Translator Disclaimer
August, 1977 Entrance Laws for Markov Chains
J. Theodore Cox
Ann. Probab. 5(4): 533-549 (August, 1977). DOI: 10.1214/aop/1176995759

Abstract

Let $S$ be a countable set and let $Q$ be a stochastic matrix on $S \times S$. An entrance law for $Q$ is a collection $\mathbf{\mu} = \{\mu_n\}_{n\in\mathbb{Z}}$ of probability measures on $S$ such that $\mu_nQ = \mu_{n+1}$ for all $n\in\mathbb{Z}$. There is a natural correspondence between entrance laws and Markov chains $\xi_n$ with stationary transition probabilities $Q$ and time parameter set $\mathbb{Z}$. The set $\mathscr{L}(Q)$ of entrance laws is examined in the discrete and continuous time setting. Criteria are given which insure the existence of nontrivial entrance laws.

Citation

Download Citation

J. Theodore Cox. "Entrance Laws for Markov Chains." Ann. Probab. 5 (4) 533 - 549, August, 1977. https://doi.org/10.1214/aop/1176995759

Information

Published: August, 1977
First available in Project Euclid: 19 April 2007

zbMATH: 0369.60079
MathSciNet: MR455128
Digital Object Identifier: 10.1214/aop/1176995759

Subjects:
Primary: 60J10
Secondary: 60J50

Rights: Copyright © 1977 Institute of Mathematical Statistics

JOURNAL ARTICLE
17 PAGES


SHARE
Vol.5 • No. 4 • August, 1977
Back to Top