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MIXTURES OF EXPONENTIAL DISTRIBUTIONS'

By NicHoLAs P. JEWELL

Princeton University

Arbitrary nonparametric mixtures of exponential and Weibull (fixed
shape) distributions are considered as possible models for a lifetime distribu-
tion. A characterization of such distributions is given by the well-known
characterization of Laplace transforms. The maximum likelihood estimate of
the mixing distribution is investigated and found to be supported on a finite
number of points. It is shown to be unique and weakly convergent to the true
mixing measure with probability one. A practical algorithm for computing the
maximum likelihood estimate is described. Its performance is briefly discussed
and some illustrative examples given.

1. Introduction. Parametric models for lifetime distributions have been extensively
used in the study of data arising from times to failure of “units” (e.g. patients, machine
components, etc.) under observation. We refer to Kalbfleisch and Prentice (1980) for a
description of these models. Recently there has been much interest in models where the
distribution function of the random time-to-failure is a mixture of a family of lifetime
distributions. For finite mixture models we refer the reader to Mendenhall and Hader
(1958), Rider (1961), Kao (1959), Cheng and Fu (1980). In engineering applications, an
infinite mixture has been found to be appropriate and useful in describing shock models
and random variations in hazard rates due to fluctuations in manufacturing tolerances
(stochastic hazard rates); see Harris and Singpurwalla (1968), Doyle, Hansen and McNolty
(1980), and Hill, Saunders and Laud (1980) for specific details. Recently, in studies of
mortality in demography, infinite mixture models have been suggested for populations
whose members differ in their endowment for longevity. For this and other applications in
demography, see, for example, Vaupel, Manton and Stallard (1979).

Mixture models have also received a great deal of attention in statistics. Such models
involve interesting estimation problems—see, for example, Blum and Susarla (1977), and
Simar (1976). Hill, Saunders and Laud (1980) consider maximum likelihood estimation of
mixing probabilities p., 2 = 1, when the data have a density of the form g = = pf; for
known densities f,. Laird (1978) obtains some general results about the existence of
maximum likelihood estimates of arbitrary mixing measures. Here we provide a direct
proof of the existence of a unique maximum likelihood (ML) estimate of an arbitrary
measure in the case where the model is a mixture of exponential distributions. This direct
approach yields more detailed properties of the estimate including weak convergence to
the true population mixing measure. Our proof is easily extended to the situation where
observations are arbitrarily right-censored. The methods can also be applied to mixtures
of most one-parameter families of exponential family distributions.

The mixture model is also appropriate in the context of empirical Bayes estimation; see
Robbins (1964, 1980). In this situation, the mixing measure represents an unknown prior
distribution function which we wish to estimate using a set of observations.

Finally the mixture model approach provides a smooth estimate of the survival
distribution function which may be preferable to the standard nonparametric step function
estimates. It also has the exploratory value of providing useful information in determining
possible non-homogeneous subpopulations.
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2. Preliminaries. We shall consider a lifetime distribution F(¢) having a density f(z).
The hazard rate of the distribution is given by A(¢) = f(t)/{1 — F(¢)} for ¢ such that F(¢)
< 1. In this paper we shall be concerned with mixtures of the exponential distribution. The
distribution function is then given by F(f) = [& (1 — e™) dM()\), where M is any
cumulative distribution function (cdf) supported on (0, ®) with M(+w) = 1.

Standard results on the Laplace transform now reveal the sort of distributions that are
generated when you mix exponentials. Since mixtures of Weibull distributions with fixed
shape parameter p are just powers of mixtures of exponentials, we can state a general
result concerning mixture of Weibull distributions.

THEOREM. Let F be a cdf on [0, ©) with F(0) = 0, F(+x) = 1. Then F arises as
a mixture of Weibull distributions with fixed shape parameter p = vy~ if and only if
1— F(x") is a completely monotone function of x on (0, ©).

ProoF. Feller (1971, page 439), together with the remark before the theorem, imme-
diately provides the result.

There is a corollary to this result which has apparently not been noticed before.

CoroLLARY. The Weibull distribution with shape parameter p is a mixture of
Weibull distributions with fixed shape parameter q so long as p < q.

