 there is an f, € »/, such that | f, — f*||., < M,,N, ?; here M,, is
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some positive constant. Consequently, || f, — f*||> < M{ N, /. Thus by Lemma 6
there is a positive constant M, such that

(10) A(f,) = A(f*) = =M, N, 2" forn > 1.

Let ¢ denote a large positive constant. Choose a € &7, with |ja — f*||* = ¢N, *”.
Then |la — f,|I? < 2(c + M%)N, 2P. Now p > 0.5 so by Lemma 7, for n suffi-
ciently large, ||a|l,, <|/f*|l, + 1 for all such a’s. Thus by Lemma 5 there is a
positive constant M,, such that, for n sufficiently large,

(11) A(a) — A(f*) < —M,eN, 2P forall a € &, with|a — f*|| = cN, *”.
Let ¢ be chosen so that M ,c > M,,. It follows from (10) and (11) that, for n
sufficiently large,

A(a) < A(f,) forall a € o, with|a — f*|* = cN, *’.

Therefore, by the concavity of A as a function of the parameters of a,
| f5 = f*II? < eN,; %P for n sufficiently large. This verifies the first conclusion of
the lemma. Observe that ||f* — f,||> = O(N, ?7) and hence by Lemma 7 that
¥ = fll. = O(N?~P). Consequently, || f¥ — f*||,, = O(N,*~7), so the second
conclusion of the lemma is also valid. ‘

The next result follows from Conditions 3 and 4 [see the proof of Lemma 12.26
in Breiman et al. (1984)].

LEMMA 9. There are positive constants M,, and M, such that
E[e!Y- 01| X = x| <1+ M,,t* forx € Cand |t| < M,,.

This lemma will be used to verify the next result.

LEMMA 10. Givens > 05y, ¢ > 0, and € > 0, thereis a 8 > 0 such that, for
n sufficiently large,

Pr( L(a) —nln( fx)

forall a € o, with ||la — f}|| < cn™".

= (Ala) = A(£)))

s _ 1 2s
> snz“) < 2e7 %

Proor. Observe that

n

l(a)= Z [bl(a(Xi))Yz + b2(a(Xz))]

—Z[b (X))(Y: = by( 1(X,))) + bl a(X,)) + by(a(X,))by( (X,))].
Consequently,

L(a) = L(f#) — n(A(a) = A(fF)) = L [B(X)(Y, - E(Y|X,)) + B,(X))],

n
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where
By(x) = b,(a(x)) = by(f;(x))
and
By(x) = by(a(x)) + b,(a(x))by(f(x)) — Ala)
—(by( £2(x)) + by £5(x))by( f(x)) = ACEY))-
It follows from Lemma 9 that if |¢B(x)| < M, then
E[et]fl(x)(Y—E(YlX:x))lX — x] <1+ M“tZBf(x)
and hence
E[e[(B,(x)(Y—E(Y|X=x))+liz(x))lX _ x] < (1 + M“tQB'IZ(x))e”"Z"".
Thus if t*(B¥(x) + Bi(x)) < M,,, then
E [e"B“'”‘Y’E‘Y'xq)*Bz‘x”'X = x] <1+ tBy(x) + M,t*(Bi(x) + B2(x)).
(Here My, M3, ... are unspecified positive constants.)
Since EB,(X) = 0 it follows that if t2(||B,lIZ + || Ball%) < Mg, then

HB(XNY—E(Y|X))+By(X '2 2 2 M, 2 [( B} + B}
FeotBUXNY-EXIXN+B{X) < 1 + Mt f(B1+B2)g—<—e 158 [(BY+BY)E

Consequently, if t2(]|By||% + || BollZ) < My,n®, then
7 200824 B2
FetZna) < oMut* (B} +B)E/n,

where

L(a) = L(f}
Z,(a) = L) = L) _ (A(a) = AC£Y))-

n

Set s, = s — 0.5y > 0. Suppose now that a € o7, with ||a — f|| < cn” " Then
la = f*|l., < My;n~* by Lemma 7 and hence IB,II% + |Byll2, < Mzn~ % and
J(B? + B2)g < M,4n"*°. Therefore

EetZnl®) < eM,;tzn bo2s

it |t| < M,gn'**. It follows easily that if e/2M,; < Mgn™, then

Pr(|Z,(a)|> en2) < 2e70 7,
where § = 8'2/4M 17~ This completes the proof of the lemma.

It is a consequence of Conditions 3 and 4 that n”~ Y7, — E(Y,|X,)|is bounded
in probability and hence that the following result holds.

