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SCALING LIMIT OF THE FLEMING–VIOT MULTICOLOR PROCESS

BY OLIVER TOUGHa

Department of Mathematics, University of Bath, aokt24@bath.ac.uk

We consider the N -particle Fleming–Viot process associated to a nor-
mally reflected diffusion with soft catalyst killing. The Fleming–Viot multi-
color process is obtained by attaching genetic information to the particles in
the Fleming–Viot process. We establish that, after rescaling time by t �→ Nt ,
this genetic information converges to the (very different) Fleming–Viot pro-
cess from population genetics, as N → ∞. An extension is provided to dy-
namics given by Brownian motion with hard catalyst killing at the boundary
of its domain.

1. Introduction and main result. In this paper we study the behaviour of a system of
interacting diffusion processes, known as a Fleming–Viot particle system, first introduced by
Burdzy, Holyst and March in [16]. We will establish that if one attaches genetic information
to the Fleming–Viot particle system and rescales time by t �→ Nt , this genetic information
evolves for large N like the (very different) Fleming–Viot process from population genetics,
which we refer to in this article as a Wright–Fisher process for the avoidance of confusion.
This is our main theorem, Theorem 1.4. We emphasise that, despite sharing the same name,
no link had previously been established between the Fleming–Viot particle system (or any
similar particle system) and the Wright–Fisher process.

Throughout this paper (Xt)0≤t<τ∂
will be defined to be a diffusion process evolving in the

closure D̄ of an open, connected, bounded domain D ⊆ R
d , normally reflected at the C∞

boundary ∂D, and killed at position dependent rate κ(Xt) (soft killing). That is, prior to the
killing time τ∂ , Xt evolves according to the SDE

dXt = b(Xt) dt + σ(Xs) dWs + �n(Xt) dξt ∈ D̄, 0 ≤ t < τ∂,

with 1(τ∂ > t) +
∫ t

0
κ(Xs)1(τ∂ > s) ds being a martingale,

(1.1)

whereby ξt is the boundary local time of Xt at ∂D and n̂(x) is the unit interior normal at x ∈
∂D. A precise definition of such processes is given in Appendix A. We assume throughout
that κ ∈ C∞(Rd;R≥0) and is strictly positive somewhere on D̄. We also assume that b ∈
C∞(Rd;Rd) and σ ∈ C∞(Rd;Rd×m) with σσT uniformly positive definite.

The Fleming–Viot particle system is defined as follows.

DEFINITION 1.1 (Fleming–Viot particle system). The Fleming–Viot particle system
( �XN

t )t≥0 consists of N ≥ 2 particles

�XN
t = (

X
N,1
t , . . . ,X

N,N
t

)
, t ≥ 0,

evolving independently in the domain D̄ according to (1.1). When a particle is killed, we re-
locate it to the position of a different particle chosen independently and uniformly at random.
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In general, it is not clear that the Fleming–Viot particle system is well-posed due to the
possibility of infinitely-many jumps in finite time. In the present setting, however, this is not
an issue as the killing rate is bounded.

The Fleming–Viot particle system was introduced by Burdzy, Holyst and March [16] in
the case of Brownian dynamics with instantaneous killing at the boundary (hard killing),
where it was shown to provide an approximation method both for the heat equation with
Dirichlet boundary conditions and the principal eigenfunction of the Dirichlet Laplacian. The
Fleming–Viot particle system with soft killing was considered by Grigorescu in [28]. The
Fleming–Viot particle system has been shown to provide a general approximation method
for absorbed strong Markov processes by Villemonais [47] and has been shown to provide an
approximation method for quasi-stationary distributions (QSDs) in a variety of settings [2, 3,
16, 45]. When a killed Markov process is Feller, quasi-stationary distributions correspond to
left eigenmeasures of its infinitesimal generator [38], Proposition 4.

1.1. The Fleming–Viot multicolor process. We attach genetic information (“colors”) to
the Fleming–Viot particle system, resulting in the Fleming–Viot multicolor process, which
was introduced by Grigorescu and Kang in [29], Section 5.1. Whereas the colours in the
construction of [29], Section 5.1, are assumed to belong to a finite space, the present article
develops this by instead assuming the colors belong to a complete, separable metric space.
This space is referred to as the “color space” and is denoted by K. The color ηi

t ∈ K gives the
genetic information of the particle Xi

t , for i = 1, . . . ,N . A precise definition of the Fleming–
Viot multicolor process is given by the following.

DEFINITION 1.2 (Fleming–Viot multicolor process). We take (K, d) to be an arbitrary
complete separable metric space, which we call the color space. We define ( �XN

t , �ηN
t )0≤t<∞

= {(XN,i
t , η

N,i
t )0≤t<∞ : i = 1, . . . ,N} as follows:

(1.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) Initial condition:
((

X
N,1
0 , η

N,1
0

)
, . . . ,

(
X

N,N
0 , η

N,N
0

))∼ υN ∈ P
(
(D̄ ×K)N

)
.

(ii) For t ∈ [0,∞) and between killing times, the particles
(
X

N,i
t , η

N,i
t

)
evolve and are killed independently, according to (1.1) in the first variable,

and are constant in the second variable.

(iii) We write τ i
k for the death times of particle

(
XN,i, ηN,i)(with τ i

0 := 0
)
.

When particle
(
XN,i, ηN,i) is killed at time τ i

k, it jumps to the location

of particle
(
XN,j , ηN,j ), with j = Ui

k ∈ {1, . . . ,N} \ {i} chosen

independently and uniformly at random, at which time we set(
X

N,i

τ i
k

, η
N,i

τ i
k

)= (
X

N,j

τ i
k−

, η
N,j

τ i
k−
)
. Moreover, we write τn for the nth time

at which any particle is killed (with τ0 := 0).

We then define

(1.3) JN
t := 1

N
sup{n > 0 : τn ≤ t}

to be the number of deaths, up to time t normalised by 1
N

, and define the empirical measures

(1.4) mN
t := 1

N

N∑
i=1

δ
X

N,i
t

and χN
t := 1

N

N∑
i=1

δ
η

N,i
t

.

We will obtain a scaling limit for the colors as N → ∞, and time is rescaled according to
t �→ Nt . We now describe the scaling limit we will obtain.
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1.2. The Wright–Fisher process. Given a gene with two neutral alleles, a and A, the SDE

dpt =
√

pt(1 − pt) dWt

models the evolution of the proportion pt ∈ [0,1] of the population carrying the a-allele in a
large population. This is the classical Wright–Fisher diffusion. Generalising this to n alleles,
the driftless n-Type Wright–Fisher diffusion process of rate θ > 0 takes values in the simplex
�n := {p = (p1, . . . , pn) ∈R

n≥0 :∑j pj = 1} and is characterised by the generator

(1.5) LWF = 1

2
θ

n∑
i,j=1

pi(δij − pj )
∂2

∂pi∂pj

, D(L) = C2(
R

n).
This was generalised by Fleming and Viot [25] to a probability measure-valued process,

which allows for the set of alleles to be infinite. This measure-valued process is typically
called a Fleming–Viot process but is referred to as the Wright–Fisher process in the present
article to avoid confusion. In particular, letting K be the (complete, separable) color space,
we will consider the Wright–Fisher process on P(K). This corresponds to the set of possible
alleles being K and will be our scaling limit.

The reader is directed toward [23] for a survey of the Wright–Fisher process due to Ethier
and Kurtz. The Wright–Fisher process is defined as a solution of a martingale problem. This
typically features additional terms representing mutation, selection and recombination, but
we will not need this generality here. There are various possible formulations of this mar-
tingale problem, which can be found in [23], Section 3. The formulation we shall employ is
given by [23], (3.20) and (3.21). This definition of the Fleming–Viot process as well as its
well-posedness (which comes from [23], Theorem 7.1) are given in Appendix D.

As in (1.5), we parametrise the Wright–Fisher process on P(K) with a rate θ > 0. The
following proposition provides intuition for how one may think of the Wright–Fisher process
and its relationship to the n-type Wright–Fisher diffusion. This proposition shall be used in
the proof of our main theorem and is proven in Appendix D.

PROPOSITION 1.3. We let (νt )t≥0 be a Wright–Fisher process on P(K) of rate θ > 0, as
defined in Appendix D. Then for all finite disjoint unions of measurable subsets, ∪̇n

j=1Aj = K,
we have that

(1.6)
(
νt (A1), . . . , νt (An)

)
, t ≥ 0

is an n-type Wright–Fisher diffusion of rate θ .

1.3. Main result. We will establish in Appendix A.2 the following. The absorbed pro-
cess (Xt)0≤t<τ∂

is Feller (there is no distinction between C0-Feller and Cb-Feller, as D̄ is
compact). We write L for its infinitesimal generator. Then (Xt)0≤t<τ∂

has a unique QSD,
denoted by π , which is a left eigenmeasure of L. We denote the corresponding eigenvalue
as −λ < 0. Furthermore, there exists a positive right eigenfunction φ ∈ D(L) ∩ C2(D̄;R>0),
which is both the unique nonnegative right eigenfunction and the unique right eigenfunction
of eigenvalue −λ, up to rescaling. Throughout, we normalise φ so that 〈π,φ〉 = 1.

We may, therefore, define the constant

(1.7) � :=
2λ‖φ‖2

L2(π)

‖φ‖2
L1(π)

.

We define the tilted empirical measure of the colors, denoted as (YN
t )0≤t<∞, by

YN
t :=

1
N

∑N
i=1 φ(Xi

t )δηi
t

1
N

∑N
i=1 φ(Xi

t )
∈ P(K).(1.8)
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Whereas consideration of this quantity shall play a crucial role in our proof, for the purposes
of our theorem statement its role is to provide the initial condition of our scaling limit. To the
authors’ knowledge, this process is original. The proof of Theorem 1.4 shall be outlined in
Section 1.7, at which point we shall explain the role of YN

t in the proof.
Convergence will be stated in terms of the weak atomic metric on K, denoted as Wa . The

space of probability measures on K, equipped with the weak atomic metric, is denoted by
PWa (K). This metric was introduced by Ethier and Kurtz [24] in the context of population
genetics. Convergence in the weak atomic metric is equivalent to having both weak conver-
gence of measures and convergence of the sizes and locations of the atoms. We provide a
definition of the weak atomic metric in Appendix C.2.

Our main theorem is then the following.

THEOREM 1.4. We take some deterministic initial profile ν0 ∈ P(K) and fix a Wright–
Fisher process on P(K) of rate � and initial condition ν0 = ν0, which we denote as
(νt )0≤t<∞. We consider a sequence of Fleming–Viot multicolor processes, denoted by
((( �XN

t , �ηN
t ))0≤t<∞ : 2 ≤ N < ∞), such that

(1.9) P(K) � YN
0 → ν0 ∈ P(K) in Wa in probability as N → ∞.

We now rescale time according to t �→ Nt . Then (χN
Nt )t>0 converges to (νt )t>0 in

finite-dimensional distributions in the following sense. We fix arbitrary n < ∞ and �t =
(t1, . . . , tn) ∈ [0,∞)n such that t1 ≤ · · · ≤ tn. We consider arbitrary sequences
(�tN )2≤N<∞ := ((tN1 , . . . , tNn ))2≤N≤∞ such that:

1. tN1 ≤ · · · ≤ tNn for all 2 ≤ N < ∞;
2. tNi → ti as N → ∞ for all 1 ≤ i ≤ n;
3. NtNn ≥ · · · ≥ NtN1 → ∞ as N → ∞.

We then have that

(1.10)
(
χN

NtN1
, . . . , χN

NtNn

)→ (νt1, . . . , νtn) in
(
PWa (K)

)n in distribution as N → ∞.

REMARK 1.5. If we take constant killing rate κ ≡ 1 and consider the corresponding
Fleming–Viot multicolor process, we recover the classical Moran model. This is well known
to converge to the Wright–Fisher process of rate 2 [23], (4.12). On the other hand, we can
check that � = 2 when κ ≡ 1.

REMARK 1.6. We observe that, unless φ is constant (which only happens if κ is constant
on D̄), the empirical measures χN

0 will, in general, not converge to the same limit as the tilted
empirical measures YN

0 . We therefore no longer have (1.10) if we drop the requirement that
NtN1 → ∞ as N → ∞. This represents the following separation of timescales phenomenon.

We will establish in the proof of Theorem 1.4 that the tilted empirical measure YN
t evolves

slowly over an O(N) timescale, with (YN
Nt )t≥0 converging to the Wright–Fisher process. We

further establish that the empirical measure χN
t converges on a shorter O(1) timescale to the

tilted empirical measure YN
t . Theorem 1.4 then follows by combining these two facts.

Therefore, for large N the empirical measure χN
t quickly approaches ν0 over an O(1)

timescale before evolving like the Wright–Fisher process over the longer O(N) timescale.

1.4. Background and related results. A similar separation of timescales has been ob-
tained by Méléard and Tran in [37]. They considered the evolution of traits in a population of
individuals, where the individuals give birth (passing on their trait), die in an age-dependent
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manner and interact with each other through the effect of the common empirical measure
of their traits upon their death rates (representing competition for resources). There the age
component plays a similar role to spatial position in the present article. They found that the
age component converges to a deterministic equilibria (which is dependent upon the traits)
on a fast timescale, whilst the trait distribution evolves on a slow timescale, converging to a
certain superprocess over the slow timescale as the population converges to infinity.

Aside from obtaining a different limiting process, they also employ a different proof strat-
egy. In their setup individuals give birth and are killed at rates which ensure that the slow
component does not have large drift terms on the fast timescale, whereas it does in the present
setup. This necessitates the different proof strategy. In Section 1.7 we shall outline the proof
strategy of Theorem 1.4, at which point we shall elaborate on the difference between this
proof and the proof in [37].

The ancestral paths of both the Fleming–Viot particle system and similar particle systems
have been considered by a number of authors, for instance by Méléard and Tran [37], Grig-
orescu and Kang [29] and Burdzy et al. [7, 15, 17, 18]. None of these make a link with the
Wright–Fisher process. In a sequel to the present paper, we shall use Theorem 1.4 to link
the ancestral paths of the Fleming–Viot particle system with a Wright–Fisher process on
P(C([0, T ]; D̄)). This link was included in the original preprint version of this paper [42]
and earlier in the author’s Ph.D. thesis [43], Chapter 4.

In [29] Grigorescu and Kang constructed the immortal particle, also known as the spine,
of the Fleming–Viot particle system—the unique ancestral path from time 0 to time ∞. They
introduced the Fleming–Viot multicolor process, with the colors belonging to a finite set in
order to construct this process. The construction of the spine of the Fleming–Viot particle
system was later extended to a very general setting by Bieniek and Burdzy [7], Theorem 3.1.
Bieniek and Burdzy [7], Section 5, established that, when the state space is finite, the distri-
bution of the spine of the Fleming–Viot particle system converges as N → ∞ to that of the
driving Markov process (Xt)0≤t<τ∂

conditioned never to be killed—referred to in the litera-
ture as the Q-process [19], Section 3. They conjectured that this is also true for general state
spaces [7], page 3752. Since then, Burdzy, Kołodziejek and Tadić in [17, 18] have established
a law of the iterated logarithm [18], Theorem 7.1, which, as they explain, hints that the con-
jecture of Bieniek and Burdzy should hold in the setting they consider. None of these articles
draw a link with the Wright–Fisher process.

In a sequel to the present article, we shall prove Bieniek and Burdzy’s conjecture, [7],
page 3752, in the setting of the present paper. This proof was included in the original preprint
version of this paper [42], and earlier in the author’s Ph.D. thesis [43], Chapter 4. This was
the first proof of the conjecture outside of the finite state space setting. Subsequent to [43],
Chapter 4, and [42], Burdzy and Engländer have established this conjecture in [15], when
the driving process is Brownian motion killed at the boundary of its bounded domain. We
emphasise that the proof strategy due to Burdzy et al. in [7, 15] is completely different to
the proof due to the present author in [43], Chapter 4, and [42], with no connection being
made between the Fleming–Viot particle system and the Wright–Fisher process in [7, 15].
Bieniek and Burdzy’s proof, when the state space is finite ([7], Section 5), used the finiteness
of the state space in a seemingly essential way; they used the fact that if two particles are
at the same location they must have the same probability of being the spine, and moreover,
the particles can only be at a finite number of possible locations. Burdzy and Engländer were
able to use the same argument in [15] when the driving process is Brownian motion killed at
the boundary of its domain by dividing the domain up into cubes and using the form of the
multidimensional Gaussian distribution to argue that any two particles in the same cube must
have almost the same probability of being the spine. On the other hand, the proof appearing
in [43], Chapter 4, and [42], which will appear in a sequel to the present article, instead
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leverages the connection between the Fleming–Viot particle system and the Wright–Fisher
process established in Theorem 1.4.

