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NATURAL EXPONENTIAL FAMILIES WITH QUADRATIC
VARIANCE FUNCTIONS!

By CARL N. MoORRIS

University of Texas, Austin

The normal, Poisson, gamma, binomial, and negative binomial distribu-
tions are univariate natural exponential families with quadratic variance
functions (the variance is at most a quadratic function of the mean). Only one
other such family exists. Much theory is unified for these six natural exponen-
tial families by appeal to their quadratic variance property, including infinite
divisibility, camulants, orthogonal polynomials, large deviations, and limits in
distribution.

.

1. Introduction. The normal, Poisson, gamma, binomial, and negative binomial
distributions enjoy wide application and many useful mathematical properties. What
makes them so special? This paper says two things: (i) they are natural exponential
families (NEFs); and (ii) they have quadratic variance functions (QVF'), i.e., the variance
V(u) is, at most, a quadratic function of the mean u for each of these distributions.

Section 2 provides background on general.exponential families, making two points.
First, because of some confusion about the definition of exponential families, the terms
“natural exponential families” and “natural observations” are introduced here to specify
those exponential families and random variables whose convolutions comprise one expo-
nential family. Second, the “variance function” V(u) is introduced as a quantity that
characterizes the NEF.

Only six univariate, one-parameter families (and linear functions of them) are natural
exponential families having a QVF. The five famous ones are listed in the initial paragraph.
The sixth is derived in Section 3 as the NEF generated by the hyperbolic secant
distribution. Section 4 shows this sixth family contains infinitely divisible, generally
skewed, continuous distributions, with support (—oo, ).

In Sections 6 through 10, natural exponential families with quadratic variance functions
(NEF-QVF) are examined in a unified way with respect to infinite divisibility, cumulants,
orthogonal polynomials, large deviations, and limits in distribution. Other insights are
obtained concerning the possible limit laws (Section 10), and the self-generating nature of
infinite divisibility in NEF-QVF distributions.

This paper concentrates on general NEF-QVF development, emphasizing the impor-
tance of the variance function V(u), the new distributions, and the five unified results.
Additional theory for NEF-QVF distributions, e.g., concerning classical estimation theory,
Bayesian estimation theory, and regression structure, will be treated in a sequel to this
paper. Authors who have established certain statistical results for NEF-QVF distributions
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66 CARL N. MORRIS

include Shanbag (1972) and Blight and Rao (1974) for Bhattacharya bounds; Laha and
Lukacs (1960) and Bolger and Harkness (1965) for quadratic regression; and Duan (1979)
for conjugate priors.

2. Natural exponential families and variance functions. A parametric family of
distributions with natural parameter set © C R (the real line) is a univariate exponential
family if random variables Y governed by these distributions satisfy

(2.1) Py(Y € A) = f exp{0T(y) — ¥(0)}£(dy)

A

for some measure £ not depending on 6§ € 6, A C R a measurable set, and T a real valued
measurable function (Lehmann, 1959, Barndorff-Nielsen, 1978). Any factor of the density
of y not depending on 6 is absorbed into £ In (2.1), 6 is called the natural parameter and
O, which is the largest set (an interval, possibly infinite) for which (2.1) is finite when A
= R, is called the natural parameter space. Often @ is a nonlinear function of some more
familiar parameter. The function /() is determined by ¢ so that (2.1) has unit probability
ifA=R.

The natural observation in (2.1) is X = T(Y). Its distribution belongs to a natural
exponential family (NEF),

(2.2) PyXeA)= f exp{fx — ()} dF(x)

A
with F a Stieltjes measure on R. If 0 € © and y/(0) = 0 then F'is a cumulative distribution
function (CDF). Otherwise, choose any 8, € © and let dFy(x) = exp{fox — Y(6h)} dF(x).
Then F; is a CDF, and via (2.2) generates the same exponential family as F. Hence F in
(2.2) is taken to be a CDF without loss of generality.

The modifier “natural” is needed to distinguish NEFs from exponential families not
satisfying (2.2). For example, Y ~ Beta(my, m(1 — p)) and Y ~ Lognormal(a, o2) satisfy
(2.1) with T(y) = m log(y/(1 — )), 8 = u and T(y) = log(y), § = a/0? respectively, but
they are not NEFs. Convolutions of NEFs, 3X; = $7(Y;), are exponential families with
natural parameter § (and NEFs), but Y, is not, unless 7' is linear. Cumulants of X =
T(Y) are derivatives of ¥(#), but no simple expression yields cumulants of Y. Thus the
results being developed here pertain only to NEF's.

Every univariate CDF F, possessing a moment generating function (MGF) in a neigh-
borhood of zero generates a NEF, as follows. Define the cumulant generating function
(CGF) ¢(0) on O, the largest interval for which (2.3) exists, by

(2.3) Y(0) = log J exp(fx) dFy(x), 9e 0.

Then the CDFs F,, § € O, defined by
(24) dFy(x) = exp(6x — Y(0)) dFy(x)

form a NEF, with Fy a CDF. The NEF so generated was called a conjugate family,
(Khinchin, 1949) predating its use by Bayesians for quite a different purpose, and plays an
important role in expansion theory (Barndorff-Nielsen and Cox, 1979). Given any 6* € O,

# generates the same NEF (2.3) and (2.4). Thus the NEF is closed in that it can be
generated by any of its members. The mean, variance, and CGF are

(2.5) p=EX = f x dFy(x) = ¢'(0)

(2.6) . V(p) = Var,(X) = j (x — p)* dFy(x) =" (0)
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2.7 ¥o(t) = log J exp(tx) dFp(x) = (¢ + 0) — ¥(0).