Proor. Using the theorem, we need only check that 1 — F,(x'/?) is completely
monotone when g > p, where F, is the Weibull distribution with shape parameter p, ie.
Fp(x) = 1 — exp(—Ax”). Hence 1 — F,(x?) = exp(—Ax") where r = p/q. It remains to
show that the function exp(—Ax") is a completely monotone function of x when r < 1. This
is easy.

COMMENTS. ,

1. In particular, the corollary tells us that any Weibull distribution with shape parameter
less than 1 arises as a mixture of exponentials. Also the exponential distribution itself arises
as a mixture of Weibull distributions with fixed shape parameter p, so long as p > 1.

2. As we shall see in Section 3, the Weibull distribution with shape parameter p does
not arise as a non-trivial mixture of Weibull distributions with shape parameter p.

3. The mixing distribution M which yields a given F can be found using the inverse
Laplace transform via the Fourier-Mellin integral. For example, the Weibull distribution
with fixed shape parameter p = % and scale parameter 1 arises as a mixture of exponentials
where the mixing measure M is given by

— 2/4)\
aMoy =2 o,
27\
i.e. the stable distribution of order %. For the details of similar calculations, see Doyle,
Hansen and McNolty (1980).
4. We have the identity

A

1-F(x") = exp{—f A2) dt}.
0

Feller (1971, page 441) shows that if ¢ is completely monotone and x is a positive
function with a completely monotone derivative then ¢ (x) is completely monotone. Now
if A is completely monotone, [§ A(#) dt is a positive function with a completely monotone
derivative. Hence 1 — F'(x) is completely monotone. Similarly, since for A < 1, x” is positive
and has a completely monotone derivative, 1 — F(x) completely monotone implies 1 —
F(x") is completely monotone. Thus a sufficient condition for a survival distribution to be
a mixture of exponentials is the complete monotonicity of the hazard function. It is easily
seen that this condition is not necessary.
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We remark also that it is easy to derive equations linking the first m derivatives of A(¢)
in terms of the first (m + 1) moments of the probability measure e™ dM(A)/k where
k=[5 e™ dM(Q\).

3. Maximum likelihood estimation of the mixing measure. In this section, we
consider the existence and properties of the ML estimator of the mixing measure M given
a sample of n independent observations from the mixture distribution F(¢) = [§ (1— e™)
dM(M). Our remarks in Section 2 show that our results immediately extend to mixtures of
Weibull distributions with fixed and known shape parameter. Our approach to ML
estimation of the mixing measure heavily depends on work of Simar (1976) on ML
estimation of a compound Poisson process.

Before we can make any sense of estimation of the mixing measure we must consider
the problem of identifiability. Identifiability of the mixing measure of exponential distri-
butions follows from Section 4 of Teicher (1961). So we can now turn to considering ML
estimation of M. Suppose we have n independent observations, ¢, - - +, ., arising from the
mixture distribution F(¢) = [§ (1 — e ™) dM(A). The log-likelihood function can be written
as

(1) ®=3", log{f Ae™ dMO\)} =Yi-1log Bi=@(By, -+, B))
0

where B; = [ Ae o dM@), j=1, ..., n. We wish to determine the cdf M (if any) which
maximizes the function ®.

Let Zbe the set of positive measures on [0, ®) with total mass of at most 1 and % those
measures in % with no mass at 0. Equations (1) define a map ¢ from & to the n-tuple .
(Bi, -+, Bz) in R™. If A C R" is the image of & under ¢, it is easy to verify that A is
compact and convex. Also @ is strictly concave on A so that it attams its maximum value
at a unique point of A whlch we shall denote by (,31, ceey ,Bn) Let M be a measure of mass
of at most 1 with ¢(M ) = (,81, cee, ,8,,) Suppose the mass of M is 1 — ¢ where ¢ > 0. Then
O + £8(1)) > <I>(,é1, cee, ,Bn) where 8(1) represents a unit mass at 1. Thus all measures
M in & with ¢(M ) =( ,él, ey ,B,,) have total mass 1. Note that this also shows that no M
in #with (M) = (B, - - -, B) has any positive mass at 0. For if there existed such an M
with mass a(> 0) at 0, then ¢(M — ad(0)) = ¢(M) (,31, CEEN Bn) whlch by the above,
shows that M — a8(0) has total mass 1 which contradicts the fact that M has total mass 1.
We have now established the existence of an ML estimate of M which is in %.

