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SECOND ORDER APPROXIMATION TO THE RISK OF A
SEQUENTIAL PROCEDURE

By Apam T. MARTINSEK
Unaiversity of Illinois

Given Xi, X;, -+, iid. with mean p and variance o7 suppose that at
stage n one wishes to estimate u by the sample mean X, subject to the loss
function L, = A(X, — )? + n, A > 0. If ¢ is known, the optimal fixed sample
size no = A'%¢ can be used, with corresponding risk R, but if ¢ is unknown
there is no fixed sample size procedure that will achieve the risk R,. For
the sequential estimation procedure with stopping rule 7' = inf{n = na:
n' ¥ (X; — X.)? = A7'n?}, the second order approximation of Woodroofe
(1977) to the risk Rr for normal X; is extended to the distribution-free case.
Specifically, if the X; have finite moments of order greater than eight and are
non-lattice, under certain conditions on the delay n,‘it is shown that the
regret Rr — R, = ¢ + o(1) as A — o, where ¢ depends on the first four
moments of the distribution of the X;. For the lattice case, bounds of the form
¢1+ 0o(1) = Rr— R, < c2 + o(1) are obtained, where the ¢; are ¢ + 3. It follows
from these approximations that the regret can take arbitrarily large negative
values as the distribution of the X; varies, in contrast to previous results for
normal and gamma cases.

1. Introduction. Let X;,X,, - - - be independent observations from a population with
mean p and variance ¢ € (0, ©). Given a sample of size n, one wishes to estimate u by the
sample mean X,., subject to the loss function

(1.1) L.=AX.—-p)?+n, A>0.
For a fixed sample size n, the risk is
(1.2) R,=AEX,—p)’+n=Acn"'+n,

which is minimized (when o is known) by using the optimal fixed sample size
(1.3) no= A%

(that is, the minimizing n, is one of the two integers closest to A/%6). The corresponding
minimum fixed sample size risk is

(1.4) R., = 24Y%.

When o is unknown, the optimal fixed sample size n, cannot be used, and there is no fixed
sample size rule that will achieve the risk R, . For this case the stopping rule

T=Ts=inf{n=ns:n= A" [n' 37 X; — X%
(1.5)
=inf(n=n4a:n7' 37 (X; — X)>< A'n?),

where n,4 is a positive integer which may depend on A, can be used, and the population
mean p is then estimated by Xz. This type of sequential estimation procedure was first
considered by Robbins (1959) in the normal case.

When the distribution of the X; is normal, asymptotic risk efficiency (i.e., R7/R,, — 1
as A — =) has been established by Starr (1966), and the much stronger result R7 — R,
= 0(1) as A - « (bounded regret of the sequential estimation procedure with stopping
rule T') has been proved by Starr and Woodroofe (1969). Furthermore, Woodroofe (1977)
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828 ADAM T. MARTINSEK

has given second order approximations to the expected sample size and risk of this
procedure, showing in particular that

(1.6) Rr— R, =%+ o0(1)

as A — oo. In all three papers the delay n4 does not depend on A.

For the gamma and Poisson cases, bounded regret has been obtained by Starr and
Woodroofe (1972) and Vardi (1979), respectively, using stopping rules which differ from
(1.5) and which only make sense in these special cases.

For the general (distribution-free) case Ghosh and Mukhopadhyay (1979) and Chow
and Yu (1981) have proved the asymptotic risk efficiency of the sequential procedure with
stopping rule T, under the assumptions that (Ghosh-Mukhopadhyay)

E|XiP<o and 8AYV®*P =n,=0(A"%) as A— o,
forsome >0 and O0<y<¥%

and (Chow-Yu) .

E|Xi|?<ow,p>1, and Klog(A) =ns=o0(A"Y%) as A— o,
for some K> K,.

Similar results of asymptotic risk efficiency have been obtained by Sen and Ghosh (1981)
for sequential estimation of symmetric parametric functions using U-statistics.

In Chow and Martinsek (1982), it is proved that the sequential procedure T is of
bounded regret, under the assumptions :

E|X|”<» forsome p>1
and
A <ns=0(AY") as A— o,

for some § > 0 (but without any other assumption about the type of distribution of the X;).
However, the only second order approximation to the risk Rr known so far is (1.6), given
by Woodroofe (1977) for normal X;. Since such second order approximations give a much
better idea of the size of the regret than the mere fact of boundedness in A, it is desirable
to have these approximations in a more general setting than just the normal case. The
purpose of this paper is to give such approximations, assuming only that the X; satisfy
rather mild distributional requirements. The main results are given in the following two
theorems, which separate the non-lattice and lattice cases.

