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SEQUENTIAL NONPARAMETRIC AGE REPLACEMENT
POLICIES!

By EDWARD W. FREES? AND DAVID RUPPERT

University of North Carolina

Under an age replacement policy, a stochastically failing unit is replaced
at failure or after being in service for ¢ units of time, whichever comes first.
An important problem is the estimation of ¢*, the optimal replacement time
when the form of the failure distribution is unknown. Here, ¢* is optimal in
the sense that it is the replacement time that achieves the smallest long-run
expected cost. It is shown that substantial cost savings can be effected by
estimating ¢* sequentially. The sequential methodology employed here is
stochastic approximation (SA). When suitably standardized, convergence in
distribution of the SA estimator to ¢* is established.: This gives precise
information about the rate of convergence. A sequential methodology intro-
duced by Bather (1977) has roughly the same aims as ours, but it is not of the
SA type. Rates of convergence apparently have not been established for
Bather’s procedure.

1. Introduction and summary. Consider a functioning unit with specified
life distribution F, and probability of survival to age x, S(x) = 1 — F(x). Suppose
F is absolutely continuous with probability density f. Let C, and C, be fixed,
known costs with C; > C, > 0. If the unit fails prior to ¢ units of time after
installation, it is replaced at that failure time with cost C,. Otherwise, the unit
is replaced ¢t units of time after its installation with cost C,. It is assumed that
replacement is immediate. Under the age replacement policy, the replacement
unit is available from a sequence of such units that fail independently with the
same distribution function F. The objective is to minimize the long-run accu-
mulation of costs in some sense. The cost function here is the expected long-run

average cost,

(1.1) R(t) = {CiF(t) + CQS(t)}/ J; S(u) du.

(cf., Barlow and Proschan, 1965, page 87).

Under some fairly general conditions, there is a unique and finite time, say
¢*, where R(t) attains a global minimum. An example of such a condition is that
the failure rate f(x)/S(x) be strictly increasing to infinity with x. See Bergman
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(1979) for other sufficient conditions. Call ¢* the optimal replacement time. We
wish to estimate the parameter ¢*.

Estimation of the optimal replacement time based on a fixed number of i.i.d.
units with distribution F has been examined in detail. See Arunkumar (1972) for
asymptotic results of an interesting nonparametric approach. Using Monte-Carlo
simulation, Ingram and Scheaffer (1976) give finite sample results for several
cases where the form of F is known up to one parameter. Bergman (1977) and
Barlow (1978) discuss graphical methods for the estimation problem.

Because fixed sample procedures rely on i.i.d. observations, during experimen-
tation units must be left in service until failure. Therefore, the experimenter is
constrained from using an estimator to achieve cost savings as the estimation
procedure continues. Bather (1977) introduced a procedure that can be used on
an ongoing basis which constantly updates the estimators using current obser-
vations. Suppose {X.,} is an i.i.d. sequence with distribution function F and {¢Z*}
is a sequence of random variables that estimates ¢*. Let N(t) be the number of
replacements by time ¢, i.e.,

(1.2) N(¢t) = TZ: Ifmin(Xy, ¢F) + - -+ + min(X;, ¢¥) <t}

where I(¢) is the indicator function. Bather showed how to construct the esti-
mators {¢}} sequentially so that

(1.3) oF > ¢* as.
and
(1.4) t7 IED {CIX; < o)) + CGIX: = ¢F)} — R(¢*) as.

Thus, the estimators are strongly consistent, and further, the actual average cost
achieved by the experimenter is the same asymptotically as if the optimal
replacement time were known a priori.

This paper gives alternative methods for constructing the sequential estimators
{#%}. These estimators are easier to calculate and have more fully understood
asymptotic properties than the estimators introduced by Bather. In Section 2
sufficient conditions are given for (1.3) to imply (1.4). In Section 3 a sequential
procedure of the stochastic approximation (SA) type is given. Not only do the
resulting estimators satisfy (1.3) (and hence (1.4)), but using well-known theo-
rems on SA we are able to establish rates of convergence for the estimators. In
Section 4 the choice of several parameters needed in the algorithm is studied
using Monte-Carlo techniques. Results of this section show that the algorithm
behaves satisfactorily from a cost standpoint even in small samples. Section 5
contains the proofs of Section 3 results.

