Open Access
June, 1985 A Uniform Bound for the Tail Probability of Kolmogorov-Smirnov Statistics
Inchi Hu
Ann. Statist. 13(2): 821-826 (June, 1985). DOI: 10.1214/aos/1176349561

Abstract

Using an argument developed in Siegmund (1982), we give a bound for the tail probability of Kolmogorov-Smirnov statistics in the following form $P(\inf_x(F_n(x) - F(x)) > \zeta) \leq 2\sqrt{2} e^{-2n\zeta^2}.$

Citation

Download Citation

Inchi Hu. "A Uniform Bound for the Tail Probability of Kolmogorov-Smirnov Statistics." Ann. Statist. 13 (2) 821 - 826, June, 1985. https://doi.org/10.1214/aos/1176349561

Information

Published: June, 1985
First available in Project Euclid: 12 April 2007

zbMATH: 0606.62018
MathSciNet: MR790579
Digital Object Identifier: 10.1214/aos/1176349561

Subjects:
Primary: 62E15
Secondary: 62G15

Keywords: exponential family , Kolmogorov-Smirnov statistics , Random walk

Rights: Copyright © 1985 Institute of Mathematical Statistics

Vol.13 • No. 2 • June, 1985
Back to Top