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We endow the
√

8/3-Liouville quantum gravity sphere with a metric
space structure and show that the resulting metric measure space agrees in
law with the Brownian map. Recall that a Liouville quantum gravity sphere
is a priori naturally parameterized by the Euclidean sphere S2. Previous work
in this series used quantum Loewner evolution (QLE) to construct a metric
dQ on a countable dense subset of S2. Here, we show that dQ a.s. extends
uniquely and continuously to a metric dQ on all of S2. Letting d denote
the Euclidean metric on S2, we show that the identity map between (S2, d)

and (S2, dQ) is a.s. Hölder continuous in both directions. We establish sev-
eral other properties of (S2, dQ), culminating in the fact that (as a random
metric measure space) it agrees in law with the Brownian map. We establish
analogous results for the Brownian disk and plane. Our proofs involve new
estimates on the size and shape of QLE balls and related quantum surfaces,
as well as a careful analysis of (S2, dQ) geodesics.

CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2733
1.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2733
1.2. Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2735
1.3. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2738
1.4. Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2738

1.4.1. Remark on scaling exponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2738
1.4.2. Remark on variants of measures on unit area surfaces . . . . . . . . . . . . . . . . . . . . . 2739
1.4.3. Strategy for background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2740
1.4.4. Strategy for constructing metric and proving Hölder continuity . . . . . . . . . . . . . . . . 2740
1.4.5. Strategy for proving metric measure space has law of TBM . . . . . . . . . . . . . . . . . . 2742

2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2745
2.1. Quantum disks, spheres, cones and wedges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2745

2.1.1. Quantum disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2747
2.1.2. Quantum spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2747
2.1.3. Quantum cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2748
2.1.4. Quantum wedges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2749

2.2. QLE(8/3,0) on a
√

8/3-quantum cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2750
2.3. Quantitative Kolmogorov–C̆entsov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2753
2.4. GFF extremes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2754
2.5. Continuous state branching processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2756
2.6. Tail bounds for stable processes and the Poisson law . . . . . . . . . . . . . . . . . . . . . . . . . . 2757

2.6.1. Supremum of an α-stable process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2757
2.6.2. Poisson deviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2758

3. Quantum boundary length and area bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2758
3.1. Quantum boundary length of QLE(8/3,0) hull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2758
3.2. Quantum area of QLE(8/3,0) hull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2759

Received January 2019; revised January 2021.
MSC2020 subject classifications. 60D05, 60J67, 60G60.
Key words and phrases. Liouville quantum gravity, the Brownian map, Gaussian free field, Schramm–

Loewner evolution.

2732

https://imstat.org/journals-and-publications/annals-of-probability/
https://doi.org/10.1214/21-AOP1506
http://www.imstat.org
mailto:jpmiller@statslab.cam.ac.uk
mailto:sheffield@math.mit.edu
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


LIOUVILLE QUANTUM GRAVITY AND THE BROWNIAN MAP II 2733

3.3. Regularity of the quantum area measure on a γ -quantum cone . . . . . . . . . . . . . . . . . . . . 2761
4. Euclidean size bounds for QLE(8/3,0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2762

4.1. Diameter lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2762
4.2. Diameter upper bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2762

4.2.1. Quantum boundary length tail bounds for the free boundary GFF . . . . . . . . . . . . . . . 2763
4.2.2. Harmonic tail bound for the unexplored region of a quantum cone . . . . . . . . . . . . . . 2766
4.2.3. Proof of Proposition 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2767

5. Hölder continuity of the QLE(8/3,0) metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2770
5.1. Quantum diameter of QLE(8/3,0) hull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2770
5.2. Euclidean disks are filled by QLE(8/3,0) growth . . . . . . . . . . . . . . . . . . . . . . . . . . . 2771
5.3. Proof of Hölder continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2776

5.3.1. Proof of Theorem 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2776
5.3.2. Proof of Theorem 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2781
5.3.3. Existence and continuity of geodesics: Proof of Theorem 1.3 . . . . . . . . . . . . . . . . . 2782
5.3.4. The internal metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2783
5.3.5. Proof of Theorem 1.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2784

6. Distance to tip of SLE6 on a
√

8/3-quantum wedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2785
6.1. Size of path with quantum natural time parameterization . . . . . . . . . . . . . . . . . . . . . . . 2787
6.2. Quantum distance bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2789
6.3. Proof of moment bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2792

7. Reverse explorations of
√

8/3-LQG spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2793
7.1. Time-reversal of SLE6 unexplored-domain process . . . . . . . . . . . . . . . . . . . . . . . . . . 2794
7.2. Reverse QLE(8/3,0) metric exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2796
7.3. Filled-metric ball complements and metric bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2798

8. Emergence of the 3/2-Lévy net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2799
8.1. First approximations to geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2800
8.2. Second approximations to geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2803

8.2.1. Step count distance passes to limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2804
8.2.2. Conditional law of necklace given top glued to marked point . . . . . . . . . . . . . . . . . 2806
8.2.3. Comparison of explored surface to a quantum disk . . . . . . . . . . . . . . . . . . . . . . . 2806
8.2.4. Comparison of explored surface near w

r,δ
j to a

√
8/3-quantum wedge . . . . . . . . . . . . 2808

8.2.5. Moment bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2810
8.2.6. Boundary lengths between second approximations of geodesics . . . . . . . . . . . . . . . . 2812

8.3. Third approximations to geodesics and the 3/2-Lévy net . . . . . . . . . . . . . . . . . . . . . . . 2815
8.3.1. Construction of third approximations to geodesics . . . . . . . . . . . . . . . . . . . . . . . 2815
8.3.2. Subsequential limits of rescalings of concatenations of third approximations of geodesics

are geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2818
8.3.3.

√
8/3-LQG unembedded metric net is the 3/2-stable Lévy net . . . . . . . . . . . . . . . . 2820

8.4. Proof of Theorem 1.4 and Corollary 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2824
9. Open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2824
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2826
Funding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2826
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2826

1. Introduction.

1.1. Overview. This article is the second in a three part series that proves the equivalence
of two fundamental and well-studied objects: the

√
8/3-Liouville quantum gravity (LQG)

sphere and the Brownian map (TBM). Both of these objects can be understood as random
measure-endowed surfaces. However, an instance S of the

√
8/3-LQG sphere comes with a

conformal structure, which means that it can be parameterized by the Euclidean sphere S2 in
a canonical way (up to Möbius transformation), and an instance of TBM comes with a metric
space structure. The problem is to endow each object with the other’s structure in a natural
way, and to show that once this is accomplished the two objects agree in law. Although they
are part of the same series, the three articles are extremely different from one another in terms
of what they accomplish and the methods they use. To briefly summarize the current series
of articles:
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1. The first article [47] used a “quantum natural time” form of the so-called quantum
Loewner evolution (QLE), as introduced in [44], to define a distance dQ on a countable,
dense collection of points (xn) chosen as i.i.d. samples from the area measure that lives on
the instance S of a

√
8/3-LQG sphere. Moreover, it was shown that for any x and y sampled

from the area measure on S , the value dQ(x, y) is a.s. determined by S , x, and y. This implies
in particular that the distance function dQ, as defined on (xn), is a.s. determined by S and the
sequence (xn), so that there is no additional randomness required to define dQ.

2. The current article shows that there is a.s. a unique continuous extension dQ of dQ
to all of S , and that the pair (S, dQ), interpreted as a random metric measure space, agrees
in law with TBM. Moreover, dQ is a.s. determined by S . Thus a

√
8/3-LQG sphere has a

canonical metric space structure that effectively makes an instance of the
√

8/3-LQG sphere
into an instance of TBM. This statement, which appears as Theorem 1.4 below, is the first
major equivalence theorem for TBM and the

√
8/3-LQG sphere.

3. The third article [49] will show that it is a.s. possible to recover S when one is given
just the metric measure space structure of the corresponding instance of TBM. In other words,
the map (established in the current article) from

√
8/3-LQG sphere instances to instances of

TBM is a.e. invertible, which means that an instance of TBM can a.s. be embedded in the
sphere in a canonical way (up to Möbius transformation), that is, an instance of TBM has
a canonical conformal structure. In particular, this allows us to define Brownian motion on
Brownian map surfaces, as well as various forms of SLE and CLE.

Thanks to the results in these three papers, every theorem about TBM can be understood
as a theorem about

√
8/3-LQG, and vice versa.

But let us focus on the matter at hand. Assume that we are given an instance S of the√
8/3-LQG sphere, endowed with the metric dQ on a countable dense set (xn). How shall we

go about extending dQ to dQ?
By way of analogy, let us recall that in an introductory probability class one often con-

structs Brownian motion by first defining its restriction to the dyadic rationals, and second
showing (via the so-called Kolmogorov–C̆entsov theorem [33, 52]) that this restriction is a.s.
a Hölder continuous function on the dyadic rationals, and hence a.s. extends uniquely to
a Hölder continuous function on all of R+. The work in [47] is analogous to the first step
in that construction (it constructs dQ on a countable dense set), and Sections 3, 4 and 5 of
the current article are analogous to the second step. These sections derive Hölder continuity
estimates that in particular imply that dQ can a.s. be continuously extended to all of S2.

Precisely, these sections will show that if (xn) are interpreted as points in S2 (which param-
eterizes S), then for some fixed α,β > 0 it is a.s. the case that, for some (possibly random)
C1,C2 > 0,

(1.1) C1d(xi, xj )
α ≤ dQ(xi, xj ) ≤ C2d(xi, xj )

β,

where d is the Euclidean metric on S2. This will immediately imply that dQ can be uniquely
extended to a continuous function dQ : S2 × S2 → R that satisfies the same bounds, that is,

(1.2) C1d(xi, xj )
α ≤ dQ(xi, xj ) ≤ C2d(xi, xj )

β,

and is also a metric on S2. Another way to express the existence of C1 and C2 for which (1.2)
holds is to say that the identity map between (S2, d) and (S2, dQ) is a.s. Hölder continuous
(with some deterministic exponent) in both directions. We will also show that the metric dQ
is a.s. geodesic, that is, that it is a.s. the case that every pair of points x, y can be connected
by a path whose length with respect to dQ is equal to dQ(x, y).

Once we have established this, Sections 6, 7 and 8 will show that this geodesic metric space
agrees in law with TBM. The proof makes use of several basic results about LQG spheres
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derived in [46], along with several properties that follow from the manner in which dQ was
constructed in [47]. A fundamental part of the argument is to show that certain paths that
seem like they should be geodesics on the LQG-sphere side actually are geodesics w.r.t. dQ,
which will be done by studying a few approximations to these geodesics. We will ultimately
conclude that, as a random metric measure space, (S, dQ) satisfies the properties that were
shown in [48] to uniquely characterize TBM.

We remark that the results of the current series of articles build on a large volume of prior
work by the authors and others on imaginary geometry [41–43, 45], conformal welding [57],
conformal loop ensembles [56, 58] and the mating of trees in infinite and finite volume set-
tings [17, 46], as well as the above mentioned works on quantum Loewner evolution [44]
and TBM [48]. We also cite foundational works by many other authors on Liouville quan-
tum gravity, Schramm–Loewner evolution, Lévy trees, TBM, continuous state branching pro-
cesses and other subjects. There has been a steady accumulation of theory in this field over
the past few decades, and we hope that the proof of the equivalence of TBM and

√
8/3-LQG

will be seen as a significant milestone on this continuing journey.

1.2. Main results. In this subsection, we state the results summarized in Section 1.1 more
formally as a series of theorems. In [47], it was shown that if S is a unit area

√
8/3-LQG

sphere [17, 46] and (xn) is an i.i.d. sequence chosen from the quantum measure on S then
a variant of the QLE(8/3,0) processes introduced in [44] induces a metric space structure
dQ on (xn), which is a.s. determined by S . Our first main result is that the map (xi, xj ) �→
dQ(xi, xj ) a.s. extends to a function dQ on all of S2 × S2 such that (x, y) �→ dQ(x, y) is
Hölder continuous on S2 × S2.

THEOREM 1.1. Suppose that S = (S2, h) is a unit area
√

8/3-LQG sphere, (xn) is an
i.i.d. sequence chosen from the quantum measure on S and dQ is the associated QLE(8/3,0)

metric on (xn). Then (xi, xj ) �→ dQ(xi, xj ) is a.s. Hölder continuous with respect to the
Euclidean metric d on S2. In particular, dQ uniquely extends to a Hölder continuous function
dQ : S2 × S2 → R+ (with deterministic Hölder exponent). Finally, dQ is a.s. determined
by S .

Our next main result states that dQ induces a metric on S2 which is isometric to the metric
space completion of dQ, and provides some relevant Hölder continuity.

THEOREM 1.2. Suppose that S = (S2, h) is a unit area
√

8/3-LQG sphere and that
dQ is as in Theorem 1.1. Then dQ defines a metric on S2, which is a.s. isometric to the
metric space completion of dQ. Moreover, the identity map from (S2, d) to (S2, dQ) is a.s.
Hölder continuous in both directions (with deterministic Hölder exponent) where d denotes
the Euclidean metric on S2.

As we mentioned in the statements, the Hölder exponents in Theorem 1.1 and Theorem 1.2
are deterministic but are not optimal. The optimal Hölder exponents were computed recently
in [16].

Recall that a metric space (M,d) is said to be geodesic if for all x, y ∈ M there exists a
path γx,y whose length is equal to d(x, y). Our next main result is that the metric space dQ
is a.s. geodesic.

THEOREM 1.3. Suppose that S = (S2, h) is a unit area
√

8/3-LQG sphere and that dQ
is as in Theorem 1.1. The metric space dQ is a.s. geodesic. Moreover, it is a.s. the case that for
all x, y ∈ S2, each geodesic path γx,y , viewed as a map from a real time interval to (S2, d),
is Hölder continuous, where d denotes the Euclidean metric on S2.
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Combining Theorem 1.2 and Theorem 1.3 with the axiomatic characterization for TBM
given in [48] and the results in the first paper of this series [47], as well as some additional
work carried out in the present article, we will find that the law of the metric space with
metric dQ is indeed equivalent to the law of TBM.

THEOREM 1.4. Suppose that S = (S2, h) is a unit area
√

8/3-LQG sphere and that dQ
is as in Theorem 1.1. Then the law of the metric measure space (S2, dQ,μh) is the same as
that of the unit area Brownian map.

Theorem 1.4 implies that there exists a coupling of the law of a
√

8/3-LQG unit area
sphere S and an instance (M,d, ν) of TBM such that the metric measure space (S2, dQ,μh)

associated with S is a.s. isometric to (M,d, ν). Moreover, by the construction of dQ given
in [47] we have that dQ, and hence (M,d, ν) is a.s. determined by S . That is, the metric
measure space structure (M,d, ν) of TBM is a measurable function of S . The converse is the
main result of the subsequent work in this series [49]. In other words, it will be shown in [49]
that TBM a.s. determines its embedding into

√
8/3-LQG via QLE(8/3,0).

We can extract from Theorem 1.4 the equivalence of the QLE(8/3,0) metric on a unit
boundary length

√
8/3-quantum disk [17] and the random metric disk with boundary called

the Brownian disk. The Brownian disk is defined in different ways in [11] and [48] and is
further explored in [1]. The equivalence of the Brownian disk definitions in [11] and [48] was
proved by Le Gall in [38]; and will be approached from another angle in the forthcoming
work [32]. We can similarly extract from Theorem 1.4 the equivalence of the QLE(8/3,0)

metric on a
√

8/3-quantum cone [17, 57] and the Brownian plane [12]. We state this result as
the following corollary.

COROLLARY 1.5.

(i) Suppose that D = (D, h) is a unit boundary length
√

8/3-LQG disk. Then the law of
the metric measure space (D, dQ,μh) is the same as that of the unit boundary length Brown-
ian disk. Moreover, the identity map from (D, d) to (D, dQ) is a.s. locally Hölder continuous
(i.e., Hölder continuous on compact sets) in both directions where d denotes the Euclidean
metric on D. Moreover, the identity map extends to a homeomorphism of D.

(ii) Suppose that C = (C, h,0,∞) is a
√

8/3-quantum cone. Then the law of the metric
measure space (C, dQ,μh) is the same as that of the Brownian plane. Moreover, the identity
map from (C, d) to (C, dQ) is a.s. locally Hölder continuous in both directions where d

denotes the Euclidean metric on C.

In both cases, dQ is a.s. determined by the underlying quantum surface.

We emphasize that in Part (i) of Corollary 1.5, we have not proved that the identity map
from (D, d) to (D, dQ) extends to be a bi-Hölder continuous homeomorphism from (D, d)

to (D, dQ). Rather, the statement is that the identity map is Hölder continuous on compact
subsets of D and is a homeomorphism from (D, d) to (D, dQ).

Part (i) of Corollary 1.5 follows from Theorem 1.4 because both a unit boundary length
quantum disk and the Brownian disk can be realized as the complement of the filled metric
ball. That is, if (S, x, y) denotes a doubly-marked instance of TBM (resp.,

√
8/3-LQG sur-

face) (with associated metric dQ) then for each r > 0, on the event dQ(x, y) > r , the law of
the y-containing component of the complement of the ball centered at x of radius r condi-
tioned on its boundary length is that of a Brownian disk (resp., quantum disk), weighted by its
area. Indeed, this follows in the case of the Brownian disk from its construction given in [48]
(see also [48], Proposition 2.17, which implies that the filled metric ball is a measurable func-
tion of the metric measure space structure of (S, x, y) and, therefore, so is its complement)
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and this follows in the case of a
√

8/3-LQG sphere from the basic properties of QLE(8/3,0)

established in [47]. Moreover, Proposition 5.20 implies that the internal metric d
U

Q associated
with any fixed domain U is a.s. determined by the restriction h|U of h to U . Note also that

d
U

Q = infV ⊆U d
V

Q where the infimum is over all domains V ⊆ U . In fact, if (Un) is a sequence

of domains so that Un ⊆ Un+1 and
⋃

n Un = U then we have that d
U

Q = infn d
Un

Q . By applying
these facts to the countable collection of domains, which consist of finite, connected unions
of Euclidean balls with rational centers and rational radii, we thus see that the internal metric
associated with the filled metric ball complement is a.s. determined by the field restricted
to the filled metric ball complement. Therefore, the metric in this case is determined by the
underlying quantum surface. The local bi-Hölder continuity of the identity map immediately
follows from the corresponding statement in the case of the

√
8/3-LQG sphere.

Let us now explain why the identity map is a homeomorphism from (D, d) to (D, dQ). In
the coupling of the area-weighted quantum disk (D, dQ) with an instance of the

√
8/3-LQG

sphere as a filled metric ball complement explained above, let ϕ : D → S be the embedding
map. If we parameterize S by S2 and (by an abuse of notation) let also d denote the Eu-
clidean metric on S2, then we know that ϕ extends to be Hölder continuous up to ∂D and
is a homeomorphism (see [47], Proposition 5.12), using the Euclidean metric on both sides.
By definition, we have for all x, y ∈ D that dQ(x, y) is equal to the distance between ϕ(x)

and ϕ(y) computed using the interior-internal metric associated with the
√

8/3-LQG metric
on S . This, in turn, is at least the distance between ϕ(x) and ϕ(y) using the overall

√
8/3-

LQG metric on S (i.e., not using the interior-internal metric anymore). By Theorem 1.2, this
is in turn at least c0d(ϕ(x), ϕ(y))α where α > 0 is deterministic and c0 > 0 is random. Since
ϕ is a homeomorphism, we have that d(ϕ(x), ϕ(y)) is bounded from below by the inverse of
the modulus of continuity of ϕ−1 applied to d(x, y). This proves that the map from (D, dQ)

to (D, d) is continuous. Since both spaces are compact (as the Brownian disk is compact),
it follows that the identity map is continuous in the opposite direction and is therefore a
homeomorphism.

Part (ii) of Corollary 1.5 follows from Theorem 1.4 because a
√

8/3-quantum cone is given
by the local limit of a

√
8/3-LQG sphere near a quantum typical point [17], Propositions 4.13,

A.13, and likewise the Brownian plane is given by the local limit of TBM near a typical point
sampled from TBM’s intrinsic area measure [12], Theorem 1.

It will also be shown in [49] that the unit boundary length Brownian disk (resp., Brow-
nian plane) a.s. determines its embedding into the corresponding

√
8/3-LQG surface via

QLE(8/3,0).
The proofs of Theorems 1.1–1.4 and Corollary 1.5 require us to develop a number of

estimates for the Euclidean size and shape of the regions explored by QLE(8/3,0). While
we do not believe that our estimates are in general optimal, we are able to obtain the precise
first order behavior for the Euclidean size of a metric ball in dQ centered around a quantum
typical point. We record this result as our final main theorem.

Throughout this work, we will make use of the following notation. We will write B(z, ε)

for the open Euclidean ball centered at z of radius ε and write BQ(z, ε) for the ball with
respect to dQ. We will also write diam(A) to denote the Euclidean diameter of a set A.

THEOREM 1.6. Suppose that S = (S2, h) is a unit area
√

8/3-LQG sphere and that z is
picked uniformly from the quantum measure on S . Then we have (in probability) that

log diamBQ(z, ε)

log ε
→ 6 as ε → 0.

That is, the typical Euclidean diameter of BQ(z, ε) for quantum typical z is ε6(1+o(1)) as
ε → 0. The same also holds if we replace S with the unit boundary length

√
8/3-LQG disk

or a finite mass open subset of a
√

8/3-quantum cone.
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To put this result in context, recall that a typical radius ε ball in TBM has Brownian map
volume ε4 and that we expect that TBM can be covered by ε−4 such balls. If the overall Brow-
nian map has unit area, then among these ε−4 balls the average ball has to have Euclidean
volume of order at least ε4. But “average” and “typical” can be quite different. Theorem 1.6
states that in some sense a typical Brownian map ball has Euclidean diameter of order ε6

and hence Euclidean volume of order at most ε12, much smaller than this average. Based on
this fact it is natural to conjecture that when a random triangulation with n4 = N triangles
is conformally mapped to S2 (with three randomly chosen vertices mapping to three fixed
points on S2, say) most of the triangles end up with Euclidean volume of order n−12 = N−3,
even though the average triangle has Euclidean volume of order n−4 = N−1.

We remark that there are approximate variants of Theorem 1.6 that could have been formu-
lated without the metric construction of this paper. This is because even before one constructs
a metric on

√
8/3-LQG, it is possible to construct a set one would expect to “approximate” a

radius ε ball in the random metric: one does this by considering a typical point x and taking
the Euclidean ball centered at x with radius chosen so that its LQG volume is exactly ε4.
Scaling results involving these “approximate metric balls” are derived, for example, in [19].
Once Theorems 1.1 and 1.2 are established, Theorem 1.6 is deduced by bounding the extent
to which the “approximate metric balls” differ from the actual radius ε balls in the random
metric.

1.3. Outline. As partially explained above, the remaining sections of the paper can be
divided into three main parts (not counting the open problem list in Section 9):

1. Section 2 provides background, definitions and results.
2. Sections 3, 4 and 5 establish the fact that dQ a.s. extends uniquely to dQ (Theorem 1.1),

along with the Hölder continuity of the identity map and its inverse between (S2, d) and
(S2, dQ) (Theorem 1.2), that dQ is geodesic (Theorem 1.3), and the scaling exponent de-
scribing the Euclidean size of typical small metric balls (Theorem 1.6). These results are
proved in Section 5 using estimates derived in Sections 3 and 4.

3. Sections 6, 7 and 8 establish the fact that, when viewed as a random metric measure
space, (S2, dQ,μh) has the law of TBM (Theorem 1.4). This is proved in Section 8, using
estimates derived in Sections 6 and 7.

The reader who mainly wants to know how to interpret an instance of the
√

8/3-LQG
sphere as a random metric measure space homeomorphic to the sphere can stop reading after
the first two parts. Theorems 1.1–1.3 and 1.6 provide a way to endow an instance of the√

8/3-LQG sphere with a metric dQ and answer some of the most basic questions about the
relationship between (S2, d) and (S2, dQ). These four theorems are already significant. On
the other hand, the third part may be the most interesting for many readers, as this is where
the long-conjectured relationship between TBM and LQG is finally proved.

We conclude this introduction below with Section 1.4, which gives a brief synopsis of the
proof strategies employed in the later parts of the paper, along with summaries of some of the
lemmas and propositions obtained along the way. Section 1.4 is meant as a road map of the
paper, to help the reader keep track of the overall picture without getting lost, and to provide
motivation and context for the many estimates we require.

