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Mean-field spin glasses are families of random energy functions (Hamil-
tonians) on high-dimensional product spaces. In this paper, we consider the
case of Ising mixed p-spin models,; namely, Hamiltonians HN : �N → R

on the Hamming hypercube �N = {±1}N , which are defined by the prop-
erty that {HN(σ )}σ∈�N

is a centered Gaussian process with covariance
E{HN(σ 1)HN(σ 2)} depending only on the scalar product 〈σ 1,σ 2〉.

The asymptotic value of the optimum maxσ∈�N
HN(σ ) was character-

ized in terms of a variational principle known as the Parisi formula, first
proved by Talagrand and, in a more general setting, by Panchenko. The struc-
ture of superlevel sets is extremely rich and has been studied by a number of
authors. Here, we ask whether a near optimal configuration σ can be com-
puted in polynomial time.

We develop a message passing algorithm whose complexity per-iteration
is of the same order as the complexity of evaluating the gradient of HN , and
characterize the typical energy value it achieves. When the p-spin model HN

satisfies a certain no-overlap gap assumption, for any ε > 0, the algorithm
outputs σ ∈ �N such that HN(σ ) ≥ (1 − ε)maxσ ′ HN(σ ′), with high proba-
bility. The number of iterations is bounded in N and depends uniquely on ε.
More generally, regardless of whether the no-overlap gap assumption holds,
the energy achieved is given by an extended variational principle, which gen-
eralizes the Parisi formula.

1. Introduction. Let W (k) ∈ (RN)⊗k , k ≥ 2, be a standard symmetric Gaussian ten-
sor of order k with entries W (k) ≡ (W

(k)
i1,...,ik

)1≤i1,...,ik≤N . Namely, if {G(k)
i1,...,ik

: k ≥ 2,1 ≤
i1, . . . , ik ≤ N} is a collection of i.i.d. standard normal N(0,1) random variables, we set
W (k) ≡ N−(k−1)/2 ∑

π∈Sk
G(k)

π where the sum is over the group of permutations of k objects,
and G(k)

π is obtained by permuting the indices of G(k) according to π .
We consider the problem of optimizing a polynomial with coefficients given by the tensors

W (k) over the hypercube �N = {−1,+1}N :

OPTN = 1

N
max

{
HN(σ ) : σ ∈ �N

}
,(1.1)

HN(σ ) =
∞∑

k=2

ck

k!
〈
W (k),σ⊗k 〉, 〈

W (k),σ⊗k 〉 ≡ ∑
1≤i1,...,ik≤N

Wi1,...,ikσi1 · · ·σik .(1.2)

The parameters (ck)k≥2 are customarily encoded in the function ξ(x) ≡ ∑
k≥2 c2

kx
k , which

we henceforth call the mixture of the model. We will assume throughout that ξ(1 + ε) < ∞
for some ε > 0. This implies |ck| ≤ c∗αk for some c∗ > 0, α ∈ (0,1), so that the sum defining
HN is almost surely finite. (In fact, there is very little loss of generality in assuming ck = 0
for all k larger than some absolute constant kmax.) We call such a model an Ising mixed p-
spin model. When the combinatorial constraint σ ∈ �N is relaxed to the �2 norm constraint
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‖σ‖2 = N , we obtain the related spherical mixed p-spin model. If ck = 0 for all k �= p, the
model is called a pure p-spin model.

We would like to develop an algorithm that accepts as input the tensors (W (k))k≥2 and
returns a vector σ alg ∈ �N such that, with high probability, HN(σ alg)/N ≥ ρ · OPTN for an
approximation factor ρ ∈ [0,1] as close to one as possible. From a worst case point of view,
this objective is hopeless: achieving any ρ > 1/(logN)c (for c a small constant) is NP-hard
already in the case of quadratic polynomials [2]. For higher-order polynomials, the task is
known to be even more difficult. For instance, [6] proves that obtaining ρ > exp(−(logN)c)

is hard already for the spherical pure p-spin model whenever p ≥ 3.
Worst-case hardness results do not have direct implications on random instances, as de-

scribed above. However, standard optimization methods based on semidefinite programming
(SDP) relaxations appear to fail on such random instances. These methods typically pro-
duce an efficiently computable upper bound on OPTN . For a spherical pure k-spin model
with k ≥ 3, [11] shows that a level-k sum-of-squares relaxation produces an upper bound
that is polynomially larger than OPTN : SOSN(k) �N(k−2)/4 · OPTN . In contrast, significant
progress has been achieved recently for search algorithms, that is, algorithms that produce a
feasible solution σ alg but not a certificate of (near-)optimality. In particular, Subag [45] de-
veloped an algorithm for the spherical mixed p-spin model, and proved that it achieves any
approximation factor ρ = (1 − ε), ε > 0, provided t �→ ξ ′′(t)−1/2 is concave. In [37], one
of the authors developed an algorithm for the Sherrington–Kirkpatrick model, which corre-
sponds to the quadratic case (c2 = 1 and ck = 0 for k ≥ 3), with σ ∈ �N . Under a widely
believed conjecture about the so-called Parisi formula, the algorithm of [37] also achieves a
(1 − ε)-approximation for any ε > 0.

The main result of this paper is a characterization of the optimal value achieved by a
natural class of low-complexity message passing algorithms that generalize the approach of
[37]. As special cases, we recover the results of [45] and [37]. For a given approximation error
ε > 0, the algorithm complexity is of the same order as evaluating the gradient ∇HN(x) at a
constant number C(ε) of points. Its output σ alg satisfying HN(σ alg)/N ≥ (1−ε) ·OPTN with
high probability whenever the corresponding Parisi formula satisfies a certain “no-overlap
gap” condition. Even more interestingly, we characterize the optimal value achieved by a
natural class of message passing algorithms in terms of an extended variational principle,
which generalizes the Parisi formula. This points at a possible general picture for the optimal
approximation ratio in ensembles of random optimization problems.

The random energy function HN has been studied for over 40 years in statistical physics
and probability theory, and is known as the Hamiltonian of the mixed p-spin model [33, 38,
44, 47]. With the above definitions, it is easy to see that {H(σ )}σ∈�N

is a centered Gaussian
process on the hypercube, with covariance

E
[
HN(σ )HN

(
σ ′)] = Nξ

(〈
σ ,σ ′〉/N)

.(1.3)

The asymptotic value of OPTN was first derived by physicists using the nonrigorous
replica method [40] and subsequently established by Talagrand [46] and Panchenko [38,
39]. This asymptotic value is characterized in terms of a variational principle known as the
“Parisi formula.” While the Parisi formula allows computation of the asymptotic free energy
associated to the Hamiltonian HN , it can be specialized to the zero temperature case to deter-
mine the asymptotics of OPTN . The resulting characterization was established by Auffinger
and Chen in [5] and it is useful to recall it for the reader’s convenience.

Let U be the following subset of functions γ : [0,1) →R≥0:

U ≡
{
γ : [0,1) →R≥0 : γ nondecreasing ,

∫ 1

0
γ (t)dt < ∞

}
.(1.4)
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For γ ∈ U , let �γ : [0,1] × R → R be the solution of the following PDE, known as the
Parisi PDE, with terminal condition at t = 1:

∂t�
γ (t, x) + 1

2
ξ ′′(t)

(
∂2
x�γ (t, x) + γ (t)

(
∂x�

γ (t, x)
)2) = 0,

�γ (1, x) = |x|.
(1.5)

We refer to Section 2.2 and Section 6 for a construction of solutions of this PDE.
The Parisi functional P : U →R is then defined by

P(γ ) ≡ �γ (0,0) − 1

2

∫ 1

0
tξ ′′(t)γ (t)dt.(1.6)

THEOREM 1 ([5]). The following limit holds almost surely:

lim
N→∞ OPTN = inf

γ∈U
P(γ ).(1.7)

The optimization problem on the right-hand side of the last formula is achieved at a unique
function γP ∈ U [5, 16], which has a physical interpretation [33]. Consider the (random)
Boltzmann distribution pβ(σ ) ∝ exp{βHN(σ )} at temperature 1/β , and let σ 1,σ 2 ∼ pβ be
two independent samples from this distribution, that is, (σ 1,σ 2) ∼ Ep⊗2

β . Then β−1γP (t) is
the asymptotic probability of the event {(σ 1,σ 2) : |〈σ 1,σ 2〉|/N ≤ t} (when the limit β →
∞ is taken after N → ∞.) Given this interpretation, the nondecreasing constraint in the
definition of U is very natural: it follows from γP being the limit of a sequence of cumulative
distribution functions (rescaled by the factor β).

As mentioned above, in this paper we describe and analyze a class of algorithms that aim at
finding near-optima, that is, configurations σ alg ∈ �N with HN(σ alg)/N as close as possible
to OPTN (or to its asymptotic value infγ∈U P(γ )). Our main results can be summarized as
follows:

1. If the infimum in the Parisi formula is achieved at γP , which is strictly increasing over
the interval [0,1), then we provide an efficient algorithm that returns a (1−ε)-optimizer. This
condition corresponds to the “no-overlap gap” scenario mentioned above: roughly speaking,
the asymptotic distribution of the overlap |〈σ 1,σ 2〉|/N has no gap in its support.

2. More generally, we introduce a new extended variational principle, which prescribes
to minimize the Parisi functional P over a larger space L of functions γ , which are not nec-
essarily monotone. We present an algorithm that achieves H(σ alg)/N ≥ (1−ε) infγ∈L P(γ ),
provided the infimum on the right-hand side is achieved at some γ∗ ∈ L . Since U ⊆ L , this
value is of course no larger than the value of the global optimum.

Moreover, under the “no-overlap gap” scenario, we have infγ∈U P(γ ) = infγ∈L P(γ ) and,
therefore, we recover the result at the previous point.

3. We show, by a duality argument, that no algorithm in a natural class of class of mes-
sage passing algorithms that we introduce can overcome the value infγ∈L P(γ ). This appears
to be an interesting computational threshold, whose importance warrants further exploration.

1.1. Further background. Understanding the average case hardness of random compu-
tational problems is an outstanding challenge with numerous ramifications. The use of spin
glass concepts in this context has a long history, which is impossible to review here. A few
pointers include [30, 32–34, 36]. Spin glass theory allows one to derive a detailed picture
of the structure of superlevel sets of random optimization problems, or the corresponding
Boltzmann distribution pβ(σ ) ∝ exp{βHN(σ )}. A central challenge in this area is to under-
stand the connection between this picture and computational tractability. Which features of
the energy landscape HN are connected to intractability?
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Of course, the answer depends on the precise formulation of the question. In this pa-
per, we consider the specific problem of achieving the best approximation factor ρ so that
a polynomial-time algorithm can output a feasible solution σ alg such that HN(σ alg)/N ≥
ρOPTN with high probability. This question was addressed in the physics literature from at
least two points of view:

• Significant effort has been devoted to computing the number (and energy) of local optima
that are separated by large energy barriers: the energy of the most numerous such local
optima is sometimes used as a proxy for the algorithmic threshold. The exponential growth-
rate of the number of such optima is computed using nonrigorous methods in [17, 18, 41].

• An equally large amount of work was devoted to the study of Glauber or Langevin dynam-
ics, which can be interpreted as greedy optimization algorithms. In particular, [13, 20] and
follow-up work study the N → ∞ asymptotics of these dynamics, for a fixed time horizon.

These two approaches produced an impressive amount of (mostly nonrigorous) information.
Despite these advances, no clear picture has been put forward for the optimum approximation
factor ρ (the “algorithmic threshold”), except in particularly simple cases, such as the pure
p-spin spherical model. We refer to [23] for a recent illustration of the outstanding challenges.

Over the last two years, significant progress was achieved on this question. Apart from
[37, 45] mentioned above, Addario-Berry and Maillard [1] studied this question within the
generalized random energy model, which can be viewed as a stylized model for the energy
landscape of mean field spin glasses. They prove that a variant of greedy search achieves a
(1 − ε)-approximation of OPTN under a suitable variant of the no-overlap gap assumption.

In a different direction, Gamarnik and coauthors showed in several examples that the ex-
istence of an overlap gap (defined appropriately) rules out a (1 − ε)-approximation for local
algorithms in related random optimization problems on sparse graphs [15, 25, 26]. Further-
more, the recent paper [24] proves that approximate message passing algorithms (of the type
studied in this paper) cannot achieve a (1 − ε)-approximation of the optimum in pure p-spin
Ising models, under the assumption that these exhibit an overlap gap. However, [24] does not
characterize optimal approximation ratio, which we instead do here, as a special case of our
results.

Finally, two recent papers [31, 35] study degree-4 sum-of-squares relaxations for the
Sherrington–Kirkpatrick model, and show that they fail at producing an upper bound on
OPTN tighter than what is produced by simple spectral methods. In conjunction with [37],
these results suggest that—in the context of spin glass problems—computing a certifiable
upper bound on OPTN is fundamentally harder than searching for an approximate optimizer.

Our approach is based on the construction and analysis of a class of approximate message
passing (AMP) algorithms. Following [37], we refer to this family of algorithms as incre-
mental approximate message passing (IAMP). AMP algorithms admit an exact asymptotic
characterization in terms of a limiting Gaussian process, which is known as state evolution.
This characterization was first established rigorously by Bolthausen [12] for a special case,
and subsequently generalized in several papers [7, 8, 10, 29]. Here, we will follow the proof
scheme of [10] to generalize state evolution to the case of (mixed) tensors.

1.2. Notation. We will typically use lower-case for scalars (e.g., x, y, . . . ), bold lower-
case for vectors (e.g., x,y, . . . ), and bold upper case for matrices (e.g., X,Y , . . .). The ordi-
nary scalar product in R

d is denoted by 〈x,y〉 = ∑
i≤d xiyi , and the corresponding norm by

‖x‖ = 〈x,x〉1/2. Given two vectors a,b ∈ R
N , we will often consider the normalized scalar

product 〈a,b〉N = ∑
i≤N aibi/N , and the norm ‖a‖N = 〈a,a〉1/2

N . There will be no confusion
between this and �p norms, which will be rarely used in R

d .
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We will use standard notation for functional spaces, in particular, spaces of continuously
differentiable functions (e.g., Ck(�), Ck

c (�), and so on), and spaces of integrable functions
(e.g., Lp(�)). We refer, for instance, to [22] for definitions.

Given a sequence of random variables (Yn)n≥1, and Y∞, we write Yn
p−→ Y∞, or

p-limn→∞ Yn = Y∞ if Yn converges in probability to Y∞.
For a function f : R→R, we denote by ‖f ‖TV[a,b] the total variation of f on the interval

[a, b]:

(1.8) ‖f ‖TV[a,b] ≡ sup
n

sup
a≤t0<t1<···<tn≤b

n∑
i=1

∣∣f (ti) − f (ti−1)
∣∣.

(The supremum is taken over all partitions of the interval [a, b].)
We say that a function ψ : Rd → R is pseudo-Lipschitz if there exists a constant L < ∞

such that, for every x,y ∈ R
d ,∣∣ψ(x) − ψ(y)

∣∣ ≤ L
(
1 + ‖x‖ + ‖y‖)‖x − y‖.

Throughout the paper, we write that an event holds with high probability, if its probability
converges to one as N → ∞. We use C to denote various constants, whose value can change
from line to line.

2. Achievability.

2.1. Value achieved by message passing algorithms. We characterize the value achieved
by a class of message-passing algorithms, presented in Section 3. This class is parametrized
by two functions u, v : [0,1] × R → R, and the value they achieve is given in Theorem 2,
under the assumptions spelled out below.