In (2.3), ¥(0) = 0 since F, is a distribution function, so Fy = F; when 6 = 0 in (2.4). The
results in (2.5) and (2.6) follow for r = 1, 2 from (2.7) and the property of the CGF that the
rth cumulant, C, of Fy is given by

_ d"(t)
2.8) c. =2

=¢").

t=0

The range of y’(8) over § € © will be denoted £, i.e., @ = ¢’(6). 2 is an interval (possibly
infinite) of R. In applications, the mean u € € of the distribution is a more standard
parameterization than § € © for most NEFs.

The variance ¢”(f) depends on p. = ¢’(f) as does every function of § because u is a 1
— 1 function of # since ¥”(8) > 0. Formula (2.6) expresses this fact and we name V(u),
together with its domain &2, the variance function (VF) of the NEF.

The variance function (&, V) characterizes the NEF, but no particular member of the
NEF, because it determines the CGF, and hence the characteristic function, as follows.
Given V(-) and po with 0 < V(uo) < oo, define Q as the largest interval containing p, such
that 0 < V(m) < o for all m € Q. (Any other uo €  regenerates £ in the same way.) Now
define y(-) by

* dm *m dm
@9 "’(fm)=f’vrn7>

o H

for all p € Q. Note that § = [ dm/V(m) and the range of # as u varies over & is O, the
natural parameter space. Validity of (2.9) follows from differentiation with respect to p. In
(2.9), Y(0) = 0, ¥/(0) = po, and ¥”(0) = V(o).

Observe that V without £ may not characterize the NEF. For example, V(p) = p*
characterizes two different NEFs, one with €, = (—, 0) and the other with £, = (0, =).
These correspond to the usual exponential distribution (2;) and the negative of the usual
exponential distribution (2,), the sets being separated by points (in this case one point)
with V(u) = 0. If F; is not the CDF of a degenerate distribution in (2.3) and (2.4), V(p) is
strictly positive throughout 2.

The mean-space @ of a NEF is the interior of the smallest interval containing the
support Z of Fin (2.2). Thus @ = & if % is an open interval, and the closure of £ always
contains 2 (Efron, 1978, Section 7).

The variance function characterizes the particular NEF within all NEF's, but not within
a wider family of distributions. For example, the beta and lognormal distributions men-
tioned after (2.2) have QVF with

Vi(p) = p(1 —p)/(m + 1)
and
Vao(u) = u? {exp(a®) — 1}, u = exp(a + 0%/2),

respectively. These VFs match those of the binomial and gamma, respectively, and so fail
to characterize the family within all exponential families.

Formula (2.8) is easily modified to generate cumulants of any NEF in terms of the
mean p = y/(0). If C.(u) is the rth cumulant expressed in terms of p, then Ci(p) = p, Ca(n)
= V(w), and

(2.10) Coor(w) = V(CHw), r=2,

primes denoting derivatives wrt u. We have
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Crir(p) =¢*0(0) = dy(0)/db

(a0 (du\

which is (2.10). Thus, suppressing dependence on g,
(2.11) Cs(p) = V'V, Cy(p) = (V') +VEV”

are expressed in terms of derivatives of the variance function, as can be higher cumulants,
using higher derivatives of V(u).

3. NEF's with quadratic variance functions. The development in Section 2 shows
that many NEFs exist. A few have quadratic variance function (QVF)

(3.1) V(p) = vo + vipp + vop®

Those with QVF include the normal N(u, 0%) with V(u) = o? (constant variance function);
the Poisson, Poiss(A) with u = A, V(u) = u (linear); the gamma Gam(r, A), p = rA, V(u) =
rA? = u?/r; the binomial, Bin(r, p), u = rp, V(p) = rpq = —u*/r + u(g = 1 — p); and the
negative binomial NB(r, p), the number of successes before the rth failure, p = probability
of success, u = rp/q, V(n) = rp/q* = u*/r + p(q = 1 — p). Table 1 lists properties of these
distributions.

The four operations (i) linear transformation X — (X — b)/c, (ii) convolution, (iii)
division, producing £ (X;) from #(X) with X =X; + ... + X,,, X iid, as discussed below,
ZL(Z) signifying the law of Z, and (iv) generation of the NEF as in (2.3), (2.4), all produce
NEFSs, usually different from that of X, carrying each member of the original NEF to the
same new NEF. Thus NEFs are equivalance classes under these operations. These
operations also preserve the QVF property, as shown next, and so preserve NEF-QVF
structure.

If X has a NEF distribution (2.4) and V{(u) is quadratic, as in (3.1), we shall say X has
a NEF-QVF distribution. Let ¢ # 0 and b be constants, and let X* = (X — b)/c be a linear
transformation of X with mean, u* = (u — b)/c. Then V*(u*) = Var(X*) = V(u)/c® =
Vien* + b)/c? so

(3.2) V*(u*) = V(B)/c® + V'(b)u*/c + va(p*)>

Thus v, — vz, v1 — V'(b)/c, and vy — V(b)/c?if X - (X — b)/c.
Define d = v? — 4vov; to be the discriminant of V(u). Since

(3.3) {(V'(1))? = (2uap + v1)* = 40, V(p) + d,

the discriminant d* of (3.2) is [V’(b)/c]? — 4v:V(b)/c? = d/c® Thus d is unaltered by
translations, and d — d/c?if X — (X — b)/c.

Now let X;, i =1, - .., n, be independent identically distributed (iid) as a NEF-QVF,
with V(u) as in (3.1). Define X* = (X1 + -+ + X, — nb)/c. Then X* has a NEF-QVF
distribution, p* = EX* = n(p — b)/c, 2* = (% — b)n/c, and

V*(u*) = nV(b + cu*/n)/c*

=nV(b)/c* + V' (b)u*/c + va(u*)?/n.
Thus, if X —> (X; + .-+ + X, — nb)/c, then
(3.5) vo— nV(b)/c? v — V'(b)/c, vy — Uo/n,

(3.4)

and the discriminant
(3.6) d— d/ct.