The N -branching Brownian motion (N -BBM) consists of N particles evolving in between
killing times as independent Brownian motions. At rate N , one kills the particle minimising
or maximising a given fixed function. At the same time, as with the Fleming–Viot particle
system, another particle chosen uniformly at random branches so that the number of particles
remains fixed. Clearly, this particle system is similar to the Fleming–Viot particle system.
Particle systems of this form were first introduced by Brunet and Derrida in [10]. Such par-
ticle systems have been studied, for instance, by Brunet and Derrida [11], Durrett and Rem-
inik [22], Maillard [35], and Berestycki, Brunet, Nolen and Penington [6]. The genealogy of
these particles systems has received particular attention; see also the work of Brunet, Derrida,
Mueller and Munier [12, 13], Mallein [36] and Penington, Roberts and Talyigás [39].

For the N -BBM studied in [35], the particles are in one dimension with the leftmost par-
ticle being killed at each killing time. It is a hard open problem to show that the genealogy of
this particle system is given by a Bolthausen–Sznitman coalescent ([35], page 1066) so we
should not expect a Wright–Fisher process scaling limit. This conjecture has been proven for
the similar near-critical branching Brownian motion by Berestycki, Berestycki and Schweins-
berg in [5]. On the other hand, in the “Brownian bees” particle system considered in [6], it
is the particle furthest away from 0 which is killed. In contrast to the N -BBM, we should
expect the this particle system to have a Wright–Fisher process limit after rescaling time by
t �→ Nt , as in Theorem 1.4, in the opinion of the present author. The key distinction between
these two Brunet–Derrida-type particle systems is that the killing mechanism in the latter has
the effect of constraining the mass of particles. However, the genealogy of the Brownian bees
particle system has not yet been addressed nor has a Wright–Fisher process limit previously
been established for any variant of this particle system.

A scaling limit for the geneaology of a sequential Markov chain Monte Carlo algorithm
was established by Brown, Jenkins, Johansen and Koskela in [9], Theorem 3.2. This captures
the phenomenon of ancestral degeneracy, which has a substantial impact on the performance
of the algorithm. They established that the geneaology of an n-particle sample converges
to Kingman’s n-coalescent, as the number of particles goes to infinity and time is suitably
rescaled. This is suggestive of a Wright–Fisher process, since Kingman’s coalescent is dual
to the Wright–Fisher process (see [32], Appendix A), but no such connection is made.

In the engineering literature, Mulatier, Dumonteil, Rosso and Zoia [21] considered a par-
ticle system whereby N Brownian particles branch at a rate λ, at which point another particle
chosen uniformly at random is removed, conserving the number of particles. Clearly, this is
very similar to the Fleming–Viot particle system, with the difference being that here particle
births trigger another particle chosen uniformly at random to be killed rather than vice-versa.
This is used as a toy model for neutrons in a nuclear reactor and their Monte Carlo simula-
tion. They investigated the phenomenon of “clustering” in which particles cluster together in
Monte-Carlo simulations of nuclear reactors, which has a substantial impact on the accuracy
of these simulations. They explained this phenomenon as occurring when particle ancestries
coalesce more quickly than particles are able to explore the space. They argued that this
should occur on a timescale of N

λ
. However, it is unknown how quickly ancestries coalesce

for such systems (when the branching rate is nonconstant), even at the level of a conjecture.
It should be straightforward to replicate the proof in the present paper for these systems,
thereby quantifying how quickly ancestries coalesce via an analogue of Theorem 1.4. This
would indicate how large N should be to avoid clustering. We will see in the following sub-
section that ancestral coalescence occurs more quickly when φ is nonconstant (but N and λ

are the same) so that a larger N would be needed to avoid clustering.
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1.5. Effective population size. In population genetics variance effective population size
refers to the population of an idealised, spatially unstructured population with the same ge-
netic drift per generation. For a variety of reasons, this effective population size is generally
observed to be considerably less than the census population size [26].

We recall that (π,−λ,φ) is the principal eigentriple of the infinitesimal generator L. We
obtained in Theorem 1.4 that, after rescaling time by t �→ Nt , the Fleming–Viot multicolor

process converges to a Wright–Fisher process of rate � := 2λ‖φ‖2
L2(π)

‖φ‖2
L1(π)

. It is straightforward

to combine Theorem 1.8 with Theorem A.1 to establish that individuals in the Fleming–Viot
multicolor process die, on average, λ times per unit time. If we remove space and instead
assume that each individual is killed at fixed Poisson rate κ ≡ λ, we obtain the classical static
Moran model. We, therefore, define the variance effective population here to be the size of an
equivalent static Moran model.

The Wright–Fisher process is well known to arise as the limit of suitably rescaled Moran
models [23], (4.12). If we let (�ηMoran,N

t )0≤t<∞ be the N -individual static Moran model

(where each individual dies at Poisson rate λ) and define the constant c = �
2λ

= (
‖φ‖

L1(π)

‖φ‖
L2(π)

)2,

we have that �ηMoran,�cN�
Nt converges to a Wright–Fisher process of rate �. It follows that

(1.11) Neff ∼
(‖φ‖L1(π)

‖φ‖L2(π)

)2
N.

We observe that Neff ≤ N , with equality if and only if φ is constant on D̄, which is equivalent
to κ being constant on D̄.

We offer the following heuristic interpretation of (1.11). We have from Theorem A.1 that

Px(τ∂ > t) ∼ φ(x)e−λt .

On the other hand, the profile of the particles in the Fleming–Viot particle system will settle
upon a close approximation of π . Therefore, if ‖φ‖L2(π) is much larger than ‖φ‖L1(π), then
a small subset of individuals at any given time should be expected to subsequently survive
for much longer than the average. These individuals will, therefore, have far more children
than the average, having the effect of speeding up the coalescence time, hence reducing the
effective population size.

1.6. A hydrodynamic limit theorem for the Fleming–Viot multicolor process. Both the
proof of Theorem 1.4 and our heuristic explanation of it will make use of the following
hydrodynamic limit theorem for the Fleming–Viot multicolor process. The hydrodynamic
limit we obtain is given by the laws of the following killed Markov process.

DEFINITION 1.7. We define a D̄ ×K-valued killed strong Markov process, denoted by
((Xt , ηt ))0≤t<τ∂

, as follows. The process evolves in the first variable, like the killed normally-
reflected diffusion (Xt)0≤t<τ∂

defined in (1.1), with the killing time of ((Xt , ηt ))0≤t<τ∂
being

the same as the killing time of (Xt)0≤t<τ∂
. In the second variable, ηt is a constant element of

K up to the killing time τ∂ so that ηt = η0 for all 0 ≤ t < τ∂ . After the killing time the process
is sent to a fixed cemetery state.

THEOREM 1.8. We consider the Fleming–Viot multicolor process (( �XN
t , �ηN

t ))t≥0 for
N ≥ 2. Then there exists constants CT,N for 0 ≤ T < ∞ and N ≥ 2 such that CT,N → 0,
as N → ∞, and such that for any initial condition ( �XN

0 , �ηN
0 ) and any f ∈ Bb(D̄ ×K;R), we
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have that

E
( �XN

0 ,�ηN
0 )

[
sup
t≤T

∣∣∣∣∣
(

1

N

N∑
i=1

δ
(X

N,i
t ,η

N,i
t )

−L 1
N

∑N
i=1 δ

(X
N,i
0 ,η

N,i
0 )

(
(Xt , ηt )

))
(f )

∣∣∣∣∣
]

≤ CT,N‖f ‖∞,

(1.12)

E
( �XN

0 ,�ηN
0 )

[
sup
t≤T

∣∣JN
t − lnP 1

N

∑N
i=1 δ

(X
N,i
0 ,η

N,i
0 )

(τ∂ > t)
∣∣∧ 1

]
≤ CT,N .(1.13)

PROOF OF THEOREM 1.8. We take the Fleming–Viot particle system associated to the
killed strong Markov process ((Xt , ηt ))0≤t<τ∂

defined in Definition 1.7 (which is well defined
since the killing rate is bounded). We observe that its dynamics are identical to that of the
Fleming–Viot multicolor process ( �XN

t , �ηN
t )t≥0 associated to (Xt)0≤t<τ∂

. We are, therefore,
able to apply [47], Theorem 2.2, to the Fleming–Viot multicolor process.

The statement of [47], Theorem 2.2, only gives an estimate of the particle system at
fixed times. However, its proof relied on a martingale decomposition, [47], Theorem 2.2,
with L2 controls obtained on the two martingales [47], (2.8) and (2.9). By applying Doob’s
L2-martingale inequality, these controls become uniform over the time horizon [0, T ]. We
thereby make [47], Theorem 2.2, uniform over the time horizon [0, T ] at the cost of the es-
timate in [47], Theorem 2.2, being multiplied by 4. Applying this uniform estimate to the
Fleming–Viot multicolor process, we obtain (1.12). We similarly obtain (1.13) from [47],
f irst equation on page 450. �

We prove in the Appendix that ((Xt , ηt ))0≤t<τ∂
has the following large-time limit.

PROPOSITION 1.9. For arbitrary sequences (xi, ηi)1≤i≤n in D̄×K, we consider the pro-
cess (Xt , ηt )0≤t<τ∂

with initial distribution given by the empirical measure 1
n

∑n
i=1 δ(xi ,ηi ).

Then there exists ct → 0 as t → ∞ such that, for all sequences (xi, ηi)1≤i≤n in D̄ ×K and
all n ∈ N, we have∥∥∥∥L 1

n

∑n
i=1 δ

(xi ,ηi )

(
(Xt , ηt )|τ∂ > t

)−
∑n

i=1 φ(xi)π ⊗ δηi∑n
i=1 φ(xi)

∥∥∥∥
TV

≤ ct , 0 ≤ t < ∞.(1.14)

1.7. Heuristics for the proof of Theorem 1.4.

The principal difficulty to be addressed. Méléard and Tran considered in [37] the ances-
tries of a similar particle system in [37]. There the individuals in the population have a trait
and an age, with the individuals giving birth (passing on their trait) and dying in an age-
dependent manner. The age component plays a similar role to spatial position in the present
article. However, aside from obtaining a different scaling limit, they also employed a different
proof strategy.

The proof of Méléard and Tran in [37] extended to the particle system setting the strategy
of Kurtz [31] and Ball, Kurtz, Popovic and Rempala [4], which concerned diffusions. In
contrast, the proof in the present article extends to the particle system setting techniques of
Katzenberger [30] (the author is not aware of this technique previously having been extended
to the particle system setting), which also concerned diffusion processes. This is necessitated
by the following qualitative difference between the two particle systems.

In [37] individuals have a trait x (the slow variable) and an age a (the fast variable). The
speed-up of the timescale is given by the parameter n. On the fast timescale, they give birth
at rate nr(x, a) + b(x, a), whilst dying at rate nr(x, a) + d(x, a). We observe that the fast
term, nr(x, a), is the same in both the former and the latter. Consequentially, when they
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formulate the corresponding martingale problem, the slow variable does not have a large drift
term on the fast timescale. The terms b(x, a) and d(x, a) may change quickly due to the fast
evolution of the age term a—this is dealt with via averaging—but they remain O(1) on the
fast timescale.

We may contrast this with the Fleming–Viot multicolor process. We recall that the time
change is t �→ Nt . We consider a test function f ∈ Cb(K) and observe that, on the fast
timescale, the empirical measure of the colors evaluated against f , χN

Nt (f ), satisfies

(1.15) dχN
Nt (f ) =

N∑
i=1

κ
(
Xi

Nt

)[ 1

N − 1

∑
j �=i

[
f
(
η

j
Nt

)− f
(
ηi

Nt

)]]
dt + d(Martingale)t .

We see that the drift term is of O(N) on the fast timescale. In particular, the change in position
of an individual particle has an O(1) effect on the drift. A large deviations principle for the
Fleming–Viot multicolor process would provide controls on the drift valid over a sufficiently
large timescale (a LDP for the Fleming–Viot particle system driven by Brownian motion
with soft killing was established by Grigorescu in [28]) but would only control the drift on a
fast timescale to O(N). Since microscopic fluctuations in the position of individual particles
have an O(1) effect on the drift, there would not seem to be any hope of obtaining adequate
controls on the drift term in order to apply a compactness-uniqueness argument (in which
one characterises the martingale problem solved by subsequential limits).

The key idea, allowing us to deal with these large drift terms, will be to consider the tilted
empirical measure YN

t , which we recall was given in (1.8) as

YN
t :=

1
N

∑N
i=1 φ(Xi

t )δηi
t

1
N

∑N
i=1 φ(Xi

t )
∈ P(K).

Motivation for choosing YN
t . We take inspiration from Katzeberger’s approach in [30].

Consider a dynamical system in Euclidean space, ẋt = b(xt ), with an attractive manifold
of equilibrium M and flow map ϕ(x, s). Katzenberger [30] established (under reasonable
conditions) that the long-term dynamics of the randomly perturbed dynamical system,

(1.16) dxε
t = b

(
xε
t

)
dt + ε dWt,

can be obtained by considering the following nonlinear projection onto the manifold of equi-
libria:

(1.17) �(x) := lim
s→∞ϕ(x, s) ∈ M.

We summarise Katzenberger’s idea as follows. Since ∇� · b ≡ 0, the Stratanovich chain rule
implies that

d�
(
xε
t

)= ε∇�
(
xε
t

) ◦ dWt .

In particular, the large drift term has been eliminated from the above expression. We may
rescale time to see that �(xε

t

ε2
) satisfies

d�
(
xε

t

ε2

)= ∇�
(
xε

t

ε2

) ◦ dW̃t ,

whereby W̃t is the Brownian motion W̃t := εW t

ε2
. Since the dynamical system will be pushed

toward the attractive manifold of equilibrium on a fast timescale, one can then argue that

(1.18) xε
t

ε2
≈ �

(
xε

t

ε2

)
.

We can, therefore, obtain a scaling limit for xε
t

ε2
. This scaling limit is a diffusion on M.
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Whilst Katzenberger’s results in [30] were restricted to finite-dimensions, we may ask
what the analogue of �(xε

t ) is in the present setting? We will see that YN
t can be thought of

as being analogous to the quantity �(xε
t ) considered by Katzenberger.

We denote by ((Xt , ηt ))0≤t<τ∂
the killed Markov process defined in Definition 1.7. It fol-

lows from Theorem 1.8 that we can think of the Fleming–Viot multicolor process as a random
perturbation of the dynamical system with flow map

(1.19) P(D̄ ×K) × [0,∞) � (υ, s) �→ Lυ

(
(Xs, ηs)|τ∂ > s

) ∈ P(D̄ ×K).

Proposition 1.9 provides for the large-time limits of this flow. We therefore see from Propo-
sition 1.9 that the analogue of �(xε

t ) is given by
1
N

∑N
i=1 φ(X

N,i
t )π ⊗ δ

η
N,i
t

1
N

∑N
i=1 φ(X

N,i
t )

= π ⊗YN
t .

We discard π , since it is constant, leaving only YN
t .

There is a second heuristic reason for examining YN
t . If x(t) and y(t) both satisfy the

ODEs ẋ = c(t)x and ẏ = c(t)y for the same c(t), then y(t)
x(t)

is constant. If we now instead

consider the SDEs dXt = ctXt dt + ε dWt and dYt = ctYt dt + ε dWt ,
Yt

Xt
will satisfy an

SDE with only O(ε2) drift terms, since the O(1) terms will cancel out as in the deterministic
case (one can check this using Itô’s lemma).

We now define for E ∈ B(K) the following, which shall be used throughout the proof of
Theorem 1.4:

P
N,E
t := 1

N

N∑
i=1

1ηi
t ∈Eφ

(
Xi

t

)
, QN

t := P N,K = 1

N

N∑
i=1

φ
(
Xi

t

)
and

Y
N,E
t := YN

t (E) = P
N,E
t

QN
t

.

(1.20)

The important point is that, to leading order, both P N,E and QN evolve with drift terms
proportional to themselves with the same constant of proportionality. Indeed, on the slow
timescale the killed process Xt satisfies

dφ(Xt) = Lφ(Xt) + martingale terms = −λφ(Xt) + martingale terms.

Therefore, between jumps, and including the process of killing the particles, the quantities
P

N,E
t and QN

t evolve with drift terms −λP
N,E
t dt and −λQN

t dt , respectively. Furthermore,
if particle (XN,i, ηN,i) dies at time t , 1

N
φ(X

N,i
t )1(η

N,i
t ∈ E) (resp., 1

N
φ(X

N,i
t )) is added

to the value of P
N,E
t (resp., Q

N,E
t ), the expected value of which is P

N,E
t− + O( 1

N
) (resp.,

Q
N,E
t− +O( 1

N
)). This occurs at Poisson rate κ(Xi

t ). Thus, after the time-change t �→ Nt , we
can write

dP
N,E
Nt =

[
−λN +

N∑
i=1

κ
(
Xi

t

)]
P

N,E
Nt dt +O(1) dt + d(martingale)t ,

dQN
Nt =

[
−λN +

N∑
i=1

κ
(
Xi

t

)]
QN

Nt dt +O(1) dt + d(martingale)t .