DEFINITION 2.1. We say that a function f : [a, b] × R → R has bounded strong total
variation if there exists C < ∞ such that

(2.1) sup
n

sup
a≤t0<···<tn≤b

sup
x1,...,xn∈R

n∑
i=1

∣∣f (ti, xi) − f (ti−1, xi)
∣∣ ≤ C.

(The supremum is over all partitions (ti) of the interval [a, b] and all sequences (xi) in R.)

ASSUMPTION 1. Let u, v : [0,1] ×R → R be two measurable functions, with u nonva-
nishing, and assume that the following holds for some constant C < ∞:

(A1) u and v are uniformly bounded: supt,x |u(t, x)| ∨ |v(t, x)| ≤ C.
(A2) u and v are Lipschitz continuous in space, with uniform (in time) Lipschitz constant:

|u(t, x1) − u(t, x2)| ∨ |v(t, x1) − v(t, x2)| ≤ C|x1 − x2| for all x1, x2 ∈ R and t ∈ [0,1].
(A3) u(·, x) is continuous for all x ∈R.
(A4) u and v have bounded strong total variation.

Consider the following stochastic differential equation:

(2.2) dXt = v(t,Xt )dt +
√

ξ ′′(t)dBt, with X0 = 0,

where (Bt )t∈[0,1] is a standard Brownian motion. Under conditions (A1) and (A2) (pertaining
to v), the above SDE has a unique strong solution, which we denote by (Xt)t∈[0,1] [9]. We
define the martingale

(2.3) Mt ≡
∫ t

0

√
ξ ′′(s)u(s,Xs)dBs.
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As we will see below, the construction of our algorithm will be such that its evolution is
indeed captured (in the N → ∞ limit) by the stochastic process (Xt)t≥0 and its associated
martingale (Mt)t≥0.

Finally, it is useful to introduce a slight modification of the Hamiltonian (1.1). Namely, we
denote by H̃N(σ ) the function that is obtained by restricting the sums in HN(σ ) to sets of
distinct indices i1, . . . , ik . (Notice that H̃N(σ ) = HN(σ ) + o(N); cf. Section 5.3.2.)

THEOREM 2. Let Assumption 1 hold, and further assume that Mt∗ ∈ [−1,1] almost
surely and E[M2

t ] = t for all t ∈ [0, t∗], for some t∗ ∈ [0,1].
Further denote by χ the computational complexity of evaluating ∇HN(m) at a point m ∈

[−1,1]N , and by χ1 the complexity of evaluating one coordinate of ∇H̃N(m) at a point
m ∈ [−1,+1]N .

Then for any ε > 0 there exists a randomized algorithm, with complexity (C/ε2) · (χ +
N) + Nχ1, which outputs σ alg ∈ �N such that

1

N
HN

(
σ alg) ≥

∫ t∗

0
ξ ′′(t)E

[
u(t,Xt)

]
dt − ε,(2.4)

with probability converging to one as N → ∞.

The proof of this theorem is deferred to Section 6.

REMARK 2.1. The stated complexity holds in a simplified model of computation
whereby real sums and multiplications have complexity of order one. However, we do not
anticipate any difficulty to arise from passing to a finite model.

Typically, computing each gradient has complexity that is linear in the input size, and Nχ1
is of the same order as χ . For instance, if the coefficients ck vanish for k > kmax, it is easy
to see that χ = O(Nkmax), and χ1 = O(Nkmax−1). As a consequence, the dominant term in
the complexity is (C/ε2)χ . In words, the algorithm’s complexity is of the same order as
computing the gradient of the cost function C/ε2 times. We further note that this constant C

depends on the regularity constants in Assumption 1.

REMARK 2.2. A similar result can be established for the spherical mixed p-spin model,
where the constraint σ ∈ �N is replaced by ‖σ‖2 = N . The same conclusion in Theorem 2
holds while the condition Mt∗ ∈ [−1,1] is no longer required. In this case, the choice of the
functions u and v is straightforward. Simply set u(t, x) = ξ ′′(t)−1/2: since this is independent
of x, the choice of v is immaterial. The value achieved in this case is

1

N
HN

(
σ spher) ≥

∫ 1

0

√
ξ ′′(t)dt − ε,

∥∥σ spher∥∥2 = N.(2.5)

In this case, we recover the energy achieved by the algorithm of Subag [45].

2.2. The extended variational principle. In the Ising case, a specific choice of the func-
tions u and v leads to the following extended variational principle. For a function γ : [0,1) →
R, we write ξ ′′γ for the pointwise multiplication of ξ ′′ and γ : ξ ′′γ (t) = ξ ′′(t)γ (t). We con-
sider the functional space

L ≡
{
γ : [0,1) →R≥0 : ∥∥ξ ′′γ

∥∥
TV[0,t] < ∞ ∀t ∈ [0,1),

∫ 1

0
ξ ′′γ (t)dt < ∞

}
.(2.6)

We endow this space with the weighted L1 metric

(2.7) ‖γ1 − γ2‖1,ξ ′′ ≡ ∥∥ξ ′′(γ1 − γ2)
∥∥

1 =
∫ 1

0
ξ ′′(t)

∣∣γ1(t) − γ2(t)
∣∣dt,
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hence implicitly identifying γ1 and γ2 if they coincide for almost every t ∈ [0,1). The no-
tation ‖ · ‖TV[0,t] for total variation norm is defined in equation (1.8). It follows from the
definition that if for γ ∈ L , ξ ′′γ (t) = ν([0, t]) where ν is a signed measure1 of bounded
total variation on intervals [0,1 − ε], ε > 0.

It is obvious that the space L is a strict superset of U : most crucially, it includes non-
monotone functions. As shown in Section 6, the Parisi functional γ �→ P(γ ) can be defined
on this larger space.

THEOREM 3. Assume that the infimum infγ∈L P(γ ) is achieved at a function γ∗ ∈ L .
Further denote by χ the computational complexity of evaluating ∇HN(m) at a point m ∈
[−1,1]N , and by χ1 the complexity of evaluating one coordinate of ∇H̃N(m) at a point
m ∈ [−1,+1]N .

Then for every ε > 0 there exists an algorithm with complexity at most C(ε) · (χ + N) +
Nχ1, which outputs σ alg ∈ �N such that

1

N
HN

(
σ alg) ≥ inf

γ∈L
P(γ ) − ε,(2.8)

with probability converging to one as N → ∞.

As an important consequence of Theorem 3, we obtain a (1 − ε)-approximation of the
optimum whenever infγ∈U P(γ ) is achieved on a strictly increasing function. For future ref-
erence, we introduce the following “no-overlap gap” assumption.

ASSUMPTION 2 (No overlap gap at zero temperature). A mixed p-spin model with mix-
ture ξ is said to satisfy the no-overlap gap assumption at zero-temperature if there exists
γ∗ ∈ U strictly increasing in [0,1) such that P(γ∗) = infγ∈U P(γ ).

The no-overlap gap assumption is expected to hold for some choices of the mixture ξ but
not for others. In particular, it is believed to hold for the Sherrington–Kirkpatrick model,
which corresponds to the special case ξ(t) = t2, but not for the pure p-spin model, that is,
ξ(t) = c2

ptp , p ≥ 3. It is also expected that no-overlap gap holds for some mixed models,
that is, models with cp > 0 for more than one values of p. Evidence toward this expectation
is mainly based on heuristic arguments (e.g., this property should hold in a “neighborhood”
of the Sherrington–Kirkpatrick model), and on analogy with the spherical models where the
variational principle can be solved exactly [5].

If the no-overlap gap assumption holds for ξ with minimizer γ∗ ∈ U , γ∗ also minimizes
the Parisi functional over L . In particular, if no-overlap gap holds for ξ , the IAMP algo-
rithm is able to approximately maximize the corresponding Hamiltonian. This leads to the
following result, which is formally proved in Section 6.3.

COROLLARY 2.2. Assume the no-overlap gap assumption to hold for the mixture ξ . Then
for every ε > 0 there exists an algorithm with the same complexity as in Theorem 3, which
outputs σ alg ∈ �N such that

1

N
HN

(
σ alg) ≥ OPTN − ε,(2.9)

with probability converging to one as N → ∞.

1This identification holds possibly apart from a set of values of t of vanishing Lebesgue measure, which will
be irrelevant here.
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REMARK 2.3. Continuing from Remark 2.2, Theorem 3 has an analogue for the spheri-
cal model ‖σ‖2 = N . In this case, the Parisi functional takes a more explicit form [14, 19]:

Pspher(γ ) = 1

2

∫ 1

0

(
ξ ′′(t)�(t) + 1

�(t)

)
dt, �(t) ≡

∫ 1

t
γ (s)ds.(2.10)

A simple calculation shows that this is minimized in L at γ∗(t) = −d
dt

(ξ ′′(t)−1/2). This

leads to the optimal value Pspher(γ∗) = ∫ 1
0

√
ξ ′′(t)dt , which we anticipated in Remark 2.2.

The condition for the minimizer to be in U , γ∗ ∈ U , coincides with the condition that t �→
ξ ′′(t)−1/2 is concave. This is the condition for no-overlap gap in the spherical model, and is
also the condition under which the algorithm of [45] achieves a (1 − ε)-optimum.

REMARK 2.4. As mentioned, the optimal choice of the functions u, v is given in terms
of the solution γ∗ of the variational problem (2.8). One might wonder how the solution of
this problem contributes to the overall complexity of finding near optima of the Hamiltonian
HN . While determining the complexity of computing approximations of γ∗ (and, therefore,
of the optimal functions u, v) is an open problem, this should not have a major impact on the
overall complexity, for two reasons:

(i) The variational problem (2.8) needs to be solved (to a given degree of accuracy) only
once, that is, not for each realization of the Hamiltonian HN . For this reason, this complexity
is not counted in the statement of Theorem 3.

(ii) For any feasible choice of functions u and v, the value achieved by the corre-
sponding IAMP algorithm is given in equation (2.4). This value depends continuously on
u and v (this point is clear from the proof of Theorem 2.) Hence, for any fixed ε, we ex-
pect to be able to construct—in a time C0(ε), independent of N—functions u, v such that∫ t∗

0 ξ ′′(t)E[u(t,Xt)]dt ≥ infγ∈L P(γ ) − ε. Using such functions instead of the optimal ones
only incurs an additional error ε in equation (2.8), and the extra computational cost can be
adsorbed in the constant C(ε).

Determining the dependence of the factor C(ε) on ε is an important open problem that is not
addressed by Theorem 3.

3. Message passing algorithms. In this section, we introduce a general class of message
passing algorithms that we use to prove Theorem 2 and Theorem 3. These are generalizations
of the algorithm introduced in [37] for the Sherrington–Kirkpatrick model ξ(t) = t2.

3.1. The general iteration. For each � ≥ 0, let f� : R�+1 → R be a real-valued Lipschitz
function, and let f−1 ≡ 0. For a sequence of vectors z0, . . . ,z� ∈ R

N we use the notation
f�(z

0, . . . ,z�) for the vector (f�(z
0
i , . . . , z

�
i ))1≤i≤N . For a tensor W ∈ (RN)⊗p and a vector

u ∈ R
N , we denote by W {u} the vector v ∈R

N with coordinates

vi = 1

(p − 1)!
∑

1≤i1,...,ip−1≤N

Wi,i1,...,ip−1ui1 · · ·uip−1 .

We let 〈u〉N ≡ 1
N

∑N
i=1 ui and 〈u,v〉N ≡ 1

N

∑N
i=1 uivi . We write f � as shorthand for the

vector f�(z
0, . . . ,z�) ∈ R

N .
In order to fully specify the message passing algorithm, we need to introduce the fol-

lowing Gaussian process. Quantities defined by this process enter in the construction of
the algorithm. Let p0 be a probability distribution on R and let Z0 ∼ p0. For each � ∈ Z,
let (Z1, . . . ,Z�) be a centered Gaussian vector independent of Z0 with covariance Qj,k =
E[ZjZk] defined recursively by

Qj+1,k+1 = ξ ′(
E
[
fj

(
Z0, . . . ,Zj )fk

(
Z0, . . . ,Zk)]), j, k ≥ 0.(3.1)
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The message passing algorithm starts with z0 with coordinates drawn i.i.d. with distribution
p0 independently of everything else. The general message passing iteration takes the form

z�+1 =
∞∑

p=2

cpW (p){f�

(
z0, . . . ,z�)}−

�∑
j=0

d�,jfj−1
(
z0, . . . ,zj−1),

d�,j = ξ ′′(E
[
f�

(
Z0, . . . ,Z�)fj−1

(
Z0, . . . ,Zj−1]) ·E

[
∂f�

∂zj

(
Z0, . . . ,Z�)].

(3.2)

Note that the first term in the update equation is the gradient of HN at the point
f�(z

0, . . . ,z�). The joint distribution for the first � iterates of equation (3.2) can be exactly
characterized in terms of the previously-defined Gaussian process in the N → ∞ limit.

PROPOSITION 3.1 (State evolution). Assume that p0 has finite second moment and let
ψ : R�+1 →R be a pseudo-Lipschitz function as defined in Section 1.2. Then〈

ψ
(
z0, . . . ,z�)〉

N

p−−−−→
N→∞ E

[
ψ
(
Z0, . . . ,Z�)].

This characterization is known as state evolution [7, 8, 10, 12, 29]. The proof of Propo-
sition 3.1 follows from the same technique introduced in [10], and we present it the supple-
mentary material [21]. We note in passing that a version of this result was announced in [42]
without proof; the proof in [21] fills this gap.

3.2. Choice of the nonlinearities. We now specify the above general iteration to the opti-
mization problem at hand. We reduce the choice of the sequence of functions f� to two bivari-
ate functions u and v appearing in the main result of Section 2. Let u, v : [0,1] ×R → R be
two functions satisfying Assumption 1. Given z0, . . . , z� ∈ R we consider the finite difference
equation

(3.3) xj+1 − xj = v
(
jδ;xj )δ + (

zj+1 − zj ), 0 ≤ j ≤ � − 1, with x0 = 0,

with driving “noise” z0, . . . , z�, drift v and ‘step size’ δ > 0. This is meant to be a discretiza-
tion of the SDE (2.2), provided that the sequence z0, . . . , z� “behaves” like Brownian motion.
We further let the discrete analogue of the martingale Mt , equation (2.3), be

(3.4) m� ≡ m0 +
�−1∑
j=0

uδ
j

(
xj )(zj+1 − zj ), for � ≥ 1 and m0 = √

δ,

where uδ
j (x) = aju(jδ;x) with aj a bounded rescaling which will be defined in equation

(5.1) below.
Note that x� is a function of z0, . . . , z� and so is m�. We define the nonlinearity f� as the

function mapping z0, . . . , z� to m�:

(3.5) f� : (z0, . . . , z�) �−→ m� as per equation (3.3) and equation (3.4).

The algorithm is completely specified by a choice of the functions u, v : [0,1] × R → R

and outputs a vector m� ∈ R
N after � = �δ−1� iterations. For any choice of such functions,

Theorem 2 predicts the value achieved by the algorithm (for small δ).2 Theorem 3 corre-
sponds to a specific choice of these functions. Namely, if γ∗ minimizes the Parisi functional

2To be precise, this procedure returns a vector m�δ−1� which is close (in �2 distance) to a vertex of the hypercube

[−1,+1]N . Since the final output must be a binary vector, we apply a simple rounding procedure to m�δ−1�, which
is detailed in Section 5.3.
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over L (i.e., P(γ∗) = infγ∈L P(γ )), we let �γ∗ : [0,1] × R → R denote the corresponding
solution of the PDE (1.5). We let

v(t, x) = ξ ′′(t)γ∗(t)∂x�
γ∗(t, x), u(t, x) = ∂2

x�γ∗(t, x), t ∈ [0, t∗],(3.6)

and extend them as to satisfy the assumptions of Theorem 2 for t ∈ (t∗,1]. Theorem 3 is
proved by letting t∗ = t∗(ε) → 1 as ε → 0. We prove in the next section that this choice is
optimal: no pair of functions satisfying the hypotheses of Theorem 2 can achieve a value
larger than infγ∈L P(γ ).