1.4. Strategy.

1.4.1. Remark on scaling exponents. Throughout this paper, for the sake of intuition, the
reader should keep in mind the “1-2-3-4 rule” of scaling exponents for TBM and for corre-
sponding discrete random surfaces. Without being too precise, we will try to briefly summa-
rize this rule here, first in a discrete context. Consider a uniform infinite planar triangulation
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centered at a triangle y and let ∂B(y, r) denote the outer boundary of the set of triangles in
the dual-graph ball B(y, r). The rule states that the length of a geodesic from y to ∂B(y, r)

is r , the outer boundary length |∂B(y, r)| is of order r2, the sum
∑r

i=0 |∂B(y, i)| is of order
r3 and the volume of B(y, r) (as well as the volume of the whole region cut off from ∞ by
∂B(y, r)) is of order r4.

The r3 exponent corresponds to the number of triangles explored by the first r layers of the
peeling process, as presented, for example, in [3]. Also, as explained, for example, in [44],
Section 2, if the vertices of the planar triangulation are colored with i.i.d. coin tosses, one can
define an “outward-reflecting” percolation interface starting at y and (by comparison with the
peeling procedure) show that the length of a percolation interface (run until r4 triangles have
been cut off from ∞) is also of order r3, while the outer boundary of the set of triangles in
that interface has length of order r2. (These exponents in the setting of the UIPT were derived
in [3].)

The continuum analog of this story is that the Hausdorff dimension dH of a set S on TBM
(defined using the intrinsic metric on TBM) should be:

• dH = 1 if S is a geodesic,
• dH = 2 if S is the outer boundary of a metric ball, or the outer boundary of an (appropri-

ately defined) SLE6 curve, or an (appropriately defined) SLE8/3 curve,
• dH = 3 if S is an (appropriately defined) SLE6 curve itself, or if S is the union of the outer

boundaries of balls of radius r (as r ranges over an interval of values) and
• dH = 4 if S is an open subset of the entire Brownian map.

Similarly, on an instance of the
√

8/3-LQG sphere, the number of Euclidean balls of quantum
area δ required to cover a geodesic, a metric ball boundary (or SLE8/3 curve), an SLE6 curve
and the entire sphere should be respectively of order δ−1/4, δ−1/2, δ−3/4 and δ−1.

We will not prove these precise statements in this paper (though in the case of SLE6,
SLE8/3, or the entire sphere the scaling dimension follows from the KPZ theorem as stated,
e.g., in [19]). On the other hand, in the coming sections we will endow all of these sets with
fractal measures that scale in the appropriate manner: that is, if one adds a constant to h so
that overall volume is multiplied by C4, then geodesic lengths are multiplied by C, metric
ball boundary lengths are multiplied by C2, and QLE trace measures and SLE6 quantum
natural times are both multiplied by C3.

The distance function for γ ∈ (0,2) was constructed in [15, 16, 25–28]. The analog of
the “1-2-3-4” rule for γ -LQG surfaces with γ 	= √

8/3 has never been completely worked
out. The “1” should presumably remain unchanged (a geodesic always has dimension one)
but the “4” should presumably be replaced by the fractal dimension of the surface, which
is expected to increase from 2 to 4 continuously as γ increases from 0 to

√
8/3 (see [44],

Section 3, for further discussion of this point, including a controversial conjectural formula
due to Watabiki that applies to all γ ∈ [0,2]). The “3” should be replaced by two possibly
distinct values (the quantum dimensions of the QLE(γ 2,0) trace and of SLEκ ′ , both drawn on
a γ -LQG surface, where κ ′ = 16/γ 2), while the “2” should also be replaced by two possibly
distinct values (the quantum dimensions of the outer boundaries of the QLE(γ 2,0) trace and
of SLEκ ′ , when each is generated up to a stopping time).

1.4.2. Remark on variants of measures on unit area surfaces. The unit area Brownian
map, or unit area

√
8/3-LQG sphere, is not always the easiest or most natural object to work

with directly. If one considers a doubly marked unit area surface, together with an SLE6
curve from one endpoint to the other, then the disks cut out by the SLE6 cannot be completely
conditionally independent of one another (given their boundary length) because we know that
the total sum of their areas has to be 1. To produce a setting where this type of conditional
independence does hold exactly, we will often be led to consider either:
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1. probability measures on the space of infinite volume surfaces, such as the Brownian
plane and the (to be shown to be equivalent)

√
8/3-LQG cone with a

√
8/3-log singularity,

or
2. infinite measures on the space of finite volume surfaces, where the law of the total area

A ∈ (0,∞) is (up to multiplicative constant) an infinite measure given by AαdA for some α,
and where once one conditions on a fixed value of A, the conditional law of the surface is a
rescaled unit area Brownian map or the (to be shown to be equivalent) unit area

√
8/3-LQG

sphere.

In order to simplify proofs, we will prove some of our results first in the setting where they
are easiest and cleanest, and only later transfer them to the other settings. We will do a fair
amount of work in the quantum cone setting in Sections 3, 4 and 5, a fair amount of work
in the (closely related) quantum wedge setting in Section 6 and a fair amount of work in the
“infinite measure on space of finite volume surfaces” setting in Sections 7 and 8.

In this article, we will often abuse notation and refer to an infinite measure as a law or
say that we sample from an infinite measure defined on a measure space (E,A,μ). This is
a convenient abuse of notation because several of the natural measures that we will consider
are in fact infinite measures but become probability measures when conditioning on some
event or value. By this, we mean that we have a measurable function X into E so that for
any A ∈ A we have that the measure of {ω : X(ω) ∈ A} is given by μ(A). If A ∈ A is such
that μ(A) ∈ (0,∞), then the law of X conditioned on X ∈ A makes sense as a probability
measure in the usual way that conditional probability is defined for positive measure events.
One can also understand conditioning on certain zero measure events in the same way. In
particular, suppose that (E,A,μ) is σ -finite and (An) is a sequence in A with An ⊆ An+1
for all n such that

⋃
n An = E with μ(An) ∈ (0,∞) for all n. Suppose further that we know

that a regular conditional probability exists for the probability measure X given X ∈ An for
every n and some given σ -algebra. Then we can speak of the regular conditional probability
given just the σ -algebra.

1.4.3. Strategy for background. This is a long and somewhat technical paper, but many
of the estimates we require in later sections can be expressed as straightforward facts about
classical objects like the Gaussian free field, Poisson point processes, stable Lévy process
and continuous state branching processes (which can be understood as time-changed stable
Lévy processes). In Section 2, we enumerate some of the background results and definitions
necessary for the current paper and suggest references in which these topics are treated in
more detail.

We begin Section 2 by recalling the definitions of quantum disks, spheres, cones and
wedges, as well as the construction of quantum Loewner evolution given in [44]. We
next make an elementary observation: that the proof of the standard Kolmogorov–C̆entsov
theorem—which states that a.s. γ -Hölder continuity of a random field Xu, indexed by
u ∈ [0,1]d , can be deduced from estimates on moments of |Xu − Xv|—can be adapted to
bound the law of the corresponding γ -Hölder norm. We then proceed to give some bounds
on the probability that maximal GFF circle averages are very large. We finally define con-
tinuous state branching processes and present a few facts about them to be used later, along
with some basic observations about stable Lévy processes and Poisson point processes.

1.4.4. Strategy for constructing metric and proving Hölder continuity. We will consider
a QLE(8/3,0) process r (a random increasing family of closed sets indexed by r) defined
on a certain infinite volume quantum surface called a quantum cone. To establish the desired
Hölder continuity, we will need to control the law of the amount of time it takes a QLE
growth started at a generic point xi to reach a generic point xj , and to show that, in some
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appropriate local sense, these random quantities can a.s. be uniformly bounded above and
below by random constants times appropriate powers of |xi − xj |.

To this end, we begin by establishing some control on how the Euclidean diameter of r

(started at zero) changes as a function of r . We do not a priori have a very simple way to
describe the growth of the Euclidean diameter of r as a function of r . On the other hand,
based on the results in [44, 47], we do have a simple way to describe the evolution of the
boundary length of r , which we denote by Br , and the evolution of the area cut off from ∞
by r , which we denote by Ar . These processes can be described using the continuous state
branching processes discussed in Section 2.

Sections 3, 4 and 5 are a sort of a dance in which one first controls the most accessible
relationships (between r , Ar and Br ) and other reasonably accessible relationships (between
Euclidean and quantum areas of Euclidean disks, or between Euclidean and quantum lengths
of boundary intervals—here uniform estimates are obtained from basic information about the
GFF), then combines them to address the a priori much less accessible relationship between
r and the Euclidean diameter of r and then uses this to address the general relationship
between |xi − xj | and the amount of time it takes for a branching QLE exploration to get
from xi to xj .

As explained in Section 1.4.1, one would expect Br to be of order r2, and it is natural to
expect

(1.3) sup
0≤s≤r

Bs

to also be of order r2. Similarly, as explained in Section 1.4.1, we expect Ar to be of order
r4. In Section 3, we obtain three important results:

1. Lemma 3.1 uses standard facts about continuous state branching processes to bound
the probability that (1.3) is much larger or smaller than r2.

2. Lemma 3.2 uses standard facts about continuous state branching processes (CSBPs) to
bound the probability that Ar is much smaller than r4.

3. Proposition 3.4 uses simple Gaussian free field estimates to put a lower bound on the
probability of the event that (within a certain region of an appropriately embedded quantum
cone) the quantum mass of every Euclidean ball is at most some universal constant times a
power of that ball’s radius. In what follows, it will frequently be useful to truncate on this
event, that is, to prove bounds conditioned on this event occurring.

Section 4 uses the estimates from Section 3 to begin to relate r and the Euclidean diam-
eter of r . There are a number of incremental lemmas and propositions used internally in
Section 4, but the results cited in later sections are these:

1. Propositions 4.1 and 4.2 begin the game of relating r and the Euclidean diameter of r .
Proposition 4.1 states that on the event described in Proposition 3.4, the Euclidean diameter of
r is very unlikely to be less than some power of r , and Proposition 4.2 states that (without
any truncation) the Euclidean diameter of r is very unlikely to be more than some other
power of r . (In fact, under a certain truncation, a bound on the fourth moment of diam(r)

is given.) To show that r is unlikely to have small Euclidean diameter, one applies the
bounds from Section 3 in a straightforward way. (If r had small Euclidean diameter, then
either Ar would be unusually small or a small Euclidean-diameter region would have an
unusually large amount of quantum mass, both scenarios that were shown in Sections 3 to be
improbable.) To show that r is unlikely to have large Euclidean diameter, the hard part is
to rule out the possibility that r has large diameter despite having only a moderate amount
of quantum area—perhaps because it has lots of long and skinny tentacles. On the other
hand, we understand the law of the quantum surface that forms the complement of r (it is



2742 J. MILLER AND S. SHEFFIELD

independent of the surface cut off by r itself, given the boundary length) and can use this to
show (after some work) that these kinds of long and skinny tentacles do not occur.

2. Corollary 4.3 (which follows from Propositions 4.1 and 4.2) implies that the total quan-
tum area cut off by r has a certain power law decay on the special event from Proposi-
tion 3.4. (The power law exponent one obtains after truncating on this event is better than the
one that can be derived using the direct relationship between r and Ar without this trunca-
tion.)

3. Proposition 4.4 shows that when h is an appropriately normalized GFF with free bound-
ary conditions, the boundary length measure is very unlikely to be much smaller than one
would expect it to be.

4. Lemma 4.6 (used in the proof of Proposition 4.4, as well as later on) is an elemen-
tary but useful tail bound on the maximum (over a compact set K) of the projection of the
Gaussian free field onto the space of functions harmonic on some U ⊇ K .

In Section 5, we use the estimates from Section 4 to show that the QLE(8/3,0) metric ex-
tends to a function which is Hölder continuous with respect to the Euclidean metric. This will
allow us to prove Theorem 1.1 and Theorem 1.2. We will also give the proof of Theorem 1.3
and Theorem 1.6 in Section 5.

1.4.5. Strategy for proving metric measure space has law of TBM. Sections 6, 7 and 8
will show that the law of (S2, dQ) is the law of TBM. They will do this by making use of
the axiomatic characterization of TBM given in [48]. Let us recall some notation and results
from [48].

A triple (S, d, ν) is called a metric measure space if (S, d) is a complete separable metric
space and ν is a measure on the Borel σ -algebra generated by the topology generated by
d , with ν(S) ∈ (0,∞). We remark that one can represent the same space by the quadruple
(S, d, ν̃,m), where m = ν(S) and ν̃ = m−1ν is a probability measure. This remark is im-
portant mainly because some of the literature on metric measure spaces requires ν to be a
probability measure. Relaxing this requirement amounts to adding an additional parameter
m ∈ (0,∞).

Two metric measure spaces are considered equivalent if there is a measure-preserving
isometry from a full measure subset of one to a full measure subset of the other. Let M
be the space of equivalence classes of this form. Note that when we are given an element
(S, d, ν) of M, we have no information about the behavior of S away from the support of ν.

Next, recall that a measure on the Borel σ -algebra of a topological space is called good if
it has no atoms and it assigns positive measure to every open set. Let MSPH be the space of
geodesic metric measure spaces that can be represented by a triple (S, d, ν) where (S, d) is a
geodesic metric space homeomorphic to the sphere and ν is a good measure on S.

Note that if (S1, d1, ν1) and (S2, d2, ν2) are two such representatives, then the a.e. defined
measure-preserving isometry φ : S1 → S2 is necessarily defined on a dense set, and hence
can be extended to the completion of its support in a unique way so as to yield a continu-
ous function defined on all of S1 (similarly for φ−1). Thus φ can be uniquely extended to
an everywhere defined measure-preserving isometry. In other words, the metric space corre-
sponding to an element of MSPH is uniquely defined, up to measure-preserving isometry.

As we are ultimately interested in probability measures on M, we will need to describe a
σ -algebra F on M, and more generally a σ -algebra Fk on elements of M with k marked
points. We will also need that MSPH belongs to that σ -algebra, so that in particular it makes
sense to talk about measures on M that are supported on MSPH. We would like to have a
σ -algebra that can be generated by a complete separable metric, since this would allow us to
define regular conditional probabilities for all subsets. Such a σ -algebra is introduced in [48].
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Let M2
SPH denote the space of sphere-homeomorphic metric measure spaces equipped

with a good measure and with two marked points x and y. Given an element of this space,
one can consider the union of the boundaries ∂B•(x, r) taken over all r ∈ [0, d(x, y)], where
B•(x, r) is the set of all points cut off from y by the closed metric ball B(x, r) (i.e., B•(x, r)

is the complement of the component of B(x, r) containing y). This union is called the metric
net from x to y.

It will be important for us to refer to leftmost and rightmost geodesics in a geodesic sphere.
For this, we need an orientation. One way of specifying an orientation on a geodesic sphere
(S, d, ν, x, y) marked by two distinct points x, y is to specify three additional distinct marked
points on ∂B•(x, r) for some r ∈ (0, d(x, y)). We say that two such spheres are equivalent
if they are equivalent as doubly marked geodesic spheres and the extra marked points in-
duce the same orientation. We let M2,O

SPH denote the set of equivalence classes and F2,O the
corresponding σ -algebra. For the purposes of this work, we will be interested in the tree of
leftmost geodesics from points in the metric net back to the root (i.e., x) as well as how they
are identified in the metric net. We call this structure the unembedded metric net.

Let us explain further in what space the unembedded metric net lives. Let T1 be the
one-dimensional torus (i.e., [0,1] with 0 and 1 identified) and T2 = T1 × T1 be the two-
dimensional torus. We let A be the set of pairs (X,K) where X : T1 → R+ is a continu-
ous function with inft∈T1 Xt = 0, which is not constant in any interval of T1 and K ⊆ T2

is a compact set. We say that pairs (X,K) and (Y,A) in A are equivalent if there exists
an increasing homeomorphism φ : T1 → T1 so that X = Y ◦ φ and K = φ−1(A) where
φ−1(A) = {(φ−1(x),φ−1(y)) : (x, y) ∈ A}. We can define a metric on A as follows. Let
dH denote the Hausdorff distance between compact subsets of T2. For (X,K), (Y,A) ∈ A,
we set

d
(
(X,K), (Y,A)

)= inf
φ

(‖X − Y ◦ φ‖∞ + dH
(
K,φ−1(A)

))
,

where the infimum is over all homeomorphisms φ as above. We equip A with its Borel σ -
algebra.

It was proved in [48], Proposition 2.22, that there exists a Borel measurable map M2,O
SPH →

A which associates with a doubly-marked and oriented geodesic sphere (S, d, ν, x, y) its
unembedded metric net. The unembedded metric net is only a nontrivial object when the
leftmost geodesics are strongly coalescent, which means that for each value of 0 < s < r ,
the number of points on ∂B•(x, s), which are visited by leftmost geodesics from points on
∂B•(x, r) to x is finite. This turns out to be equivalent to the tree of leftmost geodesics being
precompact, hence its completion is a compact planar real tree and has a contour function. In
this case, the function X : T1 → R+ is the contour function for the tree of leftmost geodesics
and K encodes a topologically closed equivalence relation on T2, which describes which
points on the tree encoded by X are identified in the metric net. More precisely, if ρ : T1 → S

is the map which visits the (completion of) the leftmost geodesic tree in contour order with
the same time parameterization as X then (s, t) ∈ K if and only if ρ(s) = ρ(t).

When (S, d, ν, x, y) is an instance of the doubly marked Brownian map, the unembedded
metric net is the so-called α-stable Lévy net, as defined in [48], Section 3.3, with α = 3/2.
More specifically, the 3/2-stable Lévy net is an infinite measure on pairs consisting of a pla-
nar real tree (encoded by a continuous function T1 → R+ and defined modulo monotone
parameterization) and a topologically closed equivalence relation on T1 (encoded by a com-
pact subset of T2). Multiple equivalent constructions of the α-stable Lévy net appear in [48],
Section 3. (See Figure 1 for an informal description of the Lévy net.) We will also give a brief
overview in Section 8.3.3. We now cite the following from [48], Theorem 4.11.
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FIG. 1. Shown is a doubly-marked sphere (S, x, y) equipped with a metric d . We assume that, for each
r ∈ (0, d(x, y)), ∂B•(x, d(x, y) − r) comes equipped with a boundary length measure. For a fixed value of
r ∈ (0, d(x, y)), the points x1, x2 shown in the illustration are assumed to be sampled from the boundary measure
on ∂B•(x, d(x, y) − r) and the red paths are leftmost geodesics from x1, x2 back to x. Roughly, the unembedded
metric net of (S, x, y) from x to y is the 3/2-Lévy net if it is the case that boundary lengths of the clockwise and
counterclockwise segments of ∂B•(x, d(x, y) − (r + s)) between the leftmost geodesics from x1, x2 back to x

evolve as independent 3/2-stable CSBPs as s varies in [0, d(x, y) − r] (and the same holds more generally for
any finite collection of points chosen on ∂B•(x, d(x, y)− r). In addition, one needs that for each r > 0 the metric
measure space Ur is conditionally independent of S \ B•(x, d(x, y) − r) given its boundary length. The main
focus of Section 8 is to show that the unembedded metric net associated with a

√
8/3-LQG sphere is the 3/2-Lévy

net.

THEOREM 1.7. Up to a positive multiplicative constant, the doubly marked Brownian
map measure μ2

SPH is the unique (infinite) measure on (M2,O
SPH,F2,O), which satisfies the

following properties, where an instance is denoted by (S, d, ν, x, y):

1. Given (S, d, ν), the conditional law of x and y is that of two i.i.d. samples from ν (nor-
malized to be a probability measure). In other words, the law of the doubly marked surface is
invariant under the Markov step in which one “forgets” x (or y) and then resamples it from
the given measure.

2. The law on A (real trees with an equivalence relation) induced by the unembedded
metric net from x to y (whose law is an infinite measure) by the measurable map defined
in [48], Proposition 2.22, has the law of an α-Lévy net for some α ∈ (1,2). In other words,
the metric net is a.s. strongly coalescent (as defined in [48], Section 2.5) and the law of the
contour function of the leftmost geodesic tree and set of identified points agrees with that of
the Lévy height process used in the α-Lévy net construction.

3. Fix r > 0 and consider the circle that forms the boundary ∂B•(x, r) (an object that
is well-defined a.s. on the finite-measure event that the distance from x to y is at least r).
Then the inside and outside of B•(x, r) (with the orientation induced by S) are conditionally
independent, given the boundary length of ∂B•(x, r) (as defined from the Lévy net structure)
and the orientation of S. Moreover, the conditional law of the outside of B•(x, r) does not
depend on r .

The ultimate goal of Sections 6, 7 and 8 is to show that the metric measure space we
construct using QLE satisfies the conditions of Theorem 1.7.

• The fact that our metric space is topologically a sphere and that the identity map from S2

equipped with dQ to S2 equipped with the Euclidean metric is Hölder continuous with
Hölder continuous inverse is proved in Sections 3–5.

• It follows from the limiting construction developed in [17], Appendix A, of the doubly
marked

√
8/3-LQG sphere that its law is preserved by the operation of forgetting the

points x and y and resampling them independently from the underlying measure. See Sec-
tion 2.1.2.
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• The independence of the inside and outside of the filled metric ball follows from the con-
struction of QLE(8/3,0) given in [47], but care is needed to deal with a distinction between
forward and reverse explorations; see Section 7.

• The fact that the unembedded metric net has the law of a 3/2-Lévy net is proved in Sec-
tion 8.

In order to do this, we will recall that some hints of the relationship with TBM, and more
specifically with the 3/2-Lévy net, were already present in [47]. One can define the “outer
boundary length” process for growing QLE clusters and for growing Brownian map metric
balls, and it was already shown in [47] that both of these processes can be understood as
continuous state branching process excursions, and that their laws agree. In both cases, the
“jumps” correspond to times at which disks of positive area are “swallowed” by the growing
process; these disks are removed from the “unexplored region” at these jump times (i.e., the
complement of the growing process or equivalently the complementary component, which
contains the target point). In both cases, it is possible to time-reverse the “unexplored region”
process so that disks of positive area are “glued on” (at single “pinch points”) at these jump
times, and in both cases one can show that the location of the pinch point is uniformly random,
conditioned on all that has happened before. One can use this to generate a coupling between
the Lévy net and QLE. However, it is not obvious that the geodesic paths of the Lévy net
actually correspond to geodesics of dQ. This is the part that takes a fair amount of work and
requires the analysis of a sequence of geodesic approximations.

In Section 6, we will prove moment bounds for the quantum distance between the initial
point and tip of an SLE6 on a

√
8/3-quantum wedge as well as between two boundary points

on a
√

8/3-quantum wedge separated by a given amount of quantum length. These bounds
will be used later to control the law of the length of certain geodesic approximations.

In Section 7, we will describe the time-reversal of the SLE6 and QLE(8/3,0) unexplored-
domain processes and deal with some technicalities regarding time reversal definitions. The
QLE definition on an LQG sphere involves “reshuffling” every δ units of time during a certain
time interval [0, T ] parameterizing a Lévy process excursion; but technically speaking if T

is random and not necessarily a multiple of δ, it makes a difference whether one marks the
increments starting from 0 (so their endpoints are δ,2δ, . . .).

Finally, Section 8 will use the results of Sections 6 and 7 to control various geodesic ap-
proximations and ultimately show that the geodesics of dQ correspond to the Lévy net in the
expected way. This will enable us to complete the proofs of Theorem 1.4 and Corollary 1.5.

2. Preliminaries. The purpose of this section is to review some background and to estab-
lish a number of preliminary estimates that will be used to prove our main theorems. We begin
in Section 2.1 by reminding the reader of the construction of quantum disks, spheres, cones
and wedges. We will then construct QLE(8/3,0) on a

√
8/3-quantum cone in Section 2.2.

This process is analogous to the QLE(8/3,0) process constructed in [47] on a
√

8/3-LQG
sphere. Next, we will establish a quantitative version of the Kolmogorov–C̆entsov theorem in
Section 2.3. Then, in Section 2.4, we will use the results of Section 2.3 to bound the extremes
of the GFF. Finally, we record a few basic facts about continuous state branching processes
in Section 2.5, an estimate of the tail of the supremum of an α-stable process in Section 2.6.1
and an estimate of the tail of the Poisson distribution in Section 2.6.2.

2.1. Quantum disks, spheres, cones and wedges. The purpose of this section is to give a
brief overview of the construction of quantum disks, spheres, cones and wedges. We refer the
reader to [17], Section 4, for a much more in depth discussion of these objects. See also the
discussion in [46, 57].
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Suppose that h is an instance of the Gaussian free field (GFF) on a planar domain D and
γ ∈ (0,2). The γ -LQG measure associated with h is formally given by eγh(z) dz where dz

denotes Lebesgue measure on D. Since h does not take values at points, it is necessary to use
a regularization procedure in order to make sense of this expression rigorously. This has been
accomplished in [19], for example, by considering the approximation εγ 2/2eγhε(z) dz where
hε(z) denotes the average of h on ∂B(z, ε) and εγ 2/2 is the normalization factor, which is
necessary for the limit to be nontrivial. A marked quantum surface is an equivalence class
of triples consisting of a domain D, a vector of points z ∈ D, and a distribution h on D

where two triples (D,h, z) and (D̃, h̃, z̃) are said to be equivalent if there exists a conformal
transformation ϕ : D → D̃, which takes each element of z to the corresponding element of z̃

and such that h = h̃ ◦ϕ +Q log |ϕ′| where Q = 2
γ

+ γ
2 . We will refer to a particular choice of

representative of a marked quantum surface as its embedding. In order to specify the law of a
marked quantum surface, we only have to specify the law of h with one particular choice of
embedding.

