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AN ASYMPTOTICALLY OPTIMAL WINDOW SELECTION RULE
FOR KERNEL DENSITY ESTIMATES!

By CHARLES J. STONE
University of California, Berkeley

Kernel estimates of an unknown multivariate density are investigated,
with mild restrictions being placed on the kernel. A window selection rule is
considered, which can be interpreted in terms of cross-validation. Under the
mild assumption that the unknown density and its one-dimensional marginals
are bounded, the rule is shown to be asymptotically optimal. This strengthens
recent results of Peter Hall.

1. Introduction. Let X;, X;, --- be independent R%-valued random vari-
ables having common unknown density p and consider the random sample
X,, .-+, X, of size n. In this paper we will study the asymptotic behavior
as the sample size tends to infinity of a certain window selection rule for kernel
estimates of the unknown density based on the random sample.

The kernel estimates are of the form

Pon(x) = (1/n) X7 Kulx — X5,

where K;,(x) = v;'K(x/h). Here the “window” h = (hy, - - -, hy) belongs to R,
the collection of d-tuples of positive numbers; v, = h, - - - - - hqis the correspond-
ing volume; x/h = (x1/hy, - - -, Xa/ha) for x=(x1, - - -, 2a) € R% and K is a function
on R having integral one and satisfying some mild restrictions, which will be
described in Section 2.

The integrated squared error loss L,, = [ (pn»— p)® of the estimate p, can be

written as
th=fp?zh_2fpnhp+fp2- ‘

The goal of minimizing this loss is equivalent to that of minimizing

th—fp2=fpﬁh—2fpnhp;

but this goal cannot be realized in practice, since [ p..p is unknown. Observe,
however, that

fpnhp = (1/n) X1 f K, (x — Xi)p(x) dx
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and hence that

E fpnhp = f fp(x)p(y)Kh(x —y)dx dy = EK,(X - Y),

where X and Y are independent random variables each having density p. Con-
sequently,

Efpnhp=E[——(——1—)22Kh(X X)]

i#j

where i and j are understood to range over {1, - - -, n}. This leads to the unbiased
estimate

n(n -1) 2#,2 Ki(X: — )

of [ p.sp. A slight simplification leads to the estimate

ZZZKh(X X))

i

of [ puwp; to the corresponding estimate

M., = fprz'zh Z 2 Ky (X; — X)

i#)

B 21 TIKP (X - X)) - —5 Z;Z Ku(Xi — X;)
¥

of L.,— [ p% and to the window selection rule, “choose the window h to minimize
the criterion M,,.” This and other asymptotically equivalent criteria have been
proposed and studied by Rudemo (1982), Bowman (1984), and Hall (1983a,
1983b). They point out that such criteria can also be thought of in terms of cross-
validation. Specifically, let p.i» be the kernel estimate of p based on the random
sample with the ith case removed:

Prin(x) = 1/(n = 1) ¥jmi Kn(x — Xj).
Then

ntn = 1) 35 %R

is the cross-validation estimate of [ p..p.
An alternative, asymptotically equivalent, cross-validation criterion (estimate

of L,,— [ p?) considered by these authors is

1
- 21 Pnin(Xi) =

1 nf 2 g n ) .
n 21 th n 21 pmh(Xt)-

Hall showed that choosing h € H, to minimize this cross-validation criterion is
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asymptotically optimal under certain conditions on K, H, and p. In particular, K
is assumed to be nonnegative. (If p is sufficiently smooth, then faster rates of
convergence of the integrated squared error loss to zero can be obtained when
the nonnegativity restriction on K is dropped; see Miiller and Gasser, 1979.) The
unknown density p is assumed to have a uniformly continuous square-integrable
second derivative and to have finite second moment. Moreover,

H,={(hy, -+, b): e <= nV*9p; < A},

where 0 < ¢ < A < ., On the other hand, two of the restrictions imposed on K in
Section 2 of this paper, compact support and Holder continuity, are not required
in Hall’s results. (No serious attempt has been made here to eliminate or weaken
these restrictions on K, for it is numerically more efficient to compute M,,, when
K is a suitably chosen function with compact support; also minimizing M, by a
numerical search technique is more attractive when K i$ at least mildly smooth.
When d = 1 these two considerations suggest using the triangular kernel K
defined by K(x) =1 — | x| for | x| = 1 and K(x) = 0 elsewhere; with this choice
of K, after a preliminary sort of Xj, .- ., X, the determination of M, for any
given value of h requires only O(n) computations.)