4. Optimality and stochastic control. In this section, we show that the value given by
the extended variational principle of Section 2.2 is the largest achievable by IAMP algorithms
of the form introduced in Section 3.2.

THEOREM 4. For u, v : [0,1]×R→R satisfying Assumption 1, let m� = f�(z
0, . . . ,z�)

be the output of the message passing algorithm (3.2) with nonlinearity given by (3.5). Then

lim
δ→0+ p-limN→∞

1

N
HN

(
m�δ−1�) ≤ inf

γ∈L
P(γ ).

(In the above, the inner limit in N → ∞ is a nonrandom quantity.)

REMARK 4.1. Let us emphasize that optimality within the broader class of AMP algo-
rithms defined in equation (3.2) is still an open problem. At the same time, the form of IAMP
algorithms is fairly constrained by the objective of obtaining a continuous limit of state evo-
lution (as given by the stochastic process of equation (2.2)). This in turn is motivated by the
objective of mimicking the structure of the Parisi formula.

The proof of the above theorem is deferred to Section 7. Here, we outline the basic strategy,
which formulates the optimality question as a stochastic optimal control problem.

We prove in Proposition 5.4 below that the left-hand side in the inequality of Theorem 4
is equal to

(4.1) E (u, v) ≡
∫ 1

0
ξ ′′(t)E

[
u(t,Xt)

]
dt,

where (Xt) solves the SDE (2.2). The proof crucially relies on state evolution and the previous
choice of the nonlinearities f�. We next analyze the variational problem consisting in maxi-
mizing the objective value (4.1) given the constraints E[M2

t ] = t for all t ∈ [0,1] and M1 ∈
(−1,1) over u and v satisfying Assumption 1. (We recall that Mt = ∫ t

0
√

ξ ′′(s)u(s,Xs)dBs .)
For s ≤ t , we define the space of admissible controls D[s, t] on the interval [s, t] as the

collection of all stochastic processes (ur)r∈[s,t], which are progressively measurable with
respect to the filtration of the Brownian motion (Br)r∈[s,t] and such that

E

∫ t

s
ξ ′′(r)u2

r dr < +∞.

We are then led to consider the stochastic control problem

VAL ≡ sup
u∈D[0,1]

E

[∫ 1

0
ξ ′′(s)us ds

]

s.t. E
[(

Mu
t

)2] = t ∀t ∈ [0,1], and Mu
1 ∈ (−1,1) a.s.,

(4.2)

with Mu
t ≡ ∫ t

0
√

ξ ′′(s)us dBs .
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Note that D[0,1] is a larger space of controls than the one arising from the original
algorithm; cf. equations (2.2), (2.3). Indeed, for any choice of the drift v, the process
(u(t,Xt))t∈[0,1] is in D[0,1], and hence can be encoded in the choice of a stochastic pro-
cess (ut )t∈[0,1] ∈ D[0,1]. The proof of Theorem 4 consists in showing VAL ≤ infγ∈L P(γ ).
We achieve this by writing the Lagrangian form of the above constrained optimization prob-
lem with respect to the equality constraint E[(Mu

t )2] = t for all t . We define the space of
piecewise constant, or simple, functions

SF+ ≡
{
g =

m∑
i=1

aiI[ti−1,ti ) : 0 = t0 < t1 < · · · < tm = 1, ai ≥ 0,m ∈ N

}
.(4.3)

For γ ∈ SF+, we let ν(t) = ∫ 1
t ξ ′′(s)γ (s)ds and consider the following bivariate function

Jγ : [0,1] × (−1,1) →R defined by

Jγ (t, z) ≡ sup
u∈D[t,1]

E

[∫ 1

t
ξ ′′(s)us ds + 1

2

∫ 1

t
ν(s)

(
ξ ′′(s)u2

s − 1
)

ds

]
,

s.t. z +
∫ 1

t

√
ξ ′′(s)us dBs ∈ (−1,1) a.s.,

(4.4)

We claim that the following upper bound holds:

(4.5) VAL ≤ Jγ (0,0).

Indeed, we have by integration by parts∫ 1

0
ν(s)

(
ξ ′′(s)u2

s − 1
)

ds =
∫ 1

0
ξ ′′(t)γ (t)

(∫ t

0
ξ ′′(s)u2

s ds − t

)
dt.

Since E[(Mu
t )2] = E

∫ t
0 ξ ′′(s)u2

s ds, the second term in the definition of Jγ (0,0) equation
(4.4) vanishes for any control (us) that satisfies the constraints of the problem (4.2), thus
proving equation (4.5). In other words, Jγ (0,0) is the Lagrangian associated to the opti-
mization problem (4.2) with dual variable 1

2ξ ′′γ .
We are now left with the task of relating Jγ (0,0) to the Parisi functional P(γ ):

PROPOSITION 4.1. For γ ∈ SF+, Jγ (0,0) = P(γ ).

REMARK 4.2. Although we are ultimately only interested in the value of Jγ at (0,0),
we will see shortly that defining it for all arguments (t, z) allows us to define a dynamic
programming equation, which can be solved analytically. This is at the heart of the proof of
Proposition 4.1.

The bound (4.5) then implies

VAL ≤ inf
γ∈SF+

P(γ ).

Since any function in the class L can be approximated with a piecewise constant function
with respect to the modified L1 metric ‖ · ‖1,ξ ′′ , equation (2.7), and γ �→ P(γ ) is continuous
in this metric (see Section 6), the above infimum is no larger than infγ∈L P(γ ).

We now sketch the first steps in establishing Proposition 4.1, relegating a full proof to
Section 7. The value function (4.4) can be (formally) computed by dynamic programming
where we search for solutions to the equation

V (t, z) = sup
u∈D[t,θ ]

E

[∫ θ

t
ξ ′′(s)us ds + 1

2

∫ θ

t
ν(s)

(
ξ ′′(s)u2

s − 1
)

ds

+ V

(
θ, z +

∫ θ

t

√
ξ ′′(s)us dBs

)]
,

(4.6)
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valid for all θ ∈ [t,1] and z ∈ (−1,1), with terminal condition V (1, z) = 0 for |z| < 1. The
associated Hamilton–Jacobi–Bellman (HJB) equation, which can be formally obtained from
(4.6) by letting θ → t+ and applying Itô’s formula, is

∂tV (t, z) + ξ ′′(t) sup
λ∈R

{
λ + λ2

2

(
ν(t) + ∂2

z V (t, z)
)}− 1

2
ν(t)

= 0, (t, z) ∈ [0,1) × (−1,1),

V (1, z) = 0, z ∈ (−1,1).

(4.7)

Note that it is a priori unclear whether equation (4.6) and equation (4.7) have (classical)
solutions and whether they are at all related to equation (4.4): Jγ is not known a priori to
be smooth, hence the above derivation is not rigorously justified; it is not even clear that the
right-hand side of (4.6) is measurable. To circumvent this issue, we will guess a solution V to
(4.7) and use the so-called verification argument to certify that the guessed solution is equal
to Jγ as defined in equation (4.4). En route, we establish that the optimal control process in
the stochastic control problem (4.4) for t = z = 0 is given by

u∗
t = ∂2

x�γ (t,Xt),

where (Xt) solves the SDE (2.2) with drift v(t, x) = ξ ′′(t)γ (t)∂x�
γ (t, x) and �γ solves

the Parisi PDE. This confirms in hindsight our choice of the functions u and v used in the
message passing algorithm, equation (3.6). (See also proof of Theorem 3.)

5. Proof of Theorem 2.

5.1. The scaling limit. Consider the message passing iteration (3.2) with nonlineari-
ties f� given by (3.5) and iterate sequence (z0,z1, . . .) starting from z0 = 0. We denote by
(x0,x1, . . .) and (m0,m1, . . .) the two auxiliary sequences obtained from the finite difference
equation (3.3) and the relation (3.4), respectively. We will define the distributional limit of the
message passing iteration for fixed δ > 0 and N → ∞, and indicate these time-discretized
variables using a superscript δ. We remind the reader that the nonlinearities f� act on vec-
tors coordinatewise. It is clear from equation (3.4) that f� is Lipschitz continuous for each
�, with a Lipschitz constant depending on � and C (the uniform bound on u), and there-
fore the conclusion of Proposition 3.1 about state evolution applies. Let (Zδ

�)�≥0 be the limit
of the sequence (z0,z1, . . .). Since u, v are uniformly Lipschitz in x, then (x0,x1, . . .) and
(m0,m1, . . .) converge as well in the sense of Proposition 3.1 to stochastic processes (Xδ

�)�≥0

and (Mδ
� )�≥0, defined respectively via the formulas (3.3) and (3.4) by replacing every occur-

rence of zj by Zδ
j . Define, for all � ≥ 0,

qδ
� ≡ E

[(
Mδ

�

)2]
.

LEMMA 5.1. The sequence (Zδ
�)�≥0 is a Gaussian process starting at Zδ

0 = 0. Its incre-
ments �δ

� ≡ Zδ
� − Zδ

�−1 are independent, have zero mean and variance

E
[(

�δ
1
)2] = ξ ′(δ),

E
[(

�δ
�

)2] = ξ ′(qδ
�−1

)− ξ ′(qδ
�−2

)
for all � ≥ 2.

Furthermore, (Mδ
� )�≥0 is a martingale with respect to the filtration (F� = σ(Zδ

0, . . . ,Z
δ
�))�≥0,

and Mδ
0 = √

δ.
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PROOF. We proceed by induction. Since z0 = 0 and m0 = √
δ1, we have Zδ

0 = 0 and
Mδ

0 = √
δ. We also have for all j ≥ 1, E[Zδ

1Z
δ
j ] = ξ ′(E[Mδ

0Mδ
j−1]) = ξ ′(δ). So E[�δ

1�
δ
2] =

E[Zδ
2Z

δ
1] − E[(Zδ

1)
2] = 0, and E[(�δ

1)
2] = ξ ′(δ). Now we assume that the increments

(�δ
j )j≤� are independent. This implies that (Mδ

j )j≤� is a martingale. Appealing to the state
evolution recursion,

E
[
�δ

�+1�
δ
1
] = E

[
Zδ

�+1Z
δ
1
]−E

[
Zδ

�Z
δ
1
]

= ξ ′(
E
[
Mδ

�Mδ
0
])− ξ ′(

E
[
Mδ

�−1M
δ
0
])

= 0,

since Mδ
0 = √

δ and E[Mδ
� ] = E[Mδ

�−1]. For 2 ≤ j ≤ �,

E
[
�δ

�+1�
δ
j

] = ξ ′(
E
[
Mδ

�Mδ
j−1

])− ξ ′(
E
[
Mδ

�−1M
δ
j−1

])
− ξ ′(

E
[
Mδ

�Mδ
j−2

])+ ξ ′(
E
[
Mδ

�−1M
δ
j−2

])
= 0

since (Mδ
j )j≤� has independent increments. So �δ

�+1 is independent from (�δ
j )j≤�. This ends

the induction argument. The variance identity follows straightforwardly. �

We define the functions uδ by the relations

uδ
0 ≡

(
δ

ξ ′(δ)

)1/2
,

uδ
�(x) ≡ u(�δ;x)

�δ
�

for all � ≥ 1,

with
(
�δ

�

)2 = δ−1(ξ ′(qδ
�

)− ξ ′(qδ
�−1

))
E
[
u
(
�δ;Xδ

�

)2]
.

(5.1)

LEMMA 5.2. Assume uδ
� takes the form (5.1) for all � ≥ 0. Then qδ

� = E[(Mδ
� )2] = (� +

1)δ for all � ≥ 0.

PROOF. We proceed by induction over �, the base case being trivial. First, notice that uδ
�

is well defined since �δ
� > 0 for all �. Indeed, ξ ′ is strictly increasing and, by the induction

hypothesis q�
δ > q�−1

δ , and Xδ
� is a nondegenerate Gaussian, whence E[u(�δ;Xδ

�)
2] > 0 (be-

cause by assumption u is nonvanishing). We have qδ
0 = E[(Mδ

0)2] = δ. Let � ≥ 1. Since Zδ

has independent increments, equation (3.4) implies

E
[(

Mδ
� − Mδ

0
)2] =

�−1∑
j=0

E
[
uδ

j

(
Xδ

j

)2] ·E[(�δ
j+1

)2]

= E
[
uδ

0
(
Xδ

0
)2] · ξ ′(δ) +

�−1∑
j=1

E
[
uδ

j

(
Xδ

j

)2] · (ξ ′(qδ
j

)− ξ ′(qδ
j−1

))

= δ + (� − 1)δ.

The second line follows from Lemma 5.1, the last line follows from (5.1). The fact that Mδ

is a martingale yields the desired result. �

Next, we show that under condition (5.2), (Zδ
j ,X

δ
j ,M

δ
j )0≤j≤� converge to continuous-

time stochastic processes (Zt ,Xt ,Mt)t∈[0,1] on the interval [0,1] as δ → 0, � → ∞
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and � ≤ δ−1, with Zt ≡ ∫ t
0
√

ξ ′′(s)dBs , Xt is the solution to the SDE (2.2) and Mt ≡∫ t
0
√

ξ ′′(s)u(s,Xs)dBs .

PROPOSITION 5.3. Assume

(5.2) E
[
M2

t

] = t for all t ∈ [0,1].
Then there exists a coupling between the random variables {(Zδ

�,X
δ
�,M

δ
� )}�≥0 and the

stochastic process {(Zt ,Xt ,Mt)}t≥0 such that the following holds. There exists δ0 > 0 and a
constant C > 0 such that for all δ ≤ δ0 and � ≤ δ−1,

max
1≤j≤�

E
[∣∣Xδ

j − Xδj

∣∣2] ≤ Cδ,(5.3)

max
1≤j≤�

E
[∣∣Mδ

j − Mδj

∣∣2] ≤ Cδ.(5.4)

PROOF. Let (Bt )t∈[0,1] be a standard Brownian motion. We couple the increments of Zδ

with (Bt ) via the relation

(5.5) Zδ
� − Zδ

�−1 =
∫ δ�

δ(�−1)

√
ξ ′′(s)dBs for all � ≥ 1.

Itô’s isometry implies E[(Zδ
� − Zδ

�−1)
2] = ξ ′(δ�) − ξ ′(δ(� − 1)). By Lemma 5.2, this is in

accordance with the characterization of the law of Zδ obtained in Lemma 5.1. Moreover, we
have Zδ

� = Zδ� for all � ≥ 0. We now show (5.3). Let �X
j = Xδ

j − Xδj . Using (2.2) and (3.3),
we have

�X
j − �X

j−1 =
∫ jδ

(j−1)δ

(
v
(
(j − 1)δ;Xδ

j

)− v(t;Xt)
)

dt + Zδ
j − Zδ

j−1 −
∫ δj

δ(j−1)

√
ξ ′′(s)dBs

=
∫ jδ

(j−1)δ

(
v
(
(j − 1)δ;Xδ

j

)− v(t;Xt)
)

dt

=
∫ jδ

(j−1)δ

(
v
(
(j − 1)δ;Xδ

j

)− v
(
(j − 1)δ;Xt

))
dt

+
∫ jδ

(j−1)δ

(
v
(
(j − 1)δ;Xt

)− v(t;Xt)
)

dt.