Let G € Fand ¢(G) = (g1, -+, &) € A. Consider the function % of ¢ defined on [0, 1]
by h(e) = ®(¢{(1 — &)M + eG}) = X% log{(1— &)B; + £g;}. Now h is a strictly concave
function of & with a maximum at ¢ = 0. Hence, differentiation with respect to ¢ leads to

(2) Z/ 1 g] BJ
il
With G = §(A), this gives
1o, Ae™
(3) "y Yi=1 7 =1,

and this is true for all A = 0.

Integrating both sides of (3) with respect to the measure M shows that equality holds
in (3) everywhere on the support of M. Polya and Szego (1925) show that a non-identically
vanishing exponential polynomial ¥ 7-; p;(y)exp(k;y), where p; is a real ordinary polyno-
mial of degree n;, admits at most Y 7-; (n; + 1) — 1 zeros, counting multiplicities. Hence
the support of M is finite and contains at most  distinct points.

We also can deduce information concerning the location of the pomts of support of M
from the fact that equality holds in (3) everywhere on the support of M.IfA<tg) then the
derivative of 1/n Y 7-1 A exp(—A¢) /,é,- is positive and since the function is zero when A = 0
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we know that the points of support of M lie to the right of ¢). Similarly we can deduce
that the points of support of M lie to the left of £}.

We have thus shown that any ML estimate of M has finite support containing at most
n distinct pomts each of these points lying in the closed interval [¢ ), £7))-

The point (,31 NEREIN ,8,,) in A is unique and it uniquely determines the number r and the
points {A;, -+, A} in the support of any measure M with $(M) = (,31, e, ,Bn) It remains
to determine the mass P, of M at A, form =1, ,r. We have ,8, Y n=1PmAm €Xp(—Ant),
j=1, ..., n. We know there is one solution ( P1, +++ , pr) to this set of equations. Suppose
there is another solution ¢, -+, g-. Then

Yr=1 PmAm €Xp(=Antj) =0, j=1,...,n, where Pn=pn— qn.

Thus the function Y %-1 P n» exp(—Anxt) admits at least n distinct zeros. By the result in
Polya and Szego given above, we know that n < r — 1. But r < n. This contradiction shows
that pi, .- - , pr are uniquely determined and thus the ML estimate is unique.

REMARK. We may adapt the above argument for the case where % of the n observations
are right-censored. The ML estimate M exists and is supported on a finite number, r, of
distinct points. In this case r is bounded above by the integral part of n — k/2. However M
may now have support at the origin and we no longer have the condition on the points
lying in [¢3), t@]. When & = 0, 1, n — 1, n, it is again easy to show that M is unique.
However it does not appear to be unique for other values of % for certain combinations of
the values Ay, - - - , A, and the observations, although the number of points r and the points
A1, +++, A, are still uniquely determined.

We now prove a theorem describing the convergence of the unique ML estimate,
denoted by M,,, derived from n independent observations.

THEOREM. As n — o, the sequence {M,} of ML estimates converges weakly with
probability one to the true mixing distribution M,.

ProoF. The sequence {M,} has a subsequence which converges weakly to a positive
measure M on (0, ©) with total mass of at most 1. Let F, be the empirical distribution
function associated with ¢, - - - , £,. Then, with probability one, F, converges weakly to F'
as n — . Now, equation (2) above yields

n7 Y {fu, () /fur, ()} < 1,
where for any measure G € %, fs(t) = [ Ae MdG (). This can be rewritten as

J [ fat, (8)/fo, (2)] AF.(2) = f h. (t) dF, (t) = 1,
0 0
where A, (t) = fu,(¢)/fu, (¢). Thus, for a fixed « > 0,

4) J’ ha(t) dF, (t) = 1.
1

/k

Now there exist constants a, b > 0 such that the measure M, has mass of at least § >0 on
[a, b] for large n. Otherwise (4) is contradicted. Thus, for n large enough, fu, (t) = &
min(ae %, be %), and so A, (¢) < (C/t){min(ae™*, be~*)} ! for some constant C > 0. We
thus have A, (¢) bounded uniformly in n by a constant and so, applying the dominated
convergence theorem together with standard techniques to (4), we obtain [f/. {fu,(¢)/
fu(t)} dF(¢) < 1. Since the choice of k was arbitrary we have E {fu, (¢)/fu(¢)} = 1 by the
monotone convergence theorem.
Consider the function ¥ on % given by

_ fa(?)
)




MIXTURES OF EXPONENTIAL DISTRIBUTIONS 483

where the expectation is taken over the random variable ¢. By Jensen’s inequality we have

- fa(?) _
el ]

with equality if and only if G = M,. Thus if we suppose M % M,, we can consider

lim, o WA= OM+ e M) =y o

€
But this limit can be evaluated and is equal to E{fu, (¢)/fu(t)} — 1 which gives a
contradiction. Thus M = M,. Therefore, with probability one, any convergent subsequence
of {M,} converges to M, and the result is established.