Formulas (3.4) and (3.5) show that the QVF property is preserved and how the VF changes
under convolution and linear transformation.
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The convolution operation sometimes can be reversed. If X follows a NEF-QVF
distribution, suppose n can be given so that X = Xt + ... + X} for iid variables {X%}.
This is possible for any n with infinitely divisible distributions, but otherwise only in
certain cases. Distributions permitting this for some n = 2 are termed divisible here,
paralleling the infinitely divisible terminology. The operation producing £ (X%) from
Z(X) is termed division, and X% or £ (X?%) is called a divisor of X or of £(x). The VF of
X1 is obtained from that of X by reversing (3.5), taking b = 0, ¢ = 1. Then vy — vo/n, v;
— vy, and v, — nv; under division.

If more generally for some n, X = ¢(XT + ... + X}}) + b, i.e.,, XT is the n-divisor of (X
— b)/c, then u* = EXt = (u — b)/nc and V*(u*) = Var(X%) = V(b + cnu*)/nc?. This is
(3.4), replacing n by 1/n. Thus (3.5) unifies n-convolutions and r-divisions of X, using 1/n
to represent division. By combining these two operations, n can take fractional values, and
for infinitely divisible distributions n can be any positive real number. Neither the
convolution nor the division operation affects the discriminant d, as shown by (3.6).

Finally, in NEF-QVF distributions, y(6) is related to § and V(u) by

(3.7) log(V(1)/ Vo)) = 202[¥(8) — ¥(6o)] + v1[6 — bo].

with p = ¢’(0), o = ¢¥'(6p). Formula (3.7) is non-trivial except in the normal case (v; = v,
= 0), and is proved by differentiating wrt 6.

4. Finding all NEF's with QVF: the sixth family. Because the normal distribution
N(u, o®) has V(i) = 0% and the VF characterizes the NEF, it follows that the normal
distribution is the unique NEF with constant variance function (ve = v; = 0). Similarly, the
Poisson distributions, including linear transformations of the usual Poisson, are the only
NEFs with strictly linear variance function, V(u) = vip + vo, U1 # 0.

Let us characterize all strictly quadratic NEF-QVF distributions. Suppose X has a
NEF-QVF distribution with VF (3.1), and vs # 0. Define X* = aV’(X), taking a = 1 if d
=0, a = | dvs|""/? otherwise. Then X* is a linear function of X with variance function given

by (3.2),
4.1) V*(u*) = s + va(u*)% s = —sgn(duvs).

We may regard (4.1) as the canonical member under linear transformations of the NEF-
QVF with v, # 0 specified (v; = 0, s = 0, £1). All other quadratic VFs, i.e., all other vy,
v, can be obtained from the canonical VF (4.1) by the linear transformation X =
(X*/a — v1)/2v., the inverse of the transformation X* = aV'(X).

Six cases with vz # 0 in (4.1) correspond to combinations of v; <0, v > 0 and s = —1,
0, 1. The two having v; < 0 with s = —1 and s = 0 make V(u) < 0, so are impossible. Three
others correspond to (linear transformations of) the gamma (v. > 0, s = 0), the binomial
(v2 < 0, s = 1), and the negative binomial (vs > 0, s = —1), cf. Table 1.

The case v; > 0, s = 1 remains. For v, = 1, the missing distribution is the natural
observation of a beta exponential family. Let y ~ Beta(0.5 + 8/, 0.5 — 8/7), | 0| < /2.
The natural observation for this exponential family is x = log{ y/(1 — y)} /7, having density

_ exp[fx + log{cos(d)}]
(4.2) frolx) = 2 cosh (7x/2)

with respect to Lebesgue measure and support — < x < . The proof that X has this
density follows almost immediately from the reflection formula (Abramowitz and Stegun,
1965, page 256), which implies that 8(0.5 + ¢, 0.5 — t) = 7/cos(nt).

The mean and variance of (4.2) are derived by differentiating the CGF (0) =
—log(cos(8)) to get EX = p = ’(9) = tan(f), Var X = V(p) = ¢"(8) = csc’(@) = 1 + p? so
X has a NEF-QVF distribution. Convolutions (r times) and infinite divisibility of (4.2), to
be discussed in the next section, yield all distributions with V(u) = r + u?/r, per the
discussion surrounding (3.5), for any r > 0.
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TaBLE 1
Univariate natural exponential families with quadratic variance functions
Normal Poisson Gamma
N, 0?%) Poiss(A) Gam(r, )
1 Ae™ 2\ e
D t e (x=N)2/202 —_ —
enstty oV Pl (A) A0
—0 < x < 0<x<o
-0 <A< x—g,<l,)\2,<-;°-. 0<A<oo
>0 r>0
Inf. Divis. (Sec. 6) Yes Yes Yes
Elem. Distn. N\ 1) Poiss(A) Exponential (A)
6 Ao® log A~ —1/A
(] (=00, ) (—00, o) (=00, 0)
o’9* _ N 0 —r log(~6)
ve) 7 "2 e =A = r log(\)
mean = p = {/(6) A = 00 A=e¢e’ rA=—r/8
Q (=00, o) (0, ) (0, )
Vip) = ¢"(6) A=¢e’ A\ =r/0?
= vop® + vip + Vo vo = o* =p =pu¥/r
d = v — 4w 0 1 0
log Ese™ 2 2 ¢ _ _ _
— Ut + 0) — U6 t\ + t°6°/2 At —=1) rlog(1l — tA)
Orthog. Polynomials Hermite Poisson-Charlier Generalized
(Sec. 8) Laguerre
Exponential Large No Conditions A=e€ r=e
Deviations (Sec. 9),
e>0
Normal Normal Normal

Limit Laws (Sec. 10)
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TaBLE 1—Continued.
Univariate natural exponential families with quadratic variance functions