The first term is the above equation is bounded in absolute value by C
∫ jδ
(j−1)δ |Xδ

j − Xt |dt

since v Lipschitz in space uniformly in time. As for the second term,

�∑
k=1

∫ kδ

(k−1)δ

∣∣v((k − 1)δ;Xt

)− v(t;Xt)
∣∣dt

≤
�∑

k=1

∫ kδ

(k−1)δ

{∣∣v((k − 1)δ;Xt

)− v(t;Xt)
∣∣+ ∣∣v(t;Xt) − v(kδ;Xt)

∣∣}dt

≤ δ

�∑
k=1

sup
(k−1)δ≤t≤kδ

{∣∣v((k − 1)δ;Xt

)− v(t;Xt)
∣∣+ ∣∣v(t;Xt) − v(kδ;Xt)

∣∣}

≤ δ sup
t1,...,tk

�∑
k=1

{∣∣v((k − 1)δ;Xtk

)− v(tk;Xtk)
∣∣+ ∣∣v(tk;Xtk ) − v(kδ;Xtk )

∣∣}

≤ Cδ,
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where the last inequality follows from the property of bounded strong total variation of v (see
Definition 2.1). Putting to the two bounds together, summing over j , and using �X

0 = 0, we
have

∣∣�X
�

∣∣ ≤ �∑
j=1

∣∣�X
j − �X

j−1
∣∣ ≤ C

�∑
j=1

∫ jδ

(j−1)δ

∣∣Xδ
j − Xt

∣∣dt + Cδ.

Squaring and taking expectations,

E
[(

�X
�

)2] ≤ 2C2
E

(
�∑

j=1

∫ jδ

(j−1)δ

∣∣Xδ
j − Xt

∣∣dt

)2

+ 2C2δ2

≤ 2C2�δ

�∑
j=1

∫ jδ

(j−1)δ
E
∣∣Xδ

j − Xt

∣∣2 dt + 2C2δ2.

Furthermore, E|Xδ
j −Xt |2 ≤ 2E|Xδ

j −Xδj |2 + 2E|Xδj −Xt |2. It is easy to show that E|Xt −
Xs |2 ≤ C|t − s| for all t , s. Therefore,

E
[(

�X
�

)2] ≤ 4C2�δ2
�∑

j=1

E
[(

�X
j

)2]+ 4C3�δ

�∑
j=1

∫ jδ

(j−1)δ

(
t − (� − 1)δ

)
dt + 2C2δ2.

The middle term is proportional to �2δ3. Using �δ ≤ 1 we obtain that for δ smaller than an
absolute constant, it holds that

E
[(

�X
�

)2] ≤ Cδ

�−1∑
j=1

E
[(

�X
j

)2]+ Cδ,

for a different absolute constant C. This implies E[(�X
� )2] ≤ Cδ as desired.

Next, we show (5.4). Using the relation (5.5) we have

E
[(

Mδ
� − Mδ�

)2] = E

[(
�−1∑
j=0

uδ
j

(
Xδ

j

)(
Zδ

j+1 − Zδ
j

)−
∫ δ�

0

√
ξ ′′(t)u(t,Xt)dBt

)2]

= E

[(
�−1∑
j=0

∫ (j+1)δ

jδ

(
uδ

j

(
Xδ

j

)− u(t,Xt)
)√

ξ ′′(t)dBt

)2]
(5.6)

=
�−1∑
j=0

∫ (j+1)δ

jδ
E
[(

uδ
j

(
Xδ

j

)− u(t,Xt)
)2]

ξ ′′(t)dt.

Recall that uδ
j (x) = u(δj ;x)/�δ

j for j ≥ 1 where �δ
j is given in equation (5.1). Since we

have qδ
j = δ(j + 1), the formula for �δ

j reduces to

(
�δ

j

)2 = ξ ′(δ(j + 1)) − ξ ′(δj)

δ
E
[
u
(
δj ;Xδ

j

)2]
.

Let us first show the bound

(5.7)
∣∣(�δ

j

)2 − 1
∣∣ ≤ C

√
δ

for δ small enough. Since u is bounded and ξ ′′′ is bounded on [0,1], we have∣∣(�δ
j

)2 − ξ ′′(δj)E
[
u
(
δj ;Xδ

j

)2]∣∣ ≤ Cδ.
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Additionally, since u is Lipschitz in space (and bounded), we use the bound equation (5.3) to
obtain ∣∣(�δ

j

)2 − ξ ′′(δj)E
[
u(δj ;Xδj )

2]∣∣ ≤ C
√

δ.

Now, since E[M2
t ] = t for all t ∈ [0,1] and t �→ u(t,Xt) is a.s. continuous, we have by

Lebesgue’s differentiation theorem, for all t ∈ [0,1],
ξ ′′(t)E

[
u(t;Xt)

2] = 1,

and hence |(�δ
j )

2 − 1| ≤ C
√

δ for δ smaller than some absolute constant. This implies the

bound |uδ
j (X

δ
j ) − u(δj ;Xδ

j )| ≤ C| 1
�δ

j

− 1| ≤ C
√

δ. Now, going back to equation (5.6), we

have

E
[(

Mδ
� − Mδ�

)2] ≤ 2
�−1∑
j=0

∫ (j+1)δ

jδ
E
[(

uδ
j

(
Xδ

j

)− u
(
δj ;Xδ

j

))2]
ξ ′′(t)dt

+ 2
�−1∑
j=0

∫ (j+1)δ

jδ
E
[(

u
(
δj ;Xδ

j

)− u(t,Xt)
)2]

ξ ′′(t)dt

The first term is bounded by C�δ2 ≤ Cδ. As for the second term,

�−1∑
j=0

∫ (j+1)δ

jδ
E
[(

u
(
δj ;Xδ

j

)− u(t,Xt)
)2]

ξ ′′(t)dt

≤ C

�−1∑
j=0

∫ (j+1)δ

jδ
E
[(

u
(
δj ;Xδ

j

)− u(δj,Xδj )
)2]dt

+ C

�−1∑
j=0

∫ (j+1)δ

jδ
E
[(

u(δj ;Xδj ) − u(δj,Xt)
)2]dt

+ C

�−1∑
j=0

∫ (j+1)δ

jδ
E
[(

u(δj ;Xt) − u(t,Xt)
)2]dt

≡ I + II + III.

Since u is Lipschitz in space, the error bound equation (5.3) implies I ≤ C�δ2. Further, we
have the continuity bound E[|Xt −Xs |2] ≤ C|t −s|; therefore, II ≤ C�δ2. Finally, since u has
bounded strong total variation (Definition 2.1) and �δ ≤ 1, it follows that III ≤ Cδ. Putting
the pieces together, we obtain

E
[(

Mδ
� − Mδ�

)2] ≤ Cδ,

which is the desired bound. �

5.2. Value achieved by the algorithm. Throughout this section, we denote by 〈A,B〉N
the normalized scalar product between tensors A,B ∈ (RN)⊗k . Namely, 〈A,B〉N =∑

i1,...,ik≤N Ai1,...,ikBi1,...,ik /N .

PROPOSITION 5.4. There exist δ0 > 0 and a constant C > 0 such that for all δ ≤ δ0 and
� ≤ δ−1, ∣∣∣∣p-limN→∞

HN(m�)

N
−
∫ �δ

0
ξ ′′(t)E

[
u(t,Xt)

]
dt

∣∣∣∣ ≤ C
√

δ.



2938 A. EL ALAOUI, A. MONTANARI AND M. SELLKE

PROOF. In order to compute HN(m�) for large N , we evaluate the differences HN(mk)−
HN(mk−1) for 1 ≤ k ≤ � and sum them. We have

N−1(HN

(
mk)− HN

(
mk−1)) = ∑

p

cp

p!
〈
W (p),

(
mk)⊗p − (

mk−1)⊗p〉
N,

where the above inner product is of tensors of order p, normalized by N . We want to approx-
imate the term

Ak
p ≡ 〈

W (p),
(
mk)⊗p − (

mk−1)⊗p〉
N

with

Bk
p ≡

〈
W (p),

p

2

((
mk)⊗(p−1) + (

mk−1)⊗(p−1))⊗ (
mk − mk−1)〉

N

,

which captures the first two the terms in the binomial expansion of Ak
p in mk − mk−1.

The result follows from the next lemma.

LEMMA 5.5. There exist δ0 > 0 and a constant C > 0 such that for all δ ≤ δ0 and
� ≤ δ−1, ∣∣∣∣∣p-limN→∞

�∑
k=1

∑
p≥2

cp

p!B
k
p −

∫ �δ

0
ξ ′′(t)E

[
u(t,Xt)

]
dt

∣∣∣∣∣ ≤ C
√

δ,(5.8)

and

∣∣∣∣∣
�∑

k=1

∑
p≥3

cp

p!
(
Ak

p − Bk
p

)∣∣∣∣∣ ≤ C
√

δ,(5.9)

with probability tending to one as N → ∞.

Let us first complete the proof of Proposition 5.4. For � ≥ 1, we have

N−1(HN

(
m�)− HN

(
m0)) =

�∑
k=1

N−1(HN

(
mk)− HN

(
mk−1))

=
�∑

k=1

∑
p

cp

p!B
k
p +

�∑
k=0

∑
p

cp

p!
(
Ak

p − Bk
p

)
.

Since m0 is nonrandom, p-limN HN(m0)/N = 0, and Lemma 5.5 yields the desired result.
�

PROOF OF LEMMA 5.5. We prove the two statements separately:
Proof of equation (5.8). We have∑
p

cp

p!B
k
p = 1

2

∑
p

cp

〈
W (p){mk},mk − mk−1〉

N + 1

2

∑
p

cp

〈
W (p){mk−1},mk − mk−1〉

N

≡ 1

2
(S1,N + S2,N ).

By taking the scalar product of all the terms in iteration (3.2) with mk − mk−1, we see that

S1,N = 〈
zk+1,mk − mk−1〉

N +
k∑

j=0

dk,j

〈
mj−1,mk − mk−1〉

N,

S2,N = 〈
zk,mk − mk−1〉

N +
k−1∑
j=0

dk−1,j

〈
mj−1,mk − mk−1〉

N.
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Taking N to infinity and invoking Proposition 3.1, S1,N and S2,N converge in probability to

p-limN→∞ S1,N = E
[
Zδ

k+1
(
Mδ

k − Mδ
k−1

)]+
k∑

j=0

dk,jE
[
Mδ

j−1
(
Mδ

k − Mδ
k−1

)]
,

p-limN→∞ S2,N = E
[
Zδ

k

(
Mδ

k − Mδ
k−1

)]+
k−1∑
j=0

dk−1,jE
[
Mδ

j−1
(
Mδ

k − Mδ
k−1

)]
,

respectively. Since Mδ is a martingale, the right-most terms in the above expressions vanish.
Next, since Zδ has independent increments, the left-most terms in the above expressions are
equal, and we get

1

2
(S1,N + S2,N ) = E

[
Zδ

k

(
Mδ

k − Mδ
k−1

)]
= E

[(
Zδ

k − Zδ
k−1

)(
Mδ

k − Mδ
k−1

)]
= E

[
uδ

k−1
(
Xδ

k−1
)(

Zδ
k − Zδ

k−1
)2]

.

Summing over k ∈ {1, . . . , �}, we obtain

p-limN→∞
�∑

k=1

∑
p

cp

p!B
k
p =

�∑
k=1

E
[
uδ

k−1
(
Xδ

k−1
)(

Zδ
k − Zδ

k−1
)2]

=
√

δξ ′(δ) +
�∑

k=2

E
[
uδ

k−1
(
Xδ

k−1
)](

ξ ′(qδ
k−1

)− ξ ′(qδ
k−2

))

=
√

δξ ′(δ) +
�∑

k=2

E[u(δ(k − 1);Xδ
k−1)]

�δ
k−1

(
ξ ′(δk) − ξ ′(δ(k − 1)

))
.

Since | 1
�δ

k

−1| ≤ C
√

δ (this is a consequence of equation (5.7)) and ξ ′(δ) ≤ ξ ′′(1)δ, the above

is equal to

�∑
k=2

E
[
u
(
δ(k − 1);Xδ

k−1
)](

ξ ′(δk) − ξ ′(δ(k − 1)
))+ O(

√
δ)

=
�∑

k=2

E
[
u
(
δ(k − 1);Xδ

k−1
)]

ξ ′′(δ(k − 1)
)
δ + O(

√
δ)

=
∫ �δ

0
E
[
u(t,Xt)

]
ξ ′′(t)dt + O(

√
δ).

The last equality is obtained by invoking the discretization error bound equation (5.3) of
Proposition 5.3, and using the regularity properties of u, exactly as done in the proof of
equation (5.4).

Proof of equation (5.9). We fix k and write m = mk−1, m′ = mk and α = m′ − m. Since
the tensors W (p) are symmetric the approximation error Ak

p − Bk
p is

Ak
p − Bk

p =
p∑

j=3

(
p

j

) 〈
W (p),m⊗(p−j) ⊗ α⊗j 〉

N

−
p−1∑
j=2

(
p − 1

j

)〈
W (p),

p

2
m⊗(p−j−1) ⊗ α⊗(j+1)

〉
N

(5.10)
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=
p∑

j=3

(
p

j

)
(1 − j/2)

〈
W (p),m⊗(p−j) ⊗ α⊗j 〉

N.

We crudely bound the above inner product as

∣∣〈W (p),m⊗(p−j) ⊗ α⊗j 〉
N

∣∣ ≤ 1

N

∥∥W (p)
∥∥

op · ‖m‖p−j · ‖α‖j .

Here, ‖ · ‖op is the operator (or injective) norm of symmetric tensors in the �2 norm: for a
symmetric tensor T ∈ (RN)⊗k ,

‖T ‖op ≡ sup
‖ui‖≤1

〈T ,u1 ⊗ · · · ⊗ uk〉 = sup
‖u‖≤1

〈
T ,u⊗k 〉.

(The second equality is specific to symmetric tensors [49].) The operator norm of symmetric
Gaussian tensors is well understood. In particular, it is known [3, 14] that there exists a p-
dependent constant Ep , known as the ground state energy of the spherical p-spin model,
such that p-limN→∞ N(p−2)/2 · ‖W (p)‖op = Ep . A bound on Ep combined with a simple
concentration bound [42], Lemma 2, yields

P
(
N(p−2)/2∥∥W (p)

∥∥
op ≥ p!√p

) ≤ e−Np/8.(5.11)

Furthermore, by Proposition 3.1,

p-limN→∞ ‖m‖2/N = E
[(

Mδ
k−1

)2] = kδ

and p-limN→∞ ‖α‖2/N = E
[(

Mδ
k − Mδ

k−1
)2] = δ.