LEMMA 11. Given ¢ > 0 and M,, > 0, there is a 8 > 0 such that, except on
an event whose probability tends to zero with n,

ln(a2) - ln(al)

n

- (A(ay) = Aay) | s en™™

for all ay, ay € s, with ||a,|l, < My, llagl, < My, and fla, = asll,. < dn7%
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It is convenient to define the “diameter” of a subset B of <, as
sup{lla; — asll.: @y, ay € B}.
The next result is an obvious consequence of Lemma 7 and the definition of .«7,.
[Set S, = {0,1/q’,2/q’,...,1}. Then there is a C,, > 0 such that

max|P| < C, max|P|
[0,1] S,

for all polynomials P of degree q'.]

LEMMA 12. Given c > 0, § > 0, and s > 0.5y there is an M,; > 0 such that
the following property is valid: {a € o, ||a — [¥|| < cn™*} can be covered by
O(eMisNalog ny sybsets each having diameter at most §r™ 2.

The next result follows from Lemma 6, with f* replaced by f¥ and &/
replaced by «/,, and Lemmas 10-12. (Note that 1 — 25 > y if s < py.)

LEMMA 13. Let 0.5y < s < py and ¢ > 0 be given. Then, except on an event
whose probability tends to zero with n, L(a) < L(f¥) for all a € &, such that
lla = f7ll = en™"

Let s and ¢ be as in Lemma 13. It follows easily from (1) and Lemma 3 of
Stone (1985) that [, is strictly concave on

{a e, |la—fill <en™*},

except on an event whose probability tends to zero with n. Thus the next result
follows from Lemma 13.

LEMMA 14. The maximum likelihood additive spline estimate f; of [* exists
and is unique, except on an event whose probability tends to zero with n.
Moreover, || f, — [l = O,(n"°) for s < py.

There is a basis B,,, 1 <7 < T, of Sy consisting of B-splines [see Chapter
IX of de Boor (1978)]. Here T, < M,,N,, where M,,,... are positive constants.
These functions are nonnegative and sum to one on [0,1]. Also each B, is zero
outside an interval o, of length at most M ;N, ' whose end points are in
{(O,N;',...,1 = N;L1}.If 1 < 7,8 < T, and |8 — 7| > M4, then oJ,, and J,,
are disjoint. If s = £{"b B, € ¥y, then

|b,)2 < M,,sups? < MlganJ s?

nt nt

[see (viii) on page 155 of de Boor’s book and Lemma 11 of Stone (1985)].
Consequently,
2 T,

7;1 n
Zb‘an‘r = MZ()Nnile‘rz‘
1 1

Tn
(12) M N, Lo} < |
1 .
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Set K, =JT,,let A,,,1 <k < K,, be, in some order, the functions defined
by A, (x) = B,(x,), and write A, as A, for short. The A,’s span &/, but they
are not a basis of &/, since 1 can be represented in ¢/ linearly independent ways
as a linear combination of the A,’s. Given a K, dimensional column vector
B = (B,), set ay = Z{"B,A,. Then day/dB, = A,. Let B¥ = (B%,) be such that
r:k = ZIK"B:IIAk'

It is convenient to write /,(ap) as [,(B). Observe that

a, =n
(13) o5, ~ ZAUXD[bi(ap(X)Y: + by ag( X))
and
9?1, n )
(14) -%:@;=;A4X»ux&nwwA&»x+w@g&»y

Let ﬁn = (B,,) be such that f, = £X:8,, A,. The maximum likelihood equations
for 3, are

a, . :

—(B,)=0 forl <k<K,.

Hﬁk( )
In light of Taylor’s theorem, these equations can be rewritten as
(15) C(B. — By) = —DL,(B}),

where
C,= ['D%1,(B; + (B, — BY)) dt.
0

Here DI, (B) is the K, dimensional vector of elements d/,(8)/3B, and DL (B)is
the K, X K, dimensional matrix of elements 8°1,(8)/3B,, By,
Let - and | | denote the usual inner product and corresponding norm on R*. It

follows from (15) that

(16) (B, = Br) - CuBy— Br) = —(B.— BY) - DL(BY).