(1.21)

In particular, on the fast timescale, given by t �→ Nt , both P
N,E
Nt and QN

Nt both evolve with
drift proportional to themselves with the same constant of proportionality given by

(1.22) −λN +
N∑

i=1

κ
(
Xi

t

)
.
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We observe that the change in position of an individual particle has an O(1) effect on the
constant of proportionality (1.22). However, these large effects cancel out by placing the
normalisation at microscopic scale in the denominator, as the constant of proportionality in
both the numerator and denominator must be the same.

From these considerations we see that, having rescaled time by t �→ Nt , YN
Nt should sat-

isfy an SDE with O(1) drift terms. It is straightforward to see that the martingale terms will
have O(1) quadratic variation on this timescale. It follows that YN

Nt should be susceptible to
a compactness-uniqueness argument in which we establish tightness before uniquely char-
acterising subsequential limits by characterising their drift and quadratic variation. We shall
thereby obtain a scaling limit for YN

Nt . We note that, since the leading order terms in (1.21)
cancel out, we shall need to calculate the “O(1) dt” higher order terms, which is responsible
for much of the computational complexity in the proof of Theorem 1.4.

The relationship between χN
Nt and YN

Nt . The above will allow us to characterise the limit
in distribution of (YN

Nt)t≥0. Our goal, however, is to characterise the limit in distribution of
(χN

Nt )t≥0. We would, therefore, like to relate YN
Nt with χN

Nt .
The key observation here is that, on the original slow timescale, the color of a particle and

its spatial position become “independent” after an O(1) time. To be more precise, for any
given A ⊆ K, the spatial profile of particles whose colors belong to A,∑N

i=1 1(ηi
t ∈ A)δXi

t

|{i : ηi
t ∈ A}| ,

converges over an O(1) timescale to the quasi-stationary distribution π , a deterministic pro-
file. Thus, for different subsets A,B ⊆ K, the number of particles with colors belonging to
A and B may well be different, but the spatial profiles of the two sets of particles will be the
same for large N . Since the particles corresponding to different colors have the same spatial
profile, weighting the empirical measure of the colors according to the right eigenfunction
evaluated at the corresponding spatial positions will have no effect. It follows that χN

t and
YN

t will be close after an O(1) time. On the fast timescale, χN
Nt will, therefore, be close

to YN
Nt . This is analogous to the second step in Katzenberger’s approach in [30], described

above in (1.18).
The proof of Theorem 1.4 will, therefore, follow by establishing that (YN

Nt )t≥0 converges
to the Wright–Fisher process,] and showing that χN

Nt is close to YN
Nt .

1.8. Why is the limit a Wright–Fisher process?. It follows from the above heuristic that
χN

t should evolve over an O(N) timescale and that χN
Nt should converge to some P(K)-

valued process (at least on subsequences). In the proof of Theorem 1.4, we will calculate that
the limit is a Wright–Fisher process. However, it is not readily apparent from this why the
limit should necessarily be a Wright–Fisher process. We offer here a heuristic argument for
why we should expect the limit to be a Wright–Fisher process.

We let (ν̂t )t≥0 be the limit to be determined of (χN
Nt )t≥0 (perhaps along a subsequence). By

the aforedescribed separation of timescales phenomenon, this will be a P(K)-valued process,
with the dependence on the spatial component “averaged out.” We consider an arbitrary mea-
surable map ι :K →K. We can think of ι as relabelling the colors. The key observation is that
{(XN,i

t , ι(η
N,i
t )) : 1 ≤ i ≤ N} is itself a Fleming–Viot multicolor process—the Fleming–Viot

multicolor process remains one after relabelling the colors. It follows that whatever dynamics
(ν̂t )t≥0 has, (ι#ν̂t )t≥0 must have the same dynamics. This allows us both to exchange colors
and to relabel different colors as the same color.

It follows that there should exist continuous functions

b,σ11 : [0,1] → R and σ12 : {(p, q) ∈ [0,1]2 : p + q ≤ 1
}→R
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such that the following are continuous martingales for all disjoint A1,A2 ∈ B(K):

ν̂t (A1) −
∫ t

0
b
(
ν̂s(A1)

)
ds,

(
ν̂t (A1)

)2 −
∫ t

0
σ11
(
ν̂s(A)

)
ds, and

(
ν̂t (A1)

)(
ν̂t (A2)

)− ∫ t

0
σ12
(
ν̂s(A1), ν̂s(A2)

)
ds.

Moreover, since a color of mass p and a color of mass q can be relabelled to be a single color
of mass p + q , it is clear that

b(p + q) = b(p) + b(q),

σ11(p + q) = σ11(p) + σ11(q) + 2σ12(p, q), 0 ≤ p,q ≤ p + q ≤ 1

σ12(p1 + p2, q1 + q2) = ∑
1≤i,j≤2

σ12(pi, qj ), 0 ≤ p1,p2, q1, q2 ≤ p1 + p2 + q1 + q2 ≤ 1.

Furthermore, the whole color space K must have total mass 1, so ν̂t (K) ≡ 1. From these
considerations we see that the only possibility is that, for some constant θ ,

b ≡ 0, σ11(p) = θ

2

(
p − p2) and σ12(p, q) = −θ

2
pq.

We recognise the Wright–Fisher diffusion described in Section 1.2. In light of Proposi-
tion 1.3, it is, therefore, natural that our unknown limit (ν̂t )t≥0 should be a Wright–Fisher
process.

1.9. Hard catalyst killing. The setting of the present paper—in which the Fleming–Viot
particle system is driven by diffusions with soft killing—has been chosen to establish the
connection between the Fleming–Viot process and the Wright–Fisher process with a mini-
mum of technical difficulties. Nevertheless, in Section 5 we will extend this connection to
the original setting, considered by Burdzy, Holyst and March [16], in which the Fleming–
Viot particle system is driven by Brownian motion with instantaneous killing at the boundary
(hard killing). To avoid switching back and forth between Fleming–Viot particle systems
with different dynamics, we will only consider the case of hard killing in Section 5, the final
section prior to the Appendix and in Appendix E. Our results in the case of hard killing are,
therefore, stated and proved in Section 5.

We emphasise that the proof strategy employed in the present paper may be applied to the
Fleming–Viot particle system driven by more general killed Markov processes. The principal
requirements to apply this proof strategy are that:

1. The driving killed Markov process (Xt)0≤t<τ∂
is Feller.

2. Its infinitesimal generator has a positive, continuous and bounded principal right eigen-
function φ.

3. Lμ(Xt |τ∂ > t) converges to a unique quasi-stationary distribution for any initial condi-
tion μ.

4. We can constrain the empirical measure of the spatial positions of the particles mN
t

to a tight set of measures over any O(N) timescale, precluding in particular the mass from
accumulating at the boundary.

In the case of hard killing at the boundary in a bounded domain, the main additional diffi-
culty is to establish Requirement 4. We will obtain such controls for the Fleming–Viot particle
system driven by Brownian motion with hard killing in Section 5. With these controls in hand,
the extension of our results to this setting proceeds by essentially the same proof.

When the domain is unbounded, the situation is much more delicate. For diffusions on
the positive real line R>0 with hard killing at 0, one could probably establish similar results
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for Ornstein–Uhlenbeck dynamics, using the strong negative drift to control the particles
far away from 0 over an O(N) time scale. For this process the principal right eigenfunc-
tion is unbounded (it’s given by φ(x) = x); instead, strong controls on the mass of particles
far away from 0 (where φ is large) over an O(N) timescale would be required to replace
the boundedness of φ. To be more precise, we would need to show, for any T < ∞, that
sup0≤t≤NT

1
N

∑
1≤i≤N(φ(X

N,i
t ))2 is bounded by some uniform constant with probability ar-

bitrarily close to 1, uniformly in N . On the other hand, we should not expect the Fleming–Viot
particle system driven by Brownian motion with drift −1 to have a Wright–Fisher process
scaling limit, this drift being too weak to adequately control the particles. Indeed, it is a
hard open problem to show that the genealogy of the very similar N -BBM is given by a
Bolthausen–Sznitman coalescent [35], page 1066.

1.10. Structure of the paper. A summary of the notation, which we shall need for our
proof, is given in Section 2. The proof of Theorem 1.4 shall rely on a number of calculations
of the quantity YN

t , defined in (1.8). To avoid obscuring our proof with calculations, we will
carry out these calculations in Section 3. We shall then prove Theorem 1.4 in Section 4. We
will extend our results to the Fleming–Viot multicolor process driven by Brownian motion
with instantaneous killing at the boundary in Section 5. We conclude with the Appendix.

2. Notation for the proof of Theorem 1.4. We recall from (1.20) that we define, for
E ∈ B(K),

P
N,E
t := 1

N

N∑
i=1

1ηi
t ∈Eφ

(
Xi

t

)
, QN

t := P N,K = 1

N

N∑
i=1

φ
(
Xi

t

)
and

Y
N,E
t := YN

t (E) = P
N,E
t

QN
t

.

We recall the definition of mN
t and χN

t from (1.4) and further define m
N,E
t for E ∈ B(K),

mN
t := 1

N

N∑
i=1

δ
X

N,i
t

, χN
t := 1

N

N∑
i=1

δηi
t

and

m
N,E
t :=

N∑
i=1

1
(
ηi

t ∈ E
)
δXi

t
= mN

t (E).

(2.1)

We recall from Appendix A that the infinitesimal generator of the reflected diffusion with
(resp., without) soft killing is denoted by L (resp., L0). We further recall that the Carre du
champs operator of the latter is denoted as �0 and is defined on the algebra A. This algebra
contains the principal right eigenfunction φ of L, by Theorem A.1. We further define

�
N,E
t := 〈

m
N,E
t , �0(φ) + κφ2〉+ 〈mN,E

t , φ2〉〈mN
t , κ

〉
for E ∈ B(K), and �N

t := �
N,K
t .

(2.2)

2.1. O notation. The following notation shall significantly simplify our calculations.
For any finite variation process (Xt)0≤t<∞, we write Vt(X) for the total variation

(2.3) Vt(X) = sup
0=t0<t1<···<tn=t

n−1∑
i=0

|Xti+1 − Xti |.

Moreover, for all càdlàg processes (Xt)0≤t<∞, we write

(2.4) �Xt = Xt − Xt−.
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Given some family of random variables {XN : N ∈ N} and nonnegative random variables
{YN : N ∈ N}, we say that XN = O(YN) if there exists a uniform constant C < ∞ such
that |XN | ≤ CYN . Note that we shall abuse notation by using an equals sign rather than an
inclusion sign.

We now define the notion of process sequence class. Given sequences of processes
{(XN

t )t≥0 : N ∈ N} and {(YN
t )t≥0 : N ∈ N}, we say that:

1. XN
t = OMG

t (YN) if for all N ≥ N0 (for some N0 < ∞) and for some C < ∞, XN
t is

a martingale whose quadratic variation is such that

(2.5)
[
XN ]

t −
∫ t

0
CYN

s ds is a supermartingale.

2. XN
t = OFV

t (YN) if for all N ≥ N0 (for some N0 < ∞) and for some C < ∞, XN
t is

a finite variation process whose total variation is such that

(2.6) Vt

(
XN )− ∫ t

0
CYN

s ds is a supermartingale.

3. XN
t = O�

t (YN) if for all N ≥ N0 (for some N0 < ∞) and for some C < ∞, XN
t is

such that

(2.7)
∣∣�XN

t

∣∣≤ CYN
t− for all 0 ≤ t < ∞, almost surely.

4. XN
t = OCts

t or XN
t = OLip

t if for all N ≥ N0 (for some N0 < ∞), XN
t has continuous

(resp., Lipschitz) sample paths, almost surely.

We refer to OMG
t (YN),OFV

t (YN) and OFV
t (YN) for ((YN

t )0≤t<∞ : N ∈ N) a given sequence

of processes, and OCts
t and OLip

t as process sequence classes. Note that as with sequences of
random variables, we abuse notation by using an equals sign rather than an inclusion sign.

Suppose that we have constants rN > 0 (N ∈ N). For a given sequence of processes
YN , write ZN

s := YN
rNs . The statements XN

t = OMG
t (YN

rN ·), XN
t = OFV

t (YN
rN ·) and XN

t =
O�

t (YN
rN ·) should be interpreted as the statements XN

t = OMG
t (ZN· ), XN

t = OFV
t (ZN· ) and

XN
t = O�

t (ZN· ), respectively.
Given an index set A, a family of sequences of processes {((XN,α

t )0≤t<∞)∞N=1 : α ∈ A} and

a family of process sequence classes {AN,α
t : α ∈ A}, we say that X

N,α
t = AN,α

t uniformly if
the constants Cα and Nα

0 used to define X
N,α
t = AN,α

t , as in 1–3, can be chosen uniformly in
α ∈ A.

It will be useful to take the sum and intersection of process sequence classes and specific
sequences of processes. To be more precise, for any process sequence classes AN

t and BN
t

and the sequence of processes FN
t , we say that:

1. XN
t = AN

t ∩ BN
t if XN

t = AN
t and XN

t = BN
t ;

2. XN
t = FN

t + AN
t if there exists a sequence of processes GN

t such that GN
t = AN

t and
XN

t = FN
t + GN

t ;
3. XN

t = AN
t + BN

t if there exists sequences of processes GN
t and HN

t such that GN
t =

AN
t , HN

t = BN
t and XN

t = GN
t + HN

t ;
4. dXt = dFN

t + dAN
t + dBN

t if there exists sequences of processes GN
t and HN

t such
that GN

t = AN
t , HN

t = BN
t and dXN

t = dFN
t + dGN

t + dHN
t .

For example, if XN
t = OMG

t (1) + OFV
t ( 1

N
) ∩ O�

t ( 1
N2 ), then there exists GN

t and HN
t such

that XN
t = GN

t + HN
t whereby GN

t = OMG
t (1) and HN

t = OFV
t ( 1

N
) ∩O�

t ( 1
N2 ). Thus, XN

t =
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OMG
t (1) +OFV

t ( 1
N

) ∩O�
t ( 1

N2 ) means that, for some 0 < C < ∞, there exists for all N large

enough martingales GN
t and finite-variation processes HN

t such that

XN
t = GN

t + HN
t ,[

GN ]
t − Ct is a supermartingale since GN

t = OMG
t (1),

Vt

(
HN )− t

N
is a supermartingale since HN = OFV

t

(
1

N

)

and
∣∣�ZN

t

∣∣≤ C

N2 for all 0 ≤ t < ∞, almost surely, since HN
t = O�

t

(
1

N2

)
.

3. Characterisation of YN
t . In the proof of Theorem 1.4, we will obtain a scaling limit

for the tilted empirical measure of the colors on a fast timescale, (YN
Nt )t≥0. This will rely on

various calculations characterising its drift and quadratic variation. To avoid obscuring the
proof of Theorem 1.4 with calculations, we perform these calculations here.

In this section we write (�,G, (Gt )t≥0,P) for the underlying filtered probability space.

REMARK 3.1. In the present section, all statements as to processes belonging to various
process sequence classes should be interpreted as being uniform over all choices E,F ∈ B(K)

(or over all sequences of G0-measurable random EN,FN ∈ B(K) in the case of Part 4 of
Theorem 3.2).

We recall that

YN
t :=

1
N

∑N
i=1 φ(Xi

t )δηi
t

1
N

∑N
i=1 φ(Xi

t )
.

In this section we prove the following theorem.

THEOREM 3.2. We have the following, uniformly over all choices of E,F ∈ B(K):

1. The covariation [YN,E , YN,F ]t is such that [YN,E , YN,F ]t = OFV
t ( YN,EYN,F

N
) for dis-

joint E,F ∈ B(K).
2. There exists martingales KN,E

t for E ∈ B(K) such that Y
N,E
t satisfies

Y
N,E
t = Y

N,E
0 +

∫ t

0

[
− 1

(N − 1)QN
s

〈
mN,E

s − YN,E
s mN

s , κφ
〉

− 1

NQN
s

〈
YN,E

s mN
s − mN,E

s , κφ
〉

+ 1

N(QN
s )2

(
YN,E

s �N
s − �N,E

s

)]
ds +KN,E

t +OMG
t

(
YN,E

N3

)

+OFV
t

(
YN,E

N2

)
∩O�

t

(
1

N3

)

(3.1)

for E ∈ B(K) and such that[
KN,E ,KN,F ]

t =
∫ t

0

1

N(QN
s )2

[
�N,E∩F

s − YN,E
s �N,F

s − YN,F
s �N,E

s

+ YN,E
s YN,F

s �N
s

]
ds +OMG

t

(
Y EYF + Y E∩F

N3

)

+OFV
t

(
Y EYF + Y E∩F

N2

)
∩OCts

t for all E,F ∈ B(K).