Combining the above bounds, and letting Kp = p!√p, we get∣∣〈W (p),m⊗(p−j) ⊗ α⊗j 〉
N

∣∣ ≤ Kp(kδ)(p−j)/2δj/2,

for all p, with probability tending to one as N → ∞. Bounding kδ by 1, and plugging back
into expression (5.10), we obtain

∣∣Ak
p − Bk

p

∣∣ ≤ Kp

p∑
j=3

(
p

j

)
|1 − j/2|δj/2,

with probability tending to one as N → ∞. Summing over p and k, we obtain

�∑
k=1

∑
p≥3

cp

p!
∣∣Ak

p − Bk
p

∣∣ ≤ �
∑
p≥3

cp

p!Kp

p∑
j=3

(
p

j

)
|1 − j/2|δj/2

≤ ∑
p≥3

cp

p!Kp

p∑
j=3

(
p

j

)
jδ(j−2)/2

≤ ∑
p≥3

cp

p!Kpp3
√

δep
√

δ

≤ √
δ
∑
p≥3

cpp4ep
√

δ

with probability tending to one as N → ∞. By assumption |cp| ≤ c∗αp for some α < 1
(since ξ(t) < ∞ for some t > 1). Therefore, the sum is finite for ε and δ small enough, and
the overall upper bound is C

√
δ. This concludes the proof. �
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5.3. Rounding and proof of Theorem 2. The algorithm described in the previous section
returns a sequence of vectors m� ∈ R

N . In this section, we describe how to round these
in order to construct a feasible solution σ alg ∈ {−1,+1}N , and bound the rounding error.
We note in passing that the related question of optimizing HN(m) over the solid hypercube
[−1,+1]N turns out to be essentially equivalent to the one studied in [43].

Fix t∗ ∈ [0,1], and let �∗ = �t∗/δ�. The rounding procedure consists in two steps:
(i) Threshold the coordinates of m�∗ to construct a vector m̂ ∈ [−1,+1]N ; (ii) Round the
entries of m̂ in a sequential fashion, to obtain a vector σ alg ∈ {−1,+1}N .

5.3.1. Thresholding. We define m̂ ∈ [−1,+1]N by thresholding entrywise m�∗ :

m̂i ≡
{
m

�∗
i if

∣∣m�∗
i

∣∣ ≤ 1,

sign
(
m

�∗
i

)
otherwise,

LEMMA 5.6. There exist constants C,ε0 > 0 such that, with high probability

sup
{‖∇HN(x)‖N : ‖x‖N ≤ 1 + ε0

} ≤ C.(5.12)

PROOF. Denoting by BN(ε0) the supremum on the left-hand side of equation (5.12), we
have

BN(ε0) = sup
‖y‖N≤1,‖x‖N≤1+ε0

〈
y,∇HN(x)

〉
N

≤ sup
‖y‖N≤1,‖x‖N≤1+ε0

∑
p≥2

cp

p!N p
〈
W (p),x⊗(p−1) ⊗ y

〉
N

≤ ∑
p≥2

cpN(p−2)/2

p! p
∥∥W (p)

∥∥
op(1 + ε0)

p−1

(a)≤ ∑
p≥2

cpp3/2(1 + ε0)
p−1 (b)≤ C.

Here, the inequality (a) holds by equation (5.11), and (b) since |cp| ≤ c∗αk for some α < 1
(recall that ξ(t) < ∞ for some t > 1). �

LEMMA 5.7. There exists a constant C such that

p-limN→∞
∣∣∣∣ 1

N
HN

(
m�∗)− 1

N
HN(m̂)

∣∣∣∣ ≤ C
√

δ.(5.13)

PROOF. Define the test function ψ :R →R, ψ(x) ≡ minz∈[−1,+1](x − z)2, that is,

ψ(x) =
{(|x| − 1

)2 if |x| > 1,

0 if |x| ≤ 1.

Proposition 3.1 implies

p-limN→∞
1

N

N∑
i=1

ψ
(
m

�∗
i

) = Eψ
(
Mδ

�∗
)
.

On the other hand, Proposition 5.3 yields

Eψ
(
Mδ

�∗
) ≤ Eψ(Mt∗) + Cδ ≤ Cδ,
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where the second inequality follows because Mt∗ ∈ [−1,+1] almost surely. Note that ‖m�∗ −
m̂‖2

N = ∑N
i=1 ψ(m

�∗
i )/N and, therefore, we conclude

p-limN→∞
∥∥m�∗ − m̂

∥∥
N ≤ C

√
δ.(5.14)

Now, by the intermediate value theorem, there exists s ∈ [0,1] such that, for m̃ = (1 −
s)m�∗ + sm̂,∣∣∣∣ 1

N
HN

(
m�∗)− 1

N
HN(m̂)

∣∣∣∣ = 1

N

∣∣〈∇HN(m̃),m�∗ − m̂
〉
N

∣∣
≤ sup

‖x‖N≤1+C
√

δ

∥∥∇HN(x)
∥∥
N · ∥∥m�∗ − m̂

∥∥
N

≤ C
√

δ,

where we used equation (5.14) and Lemma 5.6. �

5.3.2. Rounding. We next round m̂ ∈ [−1,+1]N to σ alg ∈ {−1,+1}N . In order to define
the rounding, we introduce the modified Hamiltonian

H̃N(σ ) ≡
∞∑

k=2

ck

∑
i1<···<ik

W
(k)
i1,...,ik

σi1 · · ·σik .

LEMMA 5.8. There exists a constant C > 0 such that, with high probability,

max
x∈[−1,1]N

∣∣HN(x) − H̃N(x)
∣∣ ≤ C

√
N logN.(5.15)

PROOF. Note that H̃N(x) is obtained from HN(x) by restricting the sum in equation (1.1)
to terms with distinct indices. As a consequence, GN(x) = HN(x) − H̃N(x) is a Gaussian
process independent of H̃N(x). We therefore have

E
{
GN(x)2} = E

{
HN(x)2}−E

{
H̃N(x)2}

= Nξ
(‖x‖2

N

)−
∞∑

k=2

c2
k

∑
i1<···<ik

E
{(

W
(k)
i1,...,ik

)2}
x2
i1

· · ·x2
ik

= N

∞∑
k=2

c2
k

1

Nk

∑
i1,...,ik∈Dc(N,k)

x2
i1

· · ·x2
ik
,

where Dc(N, k) is the subset of [N ]k consisting of k-uples that are not distinct. A union
bound yields |Dc(N, k)| ≤ Nk−1k(k − 1)/2, whence

E
{
GN(x)2} ≤ N

∞∑
k=2

c2
k

|Dc(N, k)|
Nk

≤
∞∑

k=2

c2
kk

2 ≤ C.

Note that, with high probability, ‖∇GN(x)‖ = ‖∇HN(x)‖ + ‖∇H̃N(x)‖ ≤ C∗
√

N for all
x ∈ [−1,+1]N (the bound for ∇HN(x) is proven in Lemma 5.6, and the one for ∇H̃N(x)

follows analogously). Let NN(ε) be an ε-net (with respect the ordinary Euclidean distance)
of [−1,1]N . Then, for ε < t/(2C∗

√
N),

P

(
max

x∈[−1,1]N
∣∣HN(x) − H̃N(x)

∣∣ ≥ t
)

≤ P

(
max

x∈NN(ε)

∣∣GN(x)
∣∣ ≥ t

2

)
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+ P

(
sup

x∈[−1,+1]N
∥∥∇GN(x)

∥∥ > C∗
√

N
)

≤ 2
∣∣NN(ε)

∣∣e−t2/2C + o(1)

≤ 2
(√

N

ε

)N

e−t2/2C + o(1).

The proof is completed by taking ε = 1 and t = C0
√

N logN with C0 a large enough con-
stant. �

We are now in position to complete our description of the rounding procedure. Notice that
H̃N(x) is linear in each coordinate of x. Therefore, viewed as a function of xi , it is maximized
over [−1,+1] at xi ∈ {−1,+1}. We starts from m̂ and sequentially maximize H̃N over each
coordinate.

Explicitly, we can write H̃N(x) = H̃
(−i)
N (x−i ) + xi�iH̃N(x−i ), where x−i ≡ (xj )j∈[N]\i .

We then define x(j), j ∈ {0, . . . ,N} by letting x(0) = m̂ and, for j ≥ 1,

x
(j)
i =

{
x

(j−1)
i if i �= j ,

sign
(
�iH̃N

(
x

(j)
−i

))
if i = j .

We then return the last vector σ alg ≡ x(N).
The proof of Theorem 2 is completed by noting that the following inequalities hold with

high probability:

1

N
HN

(
σ alg) (a)≥ 1

N
H̃N

(
σ alg)− C

√
logN

N

(b)≥ 1

N
H̃N(m̂) − C

√
logN

N

(c)≥ 1

N
HN(m̂) − 2C

√
logN

N

(d)≥ 1

N
HN

(
m�∗)− C

√
δ − 2C

√
logN

N
.

Here, (a) and (c) follow from Lemma 5.8, (b) from the fact that the H̃N is nondecreasing
along the rounding procedure, and (d) from Lemma 5.7. Finally, the value HN(m�∗)/N is
lower bounded using Proposition 5.4.

6. Analysis of the variational principle and proof of Theorem 3.

6.1. Properties of the variational principle. In this section, we prove several useful prop-
erties of the extended variational principle infγ∈L P(γ ). A first set of properties concerns the
solution of the Parisi PDE (1.5) for γ ∈ L . These are mostly generalizations of results ob-
tained in [4, 28] for γ ∈ U bounded (hence, with finite total variation over [0,1]). We will
refer to the proofs of [28] whenever they can be adapted without significant changes. In sev-
eral cases, new arguments are required, for example, in the regularity result of Lemma 6.3,
in the first variation formula of Proposition 6.8 and elsewhere. The second set of technical
results concerns properties of the minimizers (starting with Lemma 6.9). These are of course
entirely new because the minimizer is—in general—outside U .
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We consider the function space L from (2.6), endowed with the weighted L1 distance

‖γ1 −γ2‖1,ξ ′′ = ∫ 1
0 ξ ′′(t)|γ1(t)−γ2(t)|dt . We will write γn

L1
ξ−→ γ , whenever ‖γn−γ ‖1,ξ ′′ →

0 as n → ∞. We recall the space of piecewise constant functions

SF+ =
{
g =

m∑
i=1

aiI[ti−1,ti ) : 0 = t0 < t1 < · · · < tm = 1, ai ≥ 0,m ∈ N

}
.(6.1)

We study the PDE (1.5), with a slightly more general initial condition

∂t�(t, x) + 1

2
ξ ′′(t)

(
∂2
x�(t, x) + γ (t)

(
∂x�(t, x)

)2) = 0,

�(1, x) = f0(x).

(6.2)

Throughout we assume f0 to be convex, continuous, nonnegative, with f0(−x) = f0(x) ≥ 0,
and differentiable for x �= 0, with 0 ≤ f ′

0(x) ≤ 1 for all x > 0. We will write f ′
0(x) for the

weak derivative of f0 (the right and left derivatives exist but are potentially different at x =
0). Associated to the above PDE, we consider the following stochastic differential equation
driven by Brownian motion (Bt )t≥0:

dXt = ξ ′′(t)γ (t)∂x�(t,Xt)dt +
√

ξ ′′(t)dBt, X0 = 0.(6.3)

In the following we will also write �x , �xx and so on for the partial derivatives of �, and
�γ whenever we want to emphasize the dependence of � on γ . We write ∂±

t � for the left
and right derivatives of �.

We first collect a few properties of �(t, x) when γ ∈ SF+.

PROPOSITION 6.1.

(a) For any γ ∈ SF+ the solution � : [0,1] ×R →R of equation (6.2) exists uniquely in
the classical sense and is smooth for t ∈ [0,1). Namely, for any j > 0, ‖∂j

x �‖L∞([0,1−ε)×R) ≤
C(γ, ε), and ‖∂±

t ∂
j
x �‖L∞([0,1−ε)×R) ≤ C(γ, ε), with ∂+

t ∂
j
x �(t, x) = ∂−

t ∂
j
x �(t, x) whenever

t is a continuity point of γ .
(b) For any γ ∈ SF+ the solution � of equation (6.2) is such that x �→ ∂x�(t, ·) is non-

decreasing for all t ∈ [0,1], with |∂x�(t, x)| ≤ 1 for all x ∈ R.
(c) If γ1, γ2 ∈ SF+ and �γ1 , �γ2 are the corresponding solutions, then∥∥�γ1 − �γ2

∥∥∞ ≤ ‖γ1 − γ2‖1,ξ ′′ .

PROOF. Point (a) follows from the Cole–Hopf representation, which allows us to write
an explicit form of the solution for γ ∈ SF+ [5, 27]. This solution is C∞ except (possibly)
when t ∈ {t1, . . . , tm−1}, the set of discontinuity points of γ . As a consequence of point (a),
the SDE (6.3) is well defined, with unique strong solution on [0,1]. Further, � satisfies the
following representation, for γ ∈ SF+ [28]:

∂x�(t, x) = E
[
f ′

0(X1)|Xt = x
]
.

Since ‖f ′
0‖∞ ≤ 1, this implies |∂x�(t, x)| ≤ 1. The nondecreasing property also follows

again by the Cole–Hopf representation.
Finally, point (c) is identical to Lemma 14 in [28] (the assumption that γ is nondecreasing

is never used there). �

As a consequence of Proposition 6.1, we can define �γ by continuity for any γ ∈ L .

Namely, we construct a sequence γn ∈ SF+, γn

L1
ξ−→ γ and

�γ (t, x) = lim
n→∞�γn(t, x).
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LEMMA 6.2. For any γ ∈ L , �γ constructed above is such that ∂x�
γ exists in weak

sense, is nondecreasing, and |∂x�
γ (t, x)| ≤ 1 for all t ∈ [0,1], x ∈ R. Further, if γn ∈ SF+,

γn

L1
ξ−→ γ , for any t ∈ [0,1], we have ∂x�

γn(t, x) → ∂x�
γ (t, x) for almost every x.

Finally, � = �γ is a weak solution of the PDE (6.2). Namely, for any h ∈ C∞
c ((0,1]×R),

we have

0 =
∫
(0,1]

∫
R

{
−�∂th + 1

2
ξ ′′(t)

(
�∂2

xh + γ (t)(∂x�)2h
)}

dx dt

+
∫
R

�(1, x)f0(x)dx.

(6.4)

PROOF. Since �γ (t, ·) is the uniform limit of convex 1-Lipschitz functions, it is also
convex 1-Lipschitz. Hence its weak derivative exists, is nondecreasing and is bounded as
claimed. The claim ∂x�

γn(t, x) → ∂x�
γ (t, x) follows by dominated convergence.

In order to show that � is a weak solution, let �n = �γn for γn ∈ SF+, γn

L1
ξ−→ γ (hence

‖�n − �‖∞ → 0). Since �n is a classical solution corresponding to γn, we have

0 =
∫
(0,1]

∫
R

{
−�n∂th + 1

2
ξ ′′(t)

(
�n∂2

xh + γn(t)
(
∂x�

n)2
h
)}

dx dt +
∫
R

�n(1, x)f0(x)dx.

Letting � denote the right-hand side of equation (6.4), we have (since �n(1, x) = �(1, x) is
independent of n)

� =
∫
(0,1]

∫
R

{(
�n − �

)
∂th − 1

2
ξ ′′(t)

(
�n − �

)
∂2
xh

}
dx dt

−
∫
(0,1]

∫
R

1

2
ξ ′′(t)

(
γn(t)

(
∂x�

n)2 − γ (t)(∂x�)2)hdx dt.

The first term vanishes as n → ∞ by dominated convergence. For the second term, by the
bound on ∂x�, ∂x�

n, we have

|�| ≤ 1

2

∫
(0,1]

∫
R

ξ ′′(t)
∣∣γn(t) − γ (t)

∣∣|h|dx dt

+ 1

2

∫
(0,1]

∫
R

ξ ′′γ (t)
∣∣(∂x�

n)2 − (∂x�)2∣∣|h|dx dt.

The first term vanishes as n → ∞ since γn

L1
ξ−→ γ , and the second vanishes by dominated

convergence, using the fact that ‖ξ ′′γ ‖1 < ∞. �

LEMMA 6.3. For γ ∈ L and any t ∈ [0,1), the second derivative ∂2
x�(t, ·) exists in the

weak sense, with sup0≤t≤1−ε ‖∂2
x�(t, ·)‖L2(R) < ∞ for any ε > 0.