We will often refer to a quantum surface by specifying an embedding (D,h), though when
we say quantum surface we always mean modulo the equivalence relation mentioned above.
If U ⊆ D, we will often also abuse notation and write (U,h) for the quantum surface (or
embedding of a quantum surface) which corresponds to (U,h|U).

Throughout, we consider the infinite strip S = R × (0, π) and the infinite cylinder C =
R × [0,2π ] (with the top and the bottom identified). We denote by C± = R± × [0,2π ]
(with the top and bottom identified) the positive and negative half-infinite cylinders. For X ∈
{S ,C ,C±,C,H}, we let H(X ) be the closure of C∞

0 (X ) with respect to the Dirichlet inner
product

(2.1) (f, g)∇ = 1

2π

∫
∇f (x) · ∇g(x) dx.

For X ∈ {S ,C ,C±}, we note that H(X ) admits the orthogonal decomposition H1(X ) ⊕
H2(X ) where H1(X ) (resp., H2(X )) consists of those functions on X , which are constant
(resp., have mean zero) on vertical lines; see, for example, [17], Lemma 4.2. For X = C, we
have that H(C) admits the orthogonal decomposition H1(C) ⊕H2(C) where H1(C) (resp.,
H2(C)) consists of those functions on C which are radially symmetric about 0 (resp., have
mean zero on circles centered at 0). The same is likewise true for H(H) except with circles
centered at 0 replaced by semicircles centered at 0.

The starting point for the construction of the unit boundary length quantum disk as well
as the unit area quantum sphere is the infinite excursion measure νBES

δ associated with the
excursions that a Bessel process of dimension δ (BESδ) makes from 0 for δ ∈ (0,2). This
measure can be explicitly constructed as follows:

• Sample a lifetime t from the infinite measure cδt
δ/2−2 dt where dt denotes Lebesgue mea-

sure on R+ and cδ > 0 is a constant.
• Given t , sample a BESδ excursion from 0 to 0 of length t .

In the above description of νBES
δ , we have used an abuse of notation since the first step

involved “sampling” from an infinite measure (i.e., cannot be normalized to be a probability
measure). We will be working with infinite measures frequently in this article (since it is
natural to consider infinite measures for a number of types of quantum surfaces) and we will
frequently use this same abuse of notation.

The law of a BESδ process with δ ∈ (0,2) can then be sampled from by first picking a
Poisson point process (p.p.p.) � with intensity measure dudνδ where du denotes Lebesgue
measure on R+ and then concatenating together the elements (u, e) ∈ � ordered by u. It
is still possible to sample a p.p.p. � as above when δ ≤ 0, however it is not possible to
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concatenate together the elements of � in chronological order to form a continuous process
because there are too many short excursions. (See [50] as well as the text just after [51],
Theorem 1.)

2.1.1. Quantum disks. As explained in [17], Definition 4.21, one can use νBES
δ to define

an infinite measure M on quantum surfaces (S , h) as follows:

• Take the projection of h onto H1(S ) to be given by 2γ −1 logZ where Z is sampled from
νBES
δ with δ = 3 − 4

γ 2 , reparameterized (by all of R) to have quadratic variation 2du.
• Take the projection of h onto H2(S ) to be given by the corresponding projection of a free

boundary GFF on S sampled independently of Z.

The above construction defines a doubly marked quantum surface parameterized by the
infinite cylinder; however, it only determines h up to a free parameter corresponding to the
“horizontal translation.” We will choose this horizontal translation depending on the context.

If we condition M on the quantum boundary length being equal to 1, then we obtain the
law of the unit boundary length quantum disk. More generally, we can sample from the law
of M conditioned on having quantum boundary length equal to L by first sampling from
the law of the unit boundary length quantum disk and then adding 2

γ
logL to the field. We

will denote this law by ML
DISK. The points which correspond to ±∞ are independently and

uniformly distributed according to the quantum boundary length measure conditional on S
[17], Proposition A.8. The law M1,L

DISK is obtained by weighting ML
DISK by its quantum area.

This corresponds to adding an extra marked point which is uniformly distributed from the
quantum measure.

2.1.2. Quantum spheres. As is also explained in [17], Definition 4.21, one can use νBES
δ

to define an infinite measure MBES on doubly-marked quantum surfaces (C , h,−∞,+∞)

as follows:

• Take the projection of h onto H1(C ) to be given by 2γ −1 logZ where Z is sampled from
νBES
δ with δ = 4 − 8

γ 2 , reparameterized to have quadratic variation du.
• Take the projection of h onto H2(C ) to be given by the corresponding projection of a

whole-plane GFF on C sampled independently of Z.

As in the case of quantum disks, we have not yet fully specified h as a distribution on the
infinite cylinder because there is still one free parameter which corresponds to the “horizontal
translation.” We will choose this horizontal translation depending on the context.

If we condition on the quantum area associated with MBES to be equal to 1, then we
obtain the law of the unit area quantum sphere. Given S , the points which correspond to
±∞ are uniformly and independently distributed according to the quantum measure [17],
Proposition A.13.

As explained in [46], Theorem 1.2, in the special case that γ = √
8/3 the measure MBES

admits another description in terms of the infinite excursion measure for a 3/2-stable Lévy
process with only upward jumps from its running infimum; see [9] for more details on this
measure. In this construction, one uses that if we start off with a quantum sphere sampled
from MBES and then draw an independent whole-plane SLE6 process η′ from −∞ to +∞,
then the law of ordered, oriented (by whether η′ traverses the boundary points in clockwise or
counterclockwise order, that is, whether the loop is on the left or right side of η′), and marked
(last point on the disk boundary visited by η′) disks cut out by η′ can be sampled from as
follows:
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• Sample an excursion e from the infinite excursion measure for 3/2-stable Lévy pro-
cesses with only upward jumps from its running infimum. (The time-reversal e(T − ·)
of e : [0, T ] → R+ at time t is equal to the quantum boundary length of the component of
S \ η′([0, t]), which contains y.)

• For each jump of e, sample a conditionally independent quantum disk whose boundary
length is equal to the size of the jump.

• Orient the boundary of each quantum disk either to be clockwise or counterclockwise with
the toss of a fair coin flip and mark the boundary of each with a uniformly chosen point
from the quantum measure.

Moreover, it is shown in [46], Theorem 1.2, that the information contained in the doubly-
marked sphere and η′ can be uniquely recovered from the ordered collection of marked and
oriented disks.

A quantum sphere produced from MBES is doubly marked. If we parameterize the surface
by C as described above, the marked points are located at ±∞. In general, we will indicate
such a doubly marked quantum sphere with the notation (S, x, y) where S denotes the quan-
tum surface and x, y are the marked points and we will indicate the corresponding measure
by M2

SPH.

2.1.3. Quantum cones. Fix α < Q. An α-quantum cone [17], Section 4.3, is a doubly
marked quantum surface, which is homeomorphic to C. The two marked points are referred
to as the “origin” and “infinity.” Bounded neighborhoods of the former all a.s. contain a finite
amount of mass and neighborhoods of the latter a.s. contain an infinite amount of mass. It
is convenient to parameterize a quantum cone by either C or C, depending on the context.
In the former case, we will indicate the quantum cone with the notation (C , h,−∞,+∞)

(meaning that −∞ is the origin and +∞ is infinity) and the law of h can be sampled from
by:

• Taking the projection of h onto H1(C ) to be given by 2γ −1 logZ where Z is a BESδ with
δ = 2 + 4

γ
(Q − α), reparameterized to have quadratic variation du.

• Taking the projection of h onto H2(C ) to be given by the corresponding projection of a
whole-plane GFF on C .

It is often convenient in the case of quantum cones to take the horizontal translation so that
the projection of h onto H1(C ), which can be understood as a function of one real variable
(since it is constant on vertical line segments), last hits 0 on the line Re(z) = 0.

When h is an instance of the GFF, the projection of h onto H1(C ) is (as a function of the
horizontal coordinate) a Brownian motion with drift. In order to construct an h that corre-
sponds to an instance of the quantum cone, we can take the projection onto H1(C ) to be as
follows:

• For u < 0, it is equal to B−u + (Q − α)u where B is a standard Brownian motion with
B0 = 0.

• For u ≥ 0, it is equal to B̃u+(Q−α)u where B̃ is a standard Brownian motion independent
of B conditioned so that B̃u + (Q − α)u ≥ 0 for all u ≥ 0.

The definition of B̃ involves conditioning on an event with probability zero, but it is explained
in [17], Remark 4.3, for example, how to make sense of this conditioning rigorously.

If we parameterize by C instead of C , we first sample the process Au by:

• For u > 0, taking it to be Bu + αu where B is a standard Brownian motion with B0 = 0.
• For u ≤ 0, taking it to be B̃−u + αu where B̃ is a standard Brownian motion with B̃0 = 0

conditioned so that B̃u + (Q − α)u > 0 for all u ≥ 0.
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Then we take the projection of h onto H1(C) to be equal to Ae−u and the projection of h onto
H2(C) to be the corresponding projection for a whole-plane GFF. We will use the notation
(C, h,0,∞) for a quantum cone parameterized by C where 0 (resp., ∞) is the origin (resp.,
infinity).

We will refer to the particular embedding of a quantum cone into C described just above
as the circle average embedding.

As explained in [17], Theorem 1.18, it is natural to explore a
√

8/3-quantum cone (pa-
rameterized by C) with an independent whole-plane SLE6 process η′ from 0 to ∞. If one
parameterizes η′ by quantum natural time [17], then the quantum boundary length of the
unbounded component of C \ η′([0, t]) evolves in t as a 3/2-stable Lévy process with only
downward jumps conditioned to be non-negative [17], Corollary 12.2. (See [9], Chapter VII,
Section 3, for more details on the construction of a Lévy process with only downward jumps
conditioned to be nonnegative. In particular, [9], Chapter VII, Proposition 14, gives the exis-
tence of the process started from 0.) Moreover, the surface parameterized by the unbounded
component of C \ η′([0, t]) given its quantum boundary length is conditionally independent
of the surfaces cut off by η′|[0,t] from ∞. If the quantum boundary length is equal to u, then
we will write this law as mu. By scaling, we can sample from the law of mu by first sam-
pling from the law m1 and then adding the constant 2γ −1 logu, γ = √

8/3, to the field. (One
can think of a sample produced from mu as corresponding to a quantum disk with boundary
length equal to u and conditioned on having infinite quantum area.)

Let κ ′ = 4/γ 2 > 4. It is also shown in [17] that it is natural to explore a γ -quantum cone
(C, h,0,∞) with a space-filling SLEκ ′ process η′ [45] from ∞ to ∞, which is sampled
independently of the quantum cone and then reparameterized by quantum area, that is, so
that μh(η

′([s, t])) = t − s for all s < t and normalized so that η′(0) = 0. It is in particular
shown in [17], Theorem 1.13, that the joint law of h and η′ is invariant under the operation
of translating so that η′(t) is taken to 0. That is, as doubly-marked path-decorated quantum
surfaces we have that (

h,η′) d= (
h
(· + η′(t)

)
, η′(· + t) − η′(t)

)
.

This fact will be important for us in several places in this article.

2.1.4. Quantum wedges. Fix α < Q. An α-quantum wedge [17], Section 4.2 (see also
[57]) is a doubly-marked surface which is homeomorphic to H. As in the case of a quantum
cone, the two marked points are the origin and infinity. It is natural to parameterize a quantum
wedge either by S or by H. In the former case, we can sample from the law of the field h

by:

• Taking its projection onto H1(S ) to be given by 2γ −1 logZ where Z is a BESδ with
δ = 2 + 2

γ
(Q − α) reparameterized to have quadratic variation 2du.

• Taking its projection onto H2(S ) to be given by the corresponding projection of a GFF
on S with free boundary conditions.

As in the case of an α-quantum cone, we can also describe the projection of h onto H1(S )

in terms of Brownian motion [17], Remark 4.5. In fact, the definition is the same as for an
α-quantum cone except with Bu, B̃u replaced by B2u, B̃2u. (The variance is twice as large
because the strip is half as wide as the cylinder.)

If we parameterize the surface with H, then we can sample from the law of the field h by
(see [17], Definition 4.4):

• Taking its projection onto H1(H) to be given by Ae−u where A is as in the definition of an
α-quantum cone parameterized by C except with Bu, B̃u replaced by B2u, B̃2u.

• Taking its projection onto H2(H) to be given by the corresponding projection of a GFF on
H with free boundary conditions.
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2.2. QLE(8/3,0) on a
√

8/3-quantum cone. The idea of QLE(8/3,0) is to define a
growth process on a

√
8/3-LQG surface, which should be interpreted as a form of the Eden

growth model [20]. Recall that the Eden growth model on a graph G = (V ,E) is an increas-
ing sequence of clusters Cn ⊆ V where, for a given initial vertex x ∈ V , we take C0 = {x}.
Given that C0, . . . ,Cn have been defined, we define Cn+1 = Cn ∪ {v} where {u, v} is an
edge chosen uniformly at random among those with u ∈ Cn and v /∈ Cn. In QLE(8/3,0),
the uniform measure on edges is replaced by the

√
8/3-LQG boundary length measure and

rather than adding a vertex to a discrete cluster at each stage, one adds a δ-length segment
of radial SLE6. Here, the time parameterization for the SLE6 is the quantum natural time
developed in [17], which is the continuum analog of the time parameterization, which one
obtains when performing a percolation exploration on a random planar map and each unit of
time corresponds to an edge traversed. Further intuition and motivation for this construction
is developed in [44], Section 2.2, and [47], Section 3.

In [47], Section 6, we constructed a “quantum natural time” [17] variant of the QLE(8/3,0)

process from [44] on a
√

8/3-LQG sphere and showed that this process defines a metric on
a countable, dense set of points chosen i.i.d. from the quantum area measure on the sphere.
In many places in this article, it will be convenient to work on a

√
8/3-quantum cone instead

of a
√

8/3-LQG sphere. We will therefore review the construction and the basic properties
of the process in this context. We will not give detailed proofs here since they are the same
as in the case of the

√
8/3-LQG sphere. We refer the reader to [47], Section 6, for additional

detail.
We suppose that (C, h,0,∞) is a

√
8/3-quantum cone and that η′ is a whole-plane SLE6

from 0 to ∞ sampled independently of h and then reparameterized by quantum natural time.
Fix δ > 0. We define the δ-approximation of QLE(8/3,0) starting from 0 as follows. First,
we take δ

t to be the complement of the unbounded component of C \ η′([0, t]) for each
t ∈ [0, δ]. We also let gδ

t : C \ δ
t → C \ D be the unique conformal map which fixes and

has positive derivative at ∞. Fix j ∈ N and suppose that we have defined paths η′
1, . . . , η

′
j ,

where each ηi for 1 ≤ i ≤ j is defined in [(i − 1)δ, iδ], and a growing family of hulls δ with
associated uniformizing conformal maps (gδ

t ) for t ∈ [0, jδ] such that the following hold:

• The conditional law of the surface parameterized by the complement of δ
jδ given its quan-

tum boundary length � is the same as in the setting of exploring a
√

8/3-quantum cone with
an independent whole-plane SLE6. That is, it is given by m�.

• η′
j (jδ) is distributed uniformly according to the quantum boundary measure on ∂δ

jδ con-

ditional on δ
jδ (as a path decorated quantum surface).

• The joint law of the components (viewed as quantum surfaces) separated from ∞ by time
jδ, given their quantum boundary lengths, is the same as in the case of whole-plane SLE6.
That is, they are given by conditionally independent quantum disks given their boundary
lengths and their boundary lengths correspond to the downward jumps of a 3/2-stable Lévy
process starting from 0 and conditioned to be nonnegative.

We then let η′
j+1 be an independent radial SLE6 defined in the time-interval [jδ, (j + 1)δ]

starting from a point on ∂δ
jδ , which is chosen uniformly from the quantum boundary mea-

sure conditionally independently of everything else (i.e., we resample the location of the tip
η′

j (jδ) of η′
j ). For each t ∈ [jδ, (j +1)δ], we also let δ

t be the complement of the unbounded

component of C \ (δ
jδ ∪ η′

j+1([jδ, t])). Then by the construction, all three properties de-
scribed above are satisfied by the process up to time (j + 1)δ.

A convenient way to visualize the construction of the δ-approximation to QLE(8/3,0) is
illustrated in Figure 2. We refer to the path-decorated quantum surface, which is parame-
terized by the region that η′

j separates from ∞ and decorated by η′ as part of a necklace.
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FIG. 2. Left: Independent whole-plane SLE6 from 0 to ∞ drawn on top of a
√

8/3-quantum cone. Middle:
We can represent the path-decorated surface as a collection of δ-quantum natural time length necklaces, which
serve to encode the bubbles cut off by the SLE6 in each of the δ-length intervals of time. Each necklace has an
inner and an outer boundary, is doubly marked by the initial and terminal points of the SLE6, the necklaces are
conditionally independent given their inner and outer boundary lengths, and each necklace is a.s. determined by
the collection of marked and oriented bubbles cut off by the SLE6 in the corresponding time interval. The length
of the outer boundary of each necklace is equal to the length of the inner boundary of the next necklace. If we glue
together the necklaces as shown, then we recover the

√
8/3-quantum cone decorated by the independent SLE6.

Right: If we “rotate” each of the necklaces by a uniformly random amount and then glue together as shown, the
underlying surface is a

√
8/3-quantum cone which is decorated with the δ-approximation to QLE(8/3,0). The

left and right pictures are naturally coupled together so that the bubbles cut out by the SLE6 and QLE(8/3,0) are
the same as quantum surfaces and the evolution of the boundary length of both is the same, up to a time-change.

An SLE6 necklace is simply this path-decorated surface together with the boundary of the
cluster grown up to just before we draw η′

j . Thus a necklace consists of an inner boundary
(boundary of the cluster before η′

j is drawn) and an outer boundary (boundary of the cluster
after η′

j is drawn). One can similarly decompose an SLE6 into necklaces by considering the
successive path decorated surfaces which correspond to δ units of quantum natural time. One
can then apply a transformation from SLE6 to the δ-approximation of QLE(8/3,0) by taking
the necklace decomposition of the former and then changing how the necklaces are glued
together by randomizing the inner boundary point of each necklace from which the SLE6 is
grown using quantum boundary length.

By repeating the compactness argument given in [47], Section 6, we see that there exists a
deterministic sequence (δk), which tends to 0 as k → ∞ along which the δ-approximations
converge weakly and the limiting process satisfies properties, which are analogous to the
three properties described above.

We note that it is shown in [47] that if (xn) is a sequence of points chosen i.i.d. from
the quantum measure on a

√
8/3-LQG sphere, then the joint law of the hitting times of the

(xn) by the subsequentially limiting QLE(8/3,0) does not depend on the choice of sequence
(δk) and is a.s. determined by the underlying quantum surface. Fix R > 0. Suppose that we
apply the map log(z) from C to C so that 0 is taken to −∞ and then we take the horizontal
translation so that the projection of the field onto H1(C ) first hits R at u = 0. Then the
law of the restriction of the field to C− is the same as the corresponding law for a quantum
sphere parameterized by C sampled from MBES conditioned on the projection onto H1(C )

exceeding R and with the horizontal translation taken in the same way. Since R > 0 was
arbitrary, it therefore follows that the same is also true for QLE(8/3,0) on a

√
8/3-quantum

cone. This alone does not imply that the δ-approximations to QLE(8/3,0) converge as δ →
0 (in other words, it is not necessary to pass along a sequence of positive numbers (δk)
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which tend to 0 as k → ∞) because these hitting times may not determine the law of the
process itself. This, however, will be a consequence of the continuity results established in
the present article. It will also be a consequence of the present article that one has convergence
in probability because we will show that the QLE(8/3,0) is a.s. determined by the underlying
field.

In the case of a whole-plane SLE6 exploration of a
√

8/3-quantum cone, we know from
[17], Corollary 12.2, that the boundary length of the outer boundary evolves as a 3/2-stable
Lévy process with only downward jumps conditioned to be nonnegative. The compactness
argument of [47], Section 6, also implies that the subsequentially limiting QLE(8/3,0) with
the quantum natural time parameterization has the same property.

Recall from [47] that we change time from the quantum natural time to the quantum dis-
tance time parameterization using the time-change

(2.2)
∫ t

0

1

Xs

ds,

where Xs is the quantum boundary length of the outer boundary of the process at quantum
natural time s. (The intuition for using this particular time change is that in the Eden growth
model, the rate at which new edges are added to the outer boundary of the cluster is propor-
tional to the boundary length of the cluster.) If we perform this time-change, then the outer
boundary length of the QLE(8/3,0) evolves as the time-reversal of a 3/2-stable continu-
ous state branching process (CSBP; we will give a review of CSBPs in Section 2.5 below,
including the relationship between CSBPs and Lévy processes via time-change).

LEMMA 2.1. Suppose that (D, h) has the law of a quantum disk with boundary length
L > 0 and that z ∈ D is distributed uniformly according to the quantum area measure. Then
the QLE(8/3,0) stopped upon first hitting ∂D intersects ∂D at a unique point a.s. Finally, if
DL has the law of the amount of quantum distance time required by the QLE(8/3,0) to hit

∂D then DL
d= L1/2D1.

PROOF. The first assertion of the lemma is established in [47], Lemma 7.6. We will
deduce the second assertion of the lemma using the following scaling calculation. Recall that
if we add the constant C to the field then quantum boundary length is scaled by the factor
eγC/2 and that quantum natural time is scaled by the factor e3γC/4 (see [46], Section 6.2).
Equivalently, if we start off with a unit boundary length quantum disk, L > 0, and we scale
the field so that the boundary length is equal to L then quantum natural time is scaled by the
factor L3/2. Recall also that if Xt denotes the quantum boundary length of the outer boundary
of the QLE(8/3,0) growth at quantum natural time t , then the quantum distance time elapsed
by quantum natural time T is equal to

(2.3)
∫ T

0

1

Xs

ds.

Combining (2.3) with the scaling given for boundary length and quantum natural time given
above, we see that if we start out with a unit boundary length quantum disk and then scale
the field so that the boundary length is L, then the amount of quantum distance time elapsed
by the resulting QLE(8/3,0) is given by

(2.4)
∫ L3/2T

0

1

LXL−3/2s

ds.

Making the substitution t = L−3/2s in (2.4), we see that (2.4) is equal to

(2.5) L1/2
∫ T

0

1

Xt

dt.

The final claim follows from (2.5). �
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Using the same scaling argument used to establish Lemma 2.1, we can also determine how
quantum distances scale when we add a constant C to the field.

LEMMA 2.2. Suppose that (D,h) is a
√

8/3-LQG surface and let dQ be the distance
function associated with the QLE(8/3,0) metric. Fix C ∈ R. Then the distance function as-
sociated with the field h + C is given by eγC/4dQ with γ = √

8/3.

We note that dQ is a priori only defined on a countable dense subset of D chosen i.i.d.
from the quantum area measure. However, upon completing the proof of Theorem 1.1 and
Theorem 1.2, the same scaling result immediately extends to dQ by continuity.

PROOF OF LEMMA 2.2. This follows from the same argument used to establish (2.3),
(2.4) and (2.5). �

2.3. Quantitative Kolmogorov–C̆entsov. The purpose of this section is to establish a
quantitative version of the Kolmorogov–C̆entsov continuity criterion [33, 52]. We will mo-
mentarily apply this result to the case of the circle average process for the GFF, which will
be used later to establish the continuity results for QLE(8/3,0).

PROPOSITION 2.3 (Kolmogorov–C̆entsov continuity criterion). Suppose that (Xu) is a
random field indexed by u ∈ [0,1]d . Assume that there exist constants α,β, c0 > 0 such that
for all u, v ∈ [0,1]d we have that

(2.6) E
[|Xu − Xv|α]≤ c0|u − v|d+β.

Then there exists a modification of X (which we shall write as X) such that for each γ ∈
(0, β/α) there exists M > 0 such that

(2.7) |Xu − Xv| ≤ M|u − v|γ for all u, v ∈ [0,1]d .

Moreover, if we define M to be supu	=v |Xu −Xv|/|u−v|γ , then there exists c1 > 0 depending
on α, β , γ , c0 such that

(2.8) P[M ≥ t] ≤ c1t
−α for all t ≥ 1.