The purpose of this paper is to show that choosing h € R% to minimize M, is
asymptotically optimal under a surprisingly mild assumption on p, namely that
p and its one-dimensional marginals are bounded. In this level of generality,
there are no known theoretical results on the asymptotic behavior of the optimal
window h or the optimal rate of convergence to zero of the integrated squared
error of estimation.

The main result is described in Section 2 and proven in Section 3. The
formulation of the result and the method of proof were influenced to some extent
by several recent theoretical investigations of the Final Prediction Error (FPE)
and other closely related model selection criteria in the regression context:
Shibata (1981), Breiman and Freedman (1983), Rice (1983) and Chen (1983).
The relatively long proof of Lemma 3 in Section 3 is given in Section 4. It uses
“Poissonization”, which has been employed by Rosenblatt (1975), Krieger and
Pickands (1981) and Nadaraya (1983) in related contexts; interestingly, it also
uses multiple stochastic integration with respect to a Poisson process. In a
footnote to problem 5 of XII, 6 Feller (1980) gives credit to Domb (1952) for the
use of Poissonization to obtain elegant derivations of various formulas in com-
binatorial probability.

A result similar to Theorem 1 was obtained for histogram density estimates
in Stone (1984). The method of proof was also similar, except that the Poisson-
ization argument used to prove the analog of Lemma 3 was much simpler. ‘

Under various restrictions, Krieger and Pickands (1981) and Sacks and Ylvi-
saker (1981) obtained asymptotically optimal selection rules for kernel estimates
of the density at a fixed point. In the later paper the entire kernel, not just the
window, was optimized.

2. Statement of the main result. As mentioned above, the kernel K is
required to have integral one. In addition, it is required to be symmetric about
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the origin, to have compact support, and to be Hélder continuous; that is, such
that for some positive constants 8 and c,

|K(y) — K(x)| scly—=x|® for x,yER?

(here |x| = (x2+ --- + x3)Y2for x = (x1, - - -, x4) € R?. The function K is not
required to be nonnegative. Let K® denote the convolution of K with itself, so
that K®(x) = [ K(x — y)K(y) dy. Then K® satisfies the same assumptions as
K; in addition, K®(0) = [ K*(y) dy > 0. The kernel K is further restricted by
requiring that K®(0) < 2K(0) (which necessarily holds if K is nonnegative and
K(0) = max,.K(x)).

Let h, vs, x/h and K, be defined as in Section 1 and note that 0 < v, < | h |
Also define K by Ki? (x) = v;'K®(x/h). Then K, and K§? each have integral
one and Kf? is the convolution of K}, with itself. Let p,, and L, be defined as in
Section 1, and observe that [ p%, and L, are both continuous on R9.

A window selection rule h, is a R¢-valued function of Xj, - - -, X,. Clearly

L,,hn/minthh =1.

The indicated minimum is actually taken on at some h € R. For it is easily seen

that ‘
lim infh_,a,m«i<L,,h - f pz) =0;

also if the coordinates of h are all large, then

f pin ~ v K®(0) and f Pnnp ~ U5 K(0),

SO

Ly - fpz ~ vp (K®(0) — 2K(0)) < 0.

(Here we have used the restriction that K®(0) < 2K(0).) The window selection
rule h, is said to be asymptotically optimal provided that

lim, (Lys,/min,L,,) = 1 with probability one.