Negative
Binomial Binomial NEF-GHS
Bin(r, p) NB(r, p) NEF-GHS(r, A)
: r X, r—x F(X + r) x. r
Density (x)p q —fﬁ')T Sec. 5
x=0,1,---,r x=0,1,2.... —0<x <o
0<p<l1 O<p<l1 —o <A< ®
r=1,2 -... r>0 r>0
Inf. Divis. (Sec. 6) No Yes Yes
Elem. Distn. Bernoulli (p) Geometric (p) NEF-HS(\)
0 log(p/q) log(p) * tan™'(A)
c] (—o0, %) (—c0, 0) <_ 12' , 12’)
w6) —rlog(q) —rlog(q) —r log(cos(@))
=rlog(1l + €% =—rlog(l — €% = (r/2) log(1 + A?)
7 -0 rp r
mean = p = {/(§) m=r/1+e”% ;=eq_—l rA = r tan(9)
Q ©,r) (0, ) (—o0, o)
Vi) = ¢"(6) rpg = ¢ /4 r(1+ A%
10 Pq = d+e) P/q
=vop® + vip + o =—u¥/r+p =p’/r+p =pi/r+r
d = v} — 4v, 1 1 —4
log Ege™ q .
— WUt + 0) — w(6) rlog(pe’ + q) r log 1= e —r log(cos(t) — A sin(t))
Orthog. Polynomials Krawtchouk Meixner Pollaczek
(Sec. 8)
Exponential Large esp=1l-e rp=e r=e
Deviations (Sec. 9),
€e>0
Limit Laws (Sec. 10) Normal Normal Normal
Poisson Poisson Gamma

Gamma
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Linear transformations yield other distributions for a specified v, = 1/r > 0, producing
arbitrary vo, vi, subject to d = v3 — 4vov; < 0; from (3.3), linear transformations must
preserve the sign of the discriminant, and d = —4 < 0 from V(u) above. Then if X* has
V*(u*) =r+ (u*)*/r, X = X*(vo/r — v3/4)'* — rv,/2 has VF

4.3y V() = vo + oip + p2/r,  r>0, v} <dvyr.

When 0 = 0, (4.2) is called the “hyperbolic secant” (HS) distribution (Johnson and
Kotz, 1970). Convolution and infinite division when 6 = 0 produces the “generalized
hyperbolic secant” (GHS) distributions (Baten, 1934; Harkness and Harkness, 1968), all
symmetric distributions.

The NEFs generated by the HS distribution (and generated by their linear transfor-
mations) appear to be new. They have VFs given by (4.3), and are skewed when 6 # 0. The
natural exponential family generated by the generalized hyperbolic secant distributions
will be referred to as the NEF-GHS distributions, reserving NEF-HS for (4.2). Properties
of these new distributions are developed in the following sections.

We have just found that all univariate natural exponential families with quadratic
variance functions are the normal (constant), Poisson (linear), gamma, binomial, negative
binomial, and NEF-GHS distributions and linear transformations of these. These six
distributions are summarized in Table 1.

Each of these distributions contains a subfamily, which we term the family of elementary
distributions, with leading coefficient in V(u) having unit magnitude + 1. These are the
normal distribution with unit variance, (vo = 1), the usual Poisson (v; = 1), the exponential
(v2 = 1 in the gamma), the Bernoulli (v: = —1, r = 1 in the binomial), the geometric (v, =
1, r = 1 in the negative binomial), and the NEF-HS (4.2).

Remarkably, just six simple distributions, one elementary distribution from each class,
including the N(0, 1), the Poisson (A = 1), the exponential (mean = 1), the Bernoulli (p
= 1), the geometric (p = %), and the hyperbolic secant (6 = 0), generate six of the main
families of distributions in statistics via the (commutative) processes of:

1. linear transformation: X — (X — b)/c

2. generation of the NEF, per (2.3)-(2.4)

3. convolution

4. infinite division (division in the binomial case).

A fifth process, not commuting with the above, produces many other named univariate
exponential families including the lognormal, the beta, the extreme value, the Pareto, and
the Weibull distributions, which are not NEFs. These are derived as

5. nonlinear transformations of NEF-QVF distributions, i.e., X — Y= T"'(X), T as in

(2.1).

5. The NEF-GHS Distributions. The hyperbolic secant density fio(x) in (4.2) with
6 = 0 is symmetric about 0 with unit variance and CDF

1 1
(5.1) Fi5(x) = — arc tan| sinh 7 + =
T 2 2

on —o < x < © (Johnson and Kotz, 1970). Convolutions and divisions of this distribution,
which is infinitely divisible (Feller, 1971, also proved in Section 6) are said to have the
generalized hyperbolic secant distribution (GHS) (Johnson and Kotz, 1970). These
densities, all symmetric about 0, take fairly simple form for integral convolutions, f;.o(x)
= fio(x)* -+ * fio(x) r times. Then

X

(5.2) foo(x) = m ,

and for r = 1, integers only,
2

(5.3) fr+20(x) = o+ 1)

frO(x)
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Thus f.o(x) is a polynomial of degree r divided by cosh(7x/2) if r is an odd integer, and
divided by sinh(7x/2) if r is even. The f,o(x) densities when r is not an integer are

expressible as infinite products
r—2
frolx) = % I {1+ 2%/ (r + 27)"} 7"
(Johnson and Kotz, 1970).

The MGF of f,o(x) is 1/cos’(t) and the characteristic function 1/cosh’(¢). For r = 1,
then, the characteristic function is 1/cosh(¢), the same as the density, making the
hyperbolic secant density fi,0(x) “self-conjugate,” like the normal density.

We note that fio(x) is the distribution of (2/7)log | C:| and f.o(x) is of (2/7)log | C:1C:
... C,| with C, Cy, - - -, C, independent Cauchy random variables. This follows easily for
r = 1 from the fact that C; is the ratio of two independent normals, so Y = C3/(1 + C3) ~
Beta(0.5, 0.5), and then the argument preceding (4.2) shows X = log{Y/(1 — Y)}/7 =
2 log| C: |/ has density fio(x). Convolutions give the result for general r. Thus, the product
of independent Cauchy distributed variables is simply related to (5.3).