The first statement of the proposition is just the usual Kolmogorov–C̆entsov continuity
criterion. One sees that (2.8) holds by carefully following the proof. For completeness, we
will work out the details here.

PROOF OF PROPOSITION 2.3. Applying Chebyshev’s inequality, we have from (2.6) that

(2.9) P
[|Xu − Xv| ≥ δ

]≤ c0δ
−α|u − v|d+β for all u, v ∈ [0,1]d .

For each k, let Dk consist of those x ∈ [0,1]d with dyadic rational coordinates that are integer
multiples of 2−k . Let D̃k consist of those pairs {u, v} in Dk which are adjacent, that is, differ
in only one coordinate and have |u − v| = 2−k . By (2.9), we have that

(2.10) P
[|Xu − Xv| ≥ t2−γ k]≤ c0t

−α2−k(d+β−αγ ) for all u, v ∈ D̃k.

Noting that |D̃k| = O(2dk), by applying a union bound and using (2.10) we have for some
constant c1 > 0 that

(2.11) P
[

max
{u,v}∈D̃k

|Xu − Xv| ≥ t2−γ k
]
≤ c1t

−α2−k(β−αγ ).
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Thus, by a further union bound and using (2.11), we have for some constant c2 > 0 that

(2.12) P
[
sup
k∈N

max
{u,v}∈D̃k

2γ k|Xu − Xv| ≥ t
]
≤ c2t

−α.

It is not difficult to see that there exists some constant c3 > 0 such that on the event
supk∈N max{u,v}∈D̃k

2γ k|Xu −Xv| ≤ t considered in (2.12) we have that |Xu −Xv| ≤ c3t |u−
v|γ for all u, v ∈⋃k Dk . This, in turn, implies the result. �

2.4. GFF extremes. In this section, we will establish a result regarding the tails of the
maximum of the circle average process associated with a whole-plane GFF. We refer the
reader to [19], Section 3, for more on the construction of the circle average process. We also
refer the reader to [57], Section 3.2, for more on the whole-plane GFF.

PROPOSITION 2.4. Suppose that h is a whole-plane GFF. For each r > 0 and z ∈ C, we
let hr(z) be the average of h on ∂B(z, r). We assume that the additive constant for h has been
fixed so that h1(0) = 0. For each ξ ∈ (0,1), there exists a constant c0 > 0 such that for each
fixed r ∈ (0,1/2) and all δ > 0 we have that

(2.13) P
[

sup
z∈B(0,1/2)

∣∣hr(z)
∣∣≥ (2 + δ) log r−1

]
≤ c0r

2δ(1−ξ).

Before giving the proof of Proposition 2.4, we are first going to deduce from it a result
which bounds the growth of |hr(z)| for z ∈ C with |z| large and r proportional to |z|.

COROLLARY 2.5. Suppose that we have the same setup as described in Proposition 2.4.
For a,C > 0 we let

(2.14) Ea,C = ⋂
k∈N

{
sup

z∈B(0,ek+1)\B(0,ek)

∣∣hek−1(z)
∣∣≤ C + ak

}
.

Then we have that

(2.15) P[Ea,C] → 1 as C → ∞ (with a > 0 fixed).

The same likewise holds if α < Q and h = h1 +α log | · | where (C, h1,0,∞) is an α-quantum
cone with the circle average embedding.

Before establishing Corollary 2.5, we first record the following Gaussian tail bound, which
is easy to derive directly from the standard Gaussian density function.

LEMMA 2.6. Suppose that Z ∼ N(0,1). Then we have that

P[Z ≥ λ] �
√

2

π
λ−1 exp

(
−λ2

2

)
as λ → ∞.

PROOF OF COROLLARY 2.5. We are first going to deduce the result in the case of a
whole-plane GFF from Proposition 2.4 and a union bound.

Note that h−hek+2(0) has the law of the whole-plane GFF with the additive constant fixed
so that hek+2(0) = 0. Applying the scale-invariance of the whole-plane GFF in the equality
and Proposition 2.4 with ξ = 1/2, r = e−3, δ = C/3 + ak/6 − 2 in the inequality, we have
for each k ∈ N that

(2.16)

P
[

sup
z∈B(0,ek+1)\B(0,ek)

∣∣hek−1(z) − hek+2(0)
∣∣≥ C + ak/2

]
= P

[
sup

z∈B(0,e−1)\B(0,e−2)

∣∣he−3(z)
∣∣≥ C + ak/2

]
≤ c0e

6−C−ak/2.
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Since hek+2(0) is a Gaussian random variable with mean 0 and variance k +2, it follows from
Lemma 2.6 that

(2.17) P
[∣∣hek+2(0)

∣∣≥ ak/2
]
� e−a2k/8.

Combining (2.16) with (2.17) and the Borel–Cantelli lemma implies that there a.s. exists
k0 ∈ N such that k ≥ k0 implies that{

sup
z∈B(0,ek+1)\B(0,ek)

∣∣hek−1(z)
∣∣≤ C + ak

}
holds.

This implies (2.15) as supz∈B(0,ek+1)\B(0,ek) |hek−1(z)| is a.s. finite for all 1 ≤ k ≤ k0.
We will now extract the corresponding result for an α-quantum cone. Suppose that h =

h1 + α log | · | where h1 is an α-quantum cone with α < Q and the embedding as in the
statement of the corollary. In this setting, h|D has the same law as a whole-plane GFF with
the additive constant fixed so that its average on ∂D is equal to 0. For each z ∈ C and r > 0, we
let h1,r (z) be the average of h1 on ∂B(z, r). Then we have that h1,er (0) for r ≥ 0 evolves as
Br − αr where B is a standard Brownian motion with B0 = 0 conditioned so that Br + (Q −
α)r ≥ 0 for all r ≥ 0. Therefore, hr(0) evolves as a standard Brownian motion B with B0 = 0
conditioned so that Br + (Q−α)r ≥ 0 for all r ≥ 0. Note that such a process is stochastically
dominated from above by a standard Brownian motion B with B0 = 1 conditioned so that
Br + (Q − α)r ≥ 0 for all r ≥ 0 and that in this case we are conditioning on a positive
probability event. Such a process is also stochastically dominated from below by a standard
Brownian motion B with B0 = 0 (with no conditioning). Combining, it follows that (2.17)
holds in this setting. Moreover, (2.16) also holds by using that the projection of h onto the
functions with mean-zero on all of the circles ∂B(0, r) for r > 0 is given by the corresponding
projection of a whole-plane GFF and the projection of h onto the functions which are constant
on such circles is stochastically dominated from above and below as we have just described.

�

LEMMA 2.7. Suppose that we have the same setup as in Proposition 2.4. For each α > 0,
there exists a constant c0 > 0 such that the following is true. For all z,w ∈ B(0,1/2) and
r, s ∈ (0,1/2) we have that

E
[∣∣hr(z) − hs(w)

∣∣α]≤ c0

( |(z, r) − (w, s)|
r ∧ s

)α/2
.

PROOF. This is the content of [31], Proposition 2.1, in the case of a GFF on a bounded
domain D ⊆ C with Dirichlet boundary conditions. The proof in the case of a whole-plane
GFF is the same. �

PROOF OF PROPOSITION 2.4. By combining Lemma 2.7 (with a sufficiently large value
of α) with Proposition 2.3, we have that the following is true. For each ς > 0, there exists
M > 0 (random) such that for all z,w ∈ B(0,1/2) and r ∈ (0,1/2) we have that

(2.18)
∣∣hr(z) − hr(w)

∣∣≤ Mr−1/2+ς |z − w|1/2−ς .

Moreover, Lemma 2.7 and Proposition 2.3 imply that, for each α > 0, there exists a constant
c0 > 0 depending only on α such that

(2.19) P[M ≥ t] ≤ c0t
−α for all t ≥ 1.

Fix a0 ∈ (0,1), j ∈ N, and let Ej,a0 = {M ≥ ea0j/4}. On Ec
j,a0

, (2.18) implies that

(2.20)

∣∣he−j (z) − he−j (w)
∣∣≤ Mej(1/2−ς)|z − w|1/2−ς

≤ e−a0(1/4−ς)j for all |z − w| ≤ e−(1+a0)j .
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Combining Lemma 2.6 with the explicit form of the variance of hε [19], Proposition 3.2,
we have that there exists a constant c1 > 0 such that for each α, δ > 0 that

(2.21) P
[
hε(z) ≥ (α + δ) log ε−1]≤ c1 exp

(
−(α + δ)2(log ε−1)2

2 log ε−1

)
≤ c1ε

α2/2+αδ.

We are now going to use (2.21) to perform a union bound over a grid of points with spacing
e−(1+a0)j . The result will then follow by combining this with (2.19) and (2.20).

Let Cj,a0 = {z ∈ e−j (1+a0)Z2 : z ∈ B(0,1/2)}. Note that |Cj,a0 | � e2j (1+a0). By (2.21), we
have that

(2.22) P
[
he−j (z) ≥ (2 + δ)j

]≤ c1e
−2(1+δ)j .

Consequently, by a union bound and (2.22), there exists a constant c2 > 0 such that with

(2.23) Fj,a0 =
{

max
z∈Cj,a0

he−j (z) ≤ (2 + δ)j
}

we have P
[
Fc

j,a0

]≤ c2e
2j (a0−δ).

Suppose that u ∈ B(0,1/2) is arbitrary. Then there exists z ∈ Cj,a0 such that |u − z| ≤ √
2 ·

e−j (1+a0). On Ec
j,a0

, by (2.20) we have for a constant c3 > 0 that∣∣he−j (z) − he−j (u)
∣∣≤ c3e

−a0(1/4−ς)j .

Thus, on Ec
a0

∩ Fj,a0 , we have that

he−j (u) ≤ c3e
−a0(1/4−ς)j + he−j (z) ≤ c3e

−a0(1/4−ς)j + (2 + δ)j.

That is,

sup
u∈B(0,1/2)

he−j (u) ≤ c3e
−a0(1/4−ς)j + (2 + δ)j.

Choose α > 0 sufficiently large so that, applying (2.19) with this value of α, we have that

(2.24) P[Ej,a0] ≤ c0e
2j (a0−δ).

By (2.21) and (2.24), we have that

P
[
Ec

j,a0
∩ Fj,a0

]≥ 1 − (c0 + c2)e
2j (a0−δ) = 1 − c4e

2j (a0−δ),

where c4 = c0 + c2. This proves the result for r = e−j . The result for general r ∈ (0,1/2) is
proved similarly. �

2.5. Continuous state branching processes. The purpose of this section is to record a few
elementary properties of continuous state branching processes (CSBPs); see [35, 37] for an
introduction.

Suppose that Y is a CSBP with branching mechanism ψ . Recall that this means that Y

is the Markov process on R+ with Y0 = a ≥ 0 deterministic whose transition kernels are
characterized by the property that

(2.25) E
[
exp(−λYt ) |Ys

]= exp
(−Ysut−s(λ)

)
for all t > s ≥ 0,

where ut (λ), t ≥ 0 is the nonnegative solution to the differential equation

(2.26)
∂ut

∂t
(λ) = −ψ

(
ut(λ)

)
for u0(λ) = λ.

Let

(2.27) �(q) = sup
{
θ ≥ 0 : ψ(θ) = q

}
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and let

(2.28) ζ = inf{t ≥ 0 : Yt = 0}
be the extinction time for Y . Then we have that [35], Corollary 10.9,

(2.29) E
[
e−q

∫ ζ
0 Ys ds]= e−�(q)Y0 .

A ψ-CSBP can be constructed from a Lévy process with only positive jumps and vice-
versa [36] (see also [35], Theorem 10.2). Namely, suppose that X is a Lévy process with
Laplace exponent ψ . That is,

E
[
e−λXt

]= eψ(λ)t .

Let

(2.30) s(t) =
∫ t

0

1

Xu

du and s∗(t) = inf
{
r > 0 : s(r) > t

}
.

Then the time-changed process Yt = Xs∗(t) is a ψ-CSBP. That is, Ys(t) = Xt . Conversely, if
Y is a ψ-CSBP and we let

(2.31) t (s) =
∫ s

0
Yu du and t∗(s) = inf

{
r > 0 : t (r) > s

}
then Xs = Yt∗(s) is a Lévy process with Laplace exponent ψ . That is, Xt(s) = Ys .

We will be interested in the particular case that ψ(u) = uα for α ∈ (1,2). For this choice,
we note that

(2.32) ut (λ) = (
λ1−α + (α − 1)t

)1/(1−α)
.

Combining (2.25) and (2.32) implies that uα-CSBPs (which we will also later refer to as
α-stable CSBPs) satisfy a certain scaling property. Namely, if Y is a uα-CSBP starting from
Y0 then Ỹt = β1/(1−α)Yβt is a uα-CSBP starting from Ỹ0 = β1/(1−α)Y0. In particular, if Y is
a u3/2-CSBP starting from Y0 then Ỹt = β−2Yβt is a 3/2-stable CSBP starting from Ỹ0 =
β−2Y0.

2.6. Tail bounds for stable processes and the Poisson law.

2.6.1. Supremum of an α-stable process.

LEMMA 2.8. Suppose that X is an α-stable process with X0 = 0 and without positive
jumps. For each t ≥ 0, let St = sups∈[0,t] Xs . There exist constants c0, c1 > 0 such that

(2.33) P[St ≥ u] ≤ c0 exp
(−c1t

−1/αu
)
.

PROOF. For each t ≥ 0, we let St = sups∈[0,t] Xs . Fix q > 0 and let τ(q) be an ex-
ponential random variable with parameter q , which is sampled independently of X. Let
�(λ) = a

−1/α
0 λ1/α be the inverse of the Laplace exponent ψ(λ) = a0λ

α of X. By [9], Chap-
ter VII, Corollary 2, we have that Sτ(q) has the exponential distribution with parameter �(q).
In particular, we have that

P[Sτ(q) ≥ u] = exp
(−�(q)u

)
.

Therefore, we have that

P[Sq−1 ≥ u] ≤ P
[
Sτ(q) ≥ u | τ(q) ≥ q−1]

≤ c0P[Sτ(q) ≥ u]
≤ c0 exp

(−�(q)u
)
,

where c0 = 1/P[τ(q) ≥ q−1] = e. �
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2.6.2. Poisson deviations.

LEMMA 2.9. If Z is a Poisson random variable with mean λ then for each α ∈ (0,1) we
have that

(2.34) P[Z ≤ αλ] ≤ exp
(
λ(α − α logα − 1)

)
.

Similarly, for each α > 1 we have that

(2.35) P[Z ≥ αλ] ≤ exp
(
λ(α − α logα − 1)

)
.

PROOF. Recall that the moment generating function for a Poisson random variable with
mean λ is given by exp(λ(et − 1)). Therefore, the probability that a Poisson random variable
Z of mean λ is smaller than a constant c satisfies for each β > 0 the inequality

P[Z ≤ c] = P
[
e−βZ ≥ e−βc]≤ eβcE

[
e−βZ]= exp

(
βc + λ

(
e−β − 1

))
.

If we take c = αλ, the above becomes

P[Z ≤ αλ] ≤ exp
(
λ
(
αβ + e−β − 1

))
.

Note that β �→ αβ + e−β − 1 is minimized with β = − logα and taking β to be this value
implies the lower bound. The upper bound is proved similarly. �

3. Quantum boundary length and area bounds. The purpose of this section is to de-
rive tail bounds for the quantum boundary length of the outer boundary of a QLE(8/3,0)

metric ball (Section 3.1), for the quantum area surrounded by a QLE(8/3,0) (Section 3.2)
and also to establish the regularity of the quantum area measure on a γ -quantum cone (Sec-
tion 3.3). The estimates established in this section will then feed into the Euclidean size
bounds for QLE(8/3,0) derived in Section 4.

3.1. Quantum boundary length of QLE(8/3,0) hull.

LEMMA 3.1. Suppose that (C, h,0,∞) is a
√

8/3-quantum cone, let (r) be the
QLE(8/3,0) starting from 0 with the quantum distance parameterization, and for each r > 0
let Br be the quantum boundary length of the outer boundary of r . There exist constants
c0, . . . , c3 > 0 such that for each r > 0 and t > 1 we have both

(3.1) P
[

sup
0≤s≤r

Bs ≤ r2/t
]
≤ c0e

−c1t
1/2

and P
[

sup
0≤s≤r

Bs ≥ r2t
]
≤ c2e

−c3t .

Recall from the construction of QLE(8/3,0) on a
√

8/3-quantum cone given in Section 2.2
that B evolves as the time-reversal of a 3/2-stable CSBP. Consequently, Lemma 3.1 is in fact
a statement about 3/2-stable CSBPs. In order to prove Lemma 3.1, we will make use of
the scaling property for 3/2-stable CSBPs explained at the end of Section 2.5. Namely, if
Y is a 3/2-stable CSBP starting from Y0 = x and α > 0 then α−2Yαt is a 3/2-stable CSBP
starting from α−2x. We will also make use of the relationship between a 3/2-stable Lévy
process with downward jumps conditioned to be nonnegative and the law of a 3/2-stable
Lévy process run until the first time that it hits 0. Results of this type are explained in [9],
Chapter VII, Section 4.

PROOF OF LEMMA 3.1. Let Y be a 3/2-stable CSBP and let ζ = inf{t > 0 : Yt = 0}
starting from Y0. For each x ≥ 0, we let Px[·] be the law under which Y0 = x.

In order to prove the first inequality of (3.1), it suffices to show that the following is true.
There exist constants c0, c1 > 0 such that the probability that there is an interval of length at
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least r during which Y is contained in [0, r2/t] is at most c0e
−c1t

1/2
under the law Px with

x ≥ r2/t . By applying scaling as described at the end of Section 2.5, it in turn suffices to
show that the probability of the event E that there is an interval of length at least t1/2 during
which Y is contained in [0,1] is at most c0e

−c1t
1/2

under the law Px with x ≥ 1.
To see that this is the case, we define stopping times inductively as follows. Let τ0 =

inf{t ≥ 0 : Yt ≤ 1} and σ0 = ζ ∧ inf{t ≥ τ0 : Yt ≥ 2}. Assuming that we have defined stopping
times τ0, . . . , τk and σ0, . . . , σk for some k ∈ N, we let τk+1 = inf{t ≥ σk : Yt ≤ 1} and σk+1 =
ζ ∧ inf{t ≥ τk+1 : Yt ≥ 2}. Let N = min{k : Yσk

= 0}. Then N is distributed as a geometric
random variable. Note that there exist constants c0, c1 such that for each k, we have that
P[σk − τk ≥ t1/2 |N ≥ k] ≤ c0e

−c1t
1/2

because in each round of length 1, Y has a uniformly
positive chance of exiting (0,2). Observe that

(3.2)

P[E] ≤∑
k

P
[
σk − τk ≥ t1/2,N ≥ k

]
=∑

k

P
[
σk − τk ≥ t1/2 |N ≥ k

]
P[N ≥ k]

≤ c0e
−c1t

1/2 ∑
k

P[N ≥ k] = E[N ]c0e
−c1t

1/2
.

The first inequality of (3.1) thus follows by possibly increasing the value of c0.
We will now prove the second inequality of (3.1). It suffices to show that there exist con-

stants c2, c3 > 0 such that the probability that there is an interval of length at most r in which
Y starts at r2t and then exits at 0 is at most c2e

−c3t . By scaling, it suffices to show that there
exist constants c2, c3 > 0 such that the probability of the event E that there is an interval of
length at most t−1/2 in which Y starts at 1 and then exits at 0 is at most c2e

−c3t . To show that
this is the case, we assume that we have defined stopping times σk , τk and N as in our proof
of the first inequality of (3.1). Note that (recall (2.25) and (2.32))

(3.3) Px[ζ ≤ v] = lim
λ→∞ Ex[exp(−λYv)

]= lim
λ→∞ exp

(−xuv(λ)
)= exp

(−4x/v2).
Evaluating (3.3) at x = 1 and v = t−1/2 implies that there exist constants c2, c3 > 0 such
that P[σk − τk ≤ t−1/2 |N ≥ k] ≤ c2e

−c3t . Thus the second inequality in (3.1) follows the
calculation in (3.2) used to complete the proof of the first inequality of (3.1). �

3.2. Quantum area of QLE(8/3,0) hull.

LEMMA 3.2. Let (C, h,0,∞) be a
√

8/3-quantum cone, let (r) be the QLE(8/3,0)

growing from 0 with the quantum distance parameterization and for each r > 0 let Ar be the
quantum area of r . There exist constants a0, c0, c1 > 0 such that

(3.4) P
[
Ar ≤ r4/t

]≤ c0 exp
(−c1t

a0
)

for all r > 0, t ≥ 1.

Before we give the proof of Lemma 3.2, we first need to record the following fact.

LEMMA 3.3. There exists a constant c0 > 0 such that the following is true. Suppose that
(S , h) has the law of a quantum disk with quantum boundary length �. Then

(3.5) E
[
μh(S)

]= c0�
2.

PROOF. Recall that the law of a quantum disk with boundary length � can be sampled
from by first picking (S , h) from the law of the unit boundary length quantum disk and
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then taking the field h + 2γ −1 log�. Note that adding 2γ −1 log� to the field has the effect of
multiplying quantum boundary lengths (resp., areas) by � (resp., �2). [46], Proposition 6.5,
implies that the law of a quantum disk with given boundary length weighted by its quantum
area makes sense as a probability measure which is equivalent to the quantum area having
finite expectation. Combining this with the aforementioned scaling implies the result. �

PROOF OF LEMMA 3.2. For each r > 0, we let Br be the quantum length of the outer
boundary of r . Fix r > 0. Then we know from Lemma 3.1 that there exist constants c0, c1 >

0 such that

(3.6) P
[

sup
0≤s≤r

Bs ≤ r2/t
]
≤ c0 exp

(−c1t
1/2) for each t ≥ 1.

Suppose that X is a 3/2-stable Lévy process with only downward jumps and let Px[·] be the
law under which X0 = x. Let W have law P[· |X ≥ 0] (see [9] for a careful definition of this
law) and write Pw[·] for the law of W under which W0 = w. Then we know that the law of
B is equal to the law of W under P0 after performing the time change as in (2.31) (recall the
importance of this time-change in the context of QLE(8/3,0), as discussed around (2.2)). Fix
t ≥ 1. It then follows from (3.6) that the probability that W hits r2/t before the time which
corresponds to when  has quantum radius r is at least 1 − c0 exp(−c1t

1/2).
We are now going to argue that, by possibly adjusting the values of c0, c1 > 0, we have that

the probability that W takes less than r3/t3 units of time to hit r2/t is at most c0 exp(−c1t).
To see this, we let τ be the first time that W hits r2/(2t). Then it suffices to show that
the probability that W starting from r2/(2t) takes less than r3/t3 time to hit r2/t is at most
c0 exp(−c1t). Since the probability that a 3/2-stable Lévy process with only downward jumps
starting from r2/(2t) to hit r2/t before hitting 0 is uniformly positive in r > 0 and t ≥ 1 (by
scaling), it suffices to show that the probability that X starting from r2/(2t) hits r2/t in less
than r3/t3 time is at most c0 exp(−c1t). This, in turn, follows from Lemma 2.8.

Suppose that 0 < a < b < ∞. The number of downward jumps made by X in time r3/t3

of size between a and b is distributed as a Poisson random variable with mean given by a
constant times

(3.7)
r3

t3

∫ b

a
s−5/2 ds = 2

3
· r3

t3

(
a−3/2 − b−3/2).

In particular, the number of jumps made by X in time r3/t3 of size between 1
2r2t−8/3 and

r2t−8/3 is Poisson with mean proportional to t . Therefore, it follows from Lemma 2.9 that
there exist constants c2, c3 > 0 such that the probability of the event that the number of such
jumps is fewer than 1/2 its mean is at most c2 exp(−c3t). It follows from the argument of
the previous paragraph that the same holds for W . We note that each of the jumps of W

corresponds to a quantum disk cut out by |[0,r] and the size of the jump corresponds to
the quantum boundary length of the disk. Since the law of a quantum disk with boundary
length � can be obtained from the law of a quantum disk with boundary length 1 and then
adding 2γ −1 log� to the field, we have that the following is true. There exists a > 0 so
that the probability that fewer than 1/2 of these disks have quantum area which is larger
than a times the conditional expectation of the quantum area given its quantum boundary
length is at most c4 exp(−c5t) where c4, c5 > 0 are constants. By Lemma 3.3, the conditional
mean of the quantum area of such a quantum disk given its quantum boundary length is
proportional to r4t−16/3 (when the boundary length is proportional to r2t−8/3), combining
all of our estimates implies (3.4). �
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3.3. Regularity of the quantum area measure on a γ -quantum cone. The purpose of
this section is to record an upper bound for the quantum area measure associated with a
γ -quantum cone.