Consider the window selection rule A, defined to be a value of h € R? that
minimizes the criterion M, introduced in Section 1. (It follows as in the previous
paragraph that the minimum of M, is taken on at some h € R%.) The one-
dimensional marginals of p are defined to be the densities of the coordinates of
X, where X has density p. The main result of this paper can now be stated simply
as follows.

THEOREM 1. If p and its one-dimensional marginals are bounded, then h, is
asymptotically optimal.

Suppose p satisfies the assumptions of Theorem 1. Then, in the notation of
Section 3, || p» — p || = 0 as h — 0. Thus it follows from Theorem 1 together with
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Lemma 1 and Lemma 4 of Section 3 that A, and L., both converge to zero with
probability one as n — . For contrasting results when the Fourier transform of
p vanishes outside a compact set C and the Fourier transform of K is the indicator
function of C, see Ibragimov and Khasminskii (1982).

Burman (1984) has concurrently used arguments of Shibata (1980, 1981) to
obtain a more general asymptotic optimality result for density estimation (with
“in probability” instead of “with probability one” in the definition of asymptotic
optimality). When specialized to kernel density estimation, the window h is
selected from a finite set H, = {h,, - - -, hx,} subject to certain restrictions on N,
and the deterministic sequence h;, hq, - - - ; p is assumed to be bounded; and K
is required to have finite 8th moment, but K is not required to be symmetric or
continuous or to have compact support.

For related work in which integrated squared error loss is replaced by other
measures of loss see Chow, Geman and Wu (1983); Devroye and Gyorfi (1983);
Stone (1983); Birgé (1983); Marron (1984); and Bowman, Hall and Titterington
(1984). For a recent review of a wide variety of smoothing techniques in statistics
see Titterington (1984).

3. Proof of Theorem 1. Throughout this section and the next one, it is
assumed that p is bounded. Let p,, denote the convolution of K}, and p, so that

pr(x) = f Ki(x — y)p(y) dy = Epn(x).

Set | pr — pll = (f (p» — p)?)*and let s A ¢ denote the minimum of s, t € R.

LEMMA 1. There are positive constants b and c such that
lpr —pl2=c(lR]|¥® A1) =cwh A1) for hERS.

PRrROOF. Let ¢ and p denote the Fourier transforms of K and p respectively.
Then ¢ is bounded and continuous; it is real-valued since K is symmetric; it
vanishes at infinity by the Riemann-Lebesgue lemma; it equals one at the origin
and is not identically one on any neighborhood of the origin. The Fourier
transform ¢, of K, is given by ¢,(t) = ¢ (ht), where ht = (hit, - - -, hats); and
the Fourier transform of p, is ¢np. According to Parseval’s identity and the
boundness of the density p, [ | p|?= (27)? [ p> < ® and

(2m)° ||ph—P||2=f |¢hP-P|2=f(1—¢h)2 lpl®

Now p is continuous and p(0) = 1, so there is a nonempty bounded open ball C
centered at the origin of R%such that | p |2 = Y2 on C. Also || p» — p||? is bounded
away from zero for h outside any neighborhood of the origin. Suppose the desired
conclusion is false. It then follows easily from the power series for the cosine
function and a compactness argument that there is a unit vector u € R such

that
J;dt(f (ut - x)*K(x) dx) =0
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for every positive even integer k. By continuity, for each such &,

f (ut - x)*K(x) dx =0 forall ¢t € C.

Choose j € {1, -+, d} such that u; # 0. By proper choice of ¢ it follows that

f xfK(x) dx = 0

for every even integer k. By the symmetry of K, this equality holds for every
positive integer k. But this is clearly impossible, since K has integral one and
compact support. (Suppose, say, that j = 1 and define K; by

Kl(x1)=f fK(xp try x;i) dﬂez e dxg.