(3.2)
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3. Furthermore, Y
N,E
t satisfies

(3.3) Y
N,E
t =

[
OFV

t

(
YN,E

N

)
+OMG

t

(
YN,E

N

)]
∩O�

t

(
1

N

)
.

4. Parts 1–3 remain true if E and F are replaced with a sequence of σ0-measurable ran-
dom sets EN and FN .

3.1. Proof of Theorem 3.2. We first introduce some definitions. We define

(3.4) F(�r) = p

q
for �r =

(
p

q

)
∈ R

2
>0.

We write H = H(�r) for the Hessian and calculate

∇F(�r) =

⎛
⎜⎜⎝

1

q

− p

q2

⎞
⎟⎟⎠ and H(�r) =

⎛
⎜⎜⎝

0 − 1

q2

− 1

q2 2
p

q3

⎞
⎟⎟⎠ for �r =

(
p

q

)
∈ R

2
>0.(3.5)

We have the key property

(3.6) ∇F · �r = 0 and �r · H(F)�r = 0 for �r =
(
p

q

)
∈R

2
>0.

We further define

�RN,E
t :=

(
P

N,E
t

QN
t

)
so that Y

N,E
t = F

( �RN,E
t

)
.(3.7)

We shall first establish the following proposition, which characterises P N,E .

PROPOSITION 3.3. We have for all E ∈ B(K) that

(3.8) dP
N,E
t = P

N,E
t

(
−λ + N

N − 1

〈
mN

t , κ
〉)

dt − 1

N − 1

〈
m

N,E
t , κφ

〉
dt + dM

N,E
t ,

whereby MN,E are martingales which satisfy, for all E,F ∈ B(K),

[
MN,E ,MN,F ]

t = − 1

N

∫ t

0
P N,E

s

〈
mN,F

s , κφ
〉+ P N,F

s

〈
mN,E

s , κφ
〉
ds

+ 1

N

∫ t

0
�N,E∩F

s ds +OMG
t

(
P EPF + P E∩F

N3

)

+OFV
t

(
P E∩F

N2

)
∩OLip

t .

(3.9)

We write MN
t for M

N,K
t .

We will then establish Part 1 of Theorem 3.2, followed by the following version of Itô’s
lemma.

LEMMA 3.4 (Itô’s lemma). We have

Y
N,E
t = Y

N,E
0 +

∫ t

0
∇F

(
R

N,E
s−

) · dRN,E
s + 1

2
dRN,E

s · H (RN,E
s−

)
dRN,E

s

+OFV
t

(
YN,E

N2

)
∩O�

t

(
1

N3

)
.

(3.10)
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Combining (3.5) with Proposition 3.3 and Lemma 3.4, we obtain (3.1) by calculation,
whereby

(3.11) KN,E
t :=

∫ t

0

1

QN
s−

(
dMN,E

s − Y
N,E
s− dMN

s

)
.

We then obtain (3.2) from (3.9) and (3.11).
Using the boundedness of φ and the fact that there are no simultaneous killing events, we

obtain (3.3) from (3.1).
Since in parts 1–3 of Theorem 3.2 the statements of processes belonging to various process

sequence classes are uniform over all choices E,F ∈ B(K), Part 4 is immediate.
It remains to prove Proposition 3.3, Part 1 of Theorem 3.2 and Lemma 3.4.

3.1.1. Proof of Proposition 3.3. Since N is fixed throughout this proof, we neglect the
N superscript for the sake of notation, where it would not create confusion. We recall that τ i

n

represents the nth killing time of particle (Xi, ηi) (τ i
0 := 0), τn is the nth killing time of any

particle (τ0 := 0), and JN
t := 1

N
sup{n : τn ≤ t} is the number of killing times up to time t ,

renormalised by N .
We denote

φE(x, η) := φ(x)1(η ∈ E), E ∈ B(K).

We define for E ∈ B(K) the processes

AE
t = 1

N

N∑
i=1

∑
τ i
n≤t

φE (Xi
τ i
n
, ηi

τ i
n

)− N

N − 1

∫ t

0
P E

s

〈
mN

s , κ
〉
ds

+ 1

N(N − 1)

N∑
i=1

∑
τ i
n≤t

φE (Xi
τ i
n−, ηi

τ i
n−
)
,

BE
t = 〈

m
N,E
t , φ

〉− 〈mN,E
0 , φ

〉− 1

N

N∑
i=1

∑
τ i
n≤t

φE (Xi
τ i
n
, ηi

τ i
n

)+ λ

∫ t

0

〈
mN,E

s , φ
〉
ds, and

CE
t = 1

N

N∑
i=1

∑
τ i
n≤t

φE (Xi
τ i
n−, ηi

τ i
n−
)− ∫ t

0

〈
mN,E

s , κφ
〉
ds.

(3.12)

We will first establish that AE
t , BE

t and CE
t are martingales so that

ME
t = AE

t + BE
t − 1

N − 1
CE

t = − N

N − 1

∫ t

0
P N,E

s

〈
mN

s , κ
〉
ds

+ 〈mN,E
t , φ

〉− 〈mN,E
0 , φ

〉+ λ

∫ t

0

〈
mN,E

s , φ
〉
ds + 1

N − 1

∫ t

0

〈
mN,E

s , κφ
〉
ds

(3.13)

is a martingale. We therefore have (3.8). We will then establish (3.9) by establishing it for
E = F and for E,F disjoint:

AE
t is a martingale. We have that if particle Xi dies at time t , then each j �= i is selected

with probability 1
N−1 so that the expected value of φE(Xi

t , η
i
t ) is given by

1

N − 1

∑
j �=i

φE (Xj
t−, η

j
t−
)= N

N − 1
×
[
P E

t− − 1

N
φE (Xi

t−, ηi
t−
)]

.
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Therefore, summing over τ i
n ≤ t , we see that

1

N

N∑
i=1

∑
τ i
n≤t

φE (Xi
τ i
n
, ηi

τ i
n

)− N

N − 1

∫ t

0
P E

s− dJN
s + 1

N(N − 1)

N∑
i=1

∑
τ i
n≤t

φE (Xi
τ i
n−, ηi

τ i
n−
)

is a martingale. We finally note that JN
t − ∫ t

0 〈mN
s , κ〉ds is a martingale so that AE

t is a mar-
tingale.

BE
t is a martingale. Since Lφ = −λφ, we see that the following is a martingale:

B
E,i,n
t := 1

(
τ i
n ≤ t < τ i

n+1
)
φE (Xi

t , η
i
t

)− φE (Xi
τ i
n
, ηi

τ i
n

)
1
(
t ≥ τ i

n

)
+ λ

∫ t

0
1
(
τ i
n ≤ s < τ i

n+1
)
φE (Xi

s, η
i
s

)
ds.

Therefore,
∑

n<n0
B

E,i,n
t is a martingale for all n0 < ∞. Since

∑
n<n0

|BE,i,n
t | ≤ C(1 + t +

NJN
t ) for all n0 < ∞, for some C < ∞, (

∑
n<∞ B

E,i,n
t )0≤t<∞ is a martingale. Therefore,

BE
t = 1

N

N∑
i=1

∑
n<∞

B
E,i,n
t is a martingale.

CE
t is a martingale. We have that

C
E,i,n
t := 1

(
t ≥ τ i

n+1
)
φE (Xi

τ i
n+1−

, ηi

τ i
n+1−

)− ∫ t

0
1
(
τ i
n ≤ s < τ i

n+1
)
κ
(
Xi

s

)
φE (Xi

s, η
i
s

)
ds

is a martingale. Since for some C < ∞,
∑

n<n0
|CE,i,n

t | ≤ C(1 + t + NJN
t ) for all n0 < ∞,∑

n<∞ CE,i,n is a martingale. Therefore,

CE
t = 1

N

N∑
i=1

∑
n<∞

C
E,i,n
t is a martingale.

The Quadratic Variation of ME . We observe from (3.13) that M
N,E
t − 〈mN,E

t , φ〉 is a Lip-
schitz process. By considering seperately the quadartic variation of the continuous motion
between jumps and at the jumps, it follows that

[
MN,E ,MN,F ]

t = 1

N

∫ t

0

〈
�0(φ),mN,E∩F

s

〉
ds + H

N,E,F
t ,

whereby we define

H
N,E,F
t := 1

N2

N∑
i=1

∑
τ i
n≤t

[
φE (Xi

τ i
n
, ηi

τ i
n

)− φE (Xi
τ i
n−, ηi

τ i
n−
)][

φF (Xi
τ i
n
, ηi

τ i
n

)− φF (Xi
τ i
n−, ηi

τ i
n−
)]

.

To characterise H
N,E,F
t , we split into the cases that E and F are disjoint and that E = F .

E =F . We write H
N,E
t for H

N,E,E
t . At time τ i

n−, the expected values of φE(Xi
τ i
n
, ηi

τ i
n
) and

φE(Xi
τ i
n
, ηi

τ i
n
)2 are

P E
τ i
n− +O

(P E
τ i
n− + φE(Xi

τ i
n−, ηi

τ i
n−)

N

)
and

〈
m

N,E
τ i
n− , φ2〉+O

(P E
τ i
n− + φE(Xi

τ i
n−, ηi

τ i
n−)

N

)
,

respectively. Therefore, the expected value of [φE(Xi
τ i
n
, ηi

τ i
n
) − φE(Xi

τ i
n−, ηi

τ i
n−)]2 at time τ i

n−
is

〈
m

N,E
τ i
n− , φ2〉− 2P E

τ i
n−φE (Xi

τ i
n−, ηi

τ i
n−
)+ (φE (Xi

τ i
n−, ηi

τ i
n−
))2 +O

(P E
τ i
n− + φE(Xi

τ i
n−, ηi

τ i
n−)

N

)
.
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Then using the killing rate to characterise the rate at which killing events happen, we see that

H
N,E
t − 1

N

∫ t

0

〈
mN

s , κ
〉〈
mN,E

s , φ2〉+ 〈mN,E
s , κφ2〉− 2P N,E

s

〈
mN,E

s , κφ
〉
ds

= OFV
t

(
P N,E

N2

)
∩OLip

t + M̃
N,E
t

for some martingale M̃
N,E
t . It is straightforward to then see that, for all N sufficiently large

(which does not depend upon E), [M̃N,E ]t = [HN,E ]t = OFV
t (P N,E

N3 ). We, therefore, obtain
(3.9) in the case that E =F .

E ∩F = ∅. Since φE(x, η)φF (x, η) = 0 for all (x, η) ∈ D̄ ×K, we have that[
φE (Xi

τ i
n
, ηi

τ i
n

)− φE (Xi
τ i
n−, ηi

τ i
n−
)][

φF (Xi
τ i
n
, ηi

τ i
n

)− φF (Xi
τ i
n−, ηi

τ i
n−
)]

= −φE (Xi
τ i
n−, ηi

τ i
n−
)
φF (Xi

τ i
n
, ηi

τ i
n

)− φE (Xi
τ i
n
, ηi

τ i
n

)
φF (Xi

τ i
n−, ηi

τ i
n−
)
.

The expected value of this at time τ i
n− is then

− N

N − 1

[
φE (Xi

τ i
n−, ηi

τ i
n−
)
P

N,F
τ i
n− + φF (Xi

τ i
n−, ηi

τ i
n−
)
P

N,E
τ i
n−
]
.

It follows that

H
N,E,F
t + 1

N − 1

∫ t

0
P N,E

s

〈
mN,F

s , κφ
〉+ P N,F

s

〈
mN,E

s , κφ
〉
ds is a martingale,

which we denote as M̃
N,E,F
t . It is then straightforward to see that [M̃N,E,F ]t = [HN,E,F ]t =

OFV
t (P N,EP N,F ). We have, therefore, obtained (3.9) with E ∩F = ∅.
Having established (3.9) both in the case that E =F and the case that E ∩F = ∅, the case

of arbitrary E,F follows by linearity.

3.1.2. Proof of part 1 of Theorem 3.2. We recall that F , H and �R were defined in (3.4),
(3.5) and (3.7) as

F(�r) = p

q
, H(�r) =

⎛
⎜⎜⎝

0 − 1

q2

− 1

q2 2
p

q3

⎞
⎟⎟⎠ for �r =

(
p

q

)
∈ R

2
>0,

�RN,E
t :=

(
P

N,E
t

QN
t

)
so that Y

N,E
t = F

( �RN,E
t

)
.

We decompose

�RN,E
t = �RN,E,C

t + �RN,E,J
t and Y

N,E
t = F

( �RN,E
t

)= Y
N,E,C
t + Y

N,E,J
t

for E ∈ B(K), whereby

Y
N,E,J
t =∑

s≤t

�YN,E,J
s and �RN,E,J

t :=∑
s≤t

� �RN,E
s =

(
P

E,J
t

QJ
t

)
.

Then by Itô’s lemma, we have

(3.14) dY
N,E,C
t = ∇F

( �RN,E
t

) · d �RN,E,C
t + 1

2
d �RN,E,C

t · H(F)
( �RN,E

t

)
d �RN,E,C

t .
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We can, therefore, calculate

d
[
YN,E,C, YN,F,C]

t

= 1

(QN
t )2

(
dP

N,E,C
t − Y

N,E
t dQ

N,C
t

) · (dP
N,F,C
t − Y

N,F
t dQ

N,C
t

)
.

(3.15)

Proposition 3.3 implies that

d
[
P N,E,C,P N,F,C]

t =OFV
t

(
YN,EYN,F

N
+ YN,E∩F

N2

)
(3.16)

for all E,F ∈ B(K). Combining (3.15) with (3.16), we have

(3.17) d
[
YN,E,C, YN,F,C]

t = OFV
t

(
YN,EYN,F

N

)

for all E,F ∈ B(K) disjoint. We also have that

[
YN,E,J , YN,F,J ]

t = ∑
τ i
n≤t

�Y
N,E
τ i
n

�Y
N,F
τ i
n

.

Since QN
t is bounded below away from 0, by bounding the partial derivatives of F we can

calculate for all E,F ∈ B(K) disjoint that

∣∣�Y
N,E
τ i
n

�Y
N,F
τ i
n

∣∣

= O
(∣∣�P

N,E
τ i
n

�P
N,F
τ i
n

∣∣+ P
N,E
τ i
n− |�P

N,F
τ i
n

| + P
N,F
τ i
n− |�P

N,E
τ i
n

|
N

+
P

N,E
τ i
n− P

N,F
τ i
n−

N2

)

= O
( |φE(Xi

τ i
n
, ηi

τ i
n
)φF (Xi

τ i
n−, ηi

τ i
n−)|

N2

)
+O

( |φF (Xi
τ i
n
, ηi

τ i
n
)φE(Xi

τ i
n−, ητ i

n−)|
N2

)

+O
(P

N,E
τ i
n− P

N,F
τ i
n−

N2

)
+O

( |φE(Xi
τ i
n
, ηi

τ i
n
) − φE(Xi

τ i
n−, ηi

τ i
n−)|

N2 P
N,F
τ i
n−
)

+O
( |φF (Xi

τ i
n
, ηi

τ i
n
) − φF (Xi

τ i
n−, ηi

τ i
n−)|

N2 P
N,E
τ i
n−
)
.

Since κ is bounded, it is straightforward to then see that

∑
τ i
n≤t

∣∣�Y
N,E
τ i
n

�Y
N,F
τ i
n

∣∣=OFV
t

(
P N,EP N,F

N

)
= OFV

t

(
YN,EYN,F

N

)

so that [
YN,E,J , YN,F,J ]

t = ∑
τ i
n≤t

∣∣�Y
N,E
τ i
n

�Y
N,F
τ i
n

∣∣

= OFV
t

(
P N,EP N,F

N

)
= OFV

t

(
YN,EYN,F

N

)(3.18)

for all E,F ∈ B(K) disjoint. Combining (3.17) with (3.18), we have Part 1 of Theorem 3.2.
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3.1.3. Proof of Lemma 3.4. We take 0 ≤ t0 ≤ t1 ≤ t and write

Y
N,E,J
t1

− Y
N,E,J
t0

= ∑
t0<s≤t1

(
YN,E

s − Y
N,E
s−

)
.

We may calculate

(3.19)
∂3F

∂p3 = ∂3F

∂2p∂q
= 0,

∂3F

∂p∂2q
= 2

q3 ,
∂3F

∂3q
= −6p

q4 .