PROPOSITION 3.4. Fix γ ∈ (0,2) and let

(3.8) α = (γ 2 − 4)2

4(4 + γ 2)
.

Suppose that (C, h,0,∞) is a γ -quantum cone with the circle average embedding. Fix ζ ∈
(0, α) and let HR,ζ be the event that for every z ∈ C and s ∈ (0,R) such that B(z, s) ⊆ D we
have that μh(B(z, s)) ≤ sα−ζ . Then P[HR,ζ ] → 1 as R → 0 with ζ > 0 fixed.

PROOF. We first suppose that h is a whole-plane GFF on C with the additive constant
fixed so that h1(0) = 0 and let μh be the associated quantum area measure. Fix q ∈ (0,4/γ 2).
Then [54], Proposition 3.7, implies that there exists a constant cq > 0 such that with

ξ(q) =
(

2 + γ 2

2

)
q − γ 2

2
q2

we have that

(3.9) E
[
μh

(
B(z, s)

)q]≤ cqsξ(q).

Let α be as in (3.8) and fix ζ ∈ (0, α). It therefore follows from (3.9) and Markov’s inequality
that

(3.10) P
[
μh

(
B(z, s)

)≥ sα−ζ ]≤ cqs
ξ(q)−(α−ζ )q .

Let

q∗ = 4 + γ 2

2γ 2 ∈
(

0,
4

γ 2

)
be the value of q that maximizes ξ(q). Note that

α = ξ(q∗) − 2

q∗

so that the exponent on the right-hand side of (3.10) with q = q∗ is strictly larger than 2.
Therefore, applying the Borel–Cantelli lemma along with (3.10) on a dyadic partition of D
implies the result in the case of the whole-plane GFF.

We are now going to deduce the result in the case of a γ -quantum cone from the result in
the case of the whole-plane GFF using absolute continuity. We suppose now that (C, h̃,0,∞)

is a γ -quantum cone with the circle average embedding. If B ⊆ D is any box with positive
distance to 0, we have that the law of h|B is mutually absolutely continuous with respect to
the law of h̃|B . In particular, if we define H̃B

R,ζ in the same manner as HR,ζ except with μh̃

restricted to B in place of μ then we have that P[H̃B
R,ζ ] → 1 as R → 0 with ζ ∈ (0, α) fixed.

Let η̃′ be a space-filling SLEκ ′ from ∞ to ∞ sampled independently of h̃ and then repa-
rameterized by quantum area as assigned by h̃. That is, we have that μh̃(η̃

′([s, t])) = t − s

for all s < t . We normalize time so that η̃′(0) = 0. Then we know from [17], Theorem 1.13,
that the joint law of (h̃, η̃′) is the same as the joint law of (h̃(· + η̃′(t)), η̃′(· + t)− η̃′(t)) (i.e.,
the field and path after recentering so that η̃′(t) becomes the origin) and then rescaling so that
the new field has the circle average embedding.

Note that for t > 0 small we have that η̃′(t) has probability arbitrarily close to 1 of being
in a box B as above with rational coordinates. The result therefore follows by scaling. �
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4. Euclidean size bounds for QLE(8/3,0). The purpose of this section is to establish
bounds for the Euclidean size of a QLE(8/3,0) process growing on a

√
8/3-quantum cone.

The lower bound is obtained in Section 4.1 by combining Proposition 3.4 established just
above with the lower bound on the quantum area cut off from ∞ by a QLE(8/3,0) established
in Lemma 3.2. In Section 4.2, we will first give an upper bound on the Euclidean diameter of
a QLE(8/3,0) and then combine this with the results of Section 3.3 to obtain an upper bound
on the quantum area of the hull of a QLE(8/3,0).

4.1. Diameter lower bound.

PROPOSITION 4.1. Suppose that (C, h,0,∞) is a
√

8/3-quantum cone with the cir-
cle average embedding. Let HR,ζ be the event from Proposition 3.4. There exist constants
c0, . . . , c3 > 0 depending only on R, ζ such that the following is true. Let (r) be the hull
of a QLE(8/3,0) process starting from 0 parameterized by quantum distance. For each
r ∈ (0,R), we have that

(4.1) P
[
diam(r) ≤ rc0,HR,ζ

]≤ c1 exp
(−c2r

−c3
)
.

PROOF. This follows by combining (3.4) of Lemma 3.2 with the definition of HR,ζ . �

4.2. Diameter upper bound.

PROPOSITION 4.2. Suppose that (C, h,0,∞) is a
√

8/3-quantum cone with the circle
average embedding. Let (r) be a QLE(8/3,0) process starting from 0 with the quantum
distance parameterization. For each p > 0, there exists a constant a0 = a0(p) > 0 so that

(4.2) P
[
diam(r) ≥ ra0

]= O
(
rp) as r → 0.

Moreover, there exist constants c1 > 0 and a1 > 4 such that

(4.3) E
[
diam(r)

41{diam(r )≤1}
]≤ c1r

a1 for all r > 0.

The part of Proposition 4.2 asserted in (4.2) will be used in the proof of Theorem 1.1 and
Theorem 1.2. The part which is asserted in (4.3) will be used in the proof of the main result
of [49].

We will divide the proof of Proposition 4.2 into three steps (see Figure 3 for an illus-
tration). The first step, carried out in Section 4.2.1, is to give a tail bound for the quantum
boundary length of ∂C+ assigned by a free boundary GFF on C+ with the additive constant
fixed so that the average on ∂C+ is equal to 0. Using the resampling characterization of the
unexplored region of a

√
8/3-quantum cone established in [46], we will then deduce from

this in Section 4.2.2 that it is very unlikely for the harmonic extension of the values of the
field from ∂C+ to C+ restricted to C+ + r to be large where r > 0 is fixed. We will then use
this result to complete the proof of Proposition 4.2 in Section 4.2.3.

Before we proceed to the proof, we will first deduce an upper bound on the quantum area
in the hull of a QLE(8/3,0).

COROLLARY 4.3. Let HR,ζ be as in Proposition 3.4. For every β > 0 there exists r0, α ∈
(0,1) such that the following is true. Let (C, h,0,∞) be a

√
8/3-quantum cone with the circle

average embedding and let (r) be a QLE(8/3,0) starting from 0 with the quantum distance
parameterization. For each r > 0, let Ar be the quantum area cut off by r from ∞. Then
there exists a constant c0 > 0 such that

P
[
Ar ≥ rα,HR,ζ

]≤ c0r
β for all r ∈ (0, r0).
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FIG. 3. Illustration of the argument used to prove Proposition 4.2. Shown on the left is a QLE(8/3,0) process
 on a

√
8/3-quantum cone (C, h,0,∞) starting from 0 run up to quantum distance time ε > 0. If � denotes the

quantum boundary length of ε , then the conditional law of the surface parameterized by C \ ε is given by m�.
The map ϕ takes C \ ε to C \ D, which fixes and has positive derivative at ∞. To bound diam(ε), it suffices to
bound the Euclidean length of ψ(∂B(0,2)) where ψ = ϕ−1. By solving for log |ψ ′| in the change of coordinates
formula h̃ = h ◦ ψ + Q log |ψ ′| for quantum surfaces and using that log |ψ ′| is harmonic, it in turn suffices to
bound the extremes of the harmonic extensions of h and h̃ from ∂ε to C \ ε and from ∂D to C \ D, respectively.

PROOF. Fix β > 0 and let δ = β so that the assertion of (4.2) from Proposition 4.2 holds
with probability c3r

β . Then it is easy to see from the definition of HR,ζ that the result holds
for r0 = R1/a0 and a value of α ∈ (0,1) sufficiently small. �

4.2.1. Quantum boundary length tail bounds for the free boundary GFF. We turn to es-
tablish a tail bound for the quantum boundary length assigned by a free boundary GFF on C+
to ∂C+ where the additive constant is set so that its average on ∂C+ is equal to 0. This result
is analogous to [19], Lemma 4.5, and we will make use of a similar strategy for the proof.

PROPOSITION 4.4. Suppose that h is a free boundary GFF on C+ with the additive
constant fixed so that its average on ∂C+ is equal to 0. Fix γ ∈ (0,2). There exist constants
c0, c1 > 0 such that the following is true. Let B be the quantum boundary length of ∂C+ and
B̃ = 2γ −1 logB . Then

(4.4) P[B̃ ≤ η] ≤ c0e
−c1η

2
for all η ∈ R−.

Let h be the function which is harmonic in C+ with boundary values given by those of h on
∂C+. Then the same is also true if we let r > 0 and then fix the additive constant for h so that
supz∈(C++r) h(z) = 0.

We need three preparatory lemmas in order to establish Proposition 4.4.

LEMMA 4.5. Suppose that f : R− → [0,1] is an increasing function such that there
exist constants c0, c1 > 0, α ∈ (1/

√
2,1), and η0 ∈ R− such that

(4.5) f (η) ≤ e−c0η
2 + (f (αη − c1)

)2 for all η ≤ η0.

Then there exists a constant c2 > 0 and η1 ∈ R− such that

(4.6) f (η) ≤ e−c2η
2

for all η ≤ η1.
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PROOF. We set aK = η and then inductively set ak−1 = αak − c1 for k ≥ 1 where we
have chosen K so that a0 ≥ −2c1. Let

qk = f (ak)

e−c0a
2
k

for each k ∈ N.

We have that

qk ≤ 1 + q2
k−1e

−c0(2a2
k−1−a2

k ) (by (4.5))

≤ 1 + q2
k−1e

−c0(2α2−1)a2
k .

It is not difficult to see from this that qk is bounded by a constant which does not depend on
η, from which the result follows. �

LEMMA 4.6. Suppose that h is a GFF with zero boundary conditions on a bounded
domain D, U ⊆ D is open with dist(∂U, ∂D) > 0, and K ⊆ U is compact. Let h̃ be the
projection of h onto the subspace of functions in H(D) which are harmonic on U . There
exist constants c0, c1 > 0 depending only on U , K and D such that

(4.7) P
[
sup
z∈K

∣∣h̃(z)
∣∣≥ η

]
≤ c0e

−c1η
2

for all η ≥ 0.

The same is also true if h is a whole-plane GFF with the additive constant fixed so that its
average on ∂D is equal to 0, U ⊆ D is open with dist(U, ∂D) > 0, and K ⊆ U is compact.

PROOF. We will give the proof in the case that h is a GFF on a bounded domain D with
zero-boundary conditions. The proof in the case of the whole-plane GFF is analogous.

Fix r0 > 0 such that z ∈ K implies that B(z, r0) has distance at least r0 to ∂U and let
r1 = 1

2r0 and r2 = 1
2r1. Fix z ∈ K and, for w ∈ B(z, r1), let μz,w denote harmonic measure in

B(z, r1) as seen from w. Then we can write

h̃(w) =
∫

h̃(u) dμz,w(u)

and, therefore, ∣∣h̃(w)
∣∣≤ ∫ ∣∣h̃(u)

∣∣dμz,w(u).

Note that there exists a constant c0 > 0 such that

sup
w∈B(z,r2)

∣∣h̃(w)
∣∣≤ c0

∫ ∣∣h̃(u)
∣∣dμz,z(u).

By the compactness of K , it suffices to show that there exist constants c1, c2 > 0 such that

P
[∫ ∣∣h̃(u)

∣∣dμz,z(u) ≥ η

]
≤ c1e

−c2η
2

for all η ≥ 0.

Fix α > 0. By two applications of Jensen’s inequality, we have that

(4.8) E
[
exp

((
α

∫ ∣∣h̃(u)
∣∣dμz,z(u)

)2)]
≤
∫

E
[
eα2|h̃(u)|2]dμz,z(u).

The right-hand side of (4.8) is finite for α > 0 small enough uniformly in z ∈ K since h̃(u) is
a Gaussian with variance which is uniformly bounded over u ∈ ∂B(z, r1) for z ∈ K . This, in
turn, implies the result. �
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LEMMA 4.7. Suppose that h is a GFF on D with zero boundary conditions. Fix γ ∈
(0,2). Let B be the quantum boundary length of [−1/2,1/2] measured using the field

√
2h

and let B̃ = 2γ −1 logB . There exist constants c0, c1 > 0 such that

P[B̃ < η] ≤ c0e
−c1η

2
for all η ∈ R−.

By the odd/even decomposition [57], Section 3.2, it follows that the law of the restriction
of

√
2h as in the statement of Lemma 4.7 is mutually absolutely continuous with respect

to the law of the corresponding restriction of a free boundary GFF on H. Consequently, the
quantum boundary length of [−1/2,1/2] assigned by

√
2h is well-defined.

PROOF OF LEMMA 4.7. Let h̃ be the projection of h onto the subspace of functions,
which are harmonic in C− = B(−1/4,1/4) and C+ = B(1/4,1/4). Then we have that ĥ =
h− h̃ is given by a pair of independent zero-boundary GFFs in C−, C+. Let B− (resp. B+) be
the quantum boundary length of [−3/8,−1/8] (resp., [1/8,3/8]) computed using the GFF√

2ĥ. Let h be the infimum of h̃ on [−3/8,−1/8] ∪ [1/8,3/8] and let B̃± = 2γ −1 logB±.

Then B̃−, B̃+ are independent, B̃−, B̃+ d= B̃ − Q log 4 and

(4.9) B̃ ≥ max(B̃−, B̃+) + √
2h.

For each η ≤ 0, we let f (η) = P[B̃ < η]. Fix α > 0. Then we have that

f (η) ≤ P[h ≤ αη] + P[B̃ < η,h > αη]
≤ c0e

−c1α
2η2 + P[B̃− + √

2αη < η, B̃+ + √
2αη < η] (Lemma 4.6) and (4.9))

≤ c0e
−c1α

2η2 + (
f (α̃η − Q log 4)

)2 (with α̃ = 1 − √
2α).

Assume that α > 0 is chosen sufficiently small so that α̃ ∈ (1/
√

2,1). Then Lemma 4.5
implies that there exist constants c2, c3 > 0 such that f (η) < c2e

−c3η
2
, which gives the result.

�

PROOF OF PROPOSITION 4.4. Lemma 4.7 implies the result when we work in the mod-
ified setting that h is a GFF on D with zero boundary conditions and B is the quantum
boundary length of [−1/2,1/2] measured using

√
2h. We will deduce the result from this

and conformal mapping. We begin by letting ϕ be a Möbius transformation which sends
[−1/2,1/2] to X = {1

2eiθ : θ ∈ [0, π]}, that is, the semicircle of radius 1/2 in H centered
at the origin, and let ĥ = h ◦ ϕ−1 + Q log |(ϕ−1)′|. Let B̂ be the quantum boundary length
assigned to X by

√
2ĥ. Since (ϕ−1)′ is bounded from above and below on X, it follows that

there exist constants c0, c1 > 0 such that

P
[
2γ −1 log B̂ < η

]≤ c0e
−c1η

2
for all η ∈ R−.

Two applications of Lemma 4.6 and the Markov property imply that the same is true for
the quantum length B̂ assigned to X by

√
2ĥ where ĥ is a zero-boundary GFF on D and,

therefore, by a union bound the same is true for the quantum length assigned to 1
2∂D by√

2ĥ. The result for the whole-plane GFF then follows by applying the Markov property and
Lemma 4.6 again. Finally, the result for the GFF on C with free boundary conditions follows
by using the odd/even decomposition [57], Section 3.2, of the free boundary GFF on C+ in
terms of the whole-plane GFF on C . The proof in the setting that we fix the additive constant
for h so that supz∈C++r h(z) = 0 is analogous. �
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4.2.2. Harmonic tail bound for the unexplored region of a quantum cone. We are now
going to use Proposition 4.4 to show that the harmonic extension of the boundary values of
h sampled from m1 (recall the definition from Section 2.1.3) is unlikely to be large when
restricted to C+ + r for any fixed r > 0.

PROPOSITION 4.8. For each r > 0 there exist constants c0, c1 > 0 such that the follow-
ing is true. Suppose that (C+, h) has the law m1. Let h be the harmonic extension of the
values of h from ∂C+ to C+. Then we have that

P
[

sup
z∈C++r

h(z) ≥ η
]
≤ c0e

−c1η
2

for all η ∈ R+.

We will need to collect two preliminary lemmas before we give the proof of Proposi-
tion 4.8. The first result gives that Proposition 4.4 holds when we choose the additive constant
for h in a slightly different way.

LEMMA 4.9. Fix r > 0. Suppose that we have the same setup as in Proposition 4.4, let
h be the function which is harmonic in C+ with boundary values given by those of h on ∂C+,
and that we have taken the additive constant for h so that supz∈∂C++r h(z) is equal to 0. Then
(4.4) still holds.

PROOF. This follows by a union bound using Proposition 4.4 with Lemma 4.6. �

LEMMA 4.10. For each r > 0, consider the law Pr on random fields hr defined as fol-
lows:

1. Sample h from m1.
2. Take hr to be equal to h in C+ + r and then sample hr in the annulus [0, r] × [0,2π ]

in C+ as a GFF with Dirichlet boundary conditions on ∂C+ + r given by those of h and free
boundary conditions on ∂C+.

Let h denote the harmonic extension of the values of hr from ∂C+ to C+ and let A =
supz∈C++1 h(z). Let B denote the quantum boundary length of ∂C+ and let B̃ = 2γ −1 logB .
Fix x, y ∈ R and let Iu,ε = [u,u + ε] for u ∈ {x, y}. Let Wr be the average of h on ∂C+ + r .
There exists a constant c0 > 0 such that a.s.,

lim sup
ε→0

lim sup
r→∞

Pr [A ∈ Ix,ε |Wr ]
Pr [B̃ ∈ Iy,ε |Wr ] ≤ c0e

(Q−γ )(x−y).

We recall from [46], Proposition 6.5, that the law of hr conditioned on B = 1 is equal to
m1. Thus the bound established in Lemma 4.10 will be useful in the proof of Proposition 4.8
given just below to rule out the possibility that A takes on a large value given B = 1 (via a
Bayes’ rule calculation).

PROOF OF LEMMA 4.10. For each r > 0, we let Wr be the average of h on ∂C+ + r .
The resampling properties for m1 (see, e.g., [46], Proposition 6.5) imply that

(4.10) Wr = (Q − γ )r + Ur + X,

where Ur is a standard Brownian motion with U0 = 0 and X is a.s. finite (X is given by the
average of h on ∂C+). Under Pr , the conditional law of the average of the field on ∂C+ given
Wr is that of a Gaussian random variable with mean Wr and variance r . It therefore follows
that there exists a constant c0 > 0 such that

(4.11) Pr [A ∈ Ix,ε |Wr ] ≤ c0ε√
r
e−(Wr−x)2/2r .
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We similarly have that there exists a constant c1 > 0 such that

(4.12) Pr [B̃ ∈ Iy,ε |Wr ] ≥ c1ε√
r
e−(Wr−y)2/2r .

The result follows by combining (4.11) and (4.12) and using (4.10). �

PROOF OF PROPOSITION 4.8. Let Wr , Pr , A, B , B̃ , Ix,ε and Iy,ε be as in Lemma 4.10.
By Bayes’ rule, we have that

(4.13) Pr [A ∈ Ix,ε | B̃ ∈ Iy,ε,Wr ] = Pr [A ∈ Ix,ε |Wr ]
Pr [B̃ ∈ Iy,ε |Wr ]Pr [B̃ ∈ Iy,ε |A ∈ Ix,ε,Wr ].

Lemma 4.10 implies that the lim sup as ε → 0 and r → ∞ of the first term on the right-hand
side is a.s. at most c0e

(Q−γ )(x−y). We also have that the lim sup as ε → 0 and r → ∞ of
ε−1Pr [B̃ ∈ Iy,ε |A ∈ Ix,ε,Wr ] is equal to the conditional density of B̃ at y of the law of a
GFF on C+ with free boundary conditions plus the function r �→ (Q − γ )r with the additive
constant fixed so that A = x. Call this function gx(y). Similarly, the lim sup as ε → 0 and
r → ∞ of ε−1Pr [A ∈ Ix,ε | B̃ ∈ I0,ε,Wr ] is equal to the density of A at x under m1. Call this
function f (x). Combining, we have that

f (x) ≤ c0e
(Q−γ )xgx(0).

Note that gx(0) = g(−x) where g is the density of B̃ under the law of a GFF on C+ with free
boundary conditions plus the function r �→ (Q − γ )r with the additive constant fixed so that
A = 0. Proposition 4.4 implies that there exist constants c1, c2 > 0 so that for each k ≥ 0 we
have that ∫ k+1

k
g(−s) ds ≤ c1e

−c2k
2
.

Combining, we have for η ≥ 0 and k0 = �η� that

P[A ≥ η] =
∫ ∞
η

f (s) ds ≤
∞∑

k=k0

∫ k+1

k
c0e

(Q−γ )(k+1)g(−s) ds

≤
∞∑

k=k0

c0e
(Q−γ )(k+1) × c1e

−c2k
2 ≤ c3e

−c4η
2

for constants c3, c4 > 0. That is, under m1, we have that the probability that the supremum of
the harmonic extension of the field from ∂C+ to C+ restricted to ∂C+ + 1 is at least η is at
most c3e

−c4η
2
. The same argument applies to bound the tail of the supremum of the harmonic

extension of the field from ∂C+ to C+ restricted to ∂C+ + r for any fixed value of r > 0. �

4.2.3. Proof of Proposition 4.2. Suppose that (C, h,0,∞) is a
√

8/3-quantum cone with
the circle average embedding as in the statement of the proposition and let (r) be the
QLE(8/3,0) growing from 0 to ∞.

Throughout, we let γ = √
8/3. Fix ε > 0 and let �ε be the quantum boundary length of

the outer boundary of ε . Let ϕ : C \ ε → C \ D be the unique conformal transformation
with ϕ(∞) = ∞ and ϕ′(∞) > 0 and let ψ = ϕ−1. We then let h1 = h ◦ ψ + Q log |ψ ′| −
2γ −1 log�ε so that (C \ D, h1) has the law m1.

Let R∗
ε = 4π supz∈∂B(0,2) |ψ ′(z)| and note that

(4.14) diam(ε) ≤
∫
∂B(0,2)

∣∣ψ ′(z)
∣∣dz ≤ R∗

ε ,
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where dz denotes Lebesgue measure on ∂B(0,2). It therefore suffices to show that for each
p > 0 there exist a0 = a0(p) such that

(4.15) P
[
R∗

ε ≥ εa0
]= O

(
εp) as ε → 0.

Fix ζ > 0 and let E1 = {�ε ≤ ε2−ζ }. By Lemma 3.1, we have for constants c1, c2 > 0 that
P[Ec

1] ≤ c1 exp(−c2ε
−ζ/2). It therefore suffices to work on E1.

Write h2 = h + γ log | · |. By the change of coordinates formula for quantum surfaces, we
have on the event E1 that

(4.16)

Q log
∣∣ψ ′∣∣= 2

γ
log�ε + γ log

∣∣ψ(·)∣∣+ h1 − h2 ◦ ψ

≤ 4 − 2ζ

γ
log ε + γ log

∣∣ψ(·)∣∣+ h1 − h2 ◦ ψ.

Let h1 (resp., h2) be the function which is harmonic in C \ D (resp., C \ ε) with boundary
values given by those of h1 (resp., h2) on ∂D (resp., ∂ε). Proposition 4.8 implies that there
exist constants c3, c4 > 0 such that with

E2 =
{

sup
z∈∂B(0,2)

h1(z) ≤ ζ

γ
log ε−1

}
we have P

[
Ec

2
]≤ c3 exp

(−c4ζ
2(log ε−1)2).

Therefore, it suffices to work on E2.
Since the left-hand side of (4.16) is harmonic in C \ D it follows that (4.16) holds with h1,

h2 in place of h1, h2 so that on E1 ∩ E2 we have for z ∈ ∂B(0,2) that

(4.17)

Q log
∣∣ψ ′(z)

∣∣≤ 4 − 2ζ

γ
log ε + γ log

∣∣ψ(z)
∣∣+ h1(z) − h2

(
ψ(z)

)
≤ 4 − 3ζ

γ
log ε + γ log

∣∣ψ(z)
∣∣− h2

(
ψ(z)

)
.

For z ∈ B(0,2), we note that

(4.18)
∣∣ψ(z)

∣∣≤ diam
(
ψ
(
B(0,2)

))≤ R∗
ε .

Thus by taking the supremum of both sides of (4.17) over z ∈ ∂B(0,2) we arrive at the
inequality

(4.19) Q logR∗
ε ≤ 4 − 3ζ

γ
log ε + γ logR∗

ε − inf
z∈∂B(0,2)

h2
(
ψ(z)

)
.