PROOF. Following [28], it is useful to introduce the the smooth time change θ(t) =
(ξ ′(1) − ξ ′(t))/2, and define u : [0, θM ] × R, θM = ξ ′(1)/2, via u(θ(t), x) = �(t, x). By a
simple change of variables, u is a weak solution of the PDE

∂θu − �u = m(θ)u2
x, u(0, x) = f0(x),

where m(s) = γ (θ−1(s)). The desired claim is implied by showing that the partial derivative
∂2
xu exists in weak sense and is bounded uniformly over θ > ε (for any ε > 0).
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Again, as in [28] the fact that u is a weak solution implies the Duhamel principle

u(θ) = Gθ ∗ f0 +
∫ θ

0
m(s)Gθ−s ∗ ux(s)

2 ds,

Gt(x) ≡ 1√
4πt

e−x2/4t .

(6.5)

(Here, ∗ denotes convolution and this equation is to be interpreted in weak sense; namely,
for any h ∈ C∞

c (R),
∫

h(x)u(θ, x)dx is given by the convolution with h of the right-hand
side.) Note that by Lemma 6.2, x �→ ux(s, x)2 is bounded between 0 and 1, nonincreasing in
(−∞,0], nondecreasing in [0,∞) and symmetric (the value at x = 0 is immaterial). Hence
there exists a measure νs on [0,∞), with total mass νs([0,∞)) ≤ 1, such that

ux(s, x)2 = νs

([0, x
)
)Ix>0 + νs

([0,−x
)
)Ix<0.

We then obtain, from equation (6.5)

uxx(θ) = G′
θ ∗ f ′

0 +
∫ θ

0
m(s)

∫
R≥0

[
G′

θ−s(· − x) + G′
θ−s(· + x)

]
dνs(x)ds.(6.6)

The claim follows by showing that each of the two terms on the right-hand side of equa-
tion (6.6) is a well-defined function, bounded in L2(R). For the first term, notice that f ′

0 is
bounded and nondecreasing. Hence there exists a measure ω0 on R with ω0(R) ≤ 2, such that
G′

θ ∗ f ′
0 = Gθ ∗ dω0, whence

∥∥G′
θ ∗ f ′

0
∥∥

2 =
∥∥∥∥
∫

Gθ(· − x)dω0(x)

∥∥∥∥
2
≤ 2‖Gθ‖2 ≤ C

θ1/4 ,

where the upper bound follows from Jensen’s inequality. The second term on the right-hand
side of (6.6) can be treated analogously. Denoting it by w(θ), we have, again by Jensen with
θ = θ(1 − ε),

∥∥w(θ)
∥∥

2 ≤
∫ θ

0
m(s)

∫
R≥0

∥∥G′
θ−s(· − x) + G′

θ−s(· + x)
∥∥

2 dνs(x)ds

≤ C

∫ θ

0
m(s)

1

(θ − s)3/4 ds

≤ C ′
∫ 1

1−ε

ξ ′′γ (s)

(ξ ′(s) − ξ ′(1 − ε))3/4 ds,

where the second inequality follows by ‖G′
t‖2 ≤ Ct−3/4. Decomposing the last integral, we

get

∥∥w(θ)
∥∥

2 ≤ C′
∫ 1−ε/2

1−ε

ξ ′′γ (s)

(ξ ′(s) − ξ ′(1 − ε))3/4 ds + C′
∫ 1

1−ε/2

ξ ′′γ (s)

(ξ ′(s) − ξ ′(1 − ε))3/4 ds

≤ C′ξ ′′γ (1 − ε/2)

∫ 1−ε/2

1−ε

1

(ξ ′(s) − ξ ′(1 − ε))3/4 ds

+ C′

(ξ ′(1 − ε/2) − ξ ′(1 − ε))3/4

∫ 1

1−ε/2
ξ ′′γ (s)ds

≤ C′′∥∥ξ ′′γ
∥∥

TV[0,1−ε/2] + C′′ε−3/4∥∥ξ ′′γ
∥∥

1.

The last expression is bounded by some C(ε) < ∞ since γ ∈ L . �
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LEMMA 6.4. For any γ ∈ L , the solution � = �γ constructed above is continuous on
[0,1] ×R, and further satisfies the following regularity properties for any ε > 0:

(a) ∂
j
x � ∈ L∞([0,1 − ε];L2(R) ∩ L∞(R)) for j ≥ 2.

(b) ∂t� ∈ L∞([0,1] ×R) and ∂t∂
j
x � ∈ L∞([0,1 − ε];L2(R) ∩ L∞(R)) for j ≥ 1.

PROOF. Continuity follows since �γ is the uniform limit of continuous functions. Points
(a) and (b) follow from the same proof as Lemma 10 in [28], applied to the PDE (6.2) with
boundary condition at t = 1 − ε, whereby we use Lemma 6.3 to initiate the bootstrap proce-
dure. �

As a consequence of the stated regularity properties of �, we can solve the SDE (6.3).

LEMMA 6.5. For any γ ∈ L , let � = �γ be the PDE solution defined above. Then
the stochastic differential equation (6.3) has unique strong solution on (Xt)t∈[0,1], which is
almost surely continuous. Further, for any t ∈ [0,1],

∂x�(t,Xt ) =
∫ t

0

√
ξ ′′(s)∂2

x�(s,Xs)dBs.(6.7)

PROOF. Existence and uniqueness for t ∈ [0,1−ε) follow because ∂x�(t, ·) is Lipschitz
continuous and ξ ′′γ is bounded on such interval (see, e.g., [9], Chapter 5.) By letting ε ↓ 0,
we obtain existence and uniqueness on [0,1). Further Xt can be extended at t = 1, letting

X1 =
∫ 1

0
ξ ′′(t)γ (t)∂x�(t,Xt )dt +

∫ 1

0

√
ξ ′′(t)dBt .

It is easy to check that this extension is almost surely continuous at t = 1, since

|X1 − Xt | ≤
∫ 1

t
ξ ′′γ (s)ds +

∫ 1

t

√
ξ ′′(t)dBt .

The first integral vanishes as t → 1 since
∫ 1

0 ξ ′′γ (t)dt < ∞, while the second vanishes by
continuity of the Brownian motion.

Next notice that, since �x = ∂x� smooth in space and weakly differentiable in time for
t ∈ [0,1) by Lemma 6.4, it is a weak solution of

∂t�x(t, x) + 1

2
ξ ′′(t)

(
∂2
x�x(t, x) + γ (t)∂x

(
�x(t, x)

)2) = 0.

More precisely, for any x ∈ R and any h ∈ C
(
c(0,1)), we have∫ {

h(t)∂t�x(t, x) + ξ ′′(t)
2

h(t)
(
∂2
x�x(t, x) + γ (t)∂x

(
�x(t, x)

)2)}dt = 0.(6.8)

Equation (6.7) is then obtained by Itô formula (see Proposition 22 in [28])

∂x�(t,Xt) =
∫ t

0

√
ξ ′′(s)∂2

x�(s,Xs)dBs

+
∫ t

0

(
∂s�x(s,Xs) + 1

2
ξ ′′(s)

(
∂2
x�x(s,Xs) + γ (s)∂x

(
�x(s,Xs)

)2)}ds,

The second term vanishes by equation (6.8). �
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COROLLARY 6.6. For any γ ∈ L and any 0 ≤ t1 < t2 < 1,

E
{
∂x�(t2,Xt2)

2}−E
{
∂x�(t1,Xt1)

2} =
∫ t2

t1

ξ ′′(s)E
{(

∂2
x�(s,Xs)

)2}ds.

In particular, t �→ E{∂x�(t,Xt)
2} is Lipschitz continuous on [0,1 − ε) for any ε > 0.

PROOF. This follows from Lemma 6.5, using the regularity properties of Lemma 6.4.
�

LEMMA 6.7. For any γ ∈ L , the function t �→ E{∂2
x�(t,Xt)

2} is continuous on [0,1).

PROOF. The function is continuous by an application of bounded convergence (using the
continuity of t �→ Xt and the regularity of Lemma 6.4). �

We now compute the first variation of the Parisi functional.

PROPOSITION 6.8. Let γ ∈ L , and δ : [0,1) →R be such that ‖ξ ′′δ‖TV[0,t] < ∞ for all
t ∈ [0,1), ‖ξ ′′δ‖1 < ∞, and δ(t) = 0 for t ∈ (1−ε,1], ε > 0. Further assume that γ + sδ ≥ 0
for all s ∈ [0, s0) for some positive s0. Then

dP

ds
(γ + sδ)|s=0+ = 1

2

∫ 1

0
ξ ′′(t)δ(t)

(
E
{
∂x�(t,Xt)

2}− t
)

dt.(6.9)

(Here, (Xt)t∈[0,1] is the solution of the SDE (6.3).)

PROOF. Let γ s ≡ γ + sδ, s ∈ [0, ε), and denote by �s the corresponding solution of the
Parisi PDE. Following the proof of Lemma 14 in [28], we get

�s(0,0) − �0(0,0) = s

2

∫ 1

0
ξ ′′(t)δ(t)E

{
∂x�

0(t, Y s
t

)2}dt,(6.10)

where Y s
t is the solution of the SDE

dY s
t = 1

2
ξ ′′(t)γ s(t)

[
∂x�

0(t, Y s
t

)+ ∂x�
s(t, Y s

t

)]
dt +

√
ξ ′′(t)dBt, Y s

0 = 0.

(6.11)

We also obtain (by the same argument as in [28], Lemma 14, using Lemma 6.4, and noting
that δ(t) = 0 for t > 1 − ε and ξ ′′γ is bounded on [0,1 − ε))∥∥∂x�

s − ∂x�
0∥∥∞ ≤ C(ε, γ )

∥∥ξ ′′δ
∥∥

1 · s.(6.12)

Taking the difference between this equations (6.11) and (6.3), we get for t ∈ [0,1 − ε0),

∣∣Y s
t − Xt

∣∣ ≤ C

∫ t

0
ξ ′′(u)

∣∣γ s(u) − γ (u)
∣∣du + C

∫ t

0
ξ ′′γ (u)

∣∣∂x�
0(u,Y s

u

)− ∂x�
s(u,Y s

u

)∣∣du

+ C

∫ t

0
ξ ′′γ (u)

∣∣∂x�
0(u,Xu) − ∂x�

0(u,Y s
u

)∣∣du

≤ C
∥∥ξ ′′(γ s − γ 0)∥∥

1 + C(ε, γ )
∥∥ξ ′′(γ s − γ 0)∥∥

1

∥∥ξ ′′γ
∥∥

1

+ C(ε0)

∫ t

0
ξ ′′γ (u)

∣∣Y s
u − Xu

∣∣du.
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In the second inequality we used equation (6.12), and the fact that ∂2
x� is bounded for t ∈

[0,1 − ε0), see Lemma 6.4. Since ξ ′′γ (u) ≤ ‖ξ ′′γ ‖TV[0,1−ε0] for u ∈ [0,1 − ε0), we finally
obtain ∣∣Y s

t − Xt

∣∣ ≤ C(γ, ε)s
∥∥ξ ′′δ

∥∥
1 + C(γ, ε0)

∫ t

0

∣∣Y s
u − Xu

∣∣du.

Therefore, we conclude by Gronwall lemma that

sup
t≤1−ε0

∣∣Y s
t − Xt

∣∣ ≤ C(ε, ε0, γ )
∥∥ξ ′′δ

∥∥
1s

Using this in equation (6.10), together with the fact that ∂x�
0 is bounded and Lipschitz, and

δ(t) = 0 for t > 1 − ε, we get

�s(0,0) − �0(0,0) = s

2

∫ 1

0
ξ ′′(t)δ(t)E

{
∂x�

0(t,Xt)
2}dt + O

(
s2),

whence equation (6.9) immediately follows. �

For any γ ∈ L , we have ‖γ ‖TV[0,t] < ∞ for any t ∈ [0,1). We can therefore modify γ in
(at most) countably many points to obtain a right-continuous function. Since this modification
does not change the solution �γ , by Proposition 6.1, we will hereafter assume that any γ ∈ L
is right continuous.

For γ ∈ L , we denote by S(γ ) ≡ {t ∈ [0,1) : γ (t) > 0} the support of γ , and by S(γ ) the
closure of S(γ ) in [0,1) (in particular, note that 1 /∈ S(γ )).

LEMMA 6.9. The support S(γ ) is a disjoint union of countably many intervals S(γ ) =⋃
α∈A Iα , where Iα = (aα, bα) or Iα = [aα, bα), aα < bα , and A is countable.

PROOF. If t0 ∈ S(γ ), then by right continuity there exists δ > 0 such that [t0, t0 + δ) ⊆
S(γ ). This implies immediately the claim. �

COROLLARY 6.10. Assume γ∗ ∈ L is such that P(γ∗) = infγ∈L P(γ ). Then

t ∈ S(γ∗) ⇒ E
{
∂x�

γ∗(t,Xt)
2} = t,(6.13)

t ∈ [0,1) \ S(γ∗) ⇒ E
{
∂x�

γ∗(t,Xt)
2} ≥ t.(6.14)

PROOF. First, consider equation (6.13). For any 0 ≤ t1 < t2 < 1, set δ(t) = γ∗(t)I(t ∈
[t1, t2)). Clearly, γ∗ + sδ ∈ L for s ∈ (−1,1). By the optimality of γ∗, and using Proposi-
tion 6.8, we have

0 = dP

ds
(γ∗ + sδ)|s=0 = 1

2

∫ t2

t1

ξ ′′(t)γ∗(t)
(
E
{
∂x�

γ∗(t,Xt)
2}− t

)
dt

Since t1, t2 are arbitrary, and ξ ′′(t) > 0 for t ∈ (0,1) this implies γ∗(t)(E{∂x�
γ∗(t,Xt)

2} −
t) = 0 for almost every t ∈ [0,1). Since γ∗(t) is right continuous and E{∂x�

γ∗(t,Xt)
2} is

continuous (see Corollary 6.6), it follows that γ∗(t)(E{∂x�
γ∗(t,Xt)

2} − t) = 0 for every t ∈
[0,1). This in turns implies E{∂x�

γ∗(t,Xt)
2} = t for every t ∈ S(γ∗). This can be extended

to t ∈ S(γ∗) again by continuity of t �→ E{∂x�
γ∗(t,Xt)

2}.
Next consider equation (6.14). Notice that, by Lemma 6.9, [0,1)\S(γ∗) is a disjoint union

of open intervals. Let J be such an interval, and consider any [t1, t2] ⊆ J . Set δ(t) = I(t ∈
(t1, t2]), and notice that γ∗ + sδ ∈ L for s ≥ 0. By Proposition 6.8, we have

0 ≤ dP

ds
(γ + sδ)|s=0 = 1

2

∫ t2

t1

ξ ′′(t)
(
E
{
∂x�(t,Xt)

2}− t
)

dt.
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Since t1, t2 are arbitrary, ξ ′′(t) > 0 for t ∈ (0,1) and t �→ E{∂x�(t,Xt)
2} is continuous, this

implies E{∂x�(t,Xt )
2} ≥ t for all t ∈ J , and hence all t ∈ [0,1) \ S(γ∗). �

COROLLARY 6.11. Assume γ∗ ∈ L is such that P(γ∗) = infγ∈L P(γ ). Then

t ∈ S(γ∗) ⇒ ξ ′′(t)E
{
∂2
x�γ∗(t,Xt)

2} = 1.