Now let us generate the NEF f,4(x) from f,o(x) by using (2.3) and (2.4) to get

(5.4) fro(x) = exp{fx + r log cos(6)} fro(x), |0 <n/2,

with the CGF /() = —rlog{cos(d)} obtained from the MGF of f,,o(x). It has MGF {cos(6)/
cos(@ + t)}”, mean p = ¢’(#) = r tan(d) and variance V(u) = ¢"(0) = u*/r + r with
discriminant d = —4. It follows from (5.3) and (5.4) that
(5.5) Fraas @) = cos’@) 2 f 40,
’ rir+1)°"
Let A = tan(d) be the mean of the elementary density fi0(x) (cf. Section 4). Then for
any r >0,

(5.6) *(x) = (1 + A% 2exp{x tan"'(\)} f0 (x)

may be a more useful parameterization, —o0 < A\ < . The GHS distributions (A = 0) are
bell-shaped with exponentially decaying tails. For A # 0, f}\(x) has skewness coefficient
2M/(r + rA%)Y2, bounded above and below (as A — o) by +2/r'/?, the skewness of Gam(r,
a). In fact, as A — = oo, f%\(x) is approximated by the density of + G with G ~ Gam(r, | A |),
a fact proved in Section 10. Thus A, or 6, is a shape parameter measuring the nonsymmetry
of f#:(x), and compromising between a bell-shaped distribution when A = 0 and a gamma
distribution as | A | — . Of course, as r — =, this bell-shaped distribution approaches the
normal. With r = 1, the compromise is between the HS distribution and an exponential
(or minus an exponential), so as A — o, the probability that X < 0 vanishes rapidly while
the modal value is positive but very close to zero. For any fixed r and 6 = 0, the right tail
of f,.4(x) behaves like the tail of a Gam(r, 1/(7/2 — 6)) distribution.

Other properties of the NEF-GHS distributions are developed in the next sections as
part of the general NEF-QVF theory.

6. Infinite divisibility of NEF-QVF distributions. The binomial distribution is
not infinitely divisible, for no bounded distribution can be, but the other five NEF-QVF
distributions are (Feller, 1971). A new proof is given here for all five distributions
simultaneously, revealing these five to be “self-generating,” a term defined below.

Khinchin’s characterization (Gnedenko and Kolmogorov, 1954) that a distribution
possessing a MGF be infinitely divisible amounts to requiring its CGF y/(¢) satisfy

(6.1) Y7(¢)/¥"(0) = E exp(tY)

for some random variable Y. We show for NEF-QVF distributions that Y may be taken as
Y = V'(X), X = (X; + X;)/2 being the average of two iid elementary distributions (cf.
Section 4) in the family. In this case, V’(X) is linear (or constant), V being quadratic; and
X, + X, being a convolution, belongs to a NEF.



74 CARL N. MORRIS

A family infinitely divisible distributions will be called self-generating if the random
variable Y in (6.1) is a convolution of members of the family.

THEOREM 1. NEF-QVF distributions are infinitely divisible, provided v, = 0. The
elementary NEF-QVF distributions are self-generating.

Proor. First consider the elementary distributions (cf. Section 4), so v, = 0 or v = 1.
Let Fy be the CDF in (2.4) of the distribution with = 0, and ¢ (¢) its CGF. With u = ¢’(6)
we have for F, in (2.4),

d{log y"(8)}/d6 = V(u) d{log V(u)}/du = V() = 2up + 01 = 200/ (6) + v

Thus, integrating wrt 6, using ¢ (0) = 0 to determine the constant of integration, and
exponentiating:

(6.2) Y"(0) = ¢”(0) exp{2v:4(0) + v:16}.
Let X, and X; be iid as F,. Then
Y = V'(X) = va(X: + Xo) + v1 has MGF E exp(tY) = exp{2y(vot) + vit}.

This is (6.2) at § = ¢, because v2y(f) = Y(v2.0) when v, = 0 or v, = 1. Hence Fy, an
elementary CDF, is infinitely divisible. Then nonelementary distributions, with v, # 1, are
also infinitely divisible, being convolutions of divisors of the elementary distribution. This

completes the proof.

7. Cumulants and moments. The following theorem provides a simple relation
between moments and cumulants that replaces complicated formulae relating moments to
cumulants (e.g., expressions given in Kendall and Stuart, 1963). It holds in general, not
only for exponential families.

THEOREM 2. Suppose X has m moments, EX" = M,, and cumulants C,. Then for
l1=r=m,

(7.1) M, =35 (r B 1)M:c,_i.
Central moments M, = E(X — M})" satisfy

M1 = 0, M2 = Cg, M3 = C3
and for r = 4,

(7.2) M, =C, + 35 <’ P 1>M,-C,_i.

Proor. First show, by induction, that the rth derivative is
870 = 55 (’; 1)¢‘f"<t>¢‘“f’<t>

if ¢ (¢) is the chf of X and Y(¢) = log ¢(¢). Evaluating this at ¢ = 0 yields (7.1). Replacing
X by X — p before computing ¢ and v, in which case ¢’(0) = ¢’(0) = 0, and substituting
t = 0 yields (7.2). 0

The cumulants C, = C,(u) of NEFs can be computed from V = V(u) and its derivatives,
as observed in (2.11). If the NEF has QVF then (V’)? = 40,V + d by (3.3) and V” = 2v, is
constant. It follows from (2.11) and (7.2) that, with QVF, the fourth cumulant and moment
satisfies

(7.3) Ci=6vV2+dv and M,= (3+ 6v)VZ+dV.
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TABLE 2
Values of ¢, in (7.4)
1o 1 2 3 4 5 6 7
m

0 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
2 1 5 1 0 0 0 0 0
3 1 21 14 1 0 0 0 0
4 1 85 147 30 1 0 0 0
5 1 341 1408 627 55 1 0 0
6 1 1365 13013 11440 2002 91 1 0
7 1 5461 118482 196053 61490 5278 140 1

Of course, V"'(u) = 0 for QVF for all » = 3, leading to polynomial dependence of all
cumulants (and moments) on V(u), as Theorem 3 will show.