2. A preliminary result. Let X; be the lifetime of the ith unit. Suppose
that {X;} is an i.i.d. sequence with distribution function F having mean u and
finite variance o2 Assume that the experimenter has available at each stage a
replacement time ¢¥, so that if X; < ¢}, then the cost is C;. Otherwise, the cost
is Co. Use {Z,} for the truncated observations, that is, Z; = min{X;, ¢}}. Thus,
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the cost for the first n units is
(2.1) R, = YL {CI(Z; < ¢F) + CI(Z; = ¢})}.

Using ideas of Bather (1977, Theorem 3), the following result shows that if ¢}
estimates ¢* consistently, the best asymptotic cost is achieved.

THEOREM 2.1. Let {X,} and {Z,} be as above and let G, = o(Z,, -+, Z,) be
the sigma-field generated by Z,, - - -, Z,,. Suppose there exists a sequence of random
variables {¢%} such that ¢} is G,—,-measurable for n = 2 and (1.3) holds. Then,
with R,, N(t) and R(t) defined in (2.1), (1.2) and (1.1), respectively, we have

lim, «Rnw/t = R(¢*) as.
i.e., that (1.4) holds.

The proof of Thearem 2.1 follows from the application of martingale conver-
gence theorems and can be found in Frees (1983, Theorem 1.1). It is easy to see
that we may drop the assumption that F be absolutely continuous for Theorem
2.1. We only need require that ¢* be a continuity point of F. Further, the
assumption of a finite variance can easily be weakened. However, these stronger
assumptions are needed for the results in Section 3.

3. The sequential procedure and asymptotic results. We now intro-
duce a recursive estimation procedure. As with other stochastic approximation
algorithms, its simple form makes it amenable both to practical implementation
and to large sample calculations. It should be noted, however, that for this
particular application of SA some of the intermediary estimators are complicated
(e.g., (3.2) below).

Define the function

(3.1) M(t) = (G, — Co)f(t) J; S(u) du — SE){CF(t) + C.S(t)}.

Now 9/9tR(t) = K, M (t), where K, is a positive function of t. Instead of assuming
that R(¢) is uniquely minimized at some finite point ¢*, we use a slightly stronger
but analytically more tractable assumption that M (¢)(t — ¢*) > 0 for each ¢ #
¢*. Since the ‘function R is assumed to be differentiable, the latter assumption is
equivalent to the assumption that R(¢) has no points of local relative minima.
Let g(*) be a known, strictly increasing smooth function such that g:R — [0, o).
Define ¢ by ¢* = g(¢). Note that ¢ is the unique minimum of R(g(x)) and thus
the unique, finite zero of g’ (x)M(g(x)) (where x may vary over the entire real
line). Since unconstrained recursive estimation is particularly simple, we have
introduced g and will estimate ¢ rather than the strictly positive parameter ¢*.
Later we briefly discuss the issue of how one should choose g. After defining an
estimate ¢, of ¢, we will use the transform function g to calculate the estimate

n=g(¢n) of p*.
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Let {X;,.},i=1, 2, be two sequences of i.i.d. random variables that are mutually
independent, each having distribution function F. Let E and P denote expectation
and probability with respect to F. Suppose ¢; is a random variable such that
E¢? < o, and {¢,}, {a.} and {c,} are sequences of random variables. For i = 1, 2,
define the truncated observations {Z;,} by Zi, = min{Xi,, (¢, + ¢.)}. Let F, =
o(¢1,Zi,i=1,2,j=1, -+, n— 1) and require that a, and ¢, be F,-measurable.
In practice, we take {a,} and {c,} to be sequences such that for fixed A, C > 0
and v € (0, 1), we have a,n — A and ¢,n” — C.

Let By be the class of all Borel-measurable real-valued functions k(¢) where
k(+) is bounded and equals zero outside [—1, 1]. For some positive integer r define

1
~ [ 1 =0
B1—<kEB0-£1yjk(y)dy_{o j=1’...,r—1)'

A class of kernel functions similar to B, is used by Singh (1977). See, for example,
Wertz (1978), for a broad review on using kernel functions to estimate a
probability density function. '

Define H(t) = F(g(t)) and let HY) be the jth partial derivative of H. For
i=1,2,let Fi,(t) = I{Z;, <t} and S;,(t) = 1 — F;,(t). In Lemma 5.2 below, we
show that h,(t) = k[(g7*(Z1,) — t)/c.]/c, has desirable properties as an estimator
of h(t) = HY(t). The estimator of g’ (t)M(g(t)) is M, .(t), where

&(t)
Mg,n(t) = (Cl — Co)h,(t) f Szn(U) du
(3.2) 0

— 8" (t)S1 (g (A){C1Fon(g(28)) + CaS2n(g(8))}.

