Open Access
Translator Disclaimer
June, 1981 The Mean Number of Real Roots for One Class of Random Polynomials
M. Shenker
Ann. Probab. 9(3): 510-512 (June, 1981). DOI: 10.1214/aop/1176994424

Abstract

Let $\xi_0, \xi_1, \cdots, \xi_n, \cdots$ be a Gaussian stationary sequence of random variables. We study the asymptotic behavior of the mean number of real roots of the polynomial $P_n(x) = \xi_0 + \xi_1x + \cdots + \xi_nx^n$ as $n \rightarrow \infty$.

Citation

Download Citation

M. Shenker. "The Mean Number of Real Roots for One Class of Random Polynomials." Ann. Probab. 9 (3) 510 - 512, June, 1981. https://doi.org/10.1214/aop/1176994424

Information

Published: June, 1981
First available in Project Euclid: 19 April 2007

zbMATH: 0466.60041
MathSciNet: MR614636
Digital Object Identifier: 10.1214/aop/1176994424

Subjects:
Primary: 60G15

Keywords: 60-02 , asymptotic behavior , correlation function , Gaussian stationary sequence , random polynomials , real roots

Rights: Copyright © 1981 Institute of Mathematical Statistics

JOURNAL ARTICLE
3 PAGES


SHARE
Vol.9 • No. 3 • June, 1981
Back to Top