THEOREM 1. IfE|X:|® < « for some p > 1, the distribution of the X; is non-lattice,
and 8AY* = ny = 0(A"?) as A — o, for some 8 > 0, then

Rr— R, =2— GWE{(Z] — 1)’} + 2E*(Z}) + 0(1)
(1.7) ‘ =2— (HE(Z}) + (%) + 2E*(Z3) + o(1)
=2 — (%) Var(Z}) + 2E*(Z}) + o(1)
as A — o, where Z, = (X; — p)/o.

THEOREM 2. Under the hypotheses E | X, | < » for some p > 1 and 8A"* < n, =
0(AY?) as A — o (but without assuming the X; are non-lattice),

—1— (HWE{(Z} - 1)%} + 2E*(Z}) + o(1) = Rr — R,,

(1.8) =5— (E{(Z - 1)%) + 2EX(Z3) + o(1)

as A — o, where Z, = (X; — p)/o.

The proofs of Theorems 1 and 2 are given in Section Two. The approximations (1.7)
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and (1.8) have interesting consequences, some of which are discussed in Section Three. In
particular, it is shown that the regret can take arbitrarily large negative values as the
distribution of the X; varies, providing an answer to a question suggested by Starr and
Woodroofe (1972) and pursued further by Woodroofe (1977). The expression (1.7) is also
compared with the second order approximation obtained by Woodroofe (1977) for the
gamma case (using the stopping rule of Starr and Woodroofe, 1972). It is shown that the
non-vanishing term in (1.7) is always larger than the non-vanishing term in Woodroofe’s
case (not surprisingly, since the procedure considered by Starr and Woodroofe takes
advantage of the knowledge that the distribution is gamma, whereas the procedure 7 does
not). However, the difference is often small: for example, when the X; are exponential the
two non-vanishing terms differ by only 1.

REMARK 1.  Although the assumption that the X; have finite moments of order higher
than eighth may seem unusual, it should be noted that the resulting second order
approximations depend on the first four moments of the distribution. It is therefore fairly
clear that one needs at least finite fourth moment to obtain such approximations (even
though the problem, and the sequential estimation procedure with stopping rule T, make
sense when only the variance is assumed finite).

REMARK 2. In the context of sequential estimation of a non-zero mean with loss
function

(1.9) AR, - p)Y/p* +n

at stage n, Martinsek (1981, page 75) has given a distribution-free second order approxi-
mation to the risk of a sequential procedure when the variance is known. The stopping
rule in that case is

inf{n=1:|S,| > A%},

where S, = X; + ... + X,, the optimal fixed sample size is A%6/|p|, and the regret
(assuming E | X; |® < ) is

2E{(X: — p)*}/(o"n) + 30%/p® + o(1)

as A — . The sequential procedure studied in the present paper is much more compli-
cated, as it is defined in terms of sample variances rather than sample sums, and the
methods used in Section Two below are consequently more involved than (and quite
different from) those used in the case of sequential estimation with the loss function (1.9)
and known variance.

2. Proofs of Theorems 1 and 2. Assume throughout this section that the n, are
as in Theorems 1 and 2. Without loss of generality, take & = 0, ¢ = 1, and define V, =
21 (X; — X,). The relation V,, < V,., for all n will be used occasionally in the two proofs.
For simplicity we will always assume T' > n4, so that in particular Vir > 0. This assumption
causes no harm, because as shown in Chow and Martinsek (1982), the probability of the
event {T = n4} vanishes so quickly as A — o« that the expectations of all relevant random
variables on this event also vanish.

The following uniform integrability results are needed in the proofs below. They are
consequences of Lemmas 2, 4 and 5 of Chow and Yu (1981).