The estimator in (3.2) is constructed so that the conditional expectation given
F, of M, ,(t) is sufficiently close to g’ (¢t)M (g(t)). This proximity is made precise
in Section 5. The estimators ¢, are constructed by the recursive algorithm,

(33) ¢n+1 = ¢n - anMg,n(d)n)-

Note that in (3.3) the updating of the estimator ¢, relies only on ¢, and the
current observations Z;, and Z,,. While this simple form is desirable for practical
implementation, it does raise fears about possible inefficiencies of the method.
These fears are placated by the properties of the estimators stated in the theorems
below. For convenience, a list of the most important assumptions is collected

below.

Al. The distribution function F of the i.i.d. observations is absolutely contin-
uous with density £, has support on [0, «), finite mean u and variance o°.

A2. Let g be a known, strictly increasing function such that g: R — [0, «)
and the first r + 1 derivatives exist and are bounded over the entire real line.

A3. Foreachx € R, (x — ¢)M(g(x)) >0, Vx # ¢.

A4. H®(x) and H"*?(x) exist for each x, are bounded over the entire real
line and are continuous in a neighborhood of ¢.

A5. Letlime, =0, XF a, = o, ¥ a,c;, < oo, and Y7 a;/c, < .
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A6. Let vy =1/(2r + 1) and p = 2 + 1/r. Assume that [§ t” dF(t) < ». For
someA,C>0,a,n—A,c,n”—Cand1—+y<2I',where'=A (g’ (¢))’M’ (g(¢)).
A7. g9(¢)=0,i=2, -+, r+1.

REMARKS. A5 is a weaker condition than A6. A typical SA assumption, in
general stronger than A3, that,
inf{| M(g(x))]:e<|x—¢| <e'}>0 foreach ¢>0,

is, in fact, implied by the continuity of M(+) and g(+). Note that assumption of
a unique minimum (A3) and the smoothness assumptions on F and g (A2 and
A4) obviate the need to take observations in the tail of F. Under these assump-
tions one can minimize long-run costs by sampling close to the point of interest
¢*. Assumption A7 requires that the transform function g(+) behave approxi-
mately like a line at ¢. Under A7, the asymptotic distribution of the estimator of
¢* has a simple form, but otherwise we do not use this assumption.

Let T = H"*V(¢) [L, y"/rlk(y) dy, which is a factor in the asymptotic bias.
The asymptotic variance of the ¢, will be proportional to Z, where

' £($)
> = (C, — Cy,)’HYV(¢) f uS(u) du.
0
We now state some asymptotic properties of our procedure.

THEOREM 3.1. Assume A1-A5. Then, for the procedure defined in (3.3),
(3.4) ¢ — ¢ a.s. and thus

(3.5) or = 8(dn) — 0™ as.

THEOREM 3.2. Assume Al-A4 and AG6. Then, for the procedure defined in
(3.3),
(3.6) n"" (¢, — ¢) —=p N, oi)

where

8(¢)
u = AC(C, — Cy) f S(u) du T/2T — 1 + «v)
0
) 1
o} = A*CT'Z f E2(y) dy/(2T — 1 + 7).
-1

COROLLARY 3.3. Under the assumptions of Theorem 3.2 and with ¢} defined
in (3.5),

3.7 nM2(pk — ¢*) —p N(uz, 03)
where py = g’ (¢)u1 and o3 = (g’ (¢))*ai. Further, assuming A7, we have (3.7)
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with
(/:*

ur = AC™(Cy — Cy) f S(u) du f"(¢*)

(3.8) 1 ¢
(g (¢))** J:l y'/rik(y) dy/@2T — 1 + v)
o

o5 = A*C7'(C, — Cz)zf uS(u) du f(¢*)

(3.9) 0

1
(&' (¢)) »[1 k*(y) du/(2T — 1 + ).

