Open Access
June, 1985 An Error Bound for an Asymptotic Expansion of the Distribution Function of an Estimate in a Multivariate Linear Model
Yasunori Fujikoshi
Ann. Statist. 13(2): 827-831 (June, 1985). DOI: 10.1214/aos/1176349562

Abstract

In this paper we consider asymptotic approximations to the distribution function $F(x)$ of a linear combination of an estimate in a multivariate linear model. A method is given for obtaining an asymptotic expansion $F_{s - 1}(x)$ of $F(x)$ up to $O(n^{-s + 1})$ and a bound $c_s$ such that $|F(x) - F_{s - 1}(x)| \leq c_s$ uniformly in $x$ and $c_s = O(n^{-s})$.

Citation

Download Citation

Yasunori Fujikoshi. "An Error Bound for an Asymptotic Expansion of the Distribution Function of an Estimate in a Multivariate Linear Model." Ann. Statist. 13 (2) 827 - 831, June, 1985. https://doi.org/10.1214/aos/1176349562

Information

Published: June, 1985
First available in Project Euclid: 12 April 2007

zbMATH: 0576.62026
MathSciNet: MR790580
Digital Object Identifier: 10.1214/aos/1176349562

Subjects:
Primary: 62E20
Secondary: 62H10

Keywords: asymptotic expansion , distribution function , error bound , linear combination of an estimate , multivariate linear model

Rights: Copyright © 1985 Institute of Mathematical Statistics

Vol.13 • No. 2 • June, 1985
Back to Top