Then K; has integral one and compact support and [Z. x{K;(x;) dx; = 0 for
every positive integer k. Consequently the Fourier transform of K, is identically
equal to one, which contradicts the conclusion of the Riemann-Lebesgue lemma.)
" Set ‘

Jun = Il pn = pI* + 1/nvy,
Jor =Vh A1+ 1/nv, for r>0,
Gun = n7! 3 pu(Xi) — Ep,n(X),
apd
G, =n"" I p(Xi) — Ep(X).

A modified form of Theorem 1 will first be proven, in which h ranges over a
finite subset H, of RY, the number of whose elements increases at most algebra-
ically fast in n; the original form of the theorem then follows (see the end of this
section). '

ConbITION 1. #(H,) < An® for n = 1, where A and a are positive constants.

LeEMMA 2. If Condition 1 holds, then
LimnmaxheHnJ k| Gon — Gn| = 0 with probability one

and

f (Pnn = Pr)(Pr — P) | = O with probability one.

lim, maxen,J 7

PROOF. Set _
Zin = pr(X;) — p(Xi) — (Epn(X) — Ep(X)).

Then Z, i = 1, are independent and identically distributed random variables
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each having mean zero. Since p is bounded, there is a positive constant c
independent of h such that | Z;,| < ¢ and Var(Z;,) < cu?, where u, = |p, — p|.
Observe that G, — G, = Z,,, = (Zin + - -+ + Z,,)/n. By Bernstein’s inequality
(see Hoeffding, 1963)

Pr(| Z..| = t) < 2 exp[—7A/2(1 + A/3)],

where 0 < A =< t/u} and 7 = nt/c. Choose ¢ > 0. Suppose that u, = n
Set t = n°""2u;, and A = n°"V?/u;, < 1. Then A+ = n*/c. Suppose instead that
u, < n Y2 Set t = n*'and A\ = 1. Again, A\r = n*/c. Thus in either case it
follows from Bernstein’s inequality that ’

Pr(| Z.x| = t) = 2 exp(—n*/3c).

e=1/2
.

Hence by Condition 1.
lim,Pr(| Z,,| = n* Y, + n*! for some h € H,) = 0.

Thus to verify the first conclusion of Lemma 2 it is enough to show that for some
e>0 ' ' ‘

ne—l/Zu'+ nZe—l
u? + 1/nu?®

lim, max, > ,

where the positive number b is defined as in Lemma 1. For 0 < ¢ < %(1 + b),
this result is easily shown by considering separately: 0 < u < n* V%4 n/2<u <
n=t20+0 and u > n~%21+% The second conclusion of the Lemma follows from

the same argument applied to
Zip= f (Kn(x — Xi) = pn(x))(pn(x) — p(x)) dx.
Let P, denote the empirical distribution of Xj, - - -, X, defined by
P.B)=n""#{i:1<i<n and X,€B} for BC R

The proof of the next result is postponed to Section 4.
LEMMA 3. If Condition 1 holds, then for all r >0

lim, maxse s, ir

[ [ Kt = 320patan) - Pasnutan - P

xF#y

=0 with probability one.
LEMMA 4. If Condition 1 holds, then for all r >0

f (Prw — Pr)?2 — K®(0)/nv, | = 0 with probability one.

: -1
hmn max.heH,,J nhr
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PROOF. Observe that

2
f (Prn — P1)? = f ( Ku(z — x)(P,(dx) — P(dx))) dz

= f f KfP(x — y)(Pa(dx) — P(dx))(P.(dy) — P(dy))

= f f K (x — y)(P,(dx) — P(dx))(P(dy) — P(dy))

x#Ey

+ K@(0)/nvp,
@

so the desired result follows from Lemma 3 (applied to K}’ instead of K,,).

Suppose now that h is constrained to lie in H,, that h,, minimizes M, over
H,, and that Condition 1 holds. To verify that A, is asymptotically optimal, it
suffices to show that with probability one

| Low — Lion = (Muw — Mun) | _
L,,)! + L.