Theorem 3.1 tells us that we may use the estimators constructed in (3.3) to
achieve the best long-run cost. With some additional mild assumptions, in
Theorem 3.2 we can quantify the speed of the convergence of the estimators of
¢. Using the well-known “6-method,” Corollary 3.3 gives rates of convergence of
the estimators of the optimal replacement time, ¢*. The choice of the transform
function g does not affect the rate of convergence of the estimator ¢} but will, of
course, affect the finite sample behavior of ¢ . While the best choice of g is not
always clear, one criterion is available when the experimenter believes that ¢*
falls in a specified, finite interval. Here, g may be taken to be a straight line over
the interval subject to assumption A2. In this situation, or under the less
restrictive assumption A7, the asymptotic distribution depends only on the slope
of the transformation function at ¢. Under A7, the asymptotic distribution of
¢} is left unchanged if g’ (¢) is rescaled by a factor K > 0 and, simultaneouly, A
is rescaled by K~ and C is rescaled by K. Thus, under A7, the choice of ¢ may
be subsumed under the question of choosing A and C. The parameters A and C
may be chosen to be any positive constants, subject only to the restriction in
assumption A6. One criterion for selection of parameters suggested by Abdel-
hamid (1973) is to choose A and C to minimize the asymptotic mean square error.
Unfortunately, the best choice depends on knowledge of F and ¢ which are
generally unknown a priori.

For a large class of distribution functions, we have constructed an estimator
of the optimal replacement time that has desirable asymptotic properties. The
following section shows that the estimator does well in some finite sample
situations..However, there are at least three possible drawbacks in using the SA
estimator. First, our results apply to a somewhat smaller class of distribution
functions than the results of Bather. In particular, his estimator is strongly
consistent when the cost function has a unique, finite global minimum and local
relative minima. This situation is not considered under our stronger assumption
A3. Second, a common criticism of stochastic approximation schemes is that the
assumptions are difficult to check. Third, it may be argued that instead of
constructing an estimator that converges in the quickest possible fashion a more
important criterion is to construct an estimator so that the sample cost (2.1)
converges to the optimal cost quickly. This is a different criterion which will be
addressed in a later paper.
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4. Monte-Carlo results. A Monte-Carlo study was undertaken to dem-
onstrate the usefulness of the procedure proposed in Section 3 even in small
samples. Further, the performance of the estimators at finite stages is improved
dramatically by parameters that do not appear in the asymptotic theory.

For the model of the problem, we took C; = 5 and C, = 1. From (1.1), it can
be seen that determining ¢* depends only on the ratio of the costs. The Weibull
distribution was used with density

@) = ax(At)*exp{—(At)*}

where o = 2 and A = 2.2. This produces a mean of 1.7712 and standard deviation
of .8499 for the lifetime of the units. It also ensures a unique, finite
¢* = .99505 and optimal cost R(¢*) = 1.904.

For the algorithm, let r = 2 which gives v = .2 and use k(y) = % for y €
[—1, 1]. Thus, we used a very simple histogram estimator for the density. (Slightly
better kernel estimators for the density when r = 2 are available, see Epanechni-
kov (1969) and Rosenblatt (1971).) Instead of using the simpler a, = An~? and
¢, =Cn7", we used a, = A(n + ki) tand ¢, = C(n + ke)™", where k4 and k¢ are
nonnegative constants. Taking k4 and kc to be positive provided dramatic
improvements in finite samples over the more traditional k4 = k¢ = 0. This form
was first suggested by Dvoretsky (1956, equation (8.9)), and it has been employed
by Ruppert et al. (1984). We used the transform function g (x) = log{1 + exp(x)}.
Some easy calculations show that the values of A and C that minimize the
asymptotic mean square error (= u3 + o2, given in (3.8) and (3.9)) are A = 2.3
and C = 1.5. In this study we took these values to be fixed. For more complete
tables where A and C are allowed to vary, see Frees (1983). In that study, the
performance of the estimator was not sensitive to mildly different values of A
and C but was best near the theoretical optimal values. The performance was
slightly more sensitive to the parameter A than C. Too large a value of A caused
large oscillations in the early stages which calmed down in the later stages when
the asymptotics took over. For too small values of A, the estimator performed
noticeably worse. Recall, to achieve convergence in distribution, we required in
A6 that A > (1 —v)(2(g'(#))’M’ (g(¢))) = .5834.