Thus, by Taylor’s theorem, (3.19), the fact that almost surely there are no simultaneous killing
events and the fact that QN

t is bounded above and below away from 0, we have∣∣∣∣YN,E,J
s − Y

N,E,J
s− − ∇F

( �RN
s−
) · ( �RN,J

s − �RN,J
s−

)

− 1

2

( �RN,J
s − �RN,J

s−
) · H(F)

( �RN
s−
)( �RN,J

s − �RN,J
s−

)∣∣∣∣
= O

(
P

N,E
s−

∣∣�QN
s−
∣∣3 + ∣∣�P

N,E
s−

∣∣∣∣�QN
s−
∣∣2).

Since κ and φ are bounded, it is straightforward to then see that

Y
N,E,J
t − Y

N,E,J
0 −

∫ t

0
∇F

( �RN
s−
) · d �RN,J

s − 1

2

∫ t

0
d �RN,J

s · H(F)
( �RN

s−
)
d �RN,J

s

= OFV
t

(
YN,E

N3

)
∩O�

(
1

N3

)
.

(3.20)

Combining this with (3.14), we have Lemma 3.4.
This completes the proof of Theorem 3.2.

4. Proof of Theorem 1.4. With the calculations of Section 3 in hand, we now prove
Theorem 1.4. We shall make use of the Wasserstein distance W and the weak atomic metric
Wa , which are defined in Appendix C.

We shall firstly prove the following proposition.

PROPOSITION 4.1. For all E ∈ B(K) and f ∈ Cb(D̄), we have that

(4.1)
(
m

N,E
t − Y

N,E
t π

)
(f ) → 0 in probability as t ∧ N → ∞.

In particular, taking f = 1, we have for any E ∈ B(K) that

(4.2) χN
t (E) −YN

t (E) → 0 in probability as t ∧ N → ∞.

Heuristically, this says that over an O(1) timescale, the number of particles whose color
belongs to E is given by Y

N,E
t , and the spatial distribution of these particles is given by π , for

any E ∈ B(K).
Using Proposition 4.1 and the calculations of Section 3, we will then establish that

(YN
Nt )0≤t≤T converges in distribution to the Wright–Fisher process of rate �.

PROPOSITION 4.2. We take some deterministic initial profile ν0 ∈ P(K) and define
(νt )0≤t<∞ to be a Wright–Fisher process of rate � and initial condition ν0 := ν0. We then
consider a sequence of Fleming–Viot multicolor processes ( �XN

t , �ηN
t )0≤t<∞. We assume that

YN
0 → ν0 in Wa in probability.
We fix T < ∞ and rescale time by t �→ Nt . We then have the convergence

(4.3)
(
YN

Nt

)
0≤t≤T → (νt )0≤t≤T in D

([0, T ];PW(K)
)

in distribution as N → ∞.



2366 O. TOUGH

We recall, in particular, that (νt )0≤t≤T ∈ C([0, T ];PW(K)) almost surely by Theorem D.2.
We now take a sequence (�tN )2≤N<∞ = ((tN1 , . . . , tNn ))2≤t≤N converging to �t = (t1, . . . , tn),
as in the statement of Theorem 1.4. It follows that(

YN

NtN1
, . . . ,YN

NtNn

)→ (νt1, . . . , νtn) in
(
PW(K)

)n in distribution as N → ∞.

Recalling the positivity and boundedness of φ from Theorem A.1, we observe that

(4.4) χN
t ≤ CYN

t for all t ≥ 0,N ∈N, for some fixed uniform constant C < ∞.

We now fix 1 ≤ k ≤ n. Since (YN

NtNk
)N≥1 is a tight sequence of random measures, it follows

from (4.4) that (χN

NtNk
)N≥1 must also be a tight sequence of random measures. It, therefore,

follows from (4.2) and Lemma C.2 that W(YN

NtNk
, χN

NtNk
) → 0 in probability as N → ∞. We

have, therefore, established that(
χN

NtN1
, . . . , χN

NtNn

)→ (νt1, . . . , νtn) in
(
PW(K)

)n in distribution as N → ∞.

We have left only to strengthen the notion of convergence to convergence in the weak atomic
metric. After proving propositions 4.1 and 4.2, we shall establish the following proposition.

PROPOSITION 4.3. We recall that �(u) := (1 − u) ∨ 0 is the function used to define the
Wa metric in Appendix C.2. For all δ > 0, there exists ε > 0 such that

inf
N

P

(
sup

0≤t≤T

∑
k,�∈K
k �=�

χN
Nt

({k})χN
Nt

({�})�(d(k, �)

ε

)
≤ δ

)
≥ 1 − δ.

Note that the above sum is well defined, as the terms are nonzero only for k, � ∈ supp(χN
0 ).

We may, therefore, apply the compact containment condition, Lemma C.5, to conclude
that {L(χN

NtNk
)} is tight in P(PWa (K)) for all 1 ≤ k ≤ n so that we have Theorem 1.4.

We have left to prove propositions 4.1, 4.2 and 4.3

4.1. Proof of Proposition 4.1. We fix E ∈ B(K) and f ∈ Cb(D̄). We write

ψN
t := 1

N

N∑
i=1

δ(Xi
t ,η

i
t )

∈ P(D̄ ×K), 0 ≤ t < ∞,N ∈ N and f E(x, η) := f (x)1(η ∈ E).

We take the D̄ ×K-valued killed strong Markov process ((Xt , ηt ))0≤t<τ∂
defined in Defini-

tion 1.7. It follows from Theorem 1.8 that there exists ct → 0 as t → ∞ such that, for all
N < ∞ and initial conditions ( �XN

0 , �ηN
0 ), we have that

(4.5)
∥∥LψN

0

(
(Xt , ηt )|τ∂ > t

)− π ⊗YN
0

∥∥
TV ≤ ct , 0 ≤ t < ∞.

It follows from Theorem 1.8 that, for all t < ∞ and N ≥ 2, there exists Ct,N < ∞ such that

(4.6) E
( �XN

0 ,�ηN
0 )

[|(ψN
t −LψN

0

(
(Xt , ηt )

∣∣τ∂ > t
))(

f E )∣∣]≤ Ct,N‖f ‖∞,

for any initial condition ( �XN
0 , �ηN

0 ), with Ct,N → 0 as N → ∞ for fixed t < ∞. On the other
hand, we observe that

ψN
t

(
f E)= m

N,E
t (f ),

(
π ⊗YN

t

)(
f E)=

∑N
i=1 φ(X

N,i
0 )π ⊗ δ

η
N,i
0∑N

i=1 φ(X
N,i
0 )

(
f E)= Y

N,E
0 π(f ).

Therefore, combining (4.5) with (4.6), we obtain that

E
[∣∣(mN,E

t − Y
N,E
0 π

)
(f )

∣∣]≤ (Ct,N + ct )‖f ‖∞.

Proposition 4.1 then follows by applying (3.3).
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4.2. Proof of Proposition 4.2. Our proof proceeds in the following two steps:

1. We fix ε > 0 and take {k1, k2, . . .} to be a dense subset of K. Then for all i we can find
ε
2 < ri < ε such that ν0(∂B(ki, ri)) = 0. We set Ai = B(ki, ri)\ (

⋃i−1
j=1 Aj). Since the disjoint

union of Ai is K, we can find n < ∞ such that ν0((
⋃n

i=1 Ai)
c) < ε. We set A0 := (

⋃n
i=1 Ai)

c

and pick arbitrary k0 ∈ K.
We shall prove that (Y

N,A0
Nt , . . . , Y

N,An

Nt )0≤t≤T converges in D([0, T ];Rn+1) in distribution
to a Wright–Fisher diffusion of rate � and initial condition (ν0(A0), . . . , ν

0(An)).
2. We then use this to prove that

(4.7)
(
YN

Nt

)
0≤t≤T → (νt )0≤t≤T in D

([0, T ];PW(K)
)

in distribution.

Step 1. We recall that the martingale KN,E
t was defined in Theorem 3.2, whilst �

N,E
t and

�N
t were defined in (2.2) to be given by

�
N,E
t := 〈

m
N,E
t , �0(φ) + κφ2〉+ 〈mN,E

t , φ2〉〈mN
t , κ

〉
for E ∈ B(K), and �N

t := �
N,K
t .

We further define ( �YN
Nt

)
0≤t≤T := ((

Y
N,A0
Nt , . . . , Y

N,An

Nt

))
0≤t≤T .

We will now verify that {L(( �YN
Nt )0≤t≤T )} is tight in P(D([0, T ];Rn+1)) by using Aldous’

criterion [1], Theorem 1. Since 0 ≤ Y
N,Ai

Nt ≤ 1, [1], Condition (3), is satisfied.
We now take a sequence (τN, δN)∞N=1 of stopping times τN and constants δn > 0, satisfy-

ing [1], Condition (1), for the purpose of checking [1], Condition (A). In particular, we have
by (3.3) that, for some FN =OFV(1) and MN = OMG(1), we have

Y
N,Ai

N(τN+δN ) − Y
N,Ai

NτN
= FN

τN+δN
− FN

τN
+ ZN

τN+δN
− ZN → 0 in probability.

Thus, {( �YN
Nt )0≤t≤T } satisfies [1], Condition (A),

�YN
N(τN+δN ) − �YN

NτN
→ 0 in probability,

and hence, {L(( �YN
Nt )0≤t≤T )} is tight in P(D([0, T ];Rn+1)) by [1], Theorem 1. For all E ∈

B(K), (4.1) implies that

�
N,E
t − Y

N,E
t

[〈
π,�0(φ) + κφ2〉+ 〈π,φ2〉〈π,κ〉], QN

t − 〈π,φ〉 p→ 0

as t ∧ N → ∞.
(4.8)

Then applying (4.1) and Fubini’s theorem to (3.1), we obtain

sup
0≤t≤T

∣∣(YN,E
Nt − Y

N,E
0

)− (KN,E
Nt −KN,E

0

)∣∣→ 0 in probability as N → ∞.(4.9)

We consider a subsequential limit in distribution of {( �YN
Nt )0≤t≤T },

( �Yt )0≤t≤T = ((
Y

A0
t , . . . , Y

An
t

))
0≤t≤T ,

which by Part 3 of Theorem 3.2 must have continuous paths. Using (4.9), we conclude
that (KN,A0

Nt , . . . ,KN,An

Nt )0≤t≤T converges in D([0, T ];Rn+1) in distribution along this sub-
sequence to

( �Yt − �Y0)0≤t≤T .
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Since (KN,A0
Nt , . . . ,KN,An

Nt )0≤t≤T is a martingale for each N , (Y
A0
t , . . . , Y

An
t )0≤t≤T is a mar-

tingale with respect to its natural filtration σt . We then obtain from (3.2) that, for all
0 ≤ i, j ≤ n,

KN,Ai

Nt KN,Aj

Nt −
∫ t

0

1

(QN
s )2

[
1(i = j)�

N,Ai

Ns − Y
N,Ai

Ns �
N,Aj

Ns

− Y
N,Aj

Ns �
N,Ai

Ns + Y
N,Ai

Ns Y
N,Aj

Ns �N
Ns

]
ds −OMG

t

(
Y

N,Ai

N · Y
N,Aj

N · + 1(i = j)Y
N,Ai

N ·
N2

)

−OFV
t

(
Y

N,Ai

N · Y
N,Aj

N · + 1(i = j)Y
N,Ai∩Aj

N ·
N

)
∩OCts

t

is a martingale for all N so that, by (4.8) and (4.9),

Y
Ai
t Y

Aj

t −
∫ t

0

〈π,�0(φ) + κφ2〉 + 〈π,φ2〉〈π,κ〉
〈π,φ〉2

(
1(i = j)YAi

s − YAi
s Y

Aj
s

)
ds

is a (σt )t≥0-martingale. Thus,

[
YAi , YAj

]
t =

∫ t

0

〈π,�0(φ) + κφ2〉 + 〈π,φ2〉〈π,κ〉
〈π,φ〉2

(
1(i = j)YAi

s − YAi
s Y

Aj
s

)
ds.

We have that 〈
π,�0(φ) + κφ2〉= 〈

π,L
(
φ2)− 2φL(φ)

〉= λ
〈
π,φ2〉 and

〈π,κ〉 = 〈
π,−L(1)

〉= λ.
(4.10)

Since ν0(∂Ai) = 0 for all 0 ≤ i ≤ n,

�YN
0 → (

ν0(A0), . . . , ν
0(An)

)
in probability.

Thus, each subsequential limit ( �Yt )0≤t≤T must be a solution of the n+ 1-type Wright–Fisher
diffusion of rate � with initial condition (ν0(A0), . . . , ν

0(An)), which is unique in law. There-
fore, we have convergence of the whole sequence in D([0, T ];Rn+1) in distribution to this
Wright–Fisher diffusion.

Step 2. Whereas we use W to denote the Wasserstein metric on P(K) generated by d ∧1,
we metrise P(D([0, T ];PW(K)))) using the Wasserstein-1 metric generated by the metric
dD([0,T ];PW(K)) ∧ 1, which we denote as W. We take ε� → 0, giving k�

0, k
�
1, . . . , k

�
n�

∈ K for
each � ∈ N, as provided for in Step 1. We define, for each � ∈ N, the projection

P� : P(D̄) � μ �→
n�∑

j=0

μ(Ak�
j
)δk�

j
∈ P(D̄).

We write ν�
t := P�(νt ) for all 0 ≤ t < ∞. It is immediate that

W
(
P�(μ),μ

)≤ ε + μ
(
A�

0
)

for all μ ∈P(D̄).

Proposition 1.3 implies that we can write

ν�
t =

n�∑
j=0

p
�,j
t δk�

n�
, 0 ≤ t < ∞,

whereby (p
�,0
t , . . . , p

�,n�
t )0≤t<∞ is an n�-type Wright–Fisher diffusion of rate � and initial

condition (ν0(Ak�
0
), . . . , ν0(Ak�

n�
)). Step 1, therefore, implies that

W̄
(
L
((

P�(YN
Nt

))
0≤t≤T

)
,L
((

ν�
t

)
0≤t≤T

))→ 0 as N → ∞.
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Therefore, by the triangle inequality we have

lim sup
N→∞

W̄
(
L
((
YN

Nt

)
0≤t≤T

)
,L
(
(νt )0≤t≤T

))
≤ lim sup

N→∞
W̄
(
L
((
YN

Nt

)
0≤t≤T

)
,L
((

P�(YN
Nt

))
0≤t≤T

))
+ W̄

(
L
((

ν�
t

)
0≤t≤T

)
,L
(
(νt )0≤t≤T

))
≤ 2ε� + lim sup

N→∞
E

[
sup

0≤t≤T

Y
N,A�

0
Nt

]
+E

[
sup

0≤t≤T

νt

(
A�

0
)]

.

(4.11)

Using again Step 1, we have that

lim sup
N→∞

E

[
sup

0≤t≤T

Y
N,A�

0
Nt

]
= E

[
sup

0≤t≤T

νt

(
A�

0
)]

.

Since (νt (A0))0≤t≤T is a Wright–Fisher diffusion of rate � and initial condition ν0(A�
0) < εl ,

E

[
sup

0≤t≤T

νt

(
A�

0
)]→ 0 as � → ∞.

Therefore, taking lim sup�→∞ of both sides of (4.11), we obtain (4.7).

4.3. Proof of Proposition 4.3. It follows from (4.4) that it suffices to verify the following
condition.

CONDITION 4.4. For every δ > 0, there exists ε > 0 such that

(4.12) lim sup
N→∞

P

(
sup

0≤t≤T

∑
k,�∈K
k �=�

Y
N,{k}
Nt Y

N,{�}
Nt �

(
d(k, �)

ε

)
≤ δ

)
≥ 1 − δ.

We calculate using parts 1, 3 and 4 of Theorem 3.2 that

d
(
Y

N,{k}
t Y

N,{�}
t

)= Y
N,{k}
t− dY

N,{�}
t + Y

N,{�}
t− dY

N,{k}
t + d

[
YN,{k}, YN,{�}]

t

= Y
N,{k}
t−

[
dOFV

t

(
YN,{�}

N

)
+ dOMG

t

(
YN,{�}

N

)]

+ Y
N,{�}
t−

[
dOFV

t

(
YN,{k}

N

)
+ dOMG

t

(
YN,{k}

N

)]
+ dOFV

t

(
YN,{k}YN,{�}

N

)

= dOFV
t

(
YN,{k}YN,{�}

N

)
+ dOMG

t

(
YN,{k}YN,{�}

N

)
,

uniformly over all random k, � ∈ supp(YN
0 ). Thus,

∑
k,�∈K

Y
N,{k}
Nt Y

N,{�}
Nt = OFV

t

( ∑
k,�∈K

Y
N,{k}
N · Y

N,{�}
N ·

)
+ (martingale)t .