0.

lim,, maxyneH,

For this it is enough to show that
1) lim inf,min,ep (Lnn/Jnn) > 0 with probability one
and

anh' — Linp T (Mnh' — Mnh) '
Jnh + Jnh'

(2) lim,maxen, = 0 with probability one.

Since

L., = f (7 —p)2

= f (Prw —Pu)2 + P — PI? + 2 f (Pnr — Pr)(Pr — D),

(1) follows from Lemmas 1, 2 and 4. Observe next (see Section 1) that
th— nh;2Gn—fp2

= 2(Gun — Gy) + 2 f f Ki(x — y)(Pn(dx) — P(dx))(Pn(dy) — P(dy)).

X7y

Thus (2) follows from Lemmas 1, 2 and 3.

Since K is Hélder continuous, the original form of Theorem 1 can be derived
from the modified form based on Condition 1; small, moderate and large values
of the coordinates of A must be handled separately, the details being left to the
reader. (Recall the assumption that the one-dimensional marginals of p are
bounded. Accordingly, for given n, if one of the coordinates of h is very small,
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then K2 (X; — X;j) = Ky(X; — X;) =0 for 1 < i <j < n except on an event having
very small probability.)

4. Proof of Lemma 3. The proof is based on “Poissonization.” Given a
positive number ), let N(dx) be a Poisson process on R? with EN(B) = AP(B).
By definition, N(B) has a Poisson distribution; and if B,, ---, B, are disjoint,
then N(B,), ---, N(B:) are independent. Set M (dx) = N(dx) — AP(dx). Also,
given a positive integer 2, let P“denote the probability measure on R* defined
by P/(dx, - - - dx,) = P(dx;) - -- P(dx,).

Let k and # denote positive integers with # < k. Let I'}, denote the collection
of all k-tuples iy, - - -, iy of integers in {1, - - -, 7} such that:

(a) eachi € {1, .- ., 7} appears one or more times among iy, - - -, iy;

(b) ifi,i’€{1, ---, /} and i < i’, then i appears before i’ among iy, - - -, .
Given x € (x, - -+, x¢) E R*and v = (i1, - - -, Ix) € USTY, set x, = (x;, - -+, x;,).
Let I'.- denote the subcollection of all ¥ = (i1, ---, i) € I't, such that each
i€ {1, ..., 7} appears two or more times among i,, - - -, ix. Observe that T';, is
empty for / > [k/2], where [c] is the greatest integer no greater than c. By
definition, T'y; = {(1, -- -, 1)} for k = 2; while I'y, consists of the three 4-tuples
(1,1,2,2),(1,2,1,2) and (1, 2, 2, 1).

LEMMA 5. Let g be a (Borel) function on R* such that

Sk Yoery, | 8(x,) | P’(dx) < oo,
Then

B o [ e o moM@m) - M)
= Z[,’;/%] A/ Z’yel‘k,f g(x'y)P/(dx)-
PrOOF. It suffices to prove the result for functions g of the product form
g(x, -+, x) = [1¥¥,(x;), where ¥;, 1 < j < k, are bounded; the general result

follows by the usual L' approximation argument. For functions of the indicated
product form the desired result follows in a straightforward manner from the

formula
E exp(Z’f t f \I'idM) = e,
where
=X f (e — 1 — ¥ ;) dP.
Observe that ‘

Eka\IﬁdM—-———QE-(b———L
1 ! Aty - Aty

here |, means that t, = - - - = t; = 0. Note that ¢ |o = 0 and d¢/d¢t;|o = 0. Thus it
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follows, for example, that

2 ¢ 2
Ef\ylde\psz= d’e |0=(_Q;4>_+3_¢3_¢)e¢|0

406, oot T ot ot
_ —xf\p\p dP—xf (x4, %1) dP
at,0t 0= 1¥Y2 8(X1, X1

where g(x,, x2) = ¥, (x;) ¥ (x2).
For results related to Lemma 5 see Ogura (1972) and Krausz (1975).