Table 1 describes the performance of the estimator ¢, for various values
of ks, kc and ¢, (the starting value of the procedure). Stages at n = 10, 50
and 250 were chosen to reflect small, moderate and large sample sizes, respec-
tively. Denote X;,, to be the ith sample (i = 1, 2) at the jth stage (j =1, -,
250) from the kth trial (k =1, - - -, 1000). Let ¢, be the resulting estimator, Z;;,
= min{X;jx, g(¢;r + C(j + kc)™")} and 6, = H{Z;), < g(¢r + C(j + kc)™7)}. For
the bias at the nth stage, use BIAS, = (.001) 3% ¢, — ¢. Similarly, for the
mean square error, use MSE, = (.001) 1P (¢nr — ¢)% For the kth trial, the
actual sample cost per unit time at the nth stage is

SCri = Xjoq {Cr(0yjn + 0gy0) + Co(2 — Syjx — 9jk)}/ X7y (Zajr + Zoji)-

The mean sample cost per unit time at the nth stage is MSC, = (.001)
- Y19 SC,x. The sample variance for the sample cost per unit time at the nth
stage is VSC, = (.001) Y12’ (SC,, — MSC,)% While the asymptotic theory
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TABLE 1

Performance of estimators

657

Stage of Algorithm

1 ka ke
10 50 250 ®
BIAS, 1.0 50 50 .3544 1284 .0113 0
MSE, .2016 .1091 03717 0
ASMSE, 5.335 4.344 3.617 .8161
MSC, ©2.268 2.159 2.053 1.904
VSC, .1851 .0408 .0096 0
BIAS, 1.0 0 0 .4053 7246 9354
MSE, 14.20 13.33 12.74
ASMSE, 89.60 304.8 1056.
MSC, 2.929 3.132 3.141
VSC, 1.283 2.812 3.263
BIAS, 1.0 0 50 ~1.109 -1.112 —-1.069
MSE, 34.89 34.16 33.56
ASMSE, 220.1 781.1 2781.
MSC., 4.900 13.18 43.44
VSC, 9.200 200.1 3452.
BIAS, 1.0 50 0 .3896 .1659 0247
MSE, .2030 .1082 0374
ASMSE, 5.371 4.307 3.584
MSC, 2.472 2.261 2.091
VSC., 1710 .0395 .0095
BIAS, 2.5 50 50 1.582 7228 1177
MSE, 2.640 .7360 0649
ASMSE, 69.84 29.30 6.218
MSC, 2.745 2.522 2.210
VSC, 1416 .0465 .0156
BIAS, -1.0 50 50 —1.434 -1.132 —.4743
MSE, 2.058 1.289 2473
ASMSE, 54.44 51.32 23.71
MSC, 2.256 2.136 1.970
VSC, .1942 0415 .0091
BIAS, -2.0 50 50 —2.484 —2.333 -1.928
MSE, 6.171 5.443 3.718
ASMSE, 163.2 216.7 356.4
MSC, 4.334 4.169 3.648
VSC, .1481 0318 .0110

(Theorem 3.2) indicates that n®MSE, = 0,(1), we found that an adjusted
standardized mean square error ASMSE, = (n + k4)®*MSE, (also O,(1)) was
more stable. Heuristically, in replacing An™! with A(n + k4)7!, the procedure
believes it is at the (n + k4 )th stage when only n iterations have been performed.

The results of the study indicate that the performance of the algorithm was
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greatly enhanced by the introduction of the parameter k4 and only somewhat by
ke. By (3.3), it can be seen that ¢, could fluctuate wildly for small n as compared
to larger n. The introduction of positive k4 inhibits the fluctuation in finite
samples without altering the asymptotic properties.

A practical upper bound to the asymptotic cost is a failure replacement policy,
i.e., where the unit is never replaced prior to failure. The cost of this policy is
easily seen from (1.1) by setting ¢t = . For our example, R(») = C;/u = 2.823.
In each trial we achieved a lower expected cost, even by the tenth stage! The
reduction was substantial in view of the fact that the best one could hope for is
R(¢p™*) = 1.904.