Therefore, using Gronwall’s inequality, there exists uniform C < ∞ such that

(4.13) e−Ct
∑

k,�∈K
k �=�

Y
N,{k}
Nt Y

N,{�}
Nt �

(
d(k, �)

ε

)
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is a supermartingale for all N large enough. Therefore, we have for all N large enough that

P

(
sup

0≤t≤T

∑
k,�∈K
k �=�

Y
N,{k}
Nt Y

N,{�}
Nt �

(
d(k, �)

ε

)
≤ δ

)

≥ P

(
sup

0≤t≤T

e−Ct
∑

k,�∈K
k �=�

Y
N,{k}
Nt Y

N,{�}
Nt �

(
d(k, �)

ε

)
≤ e−CT δ

)

≥ 1 − 1

e−CT δ
E

[ ∑
k,�∈K
k �=�

Y
N,{k}
0 Y

N,{�}
0 �

(
d(k, �)

ε

)]
.

We have assumed that the initial conditions YN
0 converge in the weak atomic metric, so

Lemma C.5 implies that

sup
N

E

[ ∑
k,�∈K
k �=�

Y
N,{k}
0 Y

N,{�}
0 �

(
d(k, �)

ε

)]
→ 0 as ε → 0.

We have, therefore, verified Condition 4.4 and hence established Proposition 4.3.
This concludes the proof of Theorem 1.4.

5. Extension to the hard killing case. The Fleming–Viot particle system was first in-
troduced by Burdzy, Holyst and March [16] in the case of Brownian dynamics with instan-
taneous killing at the boundary (hard killing). In this section we extend Theorem 1.4 to this
setting.

We assume throughout this section that D is a bounded, connected, nonempty, open subset
of Rd with C∞ boundary. The process (Bt )0≤t<τ evolves as a Brownian motion in D, killed
at the time τ∂ := inf{t > 0 : Bt− ∈ ∂D}. The color space K remains an arbitrary complete,
seperable metric space.

The Fleming–Viot particle system and Fleming–Viot multicolor process are then defined
as before, except that the particles evolve as independent Brownian motions between killing
times and are killed instantaneously upon contact with the boundary ∂D (i.e., when B

N,i
t− ∈

∂D) rather than according to a Poisson clock. In particular, we define the following.

DEFINITION 5.1 (Fleming–Viot multicolor process with hard killing). The Fleming–
Viot multicolor process, (( �BN

t , �ηN
t ))0≤t<∞ = {(BN,i

t , η
N,i
t )0≤t<∞ : i = 1, . . . ,N}, is a (D ×

K)N -valued process defined as follows:

(5.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) Initial condition:
((

B
N,1
0 , η

N,1
0

)
, . . . ,

(
B

N,N
0 , η

N,N
0

))∼ υN ∈P
(
(D ×K)N

)
.

(ii) For t ∈ [0,∞) and between killing times, the particles
(
B

N,i
t , η

N,i
t

)
evolve

as Brownian motions in the first variable, and are constant in the second
variable.

(iii) The particle
(
B

N,i
t , η

N,i
t

)
is killed instantaneously whenever the first variable

makes contact with the boundary, that is, when B
N,i
t ∈ ∂D. We write τ i

k for the
death times of particle

(
BN,i, ηN,i)(with τ i

0 := 0
)
. When particle

(
BN,i, ηN,i)

is killed at time τ i
k, it jumps to the location of particle

(
BN,j , ηN,j ), with

j = Ui
k ∈ {1, . . . ,N} \ {i} chosen independently and uniformly at random,

at which time we set
(
B

N,i

τ i
k

, η
N,i

τ i
k

) := (
B

N,j

τ i
k−

, η
N,j

τ i
k−
)
. Moreover, we write τn

for the nth time at which any particle is killed(with τ0 := 0).
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We further define as before

(5.2) JN
t := 1

N
sup{n > 0 : τn ≤ t}, mN

t := 1

N

N∑
i=1

δ
B

N,i
t

and χN
t := 1

N

N∑
i=1

δ
η

N,i
t

.

It is an open problem to establish the well-posedness of this Fleming–Viot particle sys-
tem without imposing constraints upon the boundary regularity of ∂D [14]. The issue is the
possibility of there being infinitely many jumps in finite time. Implicit in the proof of [16],
Theorem 1.4, is a proof of the well-posedness of the particle system when the domain satisfies
an interior ball condition. Another proof under this condition is due to Löbus [34]. A proof
when the domain is Lipschitz with Lipschitz constant less than a given value (dependent upon
the dimension and number of particles) is given in [8]. In particular, the assumption that D is
bounded and the boundary ∂D is C∞ certainly suffices to ensure the Fleming–Viot particle
system (and, therefore, also the Fleming–Viot multicolor process) is well-posed.

Brownian motion with hard killing, (Bt )0≤t<τ∂
, defines the C0-Feller semigroup

Pt : C0(D) � f �→ (
x �→ Ptf (x) := Ex

[
f (Xt)1(τ∂ > t)

]) ∈ C0(D).

We write L for its infinitesimal generator, which is just the half Dirichlet Laplacian. We write
φ ∈ C0(D;R>0) ∩ C∞(D) for the unique principal right eigenfunction of L of eigenvalue
−λ < 0. In general, quasi-stationary distributions correspond to left eigenmeasures of the
infinitesimal generator [38], Proposition 4, which in this case corresponds to the normalised
right eigenfunction φ. Therefore, the unique QSD of (Xt)0≤t<τ∂

, denoted as π , is given by

π(dx) = φ(x)dx∫
D φ(x′) dx′ .

As in the soft killing case, the rate of the limiting Wright–Fisher process is given by

(5.3) � :=
2λ‖φ‖2

L2(π)

‖φ‖2
L1(π)

.

We again define the tilted empirical measure of the colors by

YN
t :=

1
N

∑N
i=1 φ(Bi

t )δηi
t

1
N

∑N
i=1 φ(Bi

t )
∈ P(K).(5.4)

We prove the following analogue of Theorem 1.4.

THEOREM 5.2. We take some deterministic initial profile ν0 ∈ P(K) and fix a Wright–
Fisher process on P(K) of rate � and initial condition ν0 = ν0, which we denote as
(νt )0≤t<∞. We consider a sequence of Fleming–Viot multicolor processes, denoted by
((( �BN

t , �ηN
t ))0≤t<∞ : 2 ≤ N < ∞), such that

(5.5) P(K) � YN
0 → ν0 ∈ P(K) in Wa in probability as N → ∞.

We further require the following condition:

(5.6) lim sup
N→∞

E

[
1

N
#
{
i ∈ {1, . . . ,N} : d(BN,i

0 , ∂D
)
< δ

}
)

]
→ 0 as δ → 0.

We now rescale time according to t �→ Nt . Then (χN
Nt )t>0 converges to (νt )t>0 in

finite-dimensional distributions, in the following sense. We fix arbitrary n < ∞ and
�t = (t1, . . . , tn) ∈ [0,∞)n such that t1 ≤ · · · ≤ tn. We consider arbitrary sequences
(�tN )2≤N<∞ := ((tN1 , . . . , tNn ))2≤N≤∞ such that:
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1. tN1 ≤ · · · ≤ tNn for all 2 ≤ N < ∞;
2. tNi → ti as N → ∞ for all 1 ≤ i ≤ n;
3. NtNn ≥ · · · ≥ NtN1 → ∞ as N → ∞.

We then have that

(5.7)
(
χN

NtN1
, . . . , χN

NtNn

)→ (νt1, . . . , νtn) in
(
PWa (K)

)n in distribution as N → ∞.

We observe that the only difference with Theorem 1.4 is the condition (5.6), which is ne-
cessitated by the fact that the domain is no longer compact. Indeed, when we considered
reflected diffusions with soft killing, the domain D̄ was compact, with the principal eigen-
function φ being bounded away from 0. However, in the case of hard killing, the domain D is
noncompact, with φ vanishing at the boundary. As a consequence of this, we must establish
controls on the mass near the boundary. In order to obtain a hydrodynamic limit theorem over
a fixed time horizon for the Fleming–Viot particle system with hard killing, it is important to
obtain such controls over a fixed time horizon, as have been established in [16, 46, 47]. Since
Theorem 1.4 is a statement about the Fleming–Viot particle system over an O(N) time hori-
zon, however, we require controls on the mass near the boundary over an O(N) time horizon.
Such controls have not previously been established and represent the principle obstacle to
extending Theorem 1.4 to include hard killing. We will obtain such controls in Section 5.2 in
the case of Brownian dynamics with hard killing, allowing us to prove Theorem 5.2.

The rest of this Section is devoted to the proof of Theorem 5.2. We will outline in Sec-
tion 5.1 the notation we will use for the proof of Theorem 5.2 and, in particular, where it
differs from the notation outlined in Section 2 for the soft killing case. We will then obtain
controls on the mass near the boundary ∂D in Section 5.2. The rest of the proof follows the
same outline as the proof of Theorem 1.4. In Section 5.3 we will then perform calculations
for YN

t , which are analogous to those of Section 3. Finally, we conclude the proof of Theo-
rem 5.2 in Section 5.4, analogously to Section 4. We collect the proofs of technical lemmas
needed for the proof of Theorem 5.2 in Appendix E. We will not repeat calculations, which
are identical to those found in the proof of Theorem 1.4, pointing out only where the proof
differs.

5.1. Notation for the proof of Theorem 5.2. Recalling that L is the (half) Dirichlet Lapla-
cian (there is no analogue of L0 here), we define on the domain D(�) := {f : f,f 2 ∈
D(L)} ⊆ C0(D) the Carre du champs operator

(5.8) �(f ) := L
(
f 2)− 2f L(f ) = |∇f |2.

We note, in particular, that ∇φ is globally bounded by [48], Theorem 1.1, so that φ ∈ D(�).
In the soft killing case, the definitions of P

N,E
t , QN

t , Y
N,E
t and m

N,E
t for E ∈ B(K) are

given in Section 2. We adopt the same definitions here, except that φ is now the principal
eigenfunction of the half Dirichlet Laplacian. Moreover, we define F , H and �RN

t , as in (3.4),
(3.5) and (3.7), respectively, so that

F(�r) = p

q
, H(�r) =

⎛
⎜⎜⎝

0 − 1

q2

− 1

q2 2
p

q3

⎞
⎟⎟⎠ for �r =

(
p

q

)
∈ R

2
>0,

�RN,E
t :=

(
P

N,E
t

QN
t

)
.

We adopt the notation described in Section 2.1 so that Vt , OMG
t , OFV

t , O�
t , OLip

t and OCts
t

are defined as in Section 2.1 in particular. We further define the following:
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1. XN
t = OMG

t (YN, JN) if for all N ≥ N0 (for some N0 < ∞) and for some C < ∞, XN
t

is a martingale whose quadratic variation is such that

(5.9)
[
XN ]

t −
∫ t

0
CYN

s dJN
s is a supermartingale.

2. XN
t = OFV

t (YN, JN) if for all N ≥ N0 (for some N0 < ∞) and for some C < ∞, XN
t

is a finite variation process whose total variation, Vt(X
N), is such that

(5.10) Vt

(
XN )− ∫ t

0
CYN

s dJN
s is a supermartingale.

5.2. Control on the mass near the boundary.

LEMMA 5.3. We fix T < ∞. We consider a sequence of Fleming–Viot particle systems
( �XN

t )t≥0 satisfying (5.6). Then for all ε > 0, there exists δ = δ(ε) > 0 such that

(5.11) lim inf
N→∞ P �XN

0

(
mN

t

(
B(∂D, δ)

)≤ ε for all 0 ≤ t ≤ NT
)
> 1 − ε.

We define for all ε > 0 the stopping time

(5.12) τN
ε := inf

{
t > 0 : mN

t

(
B
(
∂D, δ(ε)

))
> 2ε

}
.

We observe, in particular, that QN
t is uniformly bounded from below by a strictly positive

constant dependent only upon ε, for all 0 ≤ t ≤ τN
ε . Moreover, it follows from (5.11) that

(5.13) lim inf
N→∞ P

(
τN
ε > NT

)≥ 1 − ε.

PROOF OF LEMMA 5.3. Controls on the mass of particles near the boundary over a fixed
time horizon were established by Burdzy, Holyst and March in [16]. These involve a coupling
between the particles and a family of Bessel processes. Similar couplings were established
by Villemonais in [47], Section 3, and by Nolen and the present author in [46], Section 4.
We utilise the coupling obtained in [46], Section 4, since this coupled family of processes is
jointly independent, allowing us to apply Cramér’s theorem.

Since ∂D is C∞ and D is bounded, D satisfies an interior ball condition for some radius
r > 0. For this r > 0, [46], Proposition 4.2, provides a family of independent [0, r]-valued
continuous processes (η

N,1
t )t≥0, . . . , (η

N,N
t )t≥0, with (η

N,i
t )t≥0 having the same distribution

for all i and all N , such that

(5.14) d
(
B

N,i
t , ∂D

)≥ r − η
N,i
t for 0 ≤ t < ∞.

We define MN := �N
k
�. We then define for 1 ≤ m ≤ MN , 1 ≤ k ≤ N < ∞, 0 < T0 < T1 <

∞ and δ0 > 0 the events

(5.15) A
k,T0,T1,δ0
N (m) :=

{
sup

T0≤t≤T1

∣∣{(m − 1)k + 1 ≤ i ≤ mk : ηN,i
t ≥ r − δ

}∣∣≥ 2
}
.

We observe that for fixed k,T0, T1, δ, the events A
k,T0,T1,δ
N (m) for m ≤ MN and N ≥ k have

the same probability. Moreover, it follows from [46], Lemma 4.4, that, for fixed k,T0, T1,

(5.16) P
(
A

k,T0,T1,δ
N (1)

)→ 0 as δ → 0.

Moreover, it follows from (5.14) that

(5.17) sup
T0≤t≤T1

mN
t

(
B(∂D, δ)

)≤ k

N

∑
1≤m≤MN

1
(
A

k,T0,T1,δ
N (m)

)+ 1

k
+ k

N
.
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We may, therefore, apply Cramér’s theorem to conclude that, for all ε > 0 and 0 < T0 ≤
T1 < ∞, there exists δ0 > 0 and c0 > 0 such that

(5.18) P �XN
0

(
sup

T0≤t≤T1

mN
t

(
B(∂D, δ)

)≥ ε
)

≤ e−c0N for all N large enough.

It follows from a union bound that, for all ε, T0 > 0, there exists δ0 > 0 such that

(5.19) lim inf
N→∞ P �XN

0

[
mN

t

(
B(∂D, δ0)

]≤ ε for all t0 ≤ t ≤ NT
)= 1.

All that remains is to deal with the initial time [0, T0], which can be addressed with a crude
bound. We observe that, for any T0, δ1 > 0, in order for a given particle to enter B(∂D, δ1), it
either has to start within B(∂D,2δ1) or else travel at least a distance δ1 in time T0 (note that
killing only occurs at the boundary). The former possibility can be controlled by (5.6), the
latter by controlling the distance travelled by Brownian motion in time T0. We obtain that,
for all ε > 0, there exists T0 > 0 and δ1 > 0 such that

(5.20) lim inf
N→∞ P

(
mN

t

(
B(∂D,2δ1)

)≤ ε for all 0 ≤ t ≤ T0
)
> 1 − ε.

Therefore, for given ε > 0, we choose δ1, T0 > 0 for which we have (5.20). For this same
T0, ε > 0, we then obtain δ0 > 0 such that we have (5.19). Taking δ := δ0 ∧ δ1, we obtain
(5.11). �

5.3. Analogue of the calculations of Section 3. We obtain the following analogue of The-
orem 3.2.

THEOREM 5.4. We fix arbitrary ε > 0 and localise up to the stopping time τN
ε defined

in (5.12). None of the following statements should be understood to be uniform in ε but
rather should be understood as statements for arbitrary fixed ε > 0. We have the following,
uniformly over all choices of E,F ∈ B(K):

1. The covariation [YN,E , YN,F ]t∧τN
ε

is such that for disjoint E,F ∈ B(K) we have

[
YN,E , YN,F ]

t∧τN
ε

= OFV
t

(
YN,EYN,F

N
,JN

)
.

2. There exists martingales KN,E
t for E ∈ B(K) such that Y

N,E
t satisfies

Y
N,E
t∧τN

ε
= Y

N,E
0 +KN,E

t∧τN
ε

+OMG
t

(
YN,E

N3 , JN

)

+ 1

N

∫ t∧τN
ε

0

1

(QN
s−)2

〈
Y

N,E
s− mN

s− − m
N,E
s− ,�(φ)

〉
ds

+OFV
t

(
YN,E

N2 , JN

)
∩O�

t

(
1

N3

)

+ 1

N − 1

∫ t∧τN
ε

0

1

(QN
s−)2

〈
Y

N,E
s− mN

s− − m
N,E
s− , φ2〉dJN

s

(5.21)
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for E ∈ B(K), and such that

[
KN,E ,KN,F ]

t∧τN
ε

= 1

N − 1

∫ t∧τN
ε

0

1

(QN
s−)2

〈
m

N,E∩F
s− − Y

N,E
s− m

N,F
s−

− Y
N,E
s− m

N,F
s− + Y

N,E
s− Y

N,F
s− mN

s ,φ2〉dJN
s

+ 1

N

∫ t∧τN
ε

0

1

(QN
s−)2

〈
m

N,E∩F
s− − Y

N,E
s− m

N,F
s− − Y

N,E
s− m

N,F
s−

+ Y
N,E
s− Y

N,F
s− mN

s ,�(φ)
〉
ds.