Let z∗ be a point in ∂B(0,2) where infz∈∂B(0,2) h2(ψ(z)) is attained. We can write
−h2(ψ(z∗)) = −h2,r (ψ(z∗)) + Z where we take r = sup{ek : k ∈ Z, ek ≤ dist(ψ(z∗),ε)}
and Z has a Gaussian tail (with bounded variance). In particular, the probability of the event
E3 = {|Z| ≤ ζ/γ log ε−1} is 1 − O(exp(−c5(ζ/γ )2(log ε−1)2)) for a constant c5 > 0. We
therefore may assume that we are working on E3. That is, −h2(ψ(z∗)) ≤ −h2,r (ψ(z∗)) +
ζ
γ

log ε−1. Fix a > 0 so that Q − γ − a > 0 and C > 0. We assume that C is chosen so
that if Ea,C is as in the statement of Corollary 2.5 in terms of the field h2 we have that
P[Ea,C] ≥ 1/2. Fix δ > 0 and let Aδ = ⋂

k∈N{supz∈B(0,1/2) |h2,e−k (z)| ≥ (2 + δ)k} be the
event from the statement of Proposition 2.4. On Aδ ∩ Ea,C , we thus have that

(4.20) − inf
z∈∂B(0,2)

h2
(
ψ(z)

)≤
⎧⎪⎪⎨⎪⎪⎩

a logR∗
ε + ζ

γ
log ε−1 + C if R∗

ε ≥ 1/2,

(2 + δ) log
(
R∗

ε

)−1 + ζ

γ
log ε−1 if R∗

ε < 1/2.
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Suppose that R∗
ε ≥ 1/2. Using (4.18) and (4.20), we have from (4.17) the upper bound

(4.21) Q logR∗
ε ≤ 4 − 4ζ

γ
log ε + (γ + a) logR∗

ε + c6,

where c6 > 0 is a constant. Rearranging (4.21) gives for a constant c7 > 0 that

(4.22) logR∗
ε ≤ 4 − 4ζ

γ (Q − γ − a)
log ε + c7.

Suppose that R∗
ε ≤ 1/2. Arguing as before, in this case, we have for a constant c8 > 0 that

(4.23) logR∗
ε ≤ 4 − 4ζ

γ (Q − γ + 2 + δ)
log ε + c8.

Combining (4.22) and (4.23) implies that there exists a0 > 0 such that P[R∗
ε ≥ εa0,Aδ,Ea,C]

decays to 0 as ε → 0 faster than any polynomial. Note that Qε,δ = {R∗
ε ≥ εa0} ∩ Aδ (resp.,

Ea,C ) depends only on h restricted to D (resp., the complement of D) provided ε > 0 is small
enough. Let h̃2 be a sample from the law of h2 conditioned on Ea,C occurring taken to be
independent of h2. Let g be the function which is harmonic in D with boundary values given
by h̃2 − h2, let φ ∈ C∞

0 (D) be such that φ|B(0,1/2) ≡ 1, and let g̃ = φg. Then h2 + g̃ = h̃2
in D. Moreover, the Radon–Nikodym derivative of the law of h2 + g̃ with respect to the law of
h2 is given by Z = exp((h2, g̃)∇ −‖g̃‖2∇/2) (see, e.g., Lemma 5.4 below). That is, weighting
the law of h2 by Z and then restricting to B(0,1/2) is the same as the law of h2 given Ea,C

restricted to B(0,1/2). Applying the Cauchy–Schwarz inequality in the first inequality and
recalling that P[Ea,C] ≥ 1/2 so that 1/P[Ea,C] ≤ 2, we thus have that

P[Qε,δ] = E
[
1Qε,δZZ−1]= E

[
1Qε,δZ−1 |Ea,C

]≤ P[Qε,δ |Ea,C]1/2E
[
Z−2 |Ea,C

]1/2

≤ 2P[Qε,δ,Ea,C]1/2E
[
Z−2]1/2

.

As we explained above, P[Qε,δ,Ea,C] decays to 0 as ε → 0 faster than any polynomial of ε

and, by Lemma 4.6, we have that

E
[
Z−2]= E

[
exp

(
3‖g̃‖2∇

)]
< ∞.

Consequently, P[Qε,δ] decays to 0 as ε → 0 faster than any polynomial of ε. This completes
the proof of (4.2) as we have that

P
[
R∗

ε ≥ εa0
]≤ P[Qε,δ] + P

[
Ac

δ

]≤ P[Qε,δ] + c0ε
δ (by Proposition 2.4 with ξ = 1/2).

In particular, we can make the right-hand side be O(εp) by taking δ = p.
On the event that diam(ε) ≤ 1, we have that the term γ log |ψ(z)| on the right-hand side

of (4.17) is bounded. We also have, using Proposition 2.4, that − infz∈∂B(0,2) h2(z) is at most
(2+δ) log(R∗

ε )−1 of an event which occurs with probability at most a constant times ε2δ(1−ζ ).
That is, by rearranging (4.17) we get for constants c9, c10 > 0 that

(4.24) logR∗
ε ≤ 4 − 3ζ

γ (Q − γ + 2 + δ)
log ε + c9

of an event, which occurs with probability at most c10ε
2δ(1−ζ ). This implies (4.3) because we

have that

4
(

4 − 3ζ

γ (Q − γ + 2 + δ)

)
+ 2δ(1 − ζ ) > 4 for all δ > 0

provided we fix ζ > 0 small enough. �
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5. Hölder continuity of the QLE(8/3,0) metric. We will prove Theorems 1.1–1.3 and
Theorem 1.6 in this section. We will prove the first two results in the setting of a

√
8/3-

quantum cone. As we will see, this setting simplifies some aspects of the proofs because a
quantum cone is invariant under the operation of multiplying its area by a constant.

To prove Theorem 1.1, we suppose that C = (C, h,0,∞) is a
√

8/3-quantum cone. We
want to get an upper bound on the amount of quantum distance time that it takes for the
QLE(8/3,0) process (r) starting from 0 to hit a point w ∈ C with |w| small. There are two
possibilities if (r) does not hit w in a given amount of quantum distance time r . First, it
could be that w is contained in the hull of r in which case we can use the bound established
in Section 5.1 just below for the quantum diameter of the hull of r to get that the quantum
distance of 0 and w is not too large. The second possibility is that w is not contained in the
hull of r in which case due to our lower bound on the Euclidean hull diameter established
in Section 4.1, we would get that the distance of w to the hull of r is much smaller than the
Euclidean diameter of r . This implies that if we apply the unique conformal map, which
takes the unbounded component of the complement of r to C \ D, which fixes and has
positive derivative at ∞ then the image of w will have modulus which is very close to 1.
Therefore, we need to get an upper bound on the quantum distance of those points in a
surface sampled from m1 parameterized by C \ D which are close to ∂D. We accomplish this
in Section 5.2.

We put all of our estimates together to complete the proof of Theorem 1.1 in Section 5.3.1
using a Kolmogorov–C̆entsov type argument, except we subdivide our space using a sequence
of i.i.d. points chosen from the quantum measure rather than the usual dyadic subdivision.

In Section 5.3.2, we will prove Theorem 1.2 using an argument which is similar to that
given in Section 5.3.1 using the upper bound on the Euclidean diameter of a QLE(8/3,0)

hull established in Section 4.2.
The estimates used to prove Theorem 1.1 and Theorem 1.2 will easily lead to the proofs

of Theorem 1.3 in Section 5.3.3 and Theorem 1.6 in Section 5.3.5.

5.1. Quantum diameter of QLE(8/3,0) hull. We are now going to give an upper bound
on the tail of the quantum diameter of a QLE(8/3,0) on a

√
8/3-quantum cone. More pre-

cisely, we will bound the tail of the amount of additional time it requires a QLE(8/3,0) on
a

√
8/3-quantum cone run for a given amount of time to fill all of the components that it has

separated from ∞. In what follows, it will be necessary to truncate on the event HR,ζ from
Proposition 3.4 in order to ensure that the tail decays to 0 sufficiently quickly.

LEMMA 5.1. Suppose that (r) is a QLE(8/3,0) process on a
√

8/3-quantum cone
(C, h,0,∞) starting from 0 with the quantum distance parameterization. Let HR,ζ be the
event as in Proposition 3.4. Fix ε > 0 and let d∗

ε be the supremum of the amount of time that
it takes (r) to fill all of the quantum disks which have been separated from ∞ by quantum
distance time ε. For every β > 0, there exists α ∈ (0,1) and c0 > 0 such that

(5.1) P
[
d∗
ε ≥ εα,HR,ζ

]≤ c0ε
β.

We note that on d∗
ε ≤ εα the quantum diameter of the hull of ε is at most 2(ε + εα).

The main input into the proof of Lemma 5.1 is the following lemma, which gives the
tail for the amount of time that it takes a QLE(8/3,0) growth starting from the boundary
of a quantum disk to hit every point in the disk. We will deduce Lemma 5.2 using that the
branching structure of a QLE(8/3,0) exploration starting from the boundary of a quantum
disk is the same as in the Brownian disk, which allows us to make use of tail bounds for the
diameter of the Brownian map (e.g., [55]). We expect, however, that it is possible to derive
a sufficiently good upper bound directly from the branching structure of the QLE(8/3,0)

exploration.
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LEMMA 5.2. Fix 0 < a < ∞ and suppose that (D,h) is a quantum disk with boundary
length � ∈ (0,1]. Let d∗ be the amount of time that it takes the QLE(8/3,0) exploration
starting from ∂D to hit every point in D. There exists a constant c0 ≥ 1 depending only on a

such that

P
[
μh(D) ≤ a |d∗ ≥ r

]≤ c0 exp
(−c−1

0 r4/3)
for all r > 0.

The QLE(8/3,0) exploration from ∂D is defined because the conditional law of the com-
ponents cut off from ∞ by the QLE exploration are given by conditionally independent quan-
tum disks given their boundary length.

PROOF OF LEMMA 5.2. The lemma is a consequence of [48], Proposition 4.23, and
the branching structure of QLE(8/3,0). In particular, the joint law of the evolution of the
boundary length of a QLE(8/3,0) on a quantum disk together with the total quantum area
is the same as that of the evolution of the boundary length of the metric growth from the
boundary of a Brownian disk determined in [48] and the amount of area. Therefore, the
joint law of the amount of time required for a QLE(8/3,0) starting from the boundary of a
quantum disk to fill the entire disk together with the total area (i.e., the pair (d∗,μh(D))) has
the same joint law as the amount of time that a metric exploration from the boundary of a
Brownian disk takes to fill the entire disk together with the amount of area. �

PROOF OF LEMMA 5.1. Suppose that α,α′ ∈ (0,1). We will adjust their values in the
proof. For each ε > 0, we let τε be the first r > 0 such that (r) cuts off a bubble such that
the amount of time it takes to subsequently fill is at least εα . We also let σε be the first r > 0
that (r) cuts off a bubble with either quantum boundary length at least εα′/4 or quantum
area at least εα′

. Fix β > 0. We have that

P
[
d∗
ε ≥ εα,HR,ζ

]= P[τε ≤ ε,HR,ζ ]
≤ P[σε ≤ τε ≤ ε,HR,ζ ] + P[τε < σε,HR,ζ ]
≤ P[σε ≤ ε,HR,ζ ] + P[τε < σε].

At the time σε , there are two possibilities. Either σε has just cut off a bubble with quantum
area at least εα′

or a bubble with quantum boundary length at least εα′/4. Given that we are
in the latter situation, the conditional probability that this bubble has area smaller than εα′

decays to 0 as ε → 0 faster than any power of ε. It therefore follows that if we let Aε be the
quantum area separated by ε from ∞, then the first term above is bounded from above by
P[Aε ≥ εα′

,HR,ζ ] plus an error term which tends to 0 as ε → 0 faster than any power of ε.
Corollary 4.3 implies that we can make α′ ∈ (0,1) small enough so that P[Aε ≥ εα′

,HR,ζ ] ≤
c0ε

β .
We now consider P[τε < σε]. Let Uε be the bubble which is cut off by (r) at the time

τε . Given its quantum boundary length �, Uε is a quantum disk with quantum boundary
length � conditioned so that the amount of time it takes a QLE(8/3,0) exploration starting
from the boundary to fill is at least εα . Therefore, P[τε < σε] is at most the probability that a
quantum disk with quantum boundary length � ≤ εα′/4 conditioned to have quantum diameter
at least εα has quantum area at most εα′

. Lemma 5.2 implies that we can choose α ∈ (0,1)

sufficiently small so that this probability decays to 0 as ε → 0 faster than any power of ε,
which completes the proof. �

5.2. Euclidean disks are filled by QLE(8/3,0) growth. We will now give an upper bound
on the amount of quantum distance time that it takes for the QLE(8/3,0) hull growing in C+
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from ∂C+ to fill a neighborhood of ∂C+ where the quantum surface has law m1. Similar to
the setting of Lemma 5.2 considered above, it makes sense to talk about the QLE(8/3,0)

hull growing from ∂C+ because m1 gives the conditional law of the quantum surface pa-
rameterized by the unbounded component when performing a QLE(8/3,0) exploration of a√

8/3-quantum cone, after rescaling so that the boundary length is equal to 1. The main result
is the following proposition.

PROPOSITION 5.3. Suppose that (C+, h) has law m1. For each β > 0, there exist con-
stants c0, α, ζ > 0 such that the following is true. Let Eα,ζ be the event that every z ∈ C+
with Re(z) < εα is contained in the QLE(8/3,0) hull of radius εζ growing from ∂C+. Then
P[Ec

α,ζ ] ≤ c0ε
β . Moreover, if we fix σ > 0 and let Aα,σ,ε be the event that the quantum area of

{z ∈ C+ : Re(z) < εα} is at most εσ , then (with α fixed) for each β > 0 there exists ζ ∈ (0,1)

such that P[Ec
α,ζ ,Aα,σ,ε] ≤ c0ε

β .

See Figures 4 and 5 for an illustration of the proof of Proposition 5.3.
We begin by recording an elementary lemma which gives the Radon–Nikodym derivative

of the GFF with mixed boundary conditions when we change the boundary conditions on the
Dirichlet part.

LEMMA 5.4. Suppose that D ⊆ C is a bounded Jordan domain and ∂D = ∂F ∪ ∂D

where ∂F, ∂D are nonempty, disjoint intervals. Let h1, h2 be GFFs on D with free (resp.,
Dirichlet) boundary conditions on ∂F (resp., ∂D). Let U ⊆ D be open with positive distance
from ∂D and let g be the function which is harmonic in D with Neumann (resp., Dirichlet)
boundary conditions ∂F (resp., ∂D) where the Dirichlet boundary conditions are given by
those of h1 − h2. Let g̃ = gφ where φ ∈ C∞(D) with φ|U ≡ 1 and which vanishes in a
neighborhood of ∂D. The Radon–Nikodym derivative Z of the law of h1|U with respect to the
law of h2|U is given by

(5.2) Z = E
[
exp

(
(h2, g̃)∇ − ‖g̃‖2∇/2

) |h2|U ].

FIG. 4. Illustration of the setup and the argument of Proposition 5.3, which shows that Euclidean disks are
filled by the QLE(8/3,0) growth. Left: a QLE(8/3,0) process r starting from the origin of a

√
8/3-quantum

cone run up to a given radius r > 0. The dashed curve indicates the range of  at time r + εζ for ζ > 0 very
small. Middle: The map ψ is the unique conformal map from C \ r to C+ with ∞ sent to +∞ and with positive
derivative at ∞. The region bounded by the dashed curve is the image under ψ of the corresponding region on the
left. Right: The map ϕ is the unique conformal map from the unbounded complementary component of the dashed
region to C+ with ϕ(z)− z → 0 as z → +∞. To prove the result (see Figure 5 for an illustration), we show in the
proof of Proposition 5.3 that by making ζ > 0 sufficiently small the event that for every z with Re(z) ∈ [ε/2, ε] we
have that Re(ϕ(z)) < ε/4 occurs with overwhelming probability. (We take Re(ϕ(z)) = 0 for points z which are to
the left of the dashed line.) Iterating this implies there exists β > 0 such that, with overwhelming probability, the
QLE(8/3,0) growing from ∂C+ absorbs all such z in time εβ .
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FIG. 5. (Continuation of Figure 4.) Shown on the left is a copy of the middle part of Figure 4, scaled so that the
law of the surface is given by m1. Suppose that Re(z) ∈ [ε/2, ε] and that ϕ is as in Figure 4. In order to show that
Re(ϕ(z)) ≤ ε/4 with overwhelming probability, we place semidisks of radius ε/(log ε−1)2 with equal spacing
ε/(log ε−1) along ∂C+. Shown on the right is an enlargement of one of the semidisks. The restriction of the field
to each semidisk is mutually absolutely continuous with respect to the law of a quantum disk. By making such a
comparison, we see that if we pick a uniformly random point inside of the semidisk and then grow the QLE(8/3,0)

starting from that point until it hits the boundary, then there is a positive chance that the QLE(8/3,0) first exits
in ∂C+ and does so in time at most εσ . By the metric property, the range of this QLE(8/3,0) is then contained
in the QLE(8/3,0) growing from ∂C+ for time εσ . Since the behavior of the field in each of the semidisks is
approximately independent, with overwhelming probability, there cannot be a collection of consecutive semidisks
so that the event does not occur for any of them. In particular, there must exist a semidisk, which close enough to
z to show that Re(ϕ(z) − z) is bounded from above by a given negative number. Iterating this yields the desired
bound.

PROOF. We first recall that if h is a GFF on a domain D ⊆ C and f ∈ H(D) then the
Radon–Nikodym derivative of the law of h + f with respect to the law of h is given by
exp((h, f )∇ − ‖f ‖2∇/2). (This is proved by using that the Radon–Nikodym derivative of the
law of a N(μ,1) random variable with respect to the law of a N(0,1) random variable is
given by exμ−μ2/2.) We can extract from this the result as follows. By the definition of g̃,
we have that (h2 + g̃)|U has the law of h1|U . Moreover, we have that the Radon–Nikodym
derivative of the law of h2 + g̃ with respect to the law of h2 is given by

exp
(
(h2, g̃)∇ − ‖g̃‖2∇/2

)
.

From this, the result immediately follows. �

Suppose that we are in the setting of Lemma 5.4 and that there exists a constant M > 0
such that

sup
z,w∈W

∣∣g(z) − g(w)
∣∣≤ M,

where W is a neighborhood of the support of φ. Then elementary regularity estimates for
harmonic functions yield that supz ‖φ(z)‖∇ ≤ c0M where the supremum is over the support
of φ and c0 is a constant depending on the support of φ. Thus for a constant c1 > 0 (depending
on the particular choice of φ) we have that

(5.3) ‖g̃‖2∇ ≤ c1M
2.

Combining the bound (5.3) with (5.2) and using, for example, the Cauchy–Schwarz inequal-
ity gives us a uniform lower bound on the probability of an event, which depends on h2|U in
terms of the probability of the corresponding event computed using the law of h1|U . We will
make use of this fact shortly.

LEMMA 5.5. Suppose that D ⊆ C is a bounded Jordan domain and ∂D = ∂F ∪∂D where
∂F, ∂D are nonempty, disjoint intervals. There exists U ⊆ D open with positive distance to
∂D, p > 0 and K < ∞ such that the following is true. Suppose that h is a GFF on D with free
(resp., Dirichlet) boundary conditions on ∂F (resp., ∂D) where the Dirichlet part differs from
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a given constant A by at most K . Pick z ∈ D uniformly from the quantum measure. Then the
QLE(8/3,0) starting from z has chance at least p of hitting ∂U first in ∂F before reaching
quantum distance time eγ/4(A+K), γ = √

8/3.

PROOF. Suppose first that (D, h̃) is a unit boundary length quantum disk and z ∈ D is
picked from the quantum measure associated with h̃. Lemma 2.1 implies that a QLE(8/3,0)

starting from z and stopped upon first hitting ∂D a.s. hits ∂D at a unique point w. Therefore,
there exists 0 < θ1 < θ2 < 2π and p > 0 so that with I given by the counterclockwise arc of
∂D from eiθ1 to eiθ2 we have that the probability of E1 = {w ∈ I } is at least p. Suppose that
x, y ∈ ∂D are chosen independently according to the quantum boundary length measure. Fix
ε > 0 so that θ1 > 4ε and θ2 < 2π − 4ε. Let E2 be the event that x (resp., y) is in the counter-
clockwise arc of ∂D from ei(θ1−ε) to eiθ1 (resp., eiθ2 to ei(θ2+ε)). Since the quantum boundary
length measure is a.s. good, it follows that by possibly decreasing the value of p > 0, we have
that the probability of E1 ∩E2 is at least p. Let ϕ : D → S be the unique conformal transfor-
mation so that ϕ(x) = −∞, ϕ(y) = +∞, and ϕ(eiθ1) = 0. Then ĥ = h̃◦ϕ−1 +Q log |(ϕ−1)′|
is the field, which describes a unit area quantum disk with the embedding as described in the
Bessel process construction from Section 2.1.1 (up to a horizontal translation).

What we have shown implies that there is a compact interval Î ⊆ R so that the probability
that a QLE(8/3,0) starting from a point chosen from the quantum measure in S associated
with ĥ first exits in Î with probability at least p > 0. Note that fixing a constant C ∈ R and
then replacing ĥ with ĥ + C does not affect the probability of this event. This implies that
the same statement holds if we replace ĥ with a sample from the law MBES conditioned on
the projection of the field onto H1(S ) exceeding 0. This further implies that the same holds
if we replace ĥ with a sample from the law MBES conditioned on the projection of the field
onto H1(S ) exceeding any fixed r ≤ 0 since under this law the conditional probability that
the projection exceeds 0 is positive. Therefore, if we take the horizontal translation so that the
projection first hits 0 at u = 0, then we may assume further that Î ⊆ R+. Since QLE(8/3,0)

a.s. hits the boundary for the first time at a unique point, we can also find Û ⊆ S open
whose boundary has positive distance to the top of ∂S so that, possibly reducing p > 0, the
probability that the QLE(8/3,0) up until first hitting ∂S is in addition contained in Û and
first exits in Î is at least p. We may assume that ∂Û ∩ R = Î . Lemma 5.4 implies that the
restriction of ĥ to Û under this law is absolutely continuous with respect to the corresponding
restriction of a GFF on S with free (resp., Dirichlet) boundary conditions on the bottom
(resp., top) of ∂S . Therefore the result follows by applying a final conformal map, which
takes S to D with R taken to ∂FD. �

We will now argue that if we place small neighborhoods at evenly spaced points on ∂C+
then the law of the field sampled from m1 restricted to each such neighborhood is approxi-
mately independent of the field restricted to the other neighborhoods, up to an additive con-
stant.

LEMMA 5.6. Suppose that h has the law of a GFF on the annulus D = [0,2π ]2 ⊆ C+
(so that the top and bottom of [0,2π ]2 are identified) with free (resp., Dirichlet) bound-
ary conditions on the left-hand (resp., right) side of ∂D = ∂F ∪ ∂D. Fix ε > 0 very small
and let x1, . . . , xn be equally spaced points on ∂F with spacing ε(log ε−1)−1. Let r = rε =
ε(log ε−1)−2. For each k, let Uk = B(xk, r)∩C+ and let hk be the function which is harmonic
in C+ \⋃j 	=k Uj with boundary conditions given by those of h on

⋃
j 	=k ∂Uj and Neumann

boundary conditions on ∂C+ \⋃j 	=k Uj . Let

�k = sup
z,w∈Uk

∣∣hk(z) − hk(w)
∣∣.
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For each M > 0, there exist constants K,c0 > 0 such that if E = {maxk �k ≤ K} then

P
[
Ec]≤ c0ε

M.

PROOF. By the odd/even decomposition of the GFF with mixed boundary conditions
(see [19], Section 6.2, or [57], Section 3.2), we can represent h as the even part of a GFF h†

on the annulus D† = [−2π,2π ] × [0,2π ] ⊆ C (so that the top and the bottom are identified)
with Dirichlet boundary conditions. Fix a value of 1 ≤ k ≤ n. The conditional law of h†

in B(xk, r) given its values on B(xj , r) for j 	= k is given by that of the sum of a GFF
on D† \⋃j 	=k B(xj , r) with zero boundary conditions and a harmonic function h

†
k . By the

odd/even decomposition, we note that

hk(z) = 1√
2

(
h

†
k(z) + h

†
k

(
z∗)),

where z∗ is the reflection of z about the vertical axis through 0. Proposition 2.4 implies that
there exists a constant c0 > 0 such that the probability of the event that |hk(z)| ≤ M log ε−1

for all z ∈ B(xk, r log ε−1) is at least 1 − c0ε
2M . Elementary regularity results for harmonic

functions then tell us that there exists a constant c1 > 0 such that, on this event, we have

sup
z,w∈B(xk,r)

∣∣hk(z) − hk(w)
∣∣≤ c1M log ε−1

r log ε−1 × r = c1M.