(2.1) E|Xi[*<o,t=1= {(A7/2T)*: A = 1} is uniformly integrable;
(2.2) E(X}) < o= {(A7"?T)™7: A = 1} is uniformly integrable for all ¢ > 0;
(2.3) E|X|* <o, t=1= {|A™*Sr|*: A = 1) is uniformly integrable;

(24) E|Xi|*<ow,t=2= {|AVZ{ X? — T)|*: A = 1} is uniformly integrable.
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We will also need the nonlinear renewal theory results of Lai and Siegmund (1977,
1979), as applied by Chang and Hsiung (1979). Specifically, if the X; are non-lattice with
finite fourth moment, and U, is the overshoot in the sense of Lai and Siegmund (1977,
1979),

Uy =T(TVF)? — A2
(2.5)
=T—-A” - (BETXI-T) + (BT'St + BAT*T (Ve — T)?,
Ar a random variable lying between 1 and 7'V, then Chang and Hsiung (1979) have
shown that

(2.6) Us—>gyUasA— x,

where the random variable U has distribution defined in terms of the first time that the
random walk

n— %X —n) = %)n - 37 X}

is positive.

REMARK. The paper of Chang and Hsiung (1979) assumes an additional continuity
condition on the distribution function of the X;. This condition is used only to obtain
uniform integrability of negative powers of A~/2T', and in view of (2.2) the condition is not
needed here. Also, although the results of Lai and Siegmund (1977, 1979) and Chang and
Hsiung (1979) are stated for stopping rules without a variable delay such as ng, it is easily
checked that they apply in this case as well. The same comment holds for the Lemma

given below.

To simplify notation, let
2.7 &= (B)n7'SE + BN n NV, — n)’.
Because

T(TVTH)Y2 — A2 < T(TVH)? — (T - D){(T — 1) Vi }V2 = V&2 (@) (T — 1) + %}
=< Vi) (T — 1)V2 + %)} = AVA(T — 1) (®%)(T — 1)/% + 3%}
= (RAVHT — 1) + RAY(T — 1)72,
from (2.2) we have
(2.8) E(X?) < o= {U3:A = 1} is uniformly integrable for all ¢ > 0.
Furthermore, since
(T7Vr) ™2 < 22((T = 1) V) ™2 = 2A(T - D},
from (2.2), (2.3).,' (2.4), (2.7) and Holder’s inequality,
29 E|X||*"“<wfort=1ande>0=> {{,:A = 1} is uniformly integrable.

The results (2.8) and (2.9), together with (2.5), will be used below to re-write parts of the
regret in terms of expected products of powers of Sr and ¥{ X7 — 7. These expected
products will then be evaluated as differences of moments of Sz, ¥ X7 — T, and 31 X7
— T + S, using Anscombe’s Theorem, as in (2.22) and (2.25).

A slight modification of one of the nonlinear renewal theory results of Lai and Siegmund
(1977) is also needed. This modification is given in the following lemma, which reflects the
fact that under the general conditions of Lai and Siegmund’s work the limit distribution of
the overshoot does not depend on the slowly varying term &,.

LEMMA. If the X; are non-lattice with finite fourth moment, then T 'S% and U, are
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asymptotically independent as A — «. That is, for all x,y > 0,
P{T 'S} =x, Us<y} > F(x)G(y) as A > o,
where G is the distribution function of U, and F is the distribution function of a Chi
squared random variable with one degree of freedom.
Proor. To simplify notation, let
W, =n— (%)t X - n).

As proved by Chang and Hsiung (1979), for each n > 0, there exists p > 0 and an integer
n’ such that for all n = n’,

(2.10) P{maxnsjsn+pn|£i - gnl = "7} <,
and also
(2.11) P{max,<j=n+on |7 87 — n7ISE| =) <.

Furthermore, since
(|A™V4T - AY?|:A=1)
is uniformly integrable by Theorem IV-3 of Yu (1978),
(2.12) ATVHT - AY’) >p0as A — o
Proceeding as in the proof of Theorem 1 of Lai and Siegmund (1977), let
i =[AY2 — pA2/4], ns=[AY? + pA'?/4]

(so that n; + pn; > ns and n4 < n, for large A, since p in (2.10) and (2.11) can clearly be
chosen less than 2). Also let

BA = {maXnAsnsnl(Wn + £,,) < A1/2 - A1/4},

Then from (2.12), (2.10), and the Strong Law of Large Numbers, if first A — o and then
n—0,

(2.13) P(B3) + P(T=n,) >0,
where B4 denotes the complement of B4. Putting %, = o(Xj, --- , X,), and defining
t=ta(B) =inf{n=na: W, + &, >A+ B}

for —o < B < m, by the renewal theorem (Feller, 1966, page 354), for A sufficiently large
and all y > 0,