DEeFINITION 1. The NEF-QVF cumulant coefficients c¢,,; are defined for integers
m=0,1,2,..-and0<i<=mbychno=Cnm=1landforanyl<=i=m—1,

(74) Cm,i = Cm—1,i—1 + (l + l)zcm—l,i-
Note that Pascal’s triangle for the binomial coefficients is generated by similar recursive
formulae, suppressing (i + 1)? in (7.4). Table 2 displays enough c,; values to generate the

first 17 cumulants, using Theorem 3, and hence the first 17 moments, using Theorem 2.

THEOREM 3. For NEF-QVF distributions, withm = 1,2, - - -
(7.5) YEO) = VEET eno1,d2i + Dloid™ V!

1 ) .
(7.6) \P(2m+1)(9) = —2— vv’ 6n—1 C‘m-l,i(2i + 2)'1)% P i d 743

Proor. For any function T'= T'(V) having derivative 7" wrt V, we have

(7.7) —T(V) == — ———=VV'T'(V),

(7.8) d% {(V'T(V)} = V{V'T(V) + (V)T (V)} =20 VT(V) + V4,V + d)T'(V).

Now (7.5) clearly holds for m = 1, y®() = V. Assume it holds for m and let 7(V) be
the r.h.s. of (7.5), a polynomial of degree m in V. Then application of (7.7) to (7.5) term-by-
term gives (7.6) immediately. Next, differentiate (7.6) term-by-term using (7.8) with
T(V) = Vi*! to get

1 . . .
= Y0 e, id20 + W AT 20 VIR + (40, V + d) (0 4+ 1) VI

2
Rearranging terms to get the coefficients of V**', and using (7.4), yields (7.5). The proof
follows by induction on m. 0

Theorem 3 shows that for NEF-QVF distributions, the rth cumulant, and also the rth
moment (using Theorems 2 and 3), is a polynomial of degree at most r in p. It also shows
that when r = 2m, the cumulants and moments are polynomials of degree m in V = V().
For r odd, an extra (linear) factor V’(u) is required. Moreover, C? is a polynomial of degree
rin V even when r is odd, because the square CZ defined by (7.6) involves the product of
(V’)? = 40,V + d and a polynomial of degree r — 1.

The first eight NEF-QVF cumulants written out from Theorem 3 are
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C.=V, C:=VV, Ci=6uV>+dV,
(7.9) Cs=V'V(120:V+ d), Cs=12003V® + 300, AV + &V,
7 = V'V (36005V? + 60v; dV + d?),
Cs = 504003 V* + 168003 AV + 1260, d®V?2 + d°V.
Using (7.1) and (7.2) with this information yields the central moments
M=V, Ms=V'V, M,=(3+ 6w)V?+dV,
(7.10) M; = Cs + 10C;Cs = V'V((10 + 1212) V + d),
Mg = (15 + 130v: + 12005) V? + (25 + 30v,) dV? + d>V.
The coefficients of skewness y; = C3/V"® and kurtosis y, = C;/V? are
(7.11) y3=V'V2  yi=dvs+d/V, vyi=60+4dfV =20 +7v3

for NEF-QVF distributions.

The normal is the only symmetric NEF, with or without QVF, because the skewness,
V’(u) V™2(u), vanishes for all ponly if V(u) is constant. Thus, no symmetric distribution
other than the normal (including the GHS, logistic, etc.) can generate a symmetric NEF-
QVF family. This follows easily from (2.11).

In cases with vod = 0, i.e., the normal (v, = d = 0), the Poisson (v; = 0), and the gamma
(d = 0), (7.5) and (7.6) are well-known cumulant expressions. However, these expressions
do unify results for the six distributions, and in the binomial (v, = —1/r, d = 1), negative
binomial (v; = 1/r, d = 1), and NEF-GHS (v; = 1/r, d = —4) cases, Theorem 3 provides
useful new expressions for the cumulants.

8. Orthogonal polynomials for NEF-QVF distributions. Let f(x, 8) be a NEF-
QVF density proportional to exp(x8 — ¢ (#)) relative to some measure as in (2.2). Define
dm
(8.1) Py (x, p) = V'"(u){m flx, 0)}/f(x, 9)

form=1,2, ... . Derivatives in (8.1) are taken with respect to the mean p, not . We have
Po(x,p) =1, Pilx,p)=x—p, Pylx,p)=(x—p)’ = V(p)x—p)— Vi),

and will show that P, (x, 1) is a polynomial of degree m in both x and p, with leading term
x™, and that {P,} is a family of orthogonal polynomials.
From (8.1) it follows immediately that (with arguments suppressed),

(8.2) Prii= V" d(PufV™/du= (P, — mV')Pp + VP}, m=1
with P/, = 0P (x, n)/dp, P = 8"Pp(x, u)/ou".

THEOREM 4. Theset {P,,(x,u):m=0,1, ...} is, for NEF-QVF families, an orthogonal
system of polynomials with respect to f (x, 0) = exp{x8 — Y(0)}. P (x, 1) has exact degree
m in both p and x with leading term x™. It is generated by

(8.3 Ppiy= (P —mV)P,—m{l+ (m— 1)v} VP,
for m =1 with Py =1, P, = x — p. Define ap = 1 and for m = 1,

(8.4) an =m! [[7%" (1 + iv).

Then form=1,r=0,1, --. , m, the derivatives wrt u are

(8.5) PR = (=1)"(an/@n—)Pp—r.