4. Computation of M,. We know that M, is a step function with a finite number, r,
of steps. There are a variety of routines for maximizing the likelihood of a finite mixture
of exponentials when the mixture is a step function with a known finite number of steps.
Hasselblad (1969) suggested the following iterative scheme to &valuate p, - -- , p, and A,

, Ar, which are the masses and points of mass of M, respectively, for fixed r:

at the kth step, we have pi*, AP, j=1, .-, r;

put g2 (2) = Va1 pAP exp(=AP¢)

and f{P(t) = A" exp(=APt),j=1, ---,r;

then pf**" = pP[Ti-1 {£7(t) /g (t:)}1/n,

and A0 = P { f1P(6) /g ® (80} /L i {617 (8) /g )}, 7 = 1,

This is, in fact, a special case of the EM algorithm for computation of ML estimates and
Dempster, Laird and Rubin (1977) show that the iterative scheme converges to the ML
estimate. Since r(=< n) is unknown in our case, one approach is to start with r = 1,
maximize the likelihood and increase r as long as the log of the likelihood keeps increasing.
To use the above algorithm, we need initial values for p;, - -+, pr, A1, + -+, A-. In practice,
choice of initial estimates is relatively unimportant and equal values of the p,’s together
with equally spaced A;’s lying within the interval [¢5,), £ )] works well.

Only minor adjustments to the above algorithm are necessary to handle mixtures of
Weibull distributions with fixed shape parameter p. Note that p must be chosen in advance
since the family of mixtures of Weibull distributions with shape parameter p > 0 is not
identifiable, by the Corollary in Section 2. Also, with a more refined use of the EM
algorithm, we can use the above approach when some of the data are censored.

The algorithm described above to estimate M, suffers the limitations and drawbacks
which occur in estimating the parameters of a finite mixture of distributions. These are
discussed in Hasselblad (1969). In summary, the variances of the ML estimates may be
very large if the different scale parameters occurring in the mixture are not sufficiently
distinct. Typically, more than 100 iterations are needed for convergence to 3 decimal places
and the sample size needs to be large in order to detect “close” subpopulations. (Fortu-
nately, in engineering and demographic applications, large sample sizes are often available.)

To illustrate, we indicate the results of three examples. First, 100 observations were
generated from two exponential distributions with A; = 1, A, = 15 and mixipg probabilities,
.2 and .8 respectively. In this case, the estimate M, yielded A1 = .863 and A, = 23.6 with b
= .242 and p, = .758. Second observations were generated from a mixture of three
exponentials with respective parameters \; = 1, Ao =2, A3 =5, p; = .5, ps = 4 and p;s =
With sample size n = 100, M, still had only one point of support. Wlth n = 200, it had two
pomts of support. With n = 1000, the estimates were =1 .04, X =215, A = 13.6, P =
.500, p2 = .290 and p; = .211. Thirdly, 10,000 observations were generated from a mixture
of three exponentials with A, = 1, A; =9, A; = 15, p; = .2, p; = .1 and p3 = .7. The estimate
M, yielded A; = 1.03, A, = 8.50, X = 14.7, p; = .195, p» = .303 and ps = .502.

Thus the convergence proved in the previous section can be very slow. Care also is
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necessary in choosing which family of distributions to mix over—refer to the corollary in
Section 2. For example, n observations were generated from the Weibull distribution with
A = 1 and shape parameter 0.5. Under the assumption of a mixture of exponentials (which
is correct), M, was computed. The table below gives some of the results. The true measure
is given in Comment 3 of Section 2.

n Mn

10 A =440, X =0646, p = 507, p. = 493

50  A=274, A =029, P =578  p, = .422

100 A = 2190, X = 4.07, As =263 A= .312
pr= 059, p, = .237, Ds = 299, P, = 406
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