It will be shown shortly that

(17) ‘ |DL,(B3)I? = Op(n)

and that B,, and B} can be chosen so that (for some positive constant M,,)
(18) (B, = BY) - C(B, — BY) < —My N, 'n|B, - BiI*

except on an event whose probability tends to zero with n. It follows from
(16)—(18) that

1B, — B:I? = 0,.(N2/n)
and hence from (12) that
(19) If, = £212 = Op(N,/n) = Op(n™?").
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It now follows from Lemma 8 that
(20) Il fp = F¥112 = O (n2").
Let f* be written in the form

o
f:(xh'"ixcl) = fr;k() + Zf:j(xj)y
1

where [fy.g,=0for1 <j < J. It follows from Lemma 8 together with Lemma 1
of Stone (1985) that

(21) £ = fH1% = Op(n™?") forl<j<d,
(22) 00 f(f)z = Opr(ngzr)’ :
and
1 n
(23) ;Z ,’fj(Xij) =0,(n"'?) = o,(n"") forl <j<d.
1

Let f, temporarily be written similarly as
~ ~ el A
(24) fa(®ps e xy) = foo + anj(xj)7
1

where | f:, &, =0for1 <j <. It follows from (19) and Lemma 1 of Stone (1985)
that o

(25) | foj = 515 = Op(n™") forl<j<d
and
(26) (fno - f:o)z = Opr(nM2r)'

Choose £ > 0. It follows from Lemma 12 of Stone (1985) that

LS - %) =1 - n*f"”w((%)H)

n
= Opr(nizr)
and hence from (23) that
1 n n
(27) ;anj(X”-)=Opr(n") forl <j<d.
1

Let f, be rewritten in the form (24) with
17, .
;;fnj(X”»)=0 forl <j<d.

It follows from (27) that (25) and (26) continue to hold. It follows from (21), (22),
(25), and (26) that

(28) I o= 12 = 0u(n"?) forl<j<d
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and
(29) (fao = 18)" = Opln ™).
It follows from (28) and Lemma 8 of Stone (1985) that

(30)

. m) |2 .
m) (f,—*)( ’”j =0,(n?") for0<m<gqgandl<j<d.

Formulas (20), (29), and (30) together constitute the conclusion of Theorem 2.
It remains to verify (17) and (18). To verify (17) note that

EA(X)[B( £ X))Y + by f¥(X))] = 0.

Consequently,
2

EDL(B)[ = Z"E{iAk(Xi){ba( F(X))Y, + by f::(X,-))]}

;"iE{Ak(Xi)[ba( FHX)Y, + b )X}

Kn
n Y E{ AN X)[bi( £(X)Y + b( £2(X)]*)

< M22nZnE{A2(X)}

by Conditions 3 and 4, Theorem 1, and Lemma 8. It follows from the prop-
erties of B-splines that EAXX) = EB?(X;) < My,N;' and hence that
E|DL(B})|? < My,n. Therefore (17) holds.

Finally, (18) will be verified. According to Conditions 2 and 3 there is a
compact subinterval S, of S such that E(Y|X =x) € S, for x € C. Choose
¢ > 0. It now follows from Conditions 2 and 4 that there are subintervals S, and
S, of S such that S, is closed and bounded on the left, S, is closed and bounded
on the right, and Pr(Y € S| X =x) > ¢ and Pr(Y € §,|X =x) > ¢ for x € C.
Given 7, > 0 set

Sy ={y€8: b{(n)y + b5 (n) < —efor n] < ny}.
Then ¢ can be chosen sufficiently small so that
(31) Pr(YE S, X=x)>¢ forxeC.
By Theorem 1, Lemmas 7 and 8, and (20), 0, can be chosen so that
(32) lim Pr(]| £l < 1o and || ,llo. < mo) = 1.

Set £, = {i:1 <i < nandY, € S,}. It follows from (14) and (32) that, except on
an event whose probability tends to zero with n,

(33) B-C,B< —elaj(X,).

A

n
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Let B = (B;) ~ (b;,) so that ay(x) = Liay(x,), where ayz(x,) = L1"b, B, (x)).
Let 8 now be chosen so that

(34) Yag(X,,)=0 for2<j<d.
5,

It follows from (12), (31), (33), (34), Lemma 12 of Stone (1985), and an extension
of Lemma 3 of the same paper that, except on an event whose probability tends
to zero with n,

J
Za/%(Xi) > My}, Zal%j( Xij)
‘ln 1 ‘ﬂn

J

2

= MZGnZ”a/}j”/’
1

= M27n’Nn— I|B|2.

Therefore (18) holds if ,1§n and B are chosen so that 8 = [?,, — B satisfies (34).
This completes the proof of (18) and hence that of Theorem 2.
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