(5.22)

3. Furthermore, Y
N,E
t satisfies

Y
N,E
t∧τN

ε
=
[
OFV

t

(
YN,E

N

)
+OFV

t

(
YN,E

N
,JN

)

+OMG
t

(
YN,E

N

)
+OMG

t

(
YN,E

N
,JN

)]
∩O�

t

(
1

N

)
.

(5.23)

4. Parts 1–3 remain true if E and F are replaced with a sequence of σ0-measurable ran-
dom sets EN and FN .

PROOF OF THEOREM 5.4. It is useful (and simplifies our calculations) to note that since
φ vanishes on the boundary and killing only occurs on the boundary, we necessarily have that
φ(Bi

t−) = 0 if Bi is killed at time t .
It is straightforward to obtain the following analogue of Proposition 3.3 by examining the

martingale

P
N,E
t − P

N,E
0 −

∫ t

0
P

N,E
s−

(
−λds + N

N − 1
dJN

s

)
.

PROPOSITION 5.5. We have for all E ∈ B(K) that

(5.24) dP
N,E
t = P

N,E
t−

(
−λdt + N

N − 1
dJN

t

)
+ dM

N,E
t ,

whereby MN,E are martingales which satisfy for all E,F ∈ B(K)[
MN,E ,MN,F ]

t

= 1

N

∫ t

0

〈
mN,E∩F

s ,�0(φ)
〉
ds

+ 1

N

∫ t

0

N

N − 1

〈
m

N,E∩F
s− , φ2〉− ( N

N − 1

〈
m

N,E
s− , φ

〉)( N

N − 1

〈
m

N,F
s− , φ

〉)
dJN

s .

(5.25)

Moreover, it is apparent that
∑

s≤t �M
N,E
t = OMG

t (P N,E
N

,JN
t ) for E ∈ B(K). We write MN

t

for M
N,K
t .

Using that QN
t is bounded from below away from 0 for t ≤ τN

ε , uniformly in N , we obtain
Part 1 of Theorem 5.4 in precisely the same manner that we obtained Part 1 of Theorem 3.2
in Section 3.1.2.

Replacing the boundedness of the jump rate with a bound in terms of the number of jumps,
we obtain the following analogue of Lemma 3.4.
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LEMMA 5.6 (Itô’s lemma). We have

Y
N,E
t = Y

N,E
0 +

∫ t

0
∇F

(
R

N,E
s−

) · dRN,E
s + 1

2
dRN,E

s · H (RN,E
s−

)
dRN,E

s

+OFV
t

(
YN,E

N2 , JN

)
∩O�

t

(
1

N3

)
.

(5.26)

We then obtain parts 2–4 of Theorem 5.4, as in the proof of Theorem 3.2. �

5.4. Proof of Theorem 5.2. We first prove the following analogue of proposition 4.1.

PROPOSITION 5.7. For all E ∈ B(K) and f ∈ Cb(D̄), we have that

(5.27) 1
(
τN
ε > t

)
sup

t≤s1,s2≤t+1

∣∣(mN,E
s1

− YN,E
s2

π
)
(f )

∣∣→ 0 in probability as t ∧ N → ∞.

In particular, taking f = 1, we have for any E ∈ B(K) that

(5.28) 1
(
τN
ε > t

)
sup

t≤s1,s2≤t+1

∣∣χN
s1

(E) −YN
s2

(E))
∣∣→ 0 in probability as t ∧ N → ∞.

We note that τN
ε > 0 implies a uniform positive lower bound on PmN

0
(τ∂ > T ), where

we think of the empirical measure mN
0 as the initial condition of a single killed Brownian

motion, killed at time τ∂ . Using this fact and using Theorem 5.4, Theorem E.3 and Proposi-
tion E.4 in place of Theorem 5.4, Theorem 1.8 and Proposition 1.9, respectively, the proof of
Proposition 5.7 is identical to the proof of Proposition 4.1 found in Section 4.1.

The characterisation of YN
t in the setting of soft killing, given in Section 3, does not

involve dJN
t terms. This is a consequence of the fact that the jumps occur at a (position

dependent) Poisson rate. On the other hand and as a consequence of the hard catalyst killing,
the characterisation of YN

t , given in Section 5.3, does involve such terms. Consequentially,
we shall require the following lemma.

LEMMA 5.8. We consider a sequence of uniformly bounded processes (ZN
t )t≥0 such

that supt≤s≤t+1|ZN
s − ZN

t | → 0 in probability as t ∧ N → ∞. Then after rescaling time by
t �→ Nt , we have that

(5.29)
∫ T

0
ZN

Ns

(
1

N
dJN

Ns − λds

)
→ 0 in probability as N → ∞.

In particular, we have the convergence

(5.30)
(

1

N
JN

Nt

)
0≤t≤T

→ (λt)0≤t≤T uniformly in probability as N → ∞.

PROOF OF LEMMA 5.8. We fix ε > 0. We first take E = K in (5.27) and apply Proposi-
tion C.1 to see that mN

t 1(τN
ε > t) + π1(τN

ε ≤ t) converges to π in W in probability. We then
obtain from Theorem E.3 that

(5.31) 1
(
τN
ε > t

)(
JN

t+1 − JN
t − λ

)→ 0 in probability as N ∧ t → ∞.

It follows from the proof of [46], Proposition 4.10, that there exists M < ∞ and p ∈ (0,1),
dependent upon neither N nor t , such that the number of jumps of any particle between the
times t ∧ τN

ε and (t + 1) ∧ τN
ε is stochastically dominated by the sum of M independent

geometric random variables. It follows that {JN
(t+1)∧τN

ε
− JN

t∧τN
ε

: t ≥ 0,N ≥ 2} is uniformly

bounded in L2(P), hence uniformly integrable.
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We now calculate∫ T

0

∫ Nt+1

Nt
ZN

s dJN
s dt =

∫ T

0

∫ NT +1

0
1(Nt ≤ s ≤ Nt + 1)ZN

s dJN
s dt

=
∫ NT +1

0
ZN

s

∫ s
N

∧T

s−1
N

∨0
dt dJN

s

=
∫ NT +1

0
min

(
1

N
,

s

N
,
T − s − 1

N

)
ZN

s dJN
s .

We see that

1
(
τN
ε > NT

)∣∣∣∣ 1

N

∫ T

0
ZN

Ns dJN
Ns −

∫ T

0

∫ Nt+1

Nt
ZN

s dJN
s dt

∣∣∣∣
≤ C

N
1
(
τN
ε > NT

)
(J1 − J0 + JNT +1 − JNT )

p→ 0 as N → ∞.

It follows from the above that

E

[∣∣∣∣
∫ T

0
1
(
τN
ε > NT

)(∫ Nt+1

Nt
ZN

s

(
dJN

s − λds
))

dt

∣∣∣∣
]

≤
∫ T

0
E

[∣∣∣∣1(τN
ε > NT

) ∫ Nt+1

Nt
ZN

s

(
dJN

s − λds
)∣∣∣∣
]
dt → 0 as N → ∞.

Since ε > 0 is arbitrary, Lemma 5.8 follows from (5.13). �

We then obtain the following analogue of Proposition 4.2.

PROPOSITION 5.9. We take some deterministic initial profile ν0 ∈ P(K) and define
(νt )0≤t<∞ to be a Wright–Fisher process of rate � and initial condition ν0 := ν0. We then
consider a sequence of Fleming–Viot multicolor processes ( �BN

t , �ηN
t )0≤t<∞. We assume that

YN
0 → ν0 in Wa in probability.
We fix T < ∞ and rescale time by t �→ Nt . We then have the convergence

(5.32)
(
YN

Nt

)
0≤t≤T → (νt )0≤t≤T in D

([0, T ];PW(K)
)

in distribution as N → ∞.

PROOF OF PROPOSITION 5.9. The proof of Proposition 5.9 follows in the same two
steps as that of the proof of Proposition 4.2. In both steps we fix ε > 0 and localise up to time
τN
ε . We then repeat the proof found in Section 4.2, with Theorem 3.2 and Proposition 4.1

replaced by Theorem 5.4 and Proposition 5.7, respectively, and using Lemma 5.8 in the ob-
vious manner. We then conclude each step by observing that ε > 0 is arbitrary and applying
(5.13). �

We continue as in the proof of Theorem 1.4. We recall from Theorem D.2 that (νt )0≤t≤T ∈
C([0, T ];PW(K)) almost surely. We take a sequence (�tN )2≤N<∞ = ((tN1 , . . . , tNn ))2≤t≤N

converging to �t = (t1, . . . , tn), as in the statement of Theorem 5.2. It then follows that(
YN

NtN1
, . . . ,YN

NtNn

)→ (νt1, . . . , νtn) in
(
PW(K)

)n in distribution as N → ∞.

Recalling the positivity and boundedness of φ from Theorem E.1 and the definition (5.12) of
τN
ε , we observe that, for every ε > 0, there exists a uniform constant Cε < ∞ and random

measures δ
N,ε
t for 0 ≤ t < τN

ε and N ∈ N such that

(5.33) χN
t ≤ CεYN

t + δ
N,ε
t and δ

N,ε
t (K) ≤ ε for all 0 ≤ t < τN

ε ,N ≥ 2.



2378 O. TOUGH

Note that the term δ
N,ε
t does not appear in the soft killing case, (4.4). It arises here from the

fact that φ is no longer bounded from below but instead vanishes at the boundary.
We now fix 1 ≤ k ≤ n. Since (YN

NtNk
)N≥1 is a tight sequence of random measures, it follows

from (5.33) that (χN

NtNk
)N≥1 must also be a tight sequence of random measures. It, therefore,

follows from (5.28) and Lemma C.2 that W(YN

NtNk
, χN

NtNk
) → 0 as N → ∞. Thus, we have

established that(
χN

NtN1
, . . . , χN

NtNn

)→ (νt1, . . . , νtn) in
(
PW(K)

)n in distribution as N → ∞.

We have left only to strengthen the notion of convergence to convergence in the weak atomic
metric. This is accomplished with the following analogue of Proposition 4.3.

PROPOSITION 5.10. We recall that �(u) := (1−u)∨0 is the function used to define the
Wa metric in Appendix C.2. We fix ε > 0, thereby defining the stopping defined τN

ε by (5.12).
For all δ > 0, there exists ε′ > 0 such that

lim inf
N→∞ P

(
τN
ε > NT, sup

0≤t≤T

∑
k,�∈K
k �=�

χN
Nt

({k})χN
Nt

({�})�(d(k, �)

ε′
)

≤ δ + ε

)
≥ 1 − δ.

Note that the above sum is well defined, as the terms are nonzero only for k, � ∈ supp(χN
0 ).

PROOF OF PROPOSITION 5.10. We follow the same proof strategy as the proof of Propo-
sition 4.3, replacing Theorem 3.2 with Theorem 5.4, applying Lemma 5.8 in the obvious
manner and replacing the supermartingale (4.13) with

e−C(t+
JN

Nt∧τN
ε

N
)
∑

k,�∈K
k �=�

Y
N,{k}
Nt∧τN

ε
Y

N,{�}
Nt∧τN

ε
�

(
d(k, �)

ε

)

for some sufficiently large constant C < ∞. �

Having established Proposition 5.10, we may then apply Lemma C.5 along with (5.13)
to conclude that {L(χN

NtNk
)} is tight in P(PWa (K)) for all 1 ≤ k ≤ n so that we have Theo-

rem 1.4.

APPENDIX A: REFLECTED DIFFUSIONS WITH SOFT KILLING

A.1. Definition. We consider a normally reflected diffusion (X0
t )0≤t<∞ in the domain

D̄ corresponding to a solution of the Skorokhod problem. In particular, for any filtered proba-
bility space on which is defined the m-dimensional Brownian motion Wt and initial condition
x ∈ D̄, there exists by [33], Theorem 3.1, a pathwise unique strong solution of the Skorokhod
problem

X0
t = x +

∫ t

0
b
(
X0

s

)
ds +

∫ t

0
σ
(
X0

s

)
dWs +

∫ t

0
�n(X0

s

)
dξs ∈ D̄,

0 ≤ t < ∞,∫ ∞
0

1D

(
X0

t

)
dξt = 0,

(A.1)

where Ws is a Brownian motion and the local time ξt is a nondecreasing process with ξ0 = 0.
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This corresponds to a solution of the submartingale problem, introduced by Stroock and
Varadhan [41], and is a Feller process [41], Theorem 5.8, Remark 2 (and hence strong
Markov). It is then straightforward (using a separate probability space on which is defined
an exponential random variable) to construct an enlarged filtered probability space on which
(X0,W, ξ) is a solution of the Skorokhod problem and on which there is a stopping time
τ∂ corresponding to the ringing time of a Poisson clock with position dependent rate κ(X0

t )

from which is constructed the killed process (Xt)0≤t<τ∂
. This killed process is a solution to

1(t ≥ τ∂) −
∫ t∧τ∂

0
κ
(
X0

s

)
ds is a martingale,Xt :=

{
X0

t , t < τ∂,

0, t ≥ τ∂,
(A.2)

where Ws is an m-dimensional Brownian motion and the local time ξt is a nondecreasing
process with ξ0 = 0. Since X0

t is Feller, the process Xt is, therefore, also Feller (and hence
strong Markov).

We write L0/L = L0 −κ for the infinitesimal generators of X0 and X, respectively, having
the same domains D(L0) = D(L). We further define the Carre du Champs operator �0 on the
algebra A,

�0(f, g) := L0(fg) − f L0(f ) − gL0(f ), �0(f ) := �0(f, f ),

f, g ∈A := {
f ∈ C2(D̄) : �n · ∇f ≡ 0 on ∂D

}
,

(A.3)

so that, for f ∈ A, we have

(A.4)
[
f
(
X0)]

t =
∫ t

0
�0(f )

(
X0

s

)
ds.

A.2. Convergence to a unique quasi-stationary distribution.

THEOREM A.1. There exists a unique quasi-stationary distribution (QSD) π ∈ P(D̄)

for Xt . Moreover, there exist constants C < ∞ and k > 0 such that

(A.5)
∥∥Lμ

(
Xt |τ∂ > t

)− π
∥∥

TV ≤ Ce−kt for all μ ∈ P(D̄) and t ≥ 0.

Furthermore, π is a left eigenmeasure of L with eigenvalue −λ < 0,

(A.6) 〈π,Lf 〉 = −λ〈π,f 〉, f ∈ D(L),

and with corresponding positive right eigenfunction φ ∈ A ∩ C2(D̄;R>0). This right eigen-
function is both the unique nonnegative right eigenfunction and the unique right eigenfunction
of eigenvalue −λ, up to rescaling.

PROOF OF THEOREM A.1. Our strategy is to check [19], Assumption (A), starting with
[19], Assumption (A1).

We fix arbitrary t0 > 0. It follows from the boundedness of the killing rate κ and the
parabolic Harnack inequality that there exists c0 > 0 and ν ∈ P(D̄) such that

Lx

(
Xt0 |τ∂ > t0

)≥ c0ν for all x ∈ D̄.

Thus, [19], Assumption (A1), is satisfied. We now turn to checking [19], Assumption (A2).
In [40], page 6, they use the Krein–Rutman theorem to prove that there exists φ ∈ A ∩

C2(D̄;R>0) and λ ∈ R such that

Lφ + λφ = 0 on D̄, φ > 0 on D̄, ∇φ · �n = 0 on ∂D.

We see that eλtφ(Xt)1(t < τ∂) is a martingale so that

(A.7)
〈
Pt(μ, ·), φ〉= e−λt 〈μ,φ〉 for all μ ∈ P(D̄).
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Therefore, by (A.7) we have for all μ ∈ P(D̄) that

(A.8) Pμ(t < τ∂) ≥ 〈Pt(μ, ·), φ〉
supx′∈D̄ φ(x′)

= e−λt 〈μ,φ〉
supx′∈D̄ φ(x′)

≥ infx′∈D̄ φ(x′)
supx′∈D̄ φ(x′)

e−λt .

Similarly, (A.7) gives that, for all x ∈ D̄, we have

(A.9) Px(t < τ∂) ≤ 〈Pt(x, ·), φ〉
infx′∈D̄ φ(x′)

≤ supx′∈D̄ φ(x′)
infx′∈D̄ φ(x′)

e−λt .