(2.14) |P{Wip) + bn, — (A2 +B) = y| £} — G(Y) | <n
on Ba. As shown by Lai and Siegmund (1977, page 948), if y > 27, on the event
BisN {T< na, max,,lsks,,2|£k - g,,,ll < 'n},

(2.15) {(Ua>y} C{t) =T, Wiy + &, — (A2 +n) >y — 21}
and
(2.16) (Wi + &n, — (A2 =) > y + 20} C {t(—n) = T, Us > 3}

Hence, on the event
BX=BsnN {T < ng, maxn,sksnzlgk - §n,| < 7}} N {Inaxn,lsjsnzIJ’_ISJ2 - nl_lsgzll < TI},

if x >n and y > 2y, from (2.16)
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P{Us>y, TS} < x)
= P[BA N (Wi + £, — (A7 = 1) >y + 20} N (n7'S%, < x — )]

>

f P{(Win) + &, — (A2 =) >y + 29| %,} dP
BN {ni'sh=x—}

— P(T = nz) — P{maXn<k=n; | & — &, | = 1} — P{maxa,=j= |/ 'S} — n1'Si, | = n}.
Letting A — o and then n — 0, from (2.13), (2.14), (2.10) and (2.11), since nIle.l —ox3,
lim infs o P{T7'S2. < x, Us > y} = F(x){1 — G(»)}.
A similar argument, using (2.15), shows
lim sups . P{T7'S? = x, Ua > y} = F(x){1 — G(»)},
and hence as A — o,
P{T'S}<x, Uy >y} — F(x){1 - G(»)},
proving the lemma.
ProOF OF THEOREM 1. From the main theorem of Chang and Hsiung (1979), since
the X; have finite moments of order greater than six, as A — oo,
E(T - A?) =v =% — (RE{(X] - 1)’} + o(1),
where v = E(U). By Theorem 2 of Chow, Robbins and Teicher (1965),
Rr— R,,= E(AT?S%) + ET — 2A'?
(2.17) = E{S}(AT% - 1)} + 2E(T — AY?)
=E{STAT 2 - 1)} + 2v» — 1 — GL)E{(X] — 1)} + o(1).
Concentrating on the first term on the right-hand side of (2.17) we have

E{SHAT?-1)} = E{S3*AT? - TV:)} + E{S¥TVr - 1)}
(2.18)
=1+1I, say.

Since
SHAT 2 — TVF) = =T 'SHU){AV2T™ + (TVT)?),

and AY2T! + (TVF)Y? - 2 as. as A — o, by the Lemma together with the uniform
integrability results (2.2), (2.3) and (2.8), because TVF < TVzi, < T(A™(T - 1)}} ' =<
8AT?,

(2.19) I=-2E(x})v+ o(l) = =2v + o(1).
By Anscombe’s Theorem (Anscombe, 1952), (2.2), (2.3) and Wald’s Lemma,
II = E{(S¥TV7' — 1)} = E{(S% — Vr)VFY(T — Vr)} + E(T"'S%)
=AY E{(ST — Vo)(T — Vr)}
(2.20) ‘
+ E((S% - Va)(T = Vp)(AY2 = V7)AT2VZ) + 1+ o(D)
= IIa + IIb + 1 + o(1).

From (2.17) of Chow and Martinsek (1982), together with (2.1), (2.2), (2.3), (2.4) and
Anscombe’s Theorem, since A™2Y T X? > 1and AT — 1 as A — oo,
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IlIa = A7’E{(S% — Vo)(T — Vr)}
= ATE((S% — T XI)(T — X1 X)) + A7 °E(T™'S%)
- AT’E((T XHT'S%) + o(1)
= ATPE{(SF - X XiNT - TT Xi)} +3— 1+ 0(1)
= A72E{(S — T)(T - 3T X})}
(2.21) + AT2E((T - YT X?)?} + 2 + o(1)
= —2A4""?E(X})E{(T — A"*)Sr)
—AT2E((X? - 1)2}E(T) + E{(X? — 1)’} + 2 + o(1)
= —24"2E(X})E{(T — A*)Sr} — E{(X} — 1)*}
+E{X}-1)%}+2+0(1) .
= =247 2E(X})E{(T — A"*)Sr} + 2 + o(1).
By (2.3), (2.8), (2.9) and Hélder’s inequality, using E | X; |>** < « for some & > 0,
E{|(Ua — £7)Sr|} < E¥*(| Ua — é2|¥)EV*(| Sr|®) = O(A™*) as A— o,
so from (2.3), (2.4) and Anscombe’s Theorem, since E(X1) < o,
2A72E((T — AV?)Sr) '
= ATPE{(ZT X! — T + 2Us — 2%1)Sr} = A7VE{(TT X7 — T)Sr} + 0(1)
@229) = (WATV[E(E] X} — T+ Sr)°} — E(St) — E((TT Xi — T)*}]1 + o(1)
=RE{XI-1+X)"} —1-E{Xi-1)*}]+0(1)
=EX3) +0(1).
It follows from (2.21) and (2.22) that as A — o,
(2.23) ITa = —E*(X3) + 2 + o(1).