PROOF. Set �(t, x) = �γ∗(t, x). By Lemma 6.9, S(γ∗) is a disjoint union of closed
intervals with nonempty interior. Let K be one such intervals. Then, for any [t1, t2] ∈ K , we
have, by Lemma 6.10,

t2 − t1 = E
{
∂x�(t2,Xt2)

2}−E
{
∂x�(t1,Xt1)

2} =
∫ t2

t1

ξ ′′(t)E
{
∂2
x�(t,Xt )

2}dt.

Since t1, t2 are arbitrary, we get ξ ′′(t)E{∂2
x�(t,Xt)

2} = 1 for almost every t ∈ K . Using
Lemma 6.7, we get ξ ′′(t)E{∂2

x�(t,Xt)
2} = 1 for every t ∈ S(γ∗). �

LEMMA 6.12. Assume γ ∈ L to be such that γ (t) = 0 for all t ∈ (t1,1), where t1 < 1.
Then, for any t∗ ∈ (t1,1), the probability distribution of Xt∗ has a density pt∗ with re-
spect to the Lebesgue measure. Further, for any t∗ ∈ (t1,1) and any M ∈ R≥0, there exists
ε(t∗,M,γ ) > 0 such that

inf|x|≤M,t∈[t∗,1]pt(x) ≥ ε(t∗,M,γ ).

PROOF. Since the SDE (6.3) has strong solutions, Xt1 is a well-defined random variable
taking values in R. Therefore, there exists C1 = C1(γ ) < ∞ such that P(|Xt1 | ≤ C1) ≥ 1/2.
For t ∈ (t1,1), Xt satisfies dXt = √

ξ ′′(t)dBt and, therefore, the law of Xt is the convolution
of a Gaussian (with variance θ(t)2 ≡ ξ ′(t)−ξ(t1) > 0) with the law of Xt1 , and, therefore, has
a density. To prove the desired lower bound on the density, let fG(x) = exp(−x2/2)/

√
2π

denote the standard Gaussian density. Note that, for any |x| ≤ M ,

pt(x) = E

{
1

θ(t)
fG

(
x − Xt1

θ(t)

)}

≥ E

{
1

θ(t)
fG

(
x − Xt1

θ(t)

)
I|Xt2 |≤C1

}

≥ 1

θ(t)
fG

(
M + C1

θ(t)

)
P
(|Xt1 | ≤ C1

) ≥ 1

2θ(t)
fG

(
M + C1

θ(t)

)
.

The latter expression is lower bounded by ε(t∗,M,γ ) > 0 for any t ∈ [t∗,1], as claimed. �

LEMMA 6.13. For any γ ∈ L , let � = �γ be the solution of the Parisi PDE constructed
above. Then the following identities hold (as weak derivatives in [0,1)) have

d

dt
E
{
�(t,Xt)

} = 1

2
ξ ′′(t)γ (t)E

{
∂x�(t,Xt)

2},(6.15)

d

dt
E
{
Xt∂x�(t,Xt)

} = ξ ′′(t)γ (t)E
{
∂x�(t,Xt )

2}+ ξ ′′(t)E
{
∂2
x�(t,Xt )

}
.(6.16)

PROOF. We will write �t = ∂t�, �x = ∂x� and �xx = ∂2
x�. For the first identity, using

the regularity properties of Lemma 6.4 and Itô’s formula, we get

d�(t,Xt) = �t(t,Xt)dt + ξ ′′(t)γ (t)�x(t,Xt)
2 dt
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+
√

ξ ′′(t)�x(t,Xt)dBt + 1

2
�xx(t,Xt)ξ

′′(t)dt

= 1

2
ξ ′′(t)γ (t)�x(t,Xt)

2 dt +
√

ξ ′′(t)�x(t,Xt)dBt,

where the equalities hold after integrating over a test function h ∈ C∞
c ([0,1)) and in the

second step we used the fact that � is a weak solution of equation (6.2). The claim (6.15)
follows by taking expectations.

We proceed analogously for the second identity. Using Lemma 6.5, and the fact that the
(Xt)t∈[0,1) solved the SDE (6.3), we get

d
(
Xt�x(t,Xt)

)
= �x(t,Xt)dXt + Xt d

(
�x(t,Xt)

)+ ξ ′′(t)�xx(t,Xt)dt

= ξ ′′(t)γ (t)�x(t,Xt)
2 dt +

√
ξ ′′(t)�x(t,Xt)dBt +

√
ξ ′′(t)Xt�xx(t,Xt)dBt

+ ξ ′′(t)�xx(t,Xt)dt.

The claim (6.15) follows again by taking expectations. �

We now show that any minimizer γ∗ of the Parisi functional over the extended space L
has full support. Note that this is unrelated to the no-overlap gap property, which concerns
solutions γ∗ that are nondecreasing, and concerns the points of increase of γ∗.

THEOREM 5. Consider the case f0(x) = |x|. Assume γ∗ ∈ L is such that P(γ∗) =
infγ∈L P(γ ). Then S(γ∗) = [0,1).

PROOF. Throughout this proof, �(t, x) = �γ∗(t, x).
By Lemma 6.9, S

c
(γ∗) = [0,1) \ S(γ∗) is a countable union of disjoint intervals, open in

[0,1). First, assume that at least one of these intervals is of the form (t1, t2) with 0 < t1 <

t2 < 1, or [t1 = 0, t2), t2 < 1. By Corollary 6.10 and Corollary 6.11, we know that

E
{
∂x�(t1,Xt1)

2} = t1, ξ ′′(t2)E
{
∂2
x�(t2,Xt2)

2} = 1, i ∈ {1,2},(6.17)

E
{
∂x�(t,Xt)

2} ≥ t ∀t ∈ (t1, t2).(6.18)

(Notice that the first identity in equation (6.17) holds also for t1 = 0 since ∂x�(0,0) = 0 by
a symmetry argument.) Further, for t ∈ (t1, t2), � solves the PDE �t + (ξ ′′(t)/2)∂2

x� = 0,
which coincides with the heat equation, apart from a time change. We therefore obtain, for
t ∈ (t1, t2]

�(t, x) = E
{
�
(
t2, x +

√
ξ ′(t2) − ξ ′(t)G

)}
, G ∼ N(0,1).

Differentiating this equation, and using dominated convergence (thanks to the fact that
∂2
x�(t2, x) is bounded by Lemma 6.4), we get ∂2

x�(t, x) = E{∂2
x�(t2, x+√

ξ ′(t2) − ξ ′(t)G)}.
Notice also that the SDE (6.3) reads, for t ∈ (t1, t2), dXt = √

ξ ′′(t)dBt and, therefore, we can
rewrite the last equation as

∂2
x�(t,Xt) = E

{
∂2
x�(t2,Xt2)|Xt

}
.

By Jensen inequality, we have

E
{
∂2
x�(t,Xt )

2} ≤ E
{
∂2
x�(t2,Xt2)

2} = 1

ξ ′′(t2)
,(6.19)
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where in the last step we used equation (6.17). Using Corollary 6.6, we get for t ∈ [t1, t2],

E
{
∂x�(t,Xt)

2} = E
{
∂x�(t1,Xt1)

2}+
∫ t

t1

ξ ′′(s)E
{
∂2
x�(s,Xs)

2}ds

≤ t1 +
∫ t

t1

ξ ′′(s)
ξ ′′(t2)

ds < t,

where in the last step we used the fact that t �→ ξ ′′(t) is monotone increasing. The last equa-
tion is in contradiction with equation (6.17) and, therefore, S

c
(γ∗) can be either empty, or

consist of a single interval (t1,1).
In order to complete the proof, we need to rule out the case S

c
(γ∗) = (t1,1). Assume by

contradiction that indeed S
c
(γ∗) = (t1,1). For t ∈ (t1,1), let r = r(t) = ξ ′(1) − ξ ′(t), and

notice that r(t) is monotone decreasing with r(t) = ξ ′′(1)(1 − t) + O((1 − t)2) as t → 1.
By solving the Parisi PDE in the interval (t1,1), we get ∂x�(t, x) = E sign(G + x/

√
r(t)),

where G ∼ N(0,1), whence for t ∈ (t1,1),

1 −E
{
∂x�(t,Xt)

2} = EQ

(
Xt√
r(t)

)
,

Q(x) ≡ 1 −E
{
sign(x + G)

}2
.

Note that 0 ≤ Q(x) ≤ 1 is continuous, with Q(0) = 1. Hence there exists a numerical con-
stant δ0 ∈ (0,1) such that Q(x) ≥ 1/2 for |x| ≤ δ0. Therefore, fixing t∗ ∈ (t1,1), for any
t ∈ (t∗,1)

1 −E
{
∂x�(t,Xt)

2} ≥ 1

2
P
(|Xt | ≤ δ0

√
r(t)

)
(a)≥ δ0ε(t∗,1, γ )

√
r(t)

(b)≥ C
√

1 − t,

where (a) follows by Lemma 6.12 and (b) holds for some C = C(γ ) > 0. We therefore obtain
E{∂x�(t,Xt)

2} ≤ 1 − C
√

1 − t , which contradicts Corollary 6.10 for t close enough to 1.
�

6.2. Proof of Theorem 3. Before passing to the actual proof, we state and prove a simple
lemma.

LEMMA 6.14. Let g : [a, b] × R → R be bounded and Lipschitz continuous in its
first argument, that is, |g(t1, x) − g(t2, x)| ≤ L|t1 − t2| for all x ∈ R, t1, t2 ∈ [a, b], and
h : [a, b] → R have bounded total variation. Then f = gh has bounded strong total varia-
tion.

PROOF. Fix a ≤ t0 < · · · < tn ≤ b and x1, . . . , xn ∈ R. Then

n∑
i=1

∣∣f (ti, xi) − f (ti−1, xi)
∣∣

=
n∑

i=1

∣∣h(ti)g(ti , xi) − h(ti−1)g(ti−1, xi)
∣∣

≤
n∑

i=1

∣∣h(ti)
∣∣∣∣g(ti, xi) − g(ti−1, xi)

∣∣+ n∑
i=1

∣∣h(ti) − h(ti−1)
∣∣∣∣g(ti−1, xi)

∣∣
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≤
n∑

i=1

∣∣h(ti)
∣∣L|ti − ti−1| + ‖g‖∞

n∑
i=1

∣∣h(ti) − h(ti−1)
∣∣

≤ L(b − a)‖h‖∞ + ‖g‖∞‖h‖TV.

The claim follows since ‖h‖∞ ≤ |h(a)| + ‖h‖TV < ∞. �

PROOF OF THEOREM 3. Let γ ∈ L be such that P(γ ) = infγ̃∈L P(γ̃ ). We denote by
�(t, x) = �γ (t, x) the corresponding solution of the Parisi PDE, as constructed in Sec-
tion 6, and fix t∗ ∈ [0,1). We apply Theorem 2 whereby u, v are defined as follows for
t ∈ [0, t∗]:

v(t, x) ≡ ξ ′′(t)γ (t)∂x�(t, x), u(t, x) ≡ ∂2
x�(t, x).(6.20)

For t ∈ (t∗,1], we simply set v(t, x) = v(t∗, x), u(t, x) = u(t∗, x). Notice that this choice
is immaterial since the algorithm of Theorem 2 never uses v(t, x), u(t, x) for t > t∗. We
define (Xt)t∈[0,1] by solving the SDE (2.2), which coincides, for t ∈ [0, t∗] with the SDE
(6.3).

We next check that these choices satisfy Assumption 1. Notice that, by construction, it is
sufficient to consider t ∈ [0, t∗].

(A1) v is bounded, since ‖∂x�‖∞ ≤ 1 by Lemma 6.2 and, therefore, for t ∈ [0, t∗], x ∈
R, |v(t, x)| ≤ ‖ξ ′′γ ‖TV[0,t∗] < ∞. Further, u is bounded because ‖∂2

x�(t, ·)‖∞ ≤ C(t∗) for
almost all t ≤ t∗ (by Lemma 6.4.(a)), and that we can choose a representative of ∂2

x�, which
is continuous in time by Lemma 6.4(b).

(A2, 3) v is Lipschitz continuous in space, because |v(t, x1) − v(t, x2)| ≤ ξ ′′γ (t) ×
‖∂2

x�(t, ·)‖∞|x1 − x2| ≤ ‖ξ ′′γ ‖TV[0,t∗]C(t∗)|x1 − x2| ≤ C′(t∗)|x1 − x2| where we used the
fact that ‖∂2

x�(t, ·)‖∞ ≤ C(t∗) for almost all t ≤ t∗ (by Lemma 6.4(a)), and that we can
choose a representative of ∂2

x�, which s continuous in time by Lemma 6.4(b).
Analogously, u is Lipschitz continuous in space, because |u(t, x1) − u(t, x2)| ≤

‖∂3
x�(t, ·)‖∞|x1 − x2|, and using Lemma 6.4.
(A4) v has bounded strong total variation by applying Lemma 6.14. Indeed ξ ′′γ has

bounded total variation on [0, t∗], and ∂x� is bounded by Lemma 6.2 and Lipschitz by
Lemma 6.4 as discussed above.

Further, u has bounded strong total variation because ∂2
x� is Lipschitz continuous on

[0, t∗] ×R, again by Lemma 6.4.

Let us next check the other assumptions in Theorem 2. By Lemma 6.5, we have Mt∗ =
∂x�(t∗,Xt∗) and, therefore, using Lemma 6.2, |Mt∗ | ≤ 1 almost surely.

Further, E[M2
t ] = E[∂x�(t,Xt)

2] = t by Corollary 6.10 and Theorem 5.
We are left with the task of computing the value achieved by the algorithm. By Theorem 2,

this is given by

E (u, v) =
∫ t∗

0
ξ ′′(t)E

[
u(t,Xt)

]
dt =

∫ t∗

0
ξ ′′(t)E

[
∂2
x�(t,Xt)

]
dt.(6.21)

Define � : [0,1)×R→R by �(t, x) = �(t, x)− x∂x�(t, x). By Lemma 6.4, we can as-
sume this to be continuous, and hence limt→0 E�(t,Xt) = E�(0,X0) = �(0,0). We there-
fore get, using Lemma 6.13,

�(0,0) = E�(t∗,Xt∗) + 1

2

∫ t∗

0
ξ ′′(t)γ (t)E

{
∂x�(t,Xt)

2}dt +
∫ t∗

0
ξ ′′(t)E

{
∂2
x�(t,Xt )

}
dt.
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Comparing this with equation (6.21), we get

P(γ ) − E (u, v) = E�(t∗,Xt∗) + 1

2

∫ t∗

0
ξ ′′(t)γ (t)

(
E
{
∂x�(t,Xt )

2}− t
)

dt

= E�(t∗,Xt∗),

where in the second step we used Corollary 6.10 and Theorem 5.
The proof is completed by showing that we obtain P(γ ) − E (u, v) = E�(t∗,Xt∗) ≤ ε

by taking t∗ close enough to one. In order to show this, recall that �(t, ·) is convex, so
�(t, x) − x∂x�(t, x) ≤ �(t,0). Moreover, |∂x�(t, x)| ≤ 1. Whence

�(t,0) − |x| ≤ �(t, x) ≤ �(t,0).

Notice that �(t,0) → 0 as t → 1 (because � is continuous on [0,1]×R, and �(1, x) = |x|)
and, therefore,

lim sup
t∗→1

E�(t∗,Xt∗) = lim sup
t∗→1

E
{
�(t∗,Xt∗)

}− �(t,0) ≤ 0. �

6.3. Proof of Corollary 2.2. The key tool is provided by the following lemma, which is
a variant of Corollary 6.10, and of results from earlier literature (the difference being that we
focus on the zero-temperature case).