Applying a union bound over 1 ≤ k ≤ n implies the result. �

Lemma 5.6 implies that the restrictions of h to the sets Uk are approximately independent
off an event with small probability. We will now use this result (together with Lemma 5.5) to
argue that in each of the sets Uk , there is a positive chance that a point chosen from the quan-
tum measure on Uk has quantum distance to ∂C+ which is not too large. Since the amount of
quantum measure, which is close to ∂C+ is small, it is unlikely that there will be a consecutive
string of these points which are arbitrarily close to ∂C+. Therefore, by binomial concentra-
tion, a positive fraction of these points will be swallowed by the QLE(8/3,0) growth from
∂C+.

LEMMA 5.7. Suppose that γ = √
8/3, α ∈ (0,Q − 2), and let β = γ (Q − 2 − α)/4.

Suppose that we have the same setup as in Lemma 5.6 and fix 1 ≤ k ≤ n. There exist p > 0
and M < ∞ such that the following is true. Assume that w is picked from the quantum area
measure in Uk . Given �k ≤ K , hk(xk) ≤ (2 + α) log ε−1, and hk , the conditional probability
that the QLE(8/3,0) starting from w exits Uk in ∂C+ in at most εβ quantum distance time is
at least p.

PROOF. We will deduce the result from Lemma 5.5. We note that if we perform a change
of coordinates from Uk to {z ∈ D : Re(z) ≥ 0} via the map z �→ ε−1(log ε−1)2(z − xk)

then the correction to the field, which comes from the change of coordinates is Q(log ε −
2 log log ε−1). By the definition of the event that we assume to be working on, we have that

sup
z∈Uk

hk(z) ≤ (2 + α) log ε−1 + K.

The result thus follows as
γ

4

(
(2 + α) log ε−1 + Q log ε

)= β log ε. �

We now prove a result which, when combined with Lemma 5.7, will give a lower bound
on the rate at which the distance of the metric ball growth from a given point decreases.
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LEMMA 5.8. There exists a constant c0 > 0 such that the following is true. Fix ε > 0
and suppose that K ⊆ C+ is compact such that:

• C+ \ K is simply connected and
• For every z ∈ C+ with Re(z) ∈ [ ε

2 , ε] there exists w ∈ K with Re(w) ≥ ε(log ε−1)−2/2 and
|z − w| ≤ ε.

Let φK : C+ \ K → C+ be the unique conformal map which fixes +∞ and has positive
derivative at +∞. For all z ∈ C+ \ K with Re(z) ∈ [ ε

2 , ε] we have that

(5.4) Re(z) − Re
(
φK(z)

)≥ c0ε

(log ε−1)4 .

PROOF. Let Ew denote the expectation under the law where B is a standard Brownian
motion starting from w ∈ C+ and let σ be the first time that B leaves C+ \ K . As Re(w) −
Re(φK(w)) is harmonic in C+ \ K and Re(φK(z)) → 0 as z ∈ C+ \ K tends to K ∪ ∂C+,
we therefore have that Re(z) − Re(φK(z)) = Ez[Re(Bσ )]. From the assumptions, we thus
see that the probability of the event that Re(Bσ ) ≥ ε(log ε−1)−2/4 is at least a constant times
(log ε−1)−2 when B0 = z. Combining implies the result. �

PROOF OF PROPOSITION 5.3. Fix ε > 0. Let U1, . . . ,Un be as in Lemma 5.6 and
Lemma 5.7. Assume that γ = √

8/3 and let α ∈ (0,Q − 2), β = γ (Q − 2 − α)/4, p > 0,
and M < ∞ be as in Lemma 5.7. Let K be the hull of the QLE(8/3,0) grown from ∂C+
for quantum distance time εβ . Lemma 5.6 and Lemma 5.7 together imply that with proba-
bility at least 1 − ε2α for every z ∈ C+ with Re(z) ∈ [ε/2, ε] there exists w ∈ K such that
Re(w) ≥ ε/(log ε−1)2 and |z − w| ≤ ε. Let φK be as in Lemma 5.8. Then we have that
Re(z) − Re(φK(z)) ≥ c0ε/(log ε−1)4.

If we iterate this procedure a constant times (log ε−1)4 times then we see that the following
is true. Suppose that K denotes the hull of the QLE(8/3,0) grown from ∂C+ for quantum
distance time given by a constant times (log ε−1)4εβ and let φK be as above. Then on an
event which occurs with probability at least 1 − c1(log ε−1)4ε2α for a constant c1 > 0 we
have for all z ∈ C+ with Re(z) ∈ [ ε

2 , ε] that Re(z)− Re(φK(z)) ≥ ε
4 . The first assertion of the

proposition follows by iterating this over dyadic values of ε.
We now turn to prove the second assertion of the proposition (namely when we truncate

on the amount of quantum area which is close to ∂C+). The reason that we had the exponent
of α in the above is that we needed the field to have average at most (2 + α) log ε−1 in each
of the B(xj , r). Thus, we just need to argue that if we truncate on the amount of quantum
area close to ∂C+ being at most εσ , then with very high probability the field averages are not
larger than (2 + α) log ε−1 for some fixed value α ∈ (0,Q − 2). This, in turn, follows from
[19], Lemma 4.6. Indeed, [19], Lemma 4.6, tells us that inside such a ball it is very unlikely
for the field to assign mass smaller than

εγQ × ε−γ (2+α) = εγ (Q−2−α)

and it is easy to see that we can make this exponent larger than σ > 0 provided we make α

sufficiently close to Q − 2. �

5.3. Proof of Hölder continuity.

5.3.1. Proof of Theorem 1.1. The first step (Proposition 5.9) in the proof of Theorem 1.1
is to combine the estimates of the previous sections to bound the moments of the Euclidean
diameter of a QLE(8/3,0) starting from 0 on a

√
8/3-quantum cone. The purpose of the

subsequent lemmas is to transfer this estimate to the setting in which the QLE(8/3,0) is
starting from another point.
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PROPOSITION 5.9. Suppose that (C, h,0,∞) is a
√

8/3-quantum cone with the circle
average embedding. For every β, ζ > 0, there exist constants c0, α > 0 such that the following
is true. With Yε = supz∈B(0,ε) dQ(0, z) and HR,ζ as in Proposition 3.4 we have that

P
[
Yε ≥ εα,HR,ζ

]≤ c0ε
β for all ε ∈ (0,1).

In the setting of Proposition 5.9, dQ(0, z) denotes the amount of time that the QLE(8/3,0)

starting from 0 and targeted at z takes to reach z. This function is defined for every z ∈ C
simultaneously (with the QLE(8/3,0) always starting from 0) but at this point we have not
shown that it corresponds to a metric in this generality. We will later (Lemma 5.10) show that
dQ defines a metric on a certain countable dense set of C and, upon completing the proof of
Theorem 1.2, show that it extends to a metric dQ on all of C.

PROOF OF PROPOSITION 5.9. Fix β > 0. Let α, δ, ξ > 0 be parameters. We will adjust
their values in the proof. Let  be the hull of the QLE(8/3,0) exploration starting from 0
and stopped at the first time that it reaches quantum radius εδ . Let E be the event that the
quantum diameter of the hull of  is smaller than εα and let F be the event that B(0, ε) ⊆ .
Note that E ∩ F implies Yε < εα . Thus we have that

P
[
Yε ≥ εα,HR,ζ

]≤ P
[
Ec ∩ HR,ζ

]+ P
[
Fc ∩ HR,ζ

]
.

By Lemma 5.1 (and the comment just after the statement), we know that by making α/δ > 0
small enough we have that P[Ec ∩ HR,ζ ] ≤ c0ε

β for a constant c0 > 0.
Thus we are left to bound P[Fc ∩ HR,ζ ]. Let ̃ be the hull of the QLE(8/3,0) process

grown for quantum distance time εδ/2. We let G be the event that the Euclidean diameter of
̃ is at least εξ . Then we have that

(5.5) P
[
Fc ∩ HR,ζ

]≤ P
[
Fc ∩ G ∩ HR,ζ

]+ P
[
Gc ∩ HR,ζ

]
.

By adjusting the value of c0 > 0 if necessary and making δ > 0 small enough, Proposition 4.1
implies that the second term in (5.5) is bounded by c0ε

β . To handle the first term, we let
ϕ : C \ ̃ → C+ be the unique conformal map with ϕ(∞) = +∞ and ϕ′(∞) > 0. Since the
diameter of ̃ on G is at least εξ , it follows from the Beurling estimate that there exists a
constant c1 > 0 such that on G we have supy∈B(0,ε) Re(ϕ(y)) ≤ c1ε

(1−ξ)/2. Thus by possibly
decreasing the value of ξ > 0 and increasing the value of c0 > 0, Proposition 5.3 implies that
P[Fc ∩ G ∩ HR,ζ ] ≤ c0ε

β . �

We next show that QLE(8/3,0) defines a metric on a countable, dense subset of a
√

8/3-
quantum cone.

LEMMA 5.10. Let η′ be a space-filling SLE6 process from ∞ to ∞ on a
√

8/3-quantum
cone (C, h,0,∞) sampled independently of h and then parameterized by quantum area. Fix
s1 < s2 and let (tj ) be an i.i.d. sequence in [s1, s2] chosen from Lebesgue measure indepen-
dently of everything else. Then QLE(8/3,0) defines a metric dQ on {η′(tj ) : j ∈ N}.

PROOF. Throughout the proof, we will write dQ(s, t) for dQ(η′(s), η′(t)). First, we note
that Proposition 5.9 implies that dQ(s, t) < ∞ a.s. for any fixed s, t ∈ R. Fix s ∈ R and
suppose that we have recentered the quantum cone so that η′(t) = 0 and then we rescale so
that we have the circle average embedding. By [17], Theorem 1.13, the resulting field has the
same law as h. Then Proposition 4.2 implies that the diameter of the QLE(8/3,0) running
from η′(t) = 0 stopped at the first time that it hits η′(s) is finite a.s. and that the same is true
when we swap the roles of η′(s) and η′(t). Fix R > 0. As the restriction of h to B(0,R) is
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mutually absolutely continuous with respect to the corresponding restriction of a quantum
sphere with large area, by fixing R > 0 sufficiently large it follows from the main result of
[47] that dQ(ti , tj ) = dQ(ti, tj ) for all i, j ∈ N. Applying the same argument but with three
points implies that the triangle inequality is satisfied. �

LEMMA 5.11. For each p ∈ (0,1) there exists s1, s2 ∈ R with s1 < s2, z0 ∈ D \ {0}, and
r1 > 0 with B(z0, r1) ⊆ D \ {0} such that the following is true. Suppose that (C, h,0,∞) is
a

√
8/3-quantum cone with the circle average embedding and let η′ be a space-filling SLE6

process from ∞ to ∞ sampled independently of h and then reparameterized according to√
8/3-LQG area. Then with

(5.6) E(z0, r1, s1, s2) = {
B(z0, r1) ⊆ η′([s1, s2])⊆ D

}
we have that P[E(z0, r1, s1, s2)] ≥ p.

PROOF. First, we consider the ball B(1
2 , 1

4). Fix p > 0. Then we know that there exists
R0 > 0 such that for all R ≥ R0 we have that η′([−R2,R2]) (with the Lebesgue measure
parameterization) contains B(1

2 , 1
4) with probability at least p. Fix ε > 0. By rescaling space

by the factor ε/R, we have that the probability that η′([−ε2, ε2]) (with the Lebesgue measure
parameterization) contains B( ε

2R
, ε

4R
) is at least p. The result follows because by making

ε > 0 sufficiently small, we can find δ > 0 such that η′([−δ, δ]) (with the quantum area
parameterization) is contained in D and contains η′([−ε2, ε2]) (with the Lebesgue measure
parameterization) with probability at least p. �

LEMMA 5.12. Suppose that (C, h,0,∞) is a
√

8/3-quantum cone with the circle av-
erage embedding. Let η′ be a space-filling SLE6 from ∞ to ∞ sampled independently of h

and then reparameterized by
√

8/3-LQG area. For each t ∈ R and r > 0, let h̃t,r be the field
which is obtained by translating so that η′(t) is sent to the origin and then rescaling by the
factor r . Fix 0 < s1 < s2. For each t ∈ [s1, s2], let R(t) be such that h̃t,R(t) has the circle
average embedding. Fix r1 > 0 and z0 ∈ D so that B(z0, r1) ⊆ D\ {0} and let E(z0, r1, s1, s2)

be as in (5.6). There exist constants c0, c1 > 0 such that for each d ∈ (0,1) with

(5.7) F(z0, r1, s1, s2, d) = {∀t ∈ [s1, s2] : η′(t) ∈ B(z0, r1),R(t) ∈ [d, d−1]}
we have

(5.8) P
[
F(z0, r1, s1, s2, d)c ∩ E(z0, r1, s1, s2)

]≤ c0d
c1 .

PROOF. We note that R(t) < r is equivalent to infs≥r (hs(η
′(t)) + Q log s) > 0. There-

fore, the event that R(t) < r for some t ∈ [s1, s2] so that η′(t) ∈ B(z0, r1) is equivalent to

sup
t∈[s1,s2]

η′(t)∈B(z0,r1)

(
inf
s≥r

(
hs

(
η′(t)

)+ Q log s
))

> 0.

This event is in turn contained in supz∈B(z0,r1)
(hr(z)+Q log r) > 0. Using that Q > 2, Propo-

sition 2.4 implies that there exist constants c0, c1 > 0 such that

(5.9) P
[

sup
z∈B(z0,r1)

(
hr(z) + Q log r

)
> 0

]
≤ c0r

c1

for all r ∈ (0,dist(B(z0, r1), ∂D)). (Note that we can apply Proposition 2.4 here because, by
our normalization, the law of h restricted to D is equal to that of a whole-plane GFF plus
−γ log |z| normalized to have average equal to 0 on ∂D.) This implies the desired upper
bound for the probability that R(t) < d for some t ∈ [s1, s2] with η′(t) ∈ B(z0, r1).
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The desired upper bound for the probability that R(t) > d−1 for some t ∈ [s1, s2] with
η′(t) ∈ B(z0, r1) follows because hs(0) + Q log s > 0 for all s ≥ 1 because h has the circle
average embedding. In fact, since hs(0) + Q log s for s ≥ 1 evolves as a time-change of a
Brownian motion with positive drift (Q − γ ) > 0 conditioned to be nonnegative, the proba-
bility that infs≥r (hs(0)+Q log s) ≤ 1 decays to 0 faster than a negative power of r as r → ∞.
It therefore suffices to show that sups≥r supz∈B(z0,r1)

|hs(0) − hs(z)| ≥ 1 decays to 0 faster
than a negative power of r as r → ∞. This, in turn, follows from Proposition 2.3 together
with Lemma 2.7. �

LEMMA 5.13. Suppose that (C, h,0,∞) is a
√

8/3-quantum cone with the circle aver-
age embedding. Let E(z0, r1, s1, s2) be as in (5.6). Let (wj ) be an i.i.d. sequence of points
picked from μ = μh restricted to η′([s1, s2]) and let N = δ(log ε−1)ε−γQ−(2+δ)γ where
γ = √

8/3. Let G be the event that {w1, . . . ,wN } ∩ B(z0, r1) forms an ε-net of B(z0, r1)

(i.e., B(z0, r1) ⊆ ⋃N
j=1 B(wj , ε)). There exists a constant c0 > 0 which depends on z0, r1

such that

P
[
Gc ∩ E(z0, r1, s1, s2)

]≤ c0ε
δ.

PROOF. Let z1, . . . , zk be the elements of ε
4Z2 which are contained in B(z0, r1). Propo-

sition 2.4 implies that for each ξ ∈ (0,1) there exists a constant c0 > 0 such that

(5.10) P
[

min
1≤j≤k

hε(zj ) ≤ (2 + δ) log ε
]
≤ c0ε

2δ(1−ξ).

Combining [19], Lemma 4.6, with (5.10), we have by possibly adjusting the values of c0 > 0
and ξ that

(5.11) P
[

min
1≤j≤k

μh

(
B(zj , ε)

)≤ εγQ+(2+δ)γ
]
≤ c0ε

2δ(1−ξ).

On the complement of the event in (5.11), the probability that none of w1, . . . ,wN are con-
tained in B(zj , ε) is at most(

1 − εγQ+(2+δ)γ )N ≤ exp
(−NεγQ+(2+δ)γ )≤ εδ.

Combining this with (5.11) implies the result. �

We will now use Proposition 5.9 and Lemmas 5.11–5.13 to prove that dQ is Hölder contin-
uous with positive probability on B(z0, r1). We will afterwards explain how to deduce from
this the almost sure local Hölder continuity of dQ on all of C, thus completing the proof of
Theorem 1.1.

LEMMA 5.14. Suppose that (C, h,0,∞) is a
√

8/3-quantum cone with the circle aver-
age embedding. On the events E(z0, r1, s1, s2), F(z0, r1, s1, s2, d) from (5.6), (5.7), we have
that the quantum distance dQ restricted to pairs of points in B(z0, r1) is a.s. Hölder continu-
ous (with deterministic Hölder exponent).

PROOF. Throughout, we shall assume that we are working on the event HR,ζ of Propo-
sition 3.4 and we will prove the almost sure Hölder continuity on this event. We note that it
suffices to do so since Proposition 3.4 implies that P[HR,ζ ] → 1 as R → 0 with ζ fixed.

For each j , we let Nj = e9j (note that 9 > (Q + 3)γ for γ = √
8/3) and we pick Uj =

{wj
1 , . . . ,w

j
Nj

} i.i.d. from the
√

8/3-LQG area measure restricted to η′([s1, s2]). Equivalently,

we can first pick t
j
1 , . . . , t

j
Nj

i.i.d. from [s1, s2] uniformly using Lebesgue measure and then
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take w
j
i = η′(tji ). We assume that the Uj are also independent as j varies. By Lemma 5.13,

the probability of the event Ej that Uj forms an e−j -net of B(z0, r1) is at least 1 − c0e
−j

where c0 > 0 is a constant.
By [17], Theorem 1.13, we have that the joint law of (C, h,0,∞) and η′ is invariant

under the operation of translating so that η′(tji ) is sent to the origin and then rescaling so
that the resulting surface has the circle average embedding. Let hi,j be the resulting field.
Proposition 5.9 implies that for each β > 0 we can find α > 0 such that for each i, j , the
probability that the quantum diameter of B(0, e−j ) as measured using the field hi,j is larger
than e−αj is at most c1e

−βj where c1 > 0 is a constant. Thus on the event Ej , this implies that

the probability that the quantum diameter of B(w
j
i , e−j ) is larger than e−αj is at most c2e

−βj

for a constant c2 > 0. Therefore, by a union bound, the probability that the quantum diameter
of any of the B(w

j
i , e−j ) is larger than e−αj is at most c1e

(9−β)j . Assume that β > 9. Thus by
the Borel–Cantelli lemma, it follows that there a.s. exists J0 < ∞ (random) such that j ≥ J0

implies that Uj is an e−j -net of B(z0, r1) and the maximal quantum diameter of B(w
j
i , e−j )

is e−αj for all 1 ≤ i ≤ Nj .
Let U =⋃

j Uj . We will now extract the Hölder continuity of (z,w) �→ dQ(z,w) for z,w ∈
Ũ = U ∩ B(z0, r1). Assume that z,w, z′,w′ ∈ Ũ and assume that dQ(z,w) ≥ dQ(z′,w′). By
repeated applications of the triangle inequality (Lemma 5.10), we have that

(5.12)

dQ(z,w) − dQ
(
z′,w′)≤ dQ

(
z, z′)+ dQ

(
z′,w

)− dQ
(
z′,w′)

≤ dQ
(
z, z′)+ dQ

(
z′,w′)+ dQ

(
w′,w

)− dQ
(
z′,w′)

= dQ
(
z, z′)+ dQ

(
w,w′).

Consequently, it suffices to show that there exist constants M,a > 0 such that dQ(z,w) ≤
M|z − w|a for all z,w ∈ Ũ . It in fact suffices to show that this is the case for all z,w ∈ Ũ
with |z − w| ≤ e−J0 and J0 as above. Indeed, if this is the case and z,w ∈ Ũ are such that
|z − w| > e−J0 then we can find z0 = z, z1, . . . , zn−1, zn = w ∈ Ũ with n ≤ eJ0 and then we
can use the triangle inequality to get that

dQ(z,w) ≤
n∑

j=1

dQ(zj−1, zj ) ≤ Mne−aJ0 ≤ MeJ0 |z − w|α.

Fix z,w ∈ Ũ with |z − w| ≤ e−J0 and take j0 ∈ N so that e−j0−1 ≤ |z − w| ≤ e−j0 .
Then we can find u0 = v0 in Uj0 such that |u0 − w| ≤ e−j0 and |v0 − z| ≤ e−j0 . This im-
plies that dQ(u0,w) ≤ e−αj0 and dQ(v0, z) ≤ e−αj0 . For each j ≥ j0 + 1, we can induc-
tively find uj−j0, vj−j0 ∈ Uj with |uj−j0 − uj−j0−1| ≤ e−j , |vj−j0 − vj−j0−1| ≤ e−j , hence
dQ(uj−j0, uj−j0−1) ≤ e−αj and dQ(vj−j0, vj−j0−1) ≤ e−αj . Therefore, we have that

dQ(z,w) ≤ dQ(u0,w) + dQ(v0, z) +
∞∑
i=1

dQ(ui, ui−1) +
∞∑
i=1

dQ(vi, vi−1)

≤ M0

∞∑
i=0

e−α(i+j0) ≤ M1e
−αj0 ≤ M2|z − w|α,

where M0,M1,M2 > 0 are constants. Therefore, (z,w) �→ dQ(z,w) is a.s. Hölder continuous
on Ũ . Since the set Ũ is a.s. dense in B(z0, r1), it follows that dQ a.s. extends to be Hölder
continuous in (z,w) for z,w ∈ B(z0, r1). �

PROOF OF THEOREM 1.1. By Lemma 5.14, we know that on the events E(z0, r1, s1, s2)

and F(z0, r1, s1, s2, d) we have the almost sure Hölder continuity of dQ restricted to pairs
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z,w ∈ B(z0, r1). Fix t ∈ (s1, s2). Since translating by −η′(t) and then rescaling so that the
surface has the circle average embedding is a measure preserving transformation, it follows
that the probability that dQ is Hölder continuous in a neighborhood of the origin is at least
the probability p of E(z0, r1, s1, s2) and F(z0, r1, s1, s2, d). Since the law of (C, h,0,∞) is
invariant under the operation of multiplying its area by a constant, we have that the probability
that dQ is Hölder continuous in any compact subset of C is also at least p. The almost sure
continuity of the QLE(8/3,0) metric on a

√
8/3-quantum cone restricted to compact subsets

of C follows because by Lemma 5.11 and Lemma 5.12 we know that by adjusting the values
of z0, r1, s1, s2, d , we can make p as close to 1 as we want. The result in the case of a√

8/3-quantum sphere follows by absolute continuity. �

5.3.2. Proof of Theorem 1.2. We let E(z0, r1, s1, s2) be as in (5.6) and let F(z0, r1, s1,

s2, d) be as (5.7). As in the proof of Lemma 5.14, we shall assume throughout that we are
working on the event HR,ζ of Proposition 3.4. For each j , we let Nj = e9j and we pick Uj =
{wj

1 , . . . ,w
j
Nj

} i.i.d. from the
√

8/3-LQG measure restricted to η′([s1, s2]). Equivalently, we

can first pick t
j
1 , . . . , t

j
Nj

i.i.d. from [s1, s2] uniformly and then take w
j
i = η′(tji ). We assume

that the Uj are also independent as j varies. By the proof of Lemma 5.14, we know that the
probability that every point in B(z0, r1) is within quantum distance at most e−αj of some
point in Uj is at least 1 − c0e

−βj for constants α,β, c0 > 0. Moreover, by we can make β > 0
as large as we want by possibly decreasing the value of α > 0. It follows from Proposition 4.2
that the probability that the Euclidean diameter of BQ(w

j
i , e−αj ) is larger than e−α̃j is at most

c1e
−β̃j for constants α̃, β̃, c1 > 0. Moreover, we are free to choose β̃ as large as we want. In

particular, by taking β, β̃ > 9 so that∑
j

Nj · e−βj < ∞ and
∑
j

Nj · e−β̃j < ∞,

it follows from the Borel–Cantelli lemma that there a.s. exists J0 < ∞ (random) such that
j ≥ J0 implies that every point in B(z0, r1) is contained in BQ(w

j
i , e−αj ) for some j and the

Euclidean diameter of BQ(w
j
i , e−αj ) is smaller than e−α̃j .