From (2.2), (2.3), (2.4), (2.8), (2.9), Holder’s inequality and V7' < V7L, = A(T — 1) %, since
E|X\|* <o,

E{| (S — Vo) (T — Vo) V' (Ua — &+ T7'S%) |}
= EV4((S} — VD)) EV[{A(T — 1)™(T — Vp)}*1 X EV*{((Us — &r + T7'S7)%}
=0(A"?) as A— o,
hence by (2.3), (2.4) and Anscombe’s Theorem,
IIb = A7E{(S% — Vr)(T — Vr)(AY? — Vr)V7T'}
= A7VE[(ST — VINT — VoN{T + (4T — 5T X?) = Vo — Ua +£2} V']
(2.24) =%AV’E{(St — Ve)(T — Vo)(T — 3T XD)V7'} + o(1)
= %A TV2E(SHT — 3T X})*Vr'} — A VE((T - 3T X?)*} + o(1)
= %A TVPE(SHT — 3T X})2VF'} — GRE{(X] — 1)*} + o(1).
By a Holder’s inequality argument similar to those above, since E | X; |% < oo,
E{|SHT — 3T XH2(AY? — Vi) VFAT2|} = 0(A™*),
so from (2.3), (2.4) and Anscombe’s Theorem, using E(X?%) < o,
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ATVPE(SHT - 3T X})*Vr'}
=ATE{SHT - 3T X?)*} + o(1)
=VeAT'[E{XT XI — T + Sr)*} + E{(SF X? — T — Sr)*)
— 2E(ST) — 2E{(X{ X! — T)*}]1 + o(1)
(2.25) =Y2[3E* (X1 - 1+ X1)?} + 3E2{((X} -1 - X1)%)
— 6 —6E*{(X] — 1)*}] + o(1)
= Vo[6E*{(X] — 1)*} + 6 + 12E{(X? — 1)}}
+ 24E*(X3) — 6 — 6E*{((X? — 1)%}] + o(1)
=2E%X}) + E{(X? — 1)®} + 0(1).
Hence by (2.24) and (2.25),
(2.26) IIb = 3E*X}) + E{(Xi — 1)?} — R)E{(X? — 1)*} + 0(1) = 3E%X?) + 0o(1)

as A — oo,
Finally, combining (2.17), (2.18), (2.19), (2.20), (2.23) and (2.26),

Rr—R, =2 —1-%E{(X}—-1)%} — 2 + 1+ 2 — E¥X}) + 3E%(X}) + o(1)
=2 - %E{(X] - 1)’} + 2E*X}) + o(1),

proving the Theorem.

ProOF OF THEOREM 2. The proof of Theorem 2 is similar to that of Theorem 1, except
that one can no longer use the Lemma and the limiting behavior of T(TV7!)/2 — A2 g
in the non-lattice case. However, from the argument leading to (2.8),

Ua = B)AVA(T — 1) + GR)AYHT — 1)7%2,

and since AY*(T — 1) — 1 a.s. as A — , we have from the various uniform integrability
results and Anscombe’s Theorem that

0=<E(Ua) =%+ 0(1)

and

0= E[T'S7{(TVF)? + AV T} U,] = 3 + 0o(1).
Using these bounds in the identity

E(T - AY?) = E(Ua) — % — %E{(X? — 1)*} + o(1)
(as in Chang and Hsiung, 1979), and in (2.18) above yields the result of Theorem 2.