Finally, E4P,, =0 for m = 1 and
(8.6) E¢P,P, = 6nnan V", m,n=0.
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Proor. Define b, = (m + 1)(1 + muv,). We start by proving (8.5) for r = 1, A/ W —1
= bn-1. Now P;, = —bs_1 Py -1 holds for m = 1, so assume it holds for m = 1 and use it in
(8.2) to write

Pm+1 = (Pl - mV’)Pm - bm—IVPm~l-

Differentiating this wrt y,
m+1=(=1=mV")Py + (P1 — mV')P}, — b1 V' Py — b1 VP
=—(1+ 2mve) P — b —1(P1 — mV')Pp1y — byt V' Py — b1 VP
=—(1 4 2mve) P — b o[ (P1 — (m — 1) V') Py + VP, 1]
=—1 + 2mvs + bp-1)Pm = —bmPn, (from (8.2)).
Induction on m now proves P{}) = —b,,_, P,,_. By iterating this » — 1 more times,

Pr(r:, = (_l)r(bm—l e bm—r)Pm—r= (_l)r((‘lm/am—r)Pm—r,

proving (8.5).

Equation (8.3) follows from (8.2) and (8.5) with r = 1. That P, (x, p1) is a polynomial of
exact degree m in both x and p with leading term x™ follows inductively from (8.3). Now
for any n < m, using (8.1)

EX"P,, = V" j x"f"™(x, 6) dF (x) = V'"-a%-,;EoX” =0,

because Section 7 revealed EyX" to be a polynomial of degree at most n in p = ¢’(4). It
follows that P, is orthogonal to every polynomial of lower degree, and so (8.6) holds for
m # n.

To prove (8.6) for m = n = 1, multiply (8.3) by P,_; and take expectations to show
EP\P,P, = b, VEP,_,. Repeat this procedure with P,, ., to get EP2,,; = EP, P, Py 1.
Putting these together, EP2, = b,,_, VEPZ,_,. Iterating,

EP}, = by - bV"EPy = an V™. 0

The polynomials of this section are known individually as the Hermite (normal
distribution), Poisson-Charlier (Poisson distribution), Generalized Laguerre (gamma),
Krawtchouk (binomial), Meixner (negative binomial), and Pollaczek (GHS) polynomials
(symmetric GHS subfamilies only, not the NEF-GHS), (Szego, 1975). The main new
results here lie in unifying these six polynomial systems and in the new polynomials and
results provided by (8.3) through (8.6) for nonsymmetric members of the NEF-GHS family.

The system (8.1) forms a set of polynomials of the indicated degree for any natural
exponential family. However EP,P; = V" (1) V3(u), for example, which is not zero unless
V(p) is quadratic. Thus, these polynomials form an orthogonal system only if QVF holds.

Finally, two useful facts follow from Theorem 4. The first (8.7) relates the orthogonal
polynomials of different members in the exponential family. The second (8.8) provides the
expectation of a polynomial defined with the “wrong” parameter.

COROLLARY 1. Let pu, po € Q be given for two distributions in the same NEF-QVF.
Then foranym=20,1, --.,

(”_m)m—r 1
(m__r)' 'a_rPY'(x,.u)

(87) P, (x, [.lA)) = QAam 2(’)”
with a,, defined by (8.4). Hence

8.8) E,Pu(X, po) = % (1 — o)™
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Proor. Expand Pn.(x, yto) in a Taylor series (of order m only) around p and use (8.5)

to get
Pm(x ‘LL()) =Z?MP(")(x “)=26n (l"'_”‘ﬂ)r a,
’ r! mA 7! a

m-—r

Py, (x, p).

Interchanging r and m — r yields (8.7). Then (8.8) follows because E, P, (X, u) = 8o,. 0

9. A large deviation theorem. This section proves the sharpest possible large
deviation theorem for the entire NEF-QVF class. First we have a lemma applying to any
NEF, not just those with QVF.

LEMMA. Let X have a NEF distribution. Then for all t = 0, writing o* = V(u),

o [t - w) dw
b V(p + wo)

9.1) P(X “Hs t) <exp(—B(t), B(t)=o

Proor. For simplicity, assume 6 = 0 so /(0) = 0, y’(0) = u, ¥”(0) = 6> For any w = 0,
PX—p—to=0)=<Eexp{w[X — p—to]} = exp{d(w) — w(u + to)}. This is minimized
at w = w(¢) satisfying ¢'(w(t)) = p + to. Thus w(0) = 0, since y’(0) = p. Define B(t) =
w(t)(p + to) — Y(w(t)) as the negative of the minimum value. Note B(0) = 0. Now B’(¢)
= w(t)o, after simplification, so B’(0) = 0, and B”(f) = w’(t)s. Differentiating y'(w(¢)) =
u + to with respect to ¢, ¢ (w(¢))w’(t) = 0. But " (w(t)) = V' (w(t)) = V(u + to). Since
0® = V(u), B”(t) = 6°/V(p + to). Using Taylor’s theorem with integral remainder for
expansion about ¢ = 0, and B(0) = B’(0) = 0, gives B(t) = [§ (t — w)B”(w) dw. This is
9.1). O

With QVF distributions we can go further, for then in (9.1),
V(p+ to)/o® = {V(p) + taV'(u) + v2t%6% /0% = 1 + vt + vat?,

with y = V’(u)/o the skewness coefficient of X. Suppose v, v: =< C < ®, a constant, taking
C =1 for convenience. Thenforall t=0,C=1,0<1+ yt + v,t?> < 1.5C(1 + ¢?) (consider
cases t =< 1 and ¢ = 1 separately). Formula (9.1) for B(t) gives

t t
B(t)=j (t—w)ozw22 1 t—w) 2alw
, 1+ yw+ vew 15C J, 1+w

9.2)
= [t-arc tan(t) — 0.5 log(1 + t%]/1.5C < =t/3C.