In this example, since ¢* = .99505 and g(x) = log{l + exp(x)}, simple
calculations show ¢ = .53349. With a standard deviation of .8499, ¢; = 1 is not
an unreasonable starting value for the algorithm. As is usual in SA schemes,
starting far away from the optimal value will affect the bias and mean square
error even for large n (=250). One happy note is that this adverse effect does not
seem too severe on the expected cost. In fact, we seem to do even better by
starting with a low starting value (¢, = —1), an important practical point (but
note that g(—1) = .3133, not so far from ¢* = .99505).

5. Appendix. In this section, we first prove Theorem 3.1 and then Theorem
3.2. All relationships between random variables are meant to hold almost surely
unless stated otherwise. We will use positive constants K;, K, --- in the
inequalities. All random variables are defined on a fixed probability space (2, F,
P). We begin by stating a martingale convergence result due to Robbins and
Siegmund.

THEOREM 5.1 (Robbins-Siegmund, 1971, Theorem 1). Let G, be a nonde-
creasing sequence of sub o-fields of F. Suppose that X, Bn, n. ond §, are
nonnegative G,-measurable random variables such that

EGan-H = Xn(]- + .Bn) + M — g‘ny for n= 1, 27 Tt

Then lim,_,. X, exists and is finite and
Yh<o on {¥ B, <® ¥ g, <o}
Some additional notation will also be useful. Define

(51) An = EF"{Mg,n(¢n) - g,((pn)M(g((bn))’

&(dn)
=(C; — Cy) J; S(u) du {Ex hn(dn) - HV (4n)}

(5.2) Vi = (cn)*{Myn(dn) — 8" (¢0)M(8(42)) — An}.
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A useful lemma which we use repeatedly is

LEMMA 5.2. Assume Al, A2 and A4. Then, for F,-measurable x < g(¢,, + ¢),
1

(6.3) Er,h.(x) = HV(x) + CZI y'/r k() H"™ Y (n,(y)) dy
-1

where | n,(y) — x| < ¢,

ProOOF. By a change of variables,

Er hn(x) = f E{(g7(s) — x)/cn}/caf (s) ds

. .
= j:l k(y)g' (x + cay) f(&(x + cny)) dy

1
=f k(y)HV (x + ¢,y) dy.
-1

The result follows from a Taylor-series expansion and since k € B,. [

ProoF oF THEOREM 3.1. Using (5.2) in (3.3) gives,
(5.4) bri1 = ¢ — anlg’ (dn)M(g(¢n)) + Vi + A,

Subtracting ¢, squarirg and taking conditional expectations with respect to F,
gives,

EF"(¢n+1 - ¢)2 = (¢n - ¢)2 - 2an(¢n - ¢)[gl(¢n)M(g(¢n)) + An]

(5.5)
+ anl(g' (6n)M(g(4n)) + An)® + ci'Ep, Vi].

Let b,1 = 2a,| A, | and b, > = aic;'Eg, V7. Suppose
(5.6) > by < as.

5.7 Y bpe < ®© as.

From Al, [§S(u)du < [§ S(u) du=pu<o.Thus, by A2and A4, | g’ ()M (g(t))|
is bounded, say, by K;. Using the inequality x < 1 + x* and (5.5)-(5.7), we get

EFn(¢n+l - ¢)2 = (¢n - ¢)2(1 + bn,l) - 2an(¢n - ¢)g/(¢n)M(g(¢n))
+ bn,l + 1/2bi'1 + 2K%ai + bn,z.

By Theorem 5.1 and A5, we get that lim,_«¢, — ¢ = X a.s. and Y a,(¢, —
d) g’ (¢ )M (g(¢,)) < » a.s. This and A3 give the result. We need only show (5.6)
and (5.7). By (5.1), Lemma 5.2 and A4, we have

(5.9) A, = O(cy).

(5.8)
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This and A5 prove (5.6). From (3.2), for some K, K; = 0,
(510) E:F,,(Mg,n((bn))2 = K2 + KBEFn(hn(¢n))2-

As in Lemma 5.2, we can show Epn(hn(qbn))2 = 0(c;'). This, the boundedness of
g (t)M(g(t)) and (5.9) prove (5.7) and hence the result. O

To prove Theorem 3.2, we use a special case of a theorem due to Fabian.