REMARK. Results analogous to Theorems 1 and 2 can also be obtained for the more
general loss function
L,=Ac**X,—pw?+n, B>0,

considered by Chow and Yu (1981) and Chow and Martinsek (1982). In this general case,
under the assumptions of Theorem 1 the regret can be written as

28 + {(38° — 6B8)/4)E{(Z} — 1)’} + 2BE*(Z}) + o(1),
which agrees with (1.7) when 8 = 1. One also has the analogue of Theorem 2, with bounds
2B + {(38° — 6B)/4}E{(Z} — 1)*} + 2BE*(Z}) = (2 + B) + o(1).
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The proofs are essentially the same as for the case 8 = 1, using Taylor series expansions
as in Chow and Martinsek (1982).

3. Consequences of the second order approximation. It follows immediately
from Theorem 1 that for symmetric distributions of the X; (assuming the conditions of the
theorem hold), the regret due to using the sequential procedure 7' in ignorance of o is
bounded above by 2 + 0(1) as A — . That is, in the limit, one loses at most the cost of
two observations when using the stopping rule 7" instead of no (and the limit is taken as
the cost of observations becomes insignificant compared to the cost of error). For the
symmetric lattice case, under the moment assumption of Theorem 2 one has the same sort
of result, with the upper bound 5 + o(1) instead of 2 + o(1).

By way of contrast, it also follows from Theorems 1 and 2 that the regret can take
arbitrarily large negative values as the distribution of the X; varies, even among symmetric
distributions. To see this, let X;, X;, ... be ii.d. with probability density function

f@) =2| x| Ix=y,
where I denotes indicator function, and for M > 1 define
Xim = XiI g xy=n1y .

Then for each M, Xy, Xoa, - -+ are iid. and their common distribution is symmetric
about 0. Applying Theorem 1 (for fixed M, the X, are bounded and non-lattice), the non-
vanishing term on the right-hand side of (1.7) is

2 - HhEXtu)/(oh) + % = 2 — %{4 log(M)}/{2(1 - M*)}* + %
(3.1)
=2 —%log(M)/(1 — M™*)* + %,

where o7 is the variance of the X;. Clearly, as M — o the expression (3.1) approaches
—o, and hence the “regrets” Rr — R, corresponding to the sequences Xiu, Xoy, - - - take
(for sufficiently large A) arbitrarily large negative values. This example provides an answer
to the question raised by Starr and Woodroofe (1972) and discussed further by Woodroofe
(1977), as to whether the regret can ever take negative values. Although the regret in the
normal and gamma cases considered by Woodroofe is positive for sufficiently large A (since
the constant terms in Woodroofe’s second order approximations are positive), in general
the regret need not be positive, and in fact for distributions with large fourth moments (as
in the example above) arbitrarily large negative values can be achieved.

It is also interesting to compare the second order approximation obtained by Woodroofe
(1977) for a sequential estimation procedure designed for the gamma case, first considered
by Starr and Woodroofe (1972), with the result of Theorem 1 for the sequential procedure
with stopping rule 7' Specifically, if X;, X5, - - - are i.i.d. with probability density function

fo(x) = T(@) (a/8)*x" "exp(—ax/0) z=q ,
where 6 > 0 is unknown and’a > 0 is known, and
N=inf{n>2a"':n>X,(4a™")"?},
then Woodroofe (1977) has shown that
3.2) Rv— R, =3a"" +0(1)

as A — o, where n, is as above. On the other hand, from Theorem 1, since E(X;) = 8 and
Var(X;) = 6%*/a,

Rr— R, =2—-%E{(X: — 0)*}(0*a™?) ! + % + 2E%{(X, — 0)}(6%~)"" + o(1)
3.3) =2 —%Ba2+ 6a7%)0* @2 + % + 2(20°a7%)%0% %) + o(1)
=2—%—%a '+ %+ 8+ o(l) = %hal + % + o(1).
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It follows from (3.2) and (3.3) that as A — o, the difference in risks
(3.4) Ry— Ry=(Rr— R,) — (Rv— R,) = Y%a ' + % + o(1),

the non-vanishing term of which is positive and strictly decreasing as @ — oo; this non-
vanishing term approaches + as a — 0 and approaches % as a — . In particular, for
a = 1 (the exponential case) the difference Rr — Ry is (asymptotically) 1.
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