LEMMA 6.15. Assume the no-overlap gap assumption to hold for the mixture ξ ; namely,
there exists γ∗ ∈ U strictly increasing in [0,1) such that P(γ∗) = infγ∈U P(γ ). Then, for any
t ∈ [0,1),

E
{
∂x�

γ∗(t,Xt)
2} = t.(6.22)

PROOF. Fix 0 < t1 < t2 < 1, and define δ(t) = [γ∗(t1) − γ∗(t)]I(t1,t2)(t). It is easy to
see that this satisfies the assumptions of Proposition 6.8, with s0 = 1, whence letting γ s =
γ∗ + sδ,

dP

ds

(
γ s)|s=0+ = −1

2

∫ t2

t1

ξ ′′(t)
(
γ∗(t) − γ∗(t1)

)(
E
{
∂x�(t,Xt)

2}− t
)

dt.

(Here, � = �γ∗ .) On the other hand, γ s ∈ U for s ∈ [0,1] (since γ∗ is strictly increasing),
whence ∫ t2

t1

ξ ′′(t)
(
γ∗(t) − γ∗(t1)

)(
E
{
∂x�(t,Xt)

2}− t
)

dt ≤ 0.

for all t1 < t2. Since γ∗(t)−γ∗(t1) > 0 strictly for all t > t1, this implies E{∂x�(t,Xt )
2}− t ≤

0 for almost every t and, therefore, for every t by Lemma 6.7.
The E{∂x�(t,Xt)

2} − t ≥ 0 is proved in the same way, by using δ(t) = [γ∗(t2) −
γ∗(t)]I(t1,t2)(t). �

Let γ∗ be a strictly increasing minimizer of P(·) in U ; namely, P(γ∗) = infγ∈U P(γ ). We
claim that γ∗ minimizes P(·) over the larger space L , that is, P(γ∗) = infγ∈L P(γ ), thus
proving the corollary.

By the last lemma, γ∗ verifies the stationarity condition (6.22). Since P : L →R is convex
(this follows by exactly the same proof as [28], Theorem 20), the function s �→ P((1− s)γ∗ +
sγ ) is convex over the interval [0,1] for any γ ∈ L , whence

P(γ ) − P(γ∗) ≥ dP

ds

(
γ∗ + s(γ − γ∗)

)|s=0

= 1

2

∫ 1

0
ξ ′′(t)

(
γ (t) − γ∗(t)

)(
E
{
∂x�

γ∗(t,Xt)
2}− t

)
dt = 0.

We thus conclude that γ∗ minimizes P over L .
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7. Proof of Theorem 4.

7.1. A candidate solution. We produce a solution to HJB (4.7) via a change of variables
by taking the Legendre transform of the solution to the Parisi PDE (1.5), which we redisplay
here:

∂t�
γ (t, x) + 1

2
ξ ′′(t)

(
∂2
x�γ (t, x) + γ (t)

(
∂x�

γ (t, x)
)2) = 0, (t, x) ∈ [0,1) ×R,

�γ (1, x) = |x|, x ∈ R.

(7.1)

We remind the reader that it suffices to consider γ ∈ SF+ by the approximation argument
in Section 4. Since γ is piecewise constant, the PDE (7.1) can be solved via the Cole–Hopf
transform and the solution is highly regular in space as shown in Proposition 6.1. We define
(the negative of) the Legendre transform of �γ as

�∗,γ (t, z) ≡ inf
x∈R

{
�γ (t, x) − xz

}
,

and define a candidate solution to HJB as

(7.2) V (t, z) ≡ �∗,γ (t, z) − 1

2
ν(t)z2 − 1

2

∫ 1

t
ν(s)ds,

where we recall that ν(t) = ∫ 1
t ξ ′′(s)γ (s)ds.

PROPOSITION 7.1. For all (t, z) ∈ [0,1] × (−1,1), Jγ (t, z) = V (t, z), where Jγ is de-
fined in (4.4).

In particular, the value at (0,0) is

Jγ (0,0) = inf
x

�γ (0, x) − 1

2

∫ 1

0
ν(s)ds

= �γ (0,0) − 1

2

∫ 1

0
sξ ′′(s)γ (s)ds = P(γ ).

The second equality follows since �γ (t, ·) is convex and even. This proves Proposition 4.1.

7.2. Verification. We dedicate this section to the proof of Proposition 7.1. We collect in
the next lemma the regularity properties of �γ which will be used in what follows.

LEMMA 7.2. For γ ∈ SF+, we have the following:

(a) ∂
j
x �γ ∈ C([0,1) ×R) for all j ≥ 0.

(b) ∂t∂
j
x �γ ∈ C([a, b) ×R) for all j ≥ 0 and for any interval [a, b) on which γ is con-

stant.

Further, for all t ∈ [0,1):

(c) The range of the map x �→ ∂x�
γ (t, x) is the open interval (−1,1). In particular,

|∂x�
γ | < 1.

(d) ∂x�
γ (t, ·) is strictly increasing.

(e) For all x ∈ R, 0 < ∂2
x�γ (t ′, x) ≤ C(t, γ ) for all t ′ ∈ [0, t] and some constant

C(t, γ ) < ∞.
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PROOF. Set � = �γ . All of these claims can be proved by direct calculus using the ex-
plicit expression for the Cole–Hopf solution. Given γ (t) = ∑m

i=1 γiI[ti−1,ti ), 0 = t0 < t1 <

· · · < tm = 1, we let r(t) = ξ ′(1) − ξ ′(t). The Cole–Hopf solution is then constructed recur-
sively as follows. For each i ∈ {1, . . . ,m} and each t ∈ [ti−1, ti), let

�(t, x) = 1

γi

logE exp
{
γi�

(
ti , x +√

r(t) − r(ti)G
)}

G ∼ N(0,1),(7.3)

(with �(t, x) = |x|). Claims (a), (b) follow by standard properties of convolutions (they are
also a special case of Lemma 6.4).

Claim (c), (d), (e) can be proved by differentiating (7.3). For t ∈ [ti−1, ti), define Pt,x to
the probability distribution with density

pt,x

(
x′) ≡ 1

E{eγi�(ti ,x+√
r(ti )−r(t)G)} exp

{
− (x′ − x)2

2(r(t) − r(ti))
+ γi�

(
ti , x

′)}.

Let Et,x , and Vart,x denote expectation and variance with respect to this density. Consider
first t ∈ [tm−1, tm = 1),

∂x�(t, x) = Et,x sign(X),

∂2
x�(t, x) = 2pt,x(0) + γm

{
1 − Et,x

(
sign(X)

)2}
.

The last expression yields 0 < ∂2
x�(t, x) < C(t∗, γ ) for all t < t∗ < 1 (notice indeed that

pt,x(0) is bounded and nonnegative for all t < t∗), which is claim (e). In particular, this
implies that x �→ ∂x�(t, x) is strictly increasing (claim (d)). Further, |∂x�(t, x)| < 1, because
pt,x is strictly positive mass on (−∞,0) and on (0,+∞). Finally, limx→±∞ ∂x�(t, x) = ±1
because Pt,x((−∞, a]) → 0 for all a ∈ R as x → +∞, Pt,x([a,+∞]) → 0 for all a ∈ R as
x → −∞.

Next, for t ∈ [ti−1, ti), i < m, we have

∂x�(t, x) = Et,x∂x�(ti,X),

∂2
x�(t, x) = Et,x∂

2
x�(ti,X) + γi Vart,x

(
∂x�(ti,X)

)
,

Claims (c)–(e) are proved buy induction using arguments similar to the above. In particular, if
0 < ∂2

x�(ti, x) < Ci+1 the last equation implies 0 < ∂2
x�(t, x) < Ci+1 + γi for t ∈ [ti−1, ti).

�

LEMMA 7.3. For γ ∈ SF+, the function V defined in equation (7.2) is a solution to the
HJB equation (4.7) on [0,1] × (−1,1).

PROOF. First, since ν(1) = 0, it is clear that V satisfies the terminal condition V (1, z) =
0 for |z| < 1. Next, let t < 1. Since �γ (t, ·) is twice continuously differentiable and strictly
convex, there exists a continuous strictly increasing map z ∈ (−1,1) �→ x∗

t (z) defined as the
unique root x of the equation ∂x�

γ (t, x) = z. Furthermore, the envelope theorem implies
that ∂z�

∗
γ (t, z) = −x∗

t (z) and ∂2
z �∗

γ (t, z) = −1/∂2
x�γ (t, x∗

t (z)) for all z ∈ (−1,1).
Exploiting equation (7.2), we have

∂tV (t, z) = ∂t�
γ (t, x∗

t (z)
)+ 1

2
ξ ′′(t)γ (t)z2 + 1

2
ν(t),

∂2
z V (t, z) = − 1

∂2
x�γ (t, x∗

t (z))
− ν(t).
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Given that �γ satisfies the Parisi PDE, we have for all z ∈ (−1,1)

∂tV (t, z) − 1

2
ξ ′′(t)γ (t)z2 − 1

2
ν(t) + ξ ′′(t)

2

(
γ (t)z2 − 1

∂2
z V (t, z) + ν(t)

)
= 0.

Simplifying the quadratic term in z, we obtain

∂tV (t, z) − 1

2
ν(t) − ξ ′′(t)

2(∂2
z V (t, z) + ν(t))

= 0.

Since ∂2
x�γ > 0, we have ∂2

z V (t, z) + ν(t) < 0 hence

sup
λ∈R

{
λ + λ2

2

(
ν(t) + ∂2

z V (t, z)
)} = − 1

2(∂2
z V (t, z) + ν(t))

.

Therefore, V is a solution to HJB (4.7) on [0,1) × (−1,1) with the right-terminal condition
at t = 1, for any function γ ∈ SF+. �

PROOF OF PROPOSITION 7.1. We closely follow the proof of Theorem 4.1 in the text-
book [48]. We recall the expression of Jγ :

Jγ (t, z) ≡ sup
u∈D[t,1]

E

[∫ 1

t
ξ ′′(s)us ds + 1

2

∫ 1

t
ν(s)

(
ξ ′′(s)u2

s − 1
)

ds

]
,

s.t. z +
∫ 1

t

√
ξ ′′(s)us dBs ∈ (−1,1) a.s.,

(7.4)

where ν(t) ≡ ∫ 1
t ξ ′′(s)γ (s)ds.

Let us first prove the bound V ≥ Jγ . Lemma 7.2 implies that V ∈ C1,2([a, b) × (−1,1))

whenever γ is constant on [a, b).
We momentarily assume that γ is constant on [0,1]. Let (t, z) ∈ [0,1) × (−1,1), and

let (us)s≥t ∈ D[t,1]. Consider the process Mu defined by dMu
s = √

ξ ′′(s)us dBs , s ≥ t

with initial condition Mu
t = z, and recall that Mu

1 = z + ∫ 1
t

√
ξ ′′(s)us dBs ∈ (−1,1) a.s.

Since (Mu
s )s≥t is a martingale (w.r.t. the filtration of Brownian motion Ft ), we have Mu

t =
E[Mu

1 |Ft ] and, therefore, Mu
s ∈ (−1,1) for all s ∈ [t,1] a.s.

By Itô’s formula we have for t ≤ θ < 1,

Et,z

[
V
(
θ,Mu

θ

)]− V (t, z)

= Et,z

∫ θ

t

(
∂zV

(
s,Mu

s

)+ 1

2
ξ ′′(s)u2

s ∂
2
z V

(
s,Mu

s

))
ds

≤ Et,z

∫ θ

t

(
∂tV

(
s,Mu

s

)+ ξ ′′(s) sup
u∈R

{
u + u2

2

(
ν(s) + ∂2

z V
(
s,Mu

s

))})
ds(7.5)

−Et,z

∫ θ

t

(
ξ ′′(s)us + 1

2
ξ ′′(s)ν(s)u2

s

)
ds

= Et,z

∫ θ

t

(
1

2
ν(s) − ξ ′′(s)us − 1

2
ξ ′′(s)ν(s)u2

s

)
ds.

The first inequality follows by taking a supremum over us ∈ R, and the last equality follows
since V is a solution to HJB (4.7) as shown in Lemma 7.3.

Next, we have E[V (θ,Mu
θ )] → 0 as θ → 1. Indeed notice that Mu is continuous,

Mu
1 ∈ (−1,1) almost surely and V (θ, x) is continuous on [0,1] × (−1,1). Therefore, for

Wθ ≡ V (θ,Mu
θ ), we have Wθ → W1 = 0 almost surely as θ → 1. Further, we claim that Wθ
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is bounded, whence the claim E[Wθ ] = E[V (θ,Mu
θ )] → E[W1] = 0 follows by dominated

convergence. In order to show that Wθ is bounded, note that �γ (t, x) ≥ |x| for t ∈ [0,1] by
equation (7.3) and Jensen inequality. This implies that 0 ≤ �∗

γ (t, z) ≤ �γ (t,0) and, there-
fore, V (θ, z) bounded in [0,1] × (−1,1).

Since u ∈ L1 ∩ L2, we obtain

V (t, z) ≥ Et,z

∫ 1

t

(
1

2
ν(s)

(
ξ ′′(s)u2

s − 1
)+ ξ ′′(s)us

)
ds,

for all processes u ∈ D[t,1] satisfying Mu
1 ∈ (−1,1) a.s. Therefore, V (t, z) ≥ Jγ (t, z).

Returning to the general case, if γ has 0 < t1 < · · · < tm < 1 points of discontinuity then
Itô’s formula and the above argument can be applied inside every interval [ti , θi] with θi <

ti+1. Letting θi → ti+1 and applying the dominated convergence theorem, then summing over
i, the left-hand side in equation (7.5) telescopes and we obtain the desired result.

Now we show the converse bound. Fix (t, z) ∈ [0,1) × (−1,1) and consider the control
process

u∗
s = ∂2

x�γ (s,Xs) for s ∈ [t,1), and u∗
1 = 0,

where (Xs)s≥t solves the SDE

dXs = ξ ′′(s)γ (s)∂x�
γ (s,Xs)ds +

√
ξ ′′(s)dBs,

with initial condition Xt = x. This is the same SDE as in equation (2.2) with drift v(t, x) =
ξ ′′(t)γ (t)∂x�

γ (t, x), which is bounded and Lipschitz in space for γ ∈ SF+, therefore, a
strong solution exists. Further, since d

ds
E[∂x�

γ (s,Xs)
2] = ξ ′′(s)E[∂2

x�γ (s,Xs)
2] (Corol-

lary 6.6) and |∂x�
γ | ≤ 1 then u∗ is an admissible control on [t,1]: u∗ ∈ D[t,1].

Legendre duality implies that u∗
s can also be written as

u∗
s = − 1

(∂2
z V (s,M∗

s ) + ν(s))
, with M∗

s = ∂x�
γ (s,Xs).

Since �γ is a solution to the Parisi PDE, an application of Itô’s formula reveals that M∗ is a
martingale, which is represented by the stochastic integral

dM∗
s =

√
ξ ′′(s)∂2

x�γ (s,Xs)dBs =
√

ξ ′′(t)u∗
s dBs,

with initial condition M∗
t = ∂x�

γ (t, x). Further, observe that |M∗
1 | ≤ 1 a.s. and that by sur-

jectivity of ∂x�
γ (t, ·), we can choose x such that M∗

t = z. We repeat the above execution of
Itô’s formula with M∗ and u∗ replacing Mu and u, respectively. We see that the crucial step
(7.5) holds with equality, as u∗

s achieves the supremum displayed inside the integral. Hence
equality V (t, z) = Jγ (t, z), and this conclude our proof. �
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