Therefore, we have

Px(t < τ∂) ≤
(

supx′∈D̄ φ(x′)
infx′∈D̄ φ(x′)

)2
Pμ(t < τ∂), for all t ≥ 0 and x ∈ D̄.

Thus, we have verified [19], Assumption (A), so that [19], Theorem 1.1, implies the
existence of a quasi-stationary distribution π ∈ P(D̄) satisfying (A.5), which must be the
unique quasi-stationary distribution. Moreover, the uniqueness of φ up to renormalisation,
both as a nonnegative right eigenfunction and eigenfunction of eigenvalue −λ, is given
by [19], Corollary 2.4. Finally, the QSD π corresponds to the left eigenmeasure of L for
some eigenvalue −λ′ < 0 by [38], Proposition 4. This eigenvalue must be equal to −λ, since
−λ′〈π,φ〉 = 〈π,Lφ〉 = −λ〈π,φ〉, so that we have (A.6). �

APPENDIX B: PROOF OF PROPOSITION 1.9

We recall that φ is normalised so that 〈π,φ〉 = 1. We take (xi, ηi)1≤i≤n ∈ (D̄ × K)n and
calculate

L 1
n

∑n
i=1 δ

(xi ,ηi )

(
(Xs, ηs)|τ∂ > s

)= 1
n

∑n
i=1 Pxi (τ∂ > s)Lxi (Xs |τ∂ > s) ⊗ δηi

1
n

∑n
i=1 Pxi (τ∂ > s)

=
1
n

∑n
i=1 eλs

Pxi (τ∂ > s)Lxi (Xs |τ∂ > s) ⊗ δηi

1
n

∑n
i=1 eλsPxi (τ∂ > s)

.

(B.1)

It then follows from the triangle inequality that∥∥∥∥∥1

n

n∑
i=1

eλs
Pxi (τ∂ > s)Lxi

(
Xs |τ∂ > s

)⊗ δηi − 1

n

n∑
i=1

φ
(
xi)π ⊗ δηi

∥∥∥∥∥
TV

≤
∥∥∥∥∥1

n

n∑
i=1

[
eλs

Pxi (τ∂ > s) − φ
(
xi)]Lxi

(
Xs |τ∂ > s

)⊗ δηi

∥∥∥∥∥
TV

+
∥∥∥∥∥1

n

n∑
i=1

φ
(
xi)[Lxi

(
Xs |τ∂ > s

)⊗ δηi − π ⊗ δηi

]∥∥∥∥∥
TV

≤ 1

n

n∑
i=1

∣∣eλs
Pxi (τ∂ > s) − φ

(
xi)∣∣+ 1

n

n∑
i=1

φ
(
xi)∥∥Lxi

(
Xs |τ∂ > s

)⊗ δηi − π ⊗ δηi

∥∥
TV.

We can apply [20], Theorem 2.1, by Theorem A.1. It follows from Theorem A.1 and [20],
Theorem 2.1, that there exists εt → 0 such that, for any n < ∞ and (xi, ηi)1≤i≤n ∈ (D×K)n,
we have that∥∥∥∥∥1

n

n∑
i=1

eλs
Pxi (τ∂ > s)Lxi

(
Xs |τ∂ > s

)⊗ δηi − 1

n

n∑
i=1

φ
(
xi)π ⊗ δηi

∥∥∥∥∥
TV

≤ εt

1

n

n∑
i=1

φ
(
xi).

We apply this to both the numerator and denominator of the right-hand side of (B.1) to obtain
(1.14).
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APPENDIX C: SPACES OF MEASURES

For a given topological space S, we write B(S) for the Borel σ -algebra on S and write
P(S) for the space of probability measures on B(S), equipped with the topology of weak
convergence of measures. We write M(S) for the space of all bounded Borel measurable
functions on S.

C.1. The Wasserstein metric. For general separable metric spaces (S, d), we let W
denote the Wasserstein-1 metric on P(S), generated by the metric d ∧1, which metrises P(S)

[27], Theorem 6. We write PW(S) for the metric space (P(S),W). The following, therefore,
follows from the Skorokhod representation theorem.

PROPOSITION C.1. Let (S, d) be a separable metric space. Let (μn)n≥1 be a sequence
of P(S)-valued random measures, and μ ∈ P(S) a deterministic measure. Then the following
are equivalent:

1. W(μn,μ)
p→ 0 as n → ∞;

2. μn(f )
p→ μ(f ) as n → ∞ for all f ∈ Cb(S).

We similarly obtain the following lemma.

LEMMA C.2. Let (S, d) be a separable metric space. Let (μ
(i)
n )n≥1 for i = 1,2 be tight

sequences of P(S)-valued random measures, with μ
(1)
n and μ

(2)
n defined on the same proba-

bility space, for all n. We suppose that

(C.1)
∣∣μ(1)(A) − μ(2)

n (A)
∣∣ p→ 0 as n → ∞ for all A ∈ B(S).

Then W(μ
(1)
n ,μ

(2)
n )

p→ 0 as n → ∞.

PROOF OF LEMMA C.2. Since ((μ
(1)
n ,μ

(2)
n ) : 1 ≤ n < ∞) is a tight sequence of random

measures, we may consider arbitrary subequential limits to which we apply Skorokhod’s
representation theorem. Then on this new probability space and along the subsequential limit,
we have (μ

(1)
nk ,μ

(2)
nk ) → (μ(1),μ(2)) in P(S)×P(S) as k → ∞. We now use (C.1) to conclude

that μ(1) = μ(2) almost surely from which we conclude Lemma C.2. �

C.2. The weak atomic metric. Convergence in our scaling limit is given in terms of the
weak atomic metric, introduced by Ethier and Kurtz in [24]. We shall define the weak atomic
metric on the color space (K, d) (which we recall is assumed to be a complete, separable
metric space). We write PWa (K) for P(K) equipped with the metric Wa .

In [24] Ethier and Kurtz defined the weak atomic metric on the space of all finite, posi-
tive, Borel measures, whereas we restrict our attention to probability measures on K. We fix
�(u) = (1 − u) ∨ 0 and define the weak atomic metric to be

Wa(μ, ν) := W(μ, ν) + sup
0<ε≤1

∣∣∣∣
∫
K

∫
K

�

(
d(x, y)

ε

)
μ(dx)μ(dy)

−
∫
K

∫
K

�

(
d(x, y)

ε

)
ν(dx)ν(dy)

∣∣∣∣.
(C.2)

In [24] they used the Lévy–Prokhorov metric, instead of the W-metric, and let � be an
arbitrary continuous, nondecreasing function such that �(0) = 1 and �(1) = 0. We make the
above choices for simplicity (note that W is equivalent to the Lévy–Prokhorov metric [27],
Theorem 2). Convergence in the weak atomic metric is equivalent to weak convergence of
measures and convergence of the location and sizes of the atoms.
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LEMMA C.3 (Lemma 2.5, [24]). Consider a sequence of probability measures (μn)
∞
n=1

and a probability measure μ, all in P(K). The following are equivalent:

1. Wa(μn,μ) → 0 as n → ∞.
2. We have both of the following:

(a) W(μn,μ) → 0 as n → ∞.
(b) There exists an ordering of the atoms {αiδxi

} of μ and the atoms {αn
i δxn

i
} of μn so that

α1 ≥ α2 ≥ . . . and limn→∞(αn
i , xn

i ) = (αi, xi) for all i.

REMARK C.4. Note that (2a) is equivalent to μn → μ weakly by Proposition C.1.

Thus, measures are close in the weak atomic metric if and only if they are both close in
the Wasserstein-1 metric W and have similar atoms. For instance, 1

2Leb[0,1] + 1
2δ 1

2
is close

in the weak atomic metric to (1
2 − ε)Leb[0,1] + (1

2 + ε)δ 1
2 +ε

(for small ε > 0) but not to
1
2Leb[0,1] + (1

4δ 1
2 −ε

+ 1
4δ 1

2 +ε
) nor to 1

3Leb[0,1] + 2
3δ 1

2
.

We note by [24], page 5, that B(P(K)) = B(PWa (K)) so that probability measures in
P(PWa (K)) are probability measures in P(P(K)) and vice-versa. It will be useful to be able
to characterise tightness in both P(PWa (K)) and P(D([0, T ];PWa (K))).

Ethier and Kurtz established in [24], Lemma 2.9, the following tightness criterion.

LEMMA C.5 (Lemma 2.9, [24]). Consider a sequence of measures (μn)
∞
n=1 in P(P(K)).

Then the following are equivalent:

1. (μn)
∞
n=1 is tight in P(PWa (K)).

2. (μn)
∞
n=1 is tight in P(PW(K)), and we also have

(C.3) sup
n

E

[∫
K

∫
K

�

(
d(x, y)

ε

)
1(x �= y)μn(dx)μn(dy)

]
→ 0 as ε → 0.

Note that the above statement is slightly different from the statement of [24], Lemma 2.9.
It is straightforward to see that the two statements are equivalent for families of probability
measures; for our purposes this lemma statement will be easier to use.

APPENDIX D: THE WRIGHT–FISHER PROCESS

The Wright–Fisher process is defined as a solution of a martingale problem. There are var-
ious possible formulations of this martingale problem, which can be found in [23], Section 3.
The formulation we employ is given by [23], (3.20) and (3.21), and is defined as follows.

DEFINITION D.1 (Wright–Fisher process). A Wright–Fisher process on P(K) of rate
θ > 0 with initial condition ν0 ∈ P(K) is a continuous P(K)-valued process (νt )0≤t<∞ such
that ν0 := ν0 and which is a solution of the following martingale problem.

We define, for all n ≥ 2, the maps

�
(n)
ij : Bb

(
K

n)→ Bb

(
K

n−1),
f �→ (�

(n)
ij f : (x1, . . . , xn−1) �→ f (x1, . . . , xj−1, xi, xj , . . . , xn−1).

We further define, for all n ≥ 1 and f ∈ Bb(K
n), the map ϕf ∈ Bb(P(K)) by

(D.1) ϕf (ν) := ν⊗n(f ).
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We then define the generator

(D.2) (Lϕf )(ν) := θ
∑

1≤i<j≤n

[
ν⊗(n−1)(�(n)

ij f
)− ν⊗n(f )

]
,D(L) = {ϕf given by (D.1)}.

The martingale problem defining the Wright–Fisher process of rate θ > 0 is then the condition
that, for all ϕf given by (D.1),

(D.3) ϕf (νt ) − ϕf (ν0) −
∫ t

0
(Lϕf )(νs) ds is a martingale.

THEOREM D.2 ([23]). We fix ν0 ∈ P(K) and θ > 0. There exists a unique in law Wright–
Fisher process on P(K) with initial condition ν0 = ν0. Moreover, the sample paths are con-
tinuous in the weak atomic metric,

(D.4) (νt )0≤t<∞ ∈ C
([0,∞);PWa (K)

)⊆ C
([0,∞);P(K)

)
, almost surely.

Existence and uniqueness of the Wright–Fisher process in C([0,∞);P(K)) is given by
[23], Theorem 7.1. Continuity of sample paths in the weak atomic metric is given by [23],
Corollary 7.4.

We now provide a proof of Proposition 1.3.

PROOF OF PROPOSITION 1.3. The martingales in (D.3) are continuous by [23], Propo-
sition 7.3.

We fix some choice of disjoint measurable sets A1, . . . ,An with ∪̇n
j=1Aj = K. For ar-

bitrary 1 ≤ i, j ≤ n, we take the test functions ϕf , given by (D.1), with the choices of
f (x1) = 1(x1 ∈ Ai) and f (x1, x2) = 1(x1 ∈ Ai, x2 ∈ Aj). It follows that

νt (Ai) and νt (Ai)νt (Aj ) − θ

∫ t

0

[
νt (Ai)1(i = j) − νt (Ai)νt (Aj )

]
dt

are continuous martingales for all 1 ≤ i, j ≤ n. Proposition 1.3 follows. �

APPENDIX E: BROWNIAN MOTION WITH HARD KILLING AT THE BOUNDARY

In this appendix, (Bt )0≤t<τ∂
is Brownian motion in an open, connected, bounded domain

D, killed instantaneously at the boundary. The Fleming–Viot particle system ( �BN
t )t≥0 and

Fleming–Viot multicolor process ( �BN
t , �ηN

t )t≥0 are driven by this Brownian motion with hard
killing (as in Definition 5.1).

We have the following analogue of Theorem A.1.

THEOREM E.1. There exists a unique quasi-stationary distribution (QSD) π ∈ P(D) for
(Bt )0≤t<τ∂

. Moreover, there exist constants C < ∞ and k > 0 such that

(E.1)
∥∥Lμ

(
Bt |τ∂ > t

)− π
∥∥

TV ≤ Ce−kt for all μ ∈ P(D) and t ≥ 0.

Furthermore, π is a left eigenmeasure of L with eigenvalue −λ < 0,

(E.2) 〈π,Lf 〉 = −λ〈π,f 〉, f ∈ D(L).

Moreover, L has a positive right eigenfunction belonging to the domain of the Carre du
Champs operator described in (5.8), φ ∈ C0(D;R>0) ∩ C∞(D) ∩ D(�). This right eigen-
function is both the unique nonnegative right eigenfunction and the unique right eigenfunction
of eigenvalue −λ, up to rescaling.

We have the following analogue of Theorem 1.8.
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DEFINITION E.2. We define a D × K-valued killed Markov process, denoted by
((Bt , ηt ))0≤t<τ∂

, as follows. The process evolves in the first variable as a Brownian motion
Bt killed instantaneously upon contact with the boundary. The killing time τ∂ is then given
by τ∂ := inf{t > 0 : Bt− ∈ ∂D}. In the second variable ηt is a constant element of K, up to the
killing time τ∂ , so that ηt = η0 for all 0 ≤ t < τ∂ . After the killing time, the process is sent to
a fixed cemetery state.

We recall that the stopping time τN
ε for ε > 0 was defined in (5.12) by{

t > 0 : mN
t

(
B
(
∂D, δ(ε)

))
> ε

}
,

whereby δ = δ(ε) > 0 is given by Lemma 5.3.

THEOREM E.3. We consider the Fleming–Viot multicolor process ( �BN
t , �ηN

t )t≥0 for N ≥
2. Then there exists constants Cε,T ,N for ε > 0, 0 ≤ T < ∞ and N ≥ 2 such that Cε,T ,N → 0,
as N → ∞, and such that for any initial condition ( �BN

0 , �ηN
0 ) for which τN

ε > 0, and any
f ∈ Bb(D̄ ×K;R), we have that

E
( �BN

0 ,�ηN
0 )

[
sup
t≤T

∣∣∣∣∣
(

1

N

N∑
i=1

δ
(B

N,i
t ,η

N,i
t )

−L 1
N

∑N
i=1 δ

(B
N,i
0 ,η

N,i
0 )

(
(Bt , ηt )

))
(f )

∣∣∣∣∣
]

≤ Cε,T ,N‖f ‖∞,

(E.3)

E
( �BN

0 ,�ηN
0 )

[
sup
t≤T

∣∣JN
t − lnP 1

N

∑N
i=1 δ

(B
N,i
0 ,η

N,i
0 )

(τ∂ > t)
∣∣∧ 1

]
≤ Cε,T ,N .(E.4)

Finally, we have the following large-time limit for ((Bt , ηt ))0≤t<τ∂
by the same proof as

the proof of Proposition 1.9.

PROPOSITION E.4. For arbitrary sequences (xi, ηi)1≤i≤n in D × K, we consider the
process (Bt , ηt )0≤t<τ∂

with initial distribution given by the empirical measure 1
n

∑n
i=1 δ(xi ,ηi ).

Then there exists ct → 0 as t → ∞ such that, for all sequences (xi, ηi)1≤i≤n in D̄ ×K and
all n ∈ N, we have∥∥∥∥L 1

n

∑n
i=1 δ

(xi ,ηi )

(
(Bt , ηt )|τ∂ > t

)−
∑n

i=1 φ(xi)π ⊗ δηi∑n
i=1 φ(xi)

∥∥∥∥
TV

≤ ct , 0 ≤ t < ∞.(E.5)

PROOF OF THEOREM E.1, THEOREM E.3 AND PROPOSITION E.4. It is easy to check
that (Bt )0≤t<τ∂

satisfies [19], Assumption (A); a proof in the Hörmander setting is given by
the present author in [44], Theorem 7.4 (see the proof of [44], Proposition 7.12). The fact
that φ belongs to the domain of � follows from [48], Theorem 1.1. Otherwise, the proofs
of Theorem E.1, Theorem E.3 and Proposition E.4 are identical to those of Theorem A.1,
Theorem 1.8 and Proposition 1.9, respectively. �
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