THEOREM 5.3 (Fabian, 1968, Theorem 2.2). Suppose G, is a nondecreasing
sequence of sub a-fields of F. Suppose U,, V,,, T,,, T, and ®,, are random variables
such that T, ®,-1, V-, are G,-measurable. Let 8, T', =, T', and ® be real constants
with T' > 0 such that

(b611) I',->T, ¢, —->® T,—> T or E|T,—T'| -0, Eg V. =0

and

(5.12) C>|Eg Vi—Z2|—>0.

Suppose, with o}, = EI[V? = rj |V?, that

(5.13) limn™? Y7 ei, =0 Vr
Let 0 = 8< 2T and

(5.14) Unt1 = Up[1 — n7'T,] = n~ U2, V, + n~1702T,.
Then,

n"?U, —p N(T'/(T = B/2), 2&*/(2T - B)).

ProOF OF THEOREM 3.2. By a Taylor-series expansion,
g (6n)M(g(¢n)) = (¢n — OIHE" ()M (8 (1)) + (8" (1))’ M’ (& ()}
for some 7, such that |7, — ¢ | < | ¢, — ¢ |. This and (5.4) give
(5.15)  ¢n+1 — ¢ = (¢pn — ¢)(1 — n7'T,) + n7 129, V, + n~32+92T,
where
Iw = an{g”(n)M(g.) + (8" (0.))*M’ (g(nn))}
'®, = a,cV/2nl?
T, = a,n** "2\,

By Theorem 3.1 and A6, I', — I'. By A6, &, — & = AC~"2. By Theorem 3.1,
Lemma 5.2 and (5.1),

£(9)
(5.16) T, — TAC"(C, — C) f Su) du=T".
0

Since Er, V,, = 0 by the definition of A,, we have (5.11).
To prove (5.12), we first recall the boundedness of g’ (t)M(g(t)) and (5.9).



AGE REPLACEMENT POLICIES 661

Thus, we need only show for some K,
(5.17) K, > | ¢, Ef (Myn(¢n))> — 2| - 0.

From (3.2), A2 and (5.17), we need only show for some Kj,

— 0.

J’ 8(dp) 2
(518) K’) > '(Cl - CZ)ZCnEFn‘lhn(d’n) L SZn(u) du} -2

By construction, h,(+) and S,,(*) are conditionally independent given F,.
From Theorem 3.1, it is easy to show that

&(¢p) 2 £(¢)
(5.19) 00 > EFn<f Sy (1) du) — 2 f uS(u) du a.s.
0 0 .

Further,

1

1
cnEr, (ha(,))” = 2 J:l R (y)H™M (¢n + cny) dy

is bounded. This gives the boundedness of Eg, V2 and with (5.19) proves (5.18)

and hence (5.12). .
To prove (5.13), and hence the result, we need only show that

(5.20) o2, = E[VZI[V2 = rn]] - 0 for each r.
Suppose that for the p in A6
(5.21) E(c,V2)P? =0(1) as n — oo.

Let g be defined by 2/p + 1/q = 1. Then, by Holder’s and Markov’s inequalities,

we get
o2, < (P{V2 = rn})Y4(E{(c, V2)P*})?/c,

=< (Efc, V%}p/2/{rncn}p/2)1/qo(1)/0n
= 0(1)(rn) P/ (¢, ) P/20-1
= O(l)n_p/(zq)+7(l+p/(2q)) = o(1).

Thus, to show (5.20), we need only prove (5.21). Recall the algebraic inequality
for nonnegative constants a, b, c and d (a + b + ¢)¢ < 3%(a“ + b + ¢?). From
(5.2),

(5.22) (e, VR)™? = 8Pch{ | Myn(dn)|” + | 8" (¢n)M(8(6n)) 17 + | An|”}.

As before, both g’(¢,)M(g(¢,)) and A, are bounded. From (3.2), so is
Cn | Mg n(¢y,)]|. Further, from (5.22),

(523) EF"(Cn ‘/rzz)p/2 = EF"I CnMg,n(¢n)lp + 0(1)

Since Ef, | ¢,hn(¢n)|? = 0(1), from (5.23) and (3.2) we have
(5.24) Er, (c. V2)P? = o(1).

(5.21) follows immediately from the Bounded Convergence Theorem. [0
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