This behaves like 7¢/3C for ¢ large.
THEOREM 5. Suppose vy, the skewness, and v, are bounded above by absolute constants

ast— o, If X has a NEF-QVF distribution, there exists an absolute constant b > 0 such
that

(9.3) P(X P t) < exp(—bt)

[

for all t = 1. If | y| and v are both bounded above, then there exists by > 0 such that

(9.4) P<l X—p

o

= t) < exp(—bot)

forall |t|=1.

Proor. (9.3) follows from the discussion preceding the theorem, taking b = #/3C if vy,
v = C. Then (9.4) follows from (9.3) by X — —X which sends y —» —y and leaves v,
unchanged. 0
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The skewness y*> = 4v, + d/V(p) from (7.11), and is invariant under linear transfor-
mations X — (X — b)/c. Thus Theorem 5 requires v, bounded above, and if d > 0, V(u)
bounded away from zero. This happens, for example if there exists ¢ > 0 fixed such that
(in the notation of Table 1): A = ¢ (Poisson); r = ¢ (gamma and NEF-GHS); p(1 —p) = ¢
(binomial); p = ¢ and r = ¢ (negative binomial); and no conditions (normal). These
conditions are noted in one of the last lines of Table 1.

If X;, X, - - - all have NEF-QVF distributions, EX; = u;, Var X; = o7, then

(9.5) limy P (maxi<i=<k | Xi — pi [foi = 8) =0

as k — o if t;, — oo faster than log k, and if v,; and | y; | are uniformly bounded. This follows -
from (9.4) because the Lh.s. of (9.5) is bounded by ¥.%_; P(| X; — u:| = t:0:). This fact is used
in (Morris, 1967) to prove that certain tests in NEF-QVF distributions are e-Bayes for
large k.

The exponential bounds (9.3), (9.4) are the best possible for NEF-QVF distributions
because the three elementary distributions with v, = 1 (the exponential, geometric, and
hyperbolic secant) whose CDF’s can be evaluated, have exponential tails exactly. Improve-
ments are possible in the normal and Poisson cases, however. For example, in the normal
case B(t) = (1/2)¢t* from (9.2) and insertion of this in (9.1) gives a sharper than exponential
bound for large ¢.

10. Limits in distribution. If V(u) takes an approximate form, V*(u), say, it is
reasonable that the NEF corresponding to V(u) should have approximately the distribu-
tion of the NEF corresponding to V*(u). That is, because V(u) characterizes the NEF,
nearness of V to V* forces nearness of the characteristic functions. This also implies
convergence of all moments and cumulants because they are functions of V(u), via (7.5),
(7.6) and (7.2), or through (2.9), the MGF.

For example, suppose X ~ Bin(r, p), u = rp, V(u) = —p®/r + p. Then V(u) — V*(u)
=pasr— «if p— 0 and y is fixed. Similarly X ~ NB(r, p), p = rp/(1 — p), and V(p) =
u?/r+u— V*(u) = pasr — o and p — 0, holding u constant. Because V*(p) = pi is the
Poisson variance function, we thereby obtain the familiar Poisson limits for the binomial
and negative binomial distributions as r — o with rp fixed.

Other distributional approximations hold. For NB(r, p) let u = rp/(1 — p) be large and
r be fixed (i.e., p — 1). Then V(u) = u?/r + p = (u?/r)(1 + r/u) ~ V*(u) = p*/r in ratio.
Since V* is the VF of Gam(r, p/r), we have NB(r, p) = Gam(r, 1/(1 — p)) for p near 1. For
r = 1 this means Geometric (p) = Exponential (1/(1 — p)) asp — 1.

For similar reasons with 7 fixed, the NEF-GHS family with u = 7A, V(u) = r + p*/r has
approximately a Gam(r, u/r) = Gam(r, A) distribution for p (and A) large (i.e. if r/p = 1/A
— 0), for then V(u) ~ V*(u) = u?/r, the VF of Gam(r, u/r). This assertion appears at the
end of Section 5.

The central limit theorem (CLT) and weak law of large numbers (WLLN) also follow
for NEFs by showing the VF of the appropriately scaled Y 7X; is approximately constant
(CLT) or vanishes (WLLN) as n — . In other words, the expectation p* of X* =
¥ (X; — a)/n'? is bounded if « satisfies |« — p| < C/n'/?, C a constant. Then V*(p*) =
Var(X*) = V(a + u*/n"?) = V(a) is nearly a constant function of u* for n large. Thus, X *
is asymptotically normal. Alternatively, if X* = Y X;/n, then p* = EX* =y, and V*(p*)
= V(u)/n — 0 as n — oo, Because this limit is the variance of a constant, the WLLN is
proved.

Convolutions and scalings of X map X — Y1 X;/c and V— V*(u) = nV(cu/n)/c® and
so v¥ = vic'2/n'% cf. (3.4) and (3.5) with b = 0. Limit theorems for such transformations
can never increase the complexity of V (because v; = 0= v} = 0), or the order (degree) of
V, if V is a polynomial. Thus the normal and Poisson distributions can be limits of the
strictly quadratic NEF-QVF distributions, but not conversely. Interesting limit theorems
make V* less complex than V; i.e., some of the v} vanish in the limit. The three limit
distributions just considered (the Poisson, gamma, and normal) do this with V*(u) a
monomial. Because such limits never increase the order of a polynomial V, the normal,



80 CARL N. MORRIS

with constant variance function, is the most widely reached nontrivial limit law. Of course
the WLLN, with V(u) vanishing, is even more widely achieved.

Within NEF-QVF families, the discriminant d changes to d* = d/c?* under convolution
and linear transformations X — ¥ (X; — b)/c. If ¢ — o, limits of these distributions have
d* =0, i.e,, must be normal or gamma limits. Otherwise limit distributions must preserve
the sign of d. Hence the Poisson, binomial, and negative binomial distributions, all having
d >0, can be limits of one another. The NEF-GHS distributions, being the only NEF-QVF
distributions with d < 0, cannot be limits of any other NEF-QVF distributions.
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