LEMMA. 6. For each positive integer k there is a positive constant ci, such that

2k
E[(f f Kh(x - y)M(dx)M(dy)) ] < chv;‘”“ 23‘_@2 )\/UL(/+1)/2]

x#y

for \>0and h € R

PROOF. It follows from Lemma 5 that the indicated expectation is a finite
linear combination of terms of the form

}\/f S f Hm K;’,’"(xim - xjm)P(dxl) s P(dx/)’

where 1l =i, <j,</andvy,>0foral m,2 =</ <2k, Y. v, = 2k, and each
i€ {1, ..., 7} appears at least once in the sequence i, ji, iz, J2, - - - . It follows
easily from the boundedness of p and the definition of K}, that terms of this form
are bounded in absolute value by a constant multiple of A\v;%*v}“*"/%, The

desired result now follows immediately.
Set N = N(RY).

LEMMA 7. For each positive integer k there is a positive constant c,, such that

2k
E[(f f Ki(x — y)(N(dx) — NP(dx))(N(dy) — NP(dy))) ]

x7#y
< ci(X + A% + 0% D2, ANVNHV2) for N>0 and h € RY.

PROOF. Observe first that

f f Ki(x — y)(N(dx) — NP(dx))(N(dy) — NP(dy))

x#y

E f f Ki(x — y)M(d)M(dy) = 2(N = A) f prdM + (N = ))? f pip.

x#Ey

Now | [ psp| is bounded in h and E(N — \)* is bounded above by a constant
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multiple of A\ + A%. Also py,(x) is bounded in k& and x and

E exp(t fph dM) = exp()\ f (eP» — 1 — tph)p) ,

so each cumulant of [ p, dM is a multiple of A that is bounded in h. Since this
random variable has mean zero, its 4kth moment is bounded above by a constant
multiple of A + A?*. The desired result now follows from Lemma 6.

LEMMA 8. For each positive integer k there is a positive constant ¢, such that

2k
[(f f Ki(x — y)(Pn(dx) — P(dx))(Pn(dy) — P(dy))) ]

x#Ey
< cxn~*(n? + vi%* %, nVIAY2)  for n=1 and h € RY.

PrROOF. Set N,(dx) = nP,(dx) and

= f f Ki(x — y)(Nu(dx) — nP(dx))(Nn(dy) — nP(dy)).

xF#y

Let u, denote the 2kth moment of Z and set uo = 0. Let R(\) denote the 2kth
moment of the random variable obtained through replacing n in the definition of
Z by a Poisson random number N having mean A, N being independent of X;,
i =1. Then

R(\) = zn Pr(N = n)u, = Xn ()\n/n!)e—)‘ﬂn
determines a polynomial of degree 2k in A with R(0) = 0, and by Lemma 7 there
is a positive constant ¢; such that

0 < 2k R(I)(O) j — R ’ 2k —2k 2k 4, [(#+1)/2}
Y = R(\) < chi(A + N* + v;% 2%, AN )

for A > 0 and h € R?. By a straightforward argument, there is a positive constant
¢t such that

0]
T R J(O) LN < cp O+ A% + o B2, Al

for A > 0 and A € R?. (For suppose otherwise and note that for each fixed ¢ > 0,
if
|R2(0) |
J!
(where a > b > 0 means that a/b is “very large”), then

0(0 0
| R ()I()\), > T, .(0)()\),

N> et + A2k 4 v;zk 2 kD [(/+1)/2])

by normalization and a compactness argument, there would then be a nonzero
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polynomial in ¢ of degree 2k which equals zero at more than 2k distinct points.)

Consequently,
o n!R‘j’(O) - V2 |R‘j’(0)| i

S T TR
< cl(n + n® + vi2k Y2k, p itV

which yields the desired result.

Lemma 3 follows from Lemma 8 and a Chebychev type inequality involving
the 2kth moment by considering four cases separately: v, = 1, n V"V <y, < 1,
n2<v,<n V") and0<v,<nZ
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