As explained in (5.12) in the proof of Lemma 5.14, it suffices to show that there exist
constants M,a > 0 such that |z − w| ≤ M(dQ(z,w))a for all z,w ∈ B(z0, r1). In fact, it
suffices to show that this is the case for all z,w ∈ B(z0, r1) such that dQ(z,w) ≤ e−αJ0 .
So, suppose that z,w ∈ B(z0, r1) are such that dQ(z,w) ≤ e−αJ0 and let j0 ∈ N be such
that e−α(j0+1) ≤ dQ(z,w) ≤ e−αj0 . Then we can find w0 = v0 ∈ Uj0 such that dQ(u0,w) ≤
e−αj0 and dQ(v0, z) ≤ e−αj0 . This implies that |u0 − w| ≤ e−α̃j0 and |v0 − z| ≤ e−α̃j0 . For
each j ≥ j0 + 1, we can inductively find uj−j0, vj−j0 ∈ Uj with dQ(uj−j0, uj−j0−1) ≤ e−αj ,
dQ(vj−j0, vj−j0−1) ≤ e−αj hence |uj−j0 − uj−j0−1| ≤ e−α̃j and |vj−j0 − vj−j0−1| ≤ e−α̃j .
We therefore have that

|z − w| ≤ |z − v0| + |w − w0| +
∞∑
i=1

|vi − vi−1| +
∞∑
i=1

|wi − wi−1|

≤ M0

∞∑
i=1

e−(i+j0)α̃ ≤ M1e
−α̃j0 ≤ M2dQ(z,w)α/α̃,

where M0, M1, M2 are constants. This implies that dQ is positive definite on B(z0, r1) on
the event F(z0, r1, s1, s2, d). Symmetry and the triangle inequality of dQ are immediate from
the corresponding properties of dQ and the continuity result from Theorem 1.1. Altogether,
we have shown that dQ defines a metric on B(z0, r1) on the event F(z0, r1, s1, s2, d) and
(z,w) �→ |z − w| is Hölder continuous (with deterministic exponent) with respect to the
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metric defined by dQ on B(z0, r1) on the event F(z0, r1, s1, s2, d). The argument explained
in the proof of Theorem 1.1 then implies that dQ is positive definite on C hence defines a
metric on C and (z,w) �→ |z − w| is a.s. Hölder continuous (with deterministic exponent)
with respect to dQ when restricted to a compact subset of C. Theorem 1.1 implies the a.s.
Hölder continuity (with deterministic exponent) of the map in the other direction, which
completes the proof in the case of a

√
8/3-quantum cone. The continuity in the case of a√

8/3-quantum sphere follows by absolute continuity. �

5.3.3. Existence and continuity of geodesics: Proof of Theorem 1.3. We now show that
the metric space that we have constructed is a.s. geodesic. We will then show (Propo-
sition 5.18) that geodesics between quantum typical points are a.s. unique and (Proposi-
tion 5.19) that there is a.s. a unique geodesic from a typical point on the boundary of a
metric ball to its center (assuming this center is also a “typical” point).

PROPOSITION 5.15. Suppose that S is a
√

8/3-LQG sphere and let dQ be the corre-
sponding QLE(8/3,0) metric. Then (S, dQ) is a.s. geodesic.

Proposition 5.15 is a consequence of the following two general observations about compact
metric spaces and the proof of the metric property given in [47]. In this section, we will use
the notation (X,d) for a metric space, (X,d,μ) for a metric measure space and let B(x, r) =
{y ∈ X : d(x, y) < r} be the open ball of radius r centered at x in X.

LEMMA 5.16. Suppose that (X,d) is a compact metric space. Then (X,d) is geodesic
if and only if for all x, y ∈ X there exists z ∈ X such that d(x, z) = d(z, y) = d(x, y)/2.

PROOF. Suppose that (X,d) is geodesic and x, y ∈ X. Then there exists a geodesic
η : [0, d(x, y)] → X connecting x and y and z = η(d(x, y)/2) satisfies d(x, z) = d(y, z) =
d(x, y)/2.

Conversely, we suppose that for all x, y ∈ X there exists z ∈ X with d(x, z) = d(y, z) =
d(x, y)/2. Fix x, y ∈ X. We iteratively define a function η on the dyadic rationals in [0,1] as
follows. We first pick z so that d(x, z) = d(z, y) = d(x, y)/2 and set η(1/2) = z. By iterating
this construction in the obvious way, we have that η satisfies∣∣η(rd(x, y)

)− η
(
sd(x, y)

)∣∣= d(x, y)|r − s|.
Hence it is easy to see that η extends to a continuous map [0,1] → X which (after reparam-
eterizing time by the constant factor d(x, y)) is a geodesic connecting x and y. �

LEMMA 5.17. Suppose that (X,d,μ) is a good-measure endowed compact metric space
(recall the definition from Section 1.4.5). Then (X,d) is geodesic if and only if the following
property is true. Suppose that x, y are chosen from μ and U ∈ [0,1] uniformly with x, y, U

independent. With r = Ud(x, y) and r = d(x, y)− r there a.s. exists z ∈ ∂B(x, r)∩ ∂B(y, r)

such that d(x, z) + d(z, y) = d(x, y).

PROOF. It is clear that if X is geodesic then the property in the lemma statement holds
because we can take z to be a point along a geodesic from x to y in ∂B(x, r) ∩ ∂B(y, r).

Suppose that the property in the lemma statement holds. We will show that (X,d) is
geodesic by verifying the condition from Lemma 5.16. Suppose that (xn), (yn) are inde-
pendent i.i.d. sequences chosen from μ, that (Un) is an i.i.d. sequence of uniform ran-
dom variables in [0,1] which are independent of (xn), (yn), and rn = Und(xn, yn) and
rn = d(xn, yn) − rn. The following is then a.s. true for all x, y ∈ X distinct and k ∈ N.
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There exists nk such that d(xnk
, x) < 1/k, d(ynk

, y) < 1/k, and |Unk
− 1/2| < 1/k. Let

znk
∈ ∂B(xnk

, r) ∩ ∂B(ynk
, r) be such that d(xnk

, znk
) + d(znk

, ynk
) = d(xnk

, ynk
). Let (̃zm)

be a convergent subsequence of znk
and let z = limm z̃m. By the continuity of d , we have that

d(x, z) + d(z, y) = d(x, y) and d(x, z) = d(y, z) = d(x, z)/2. �

PROOF OF PROPOSITION 5.15. This follows by combining Lemma 5.16 and Lem-
ma 5.17 and the construction of dQ given in [47]. �

PROOF OF THEOREM 1.3. The first part of the theorem follows from Proposition 5.15.
The second part of the theorem follows because a geodesic on a

√
8/3-LQG sphere is 1-

Lipschitz with respect to the QLE(8/3,0) metric, so the result follows by combining with
Theorem 1.1 and Theorem 1.2. �

PROPOSITION 5.18. Suppose that S is a
√

8/3-LQG sphere and that dQ is the asso-
ciated QLE(8/3,0) metric. Assume that x, y ∈ S are picked uniformly from the quantum
measure. Then there a.s. exists a unique geodesic connecting x and y.

PROOF. Proposition 5.15 implies that there exists at least one geodesic η connecting x

and y. Suppose that η is another geodesic. By [47], Lemma 7.6, if we let r = Ud(x, y) where
U is uniform in [0,1] independently of everything else and r = d(x, y) − r then ∂B(x, r) ∩
∂B(y, r) a.s. intersect at a unique point. This implies that η(Ud(x, y)) = η(Ud(x, y)) which,
in turn, implies that on a set of full Lebesgue measure in [0, d(x, y)] we have that η(t) = η(t).
Therefore, η = η by the continuity of the paths. �

PROPOSITION 5.19. Suppose that S is a
√

8/3-LQG sphere, let dQ be the associated
QLE(8/3,0) metric, and assume that x, y ∈ S are chosen independently from the quantum
measure. Fix r > 0 and assume that we are working on the event that dQ(x, y) > r . Suppose
that z is chosen uniformly from the quantum boundary measure on the boundary of the filled
metric ball centered at x of radius r . Then there is a.s. a unique geodesic from z to x. The
same holds if we replace r with dQ(x, y) − r .

PROOF. This result is a consequence of Proposition 5.18 because we can sample from
the law of z by growing a metric ball from y and taking z to be the unique intersection point
of this ball with the filled metric ball starting from x. �

5.3.4. The internal metric. We next turn to construct the internal metric d
U

Q associated
with the restriction of dQ to a domain U . The almost sure finiteness of d

U

Q will rely on
Theorems 1.1–1.3.

PROPOSITION 5.20. Suppose that (C, h,0,∞) is a
√

8/3-quantum cone and that U ⊆ C
is an open domain. For each x, y ∈ U we let Ux,y be the set of paths in U which connect x,
y and, for η ∈ Ux,y , we let �Q(η) be the dQ-length of η. We let

d
U

Q(x, y) = inf
η∈Ux,y

�Q(η) for x, y ∈ U.

Then d
U

Q defines a metric on U . Moreover, d
U

Q is a.s. determined by h|U . The same holds with
a

√
8/3-LQG sphere in place of the

√
8/3-quantum cone.
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PROOF. To show that d
U

Q a.s. defines a metric, we need to show that it is a.s. the case
that for all x, y ∈ U there exists η ∈ Ux,y with �Q(η) < ∞. We may assume without loss of
generality that U is bounded. We fix c,β, r0 > 0 so that BQ(x, r) contains B(x, crβ) for all
x ∈ U and r ∈ (0, r0). Such c, β , r0 exist by Theorem 1.2. Suppose that x, y ∈ U . We then
pick points x0 = x, x1, . . . , xk−1, xk = y and radii r0, . . . , rk such that BQ(x, rj ) ⊆ U for all

0 ≤ j ≤ k and B(xj , cr
β
j )∩B(xj+1, cr

β
j+1) 	=∅ for all 0 ≤ j ≤ k−1. For each 0 ≤ j ≤ k−1,

we let yj ∈ B(xj , cr
β
j ) ∩ B(xj+1, cr

β
j+1). Then there exists dQ-geodesics connecting xj to

yj and yj to xj+1, which are respectively contained in BQ(xj , rj ) and BQ(xj+1, rj+1) hence
also in U . Concatenating these paths yields an element of Ux,y with dQ-length at most

r0 + 2(r1 + · · · + rk−1) + rk < ∞,

as desired.
To see that d

U

Q is a.s. determined by h|U , we note that the construction of QLE(8/3,0)

given in [47], Section 6 (and recalled in Section 2.2) is local in the sense that for each r > 0
and z ∈ U , on the event that BQ(z, r) ⊆ U we have that BQ(z, r) is a.s. determined by h|U .
Indeed, this follows because of the locality property for SLE6 and the quantum boundary
length measure used to define QLE(8/3,0) is locally determined by h. The claim thus follows

because the collection of metric balls, which are contained in U determine d
U

Q. �

5.3.5. Proof of Theorem 1.6. We assume for simplicity that (C, h,0,∞) is a
√

8/3-
quantum cone with the circle average embedding. Theorem 1.1 and Theorem 1.2 together
imply that BQ(0,1) has Euclidean diameter which is finite and positive and, moreover, that
μh(BQ(0,1)) is finite and positive. Therefore if we let BI (resp., BO ) be the largest (resp.,
smallest) Euclidean ball centered at 0 which is contained in (resp., contains BQ(0,1)) then
we also have that both μh(B

I ) and μh(B
O) are finite and positive. Fix u > 0. Note that for

q ∈ {I,O} we have that

P
[
μh

(
BQ(0,1)

) ∈ [εu, ε−u]]→ 1 and P
[
μh

(
Bq) ∈ [εu, ε−u]]→ 1 as ε → 0.

If we add C = 4γ −1 log ε to h, γ = √
8/3, then Lemma 2.2 implies that the radius of our

quantum ball becomes ε. Therefore, the scaling property of μh and the above implies that
if we let BI

ε (resp. BO
ε ) be the largest (resp., smallest) Euclidean ball centered at 0 which is

contained in (resp., contains) BQ(0, ε) then we have for q ∈ {I,O} that

P
[
μh

(
BQ(0, ε)

) ∈ [ε4+u, ε4−u]]→ 1 and P
[
μh

(
Bq

ε

) ∈ [ε4+u, ε4−u]]→ 1 as ε → 0.

Let B̃I
ε (resp., B̃O

ε ) be the largest (resp., smallest) Euclidean ball centered at 0 with quantum
area at most ε4+u (resp., at least ε4−u). Then the above implies that with probability tending
to 1, we have that B̃I

ε ⊆ BI
ε and BO

ε ⊆ B̃O
ε . Let r̃

q
ε be the radius of B̃

q
ε for q ∈ {I,O}. To

complete the proof, we need to show that for every v > 0 there exists u > 0 so that

P
[̃
rO
ε ≥ ε6−v]→ 1 and P

[̃
rI
ε ≤ ε6+v]→ 1 as ε → 0.

Equivalently, we need to prove that for every v > 0 there exists u > 0 so that

P
[
μh

(
B
(
0, ε6−v))≥ ε4−u]→ 1 and P

[
μh

(
B
(
0, ε6+v))≤ ε4+u]→ 1 as ε → 0.

By [19], Lemma 4.6, we have for each r ∈ (0,1) that

(5.13) E
[
μh

(
B(0, r)

) |hr(0)
]= eγhr (0)+(2+γ 2/2) log r .

Since he−t (0) evolves as a standard Brownian motion plus the linear drift γ t in t , the typical

value of hr(0) for r ∈ (0,1) is γ log r−1 +O(
√

log r−1). Therefore, the dominant term in the
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exponent on the right-hand side of (5.13) is equal to (2 − γ 2/2) log r = (2/3) log r . Applying
this for r = ε6−v , we see that the probability that E[μh(B(0, r)) |hr(0)] exceeds ε4−u with
u ∈ (0,2v/3) fixed tends to 1 as ε → 0. The first claim thus follows from [19], Lemma 4.5,
which serves to bound the probability that μh(B(0, r)) is much smaller than its conditional
expectation given hr(0). For r = ε6+v , the formula (5.13) implies that the probability that
E[μh(B(0, r)) |hr(0)] is at most ε4+u with u ∈ (0,2v/3) tends to 1 as ε → 0. The second
claim follows from this and Markov’s inequality. This completes the proof in the case of a
quantum cone.

The result follows in general as the local behavior of a quantum sphere, quantum disk or
quantum cone in a bounded open set near a quantum typical point has the same behavior as
h near 0. �

6. Distance to tip of SLE6 on a
√

8/3-quantum wedge. The main purpose of this sec-
tion is to prove the following two propositions, which will be used in Section 8 to show that
the unembedded metric net between two quantum typical points in a

√
8/3-LQG sphere has

the law of the 3/2-Lévy net; see Figure 6. The first (Proposition 6.1) bounds the moments
of the distance in a

√
8/3-quantum wedge between the origin and the tip of an independent

SLE6 run for δ units of quantum natural time and the second (Proposition 6.2) bounds the
moments of the distance between the origin and a point which is δ units of quantum length
along the boundary from the origin in a

√
8/3-quantum wedge. Throughout, we will use the

spaces H1(X ) and H2(X ) introduced in Section 2.1.

PROPOSITION 6.1. Suppose that (S , h,−∞,+∞) is a
√

8/3-quantum wedge and let
η′ be an independent SLE6 process from −∞ to +∞ with the quantum natural time param-
eterization. There exists p0 > 1 such that for all p ∈ (0,p0) there exists a constant cp > 0
such that the following is true. Let Dδ be the quantum distance between −∞ and η′(δ) (with
respect to the internal QLE(8/3,0) metric associated with h). Then we have that

(6.1) E
[
D

p
δ

]= cpδp/3.

For each α > 0, let uα,δ ∈ R be where the projection of h onto H1(S ) first hits α log δ, let
Fα,δ = {supt∈[0,δ] Re(η′(t)) ≤ uα,δ − 1} and let Dα,δ be the quantum distance between −∞
and η′(δ) with respect to the internal QLE(8/3,0) metric associated with S− + uα,δ . For
each p ∈ (0,p0), there exists α > 0 and a constant cp > 0 such that

(6.2) E
[
D

p
α,δ1Fα,δ

]≤ cpδp/3.

FIG. 6. Left: A
√

8/3-quantum wedge parameterized by H decorated with an independent chordal SLE6 process
η′ from 0 to ∞ stopped at δ units of quantum natural time. Middle: Same as the left together with a dQ-shortest
path from 0 to η′(δ), indicated in blue. In Proposition 6.1, we show that the length of this path has a finite pth
moment for some p > 1. Right: A

√
8/3-quantum wedge together with the shortest path connecting 0 to the point

x < 0 with the property that the quantum length of [x,0] is equal to δ. In Proposition 6.2, we show that the length
of the blue path also has a finite pth moment for some p > 1. These moment bounds will be important in the
arguments of Section 8.
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Finally, there exists α0 > 0 such that for all α ∈ (0, α0) and each k > 0 there exists a constant
ck > 0 such that

(6.3) P
[
Fc

α,δ

]≤ ckδ
k.

As we will see in the proof of Proposition 6.1, the exponent p/3 in (6.1) arises because
adding a constant C to h has the effect of scaling the amount of quantum natural time elapsed
by η′ by the factor e3γC/4, γ = √

8/3, [46], Section 6.2, and the quantum distance by the fac-
tor eγC/4 (Lemma 2.2). In particular, the quantum distance behaves like the quantum natural
time to the power 1/3.

PROPOSITION 6.2. Suppose that (S , h,−∞,+∞) is a
√

8/3-quantum wedge. There
exists p0 > 1 such that for all p ∈ (0,p0) there exists a constant cp > 0 such that the follow-
ing is true. For each δ > 0, we let xδ = inf{x ∈ R : νh([0, x]) ≥ δ} and let Dδ be the quantum
distance between −∞ and xδ (with respect to the internal QLE(8/3,0) metric associated
with h). Then we have that

(6.4) E
[
D

p
δ

]= cpδp/2.

For each α > 0, let uα,δ be where the projection of h onto H1(S ) first hits α log δ, let Fα,δ =
{xδ ≤ uα,δ − 1} and let Dα,δ be the quantum distance between −∞ and xδ with respect to
the internal metric associated with S− + uα,δ . For each p ∈ (0,p0), there exists α > 0 and
a constant cα,p > 0 such that

(6.5) E
[
D

p
α,δ1Fα,δ

]≤ cα,pδp/2.

Finally, there exists α0 > 0 such that for all α ∈ (0, α0) and each k > 0 there exists a constant
ck > 0 such that

(6.6) P[Fα,δ] ≤ ckδ
k.

As we will see in the proof of Proposition 6.2, the exponent p/2 in (6.4) arises because
adding a constant C to h has the effect of scaling quantum length by the factor eγC/2, γ =√

8/3, and the quantum distance by the factor eγC/4 (Lemma 2.2). In particular, the quantum
distance behaves like the quantum length to the power 1/2.

We note that (6.2), (6.3) of Proposition 6.1 and (6.5), (6.6) of Proposition 6.2 also hold
in the setting of a quantum disk (S , h) sampled from MBES provided we condition on the
event that the projection of h onto H1(S ) exceeds α log δ. (Note that this yields a probability
measure since conditioning the maximum of a Bessel excursion to exceed a positive value
is a positive and finite measure event.) Indeed, this follows because in this case the law of h

restricted to the part of S up until where the projection of h onto H1(S ) first hits α log δ

is the same as the corresponding restriction of a
√

8/3-quantum wedge. In fact, we will be
applying these results in the setting of a quantum surface whose law is closely related to that
of a quantum disk below. As we will see, however, it will be more convenient to establish
the above estimates in the setting of a quantum wedge because of the exact scaling properties
that a quantum wedge possesses.

We will break the proof of Proposition 6.1 into two steps. The first step (carried out in
Section 6.1) is to establish (6.3). The second step (carried out in Section 6.2) is to estab-
lish a moment bound between deterministic points in S−. As we will see upon completing
the proof of Proposition 6.1, the proof of Proposition 6.2 will follow from the same set of
estimates used to prove Proposition 6.1 (though in this case the argument turns out to be
simpler).
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6.1. Size of path with quantum natural time parameterization. The purpose of this sec-
tion is to bound the size of an SLE6 path drawn on top of an independent

√
8/3-quantum

wedge equipped with the quantum natural time parameterization.

PROPOSITION 6.3. Suppose that (S , h,−∞,+∞) has the law of a
√

8/3-quantum
wedge. Let η′ be an SLE6 from −∞ to +∞ which is sampled independently of h and then
parameterized according to quantum natural time. Let uα,δ be where the projection of h onto
H1(S ) first hits α log δ. There exists α0 > 0 such that for all α ∈ (0, α0) and each k > 0 there
exists a constant ck > 0 such that

P
[

sup
t∈[0,δ]

Re
(
η′(t)

)≥ uα,δ

]
≤ ckδ

k.

That is, (6.3) from Proposition 6.1 holds.

We will prove Proposition 6.3 by first bounding in Lemma 6.4 the number of quantum
disks cut out by η′|[0,δ] with large quantum area (a small, positive power of delta) and then
argue in Lemma 6.5 and Lemma 6.6 that if we run η′ until it first hits the line Re(z) = uα,δ

for α > 0 small then it is very likely to cut out a large number of quantum disks with large
quantum area.

LEMMA 6.4. Suppose that we have the same setup as in Proposition 6.3. There exist
α,β > 0 such that for each n ∈ N there exists a constant cn > 0 such that the following is
true. The probability that η′|[0,δ] separates from +∞ at least n quantum disks with quantum
area at least δα is at most cnδ

βn.

PROOF. Fix k ∈ N. We will prove the result by giving an upper bound on the probability
that η′|[0,δ] cuts out at least k quantum disks with boundary length in three different regimes
and then we will sum over all possibilities so that at least n quantum disks with quantum area
at least δα are cut out by η′|[0,δ].

Recall that for each j ∈ Z the number Nj of quantum disks cut out by η′|[0,δ] with quantum
boundary length in (e−j−1, e−j ] is distributed as a Poisson random variable with mean λj ,
which is given by a constant times δe3/2j and that the Nj are independent. Moreover, recall
from Lemma 3.3 that the expected quantum area in such a disk is given by a constant times
e−2j (i.e., a constant times the square of its boundary length). Therefore, the probability that
a given such disk has quantum area at least δα is, by Markov’s inequality, at most a constant
times e−2j δ−α . By Lemma 2.9, there exists a constant c0 > 0 such that

(6.7) P[Nj ≥ 2λj ] ≤ exp
(−c0δe

3/2j ).
The upper bound in (6.7) is negligible compared to any power of δ as δ → 0 provided we
have for some ε > 0 fixed that j ≥ �0 = 2

3(1 + ε) log δ−1. Let Ej,k be the event that η′|[0,δ]
cuts out at least k quantum disks with quantum area at least δα and quantum boundary length
in (e−j−1, e−j ]. It thus follows that there exists a constant c1 > 0 such that

(6.8) P[Ej,k] ≤ c1
(
δe3/2j )k ×(e−2j δ−α)k = c1δ

(1−α)ke−jk/2 for all j ≥ 2

3
(1+ε) log δ−1.

The number N of quantum disks separated by η′|[0,δ] from +∞ with quantum boundary
length between δ2/3(1+ε) and δ1/2 is Poisson with mean λ proportional to δ−ε . By Lemma 2.9,
we have for a constant c2 > 0 that

(6.9) P[N ≥ 2λ] ≤ exp
(−c2δ

−ε),
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hence decays to 0 faster than any power of δ as δ → 0. By Lemma 3.3, the expected quantum
area in such a quantum disk is at most a constant times δ so that, as before, the probability
that any such disk has quantum area at least δα is, by Markov’s inequality, at most a constant
times δ1−α . Let Fk be the event that there are at least k such disks. Combining, it follows that
there exists a constant c3 > 0 such that

(6.10) P[Fk] ≤ c3δ
−εk × δ(1−α)k = c3δ

(1−α−ε)k.

Finally, the number of quantum disks separated by η′|[0,δ] from +∞ with boundary length
larger than δ1/2 is Poisson with mean proportional to δ × δ−3/4 = δ1/4. Thus if we let Gk be
the event that there are at least k such quantum disks cut out by η′|[0,δ] then it follows that
there exists a constant c4 > 0 such that

(6.11) P[Gk] ≤ c4δ
k/4.

We can deduce the result from (6.8), (6.10) and (6.11) as follows. For each sequence
a = (i, j, k�0, k�0+1, . . .) of nonnegative integers with

i + j + ∑
�≥�0

k� = n

we let Fa be the event that η′|[0,δ] separates from +∞ at least i (resp., j ) quantum disks of
quantum area at least δα and quantum boundary length in [δ2/3(1+ε), δ1/2] (resp., larger than
δ1/2) and at least k� quantum disks of quantum area at least δα and quantum boundary length
in (e−�−1, e−�] for each � ≥ �0. Assume that we have chosen α, ε such that 1 − α − ε ∈
(0,1/4). Then (6.8), (6.10) and (6.11) together imply that there exists a constant c5 > 0 such
that

P[Fa] ≤ c5δ
(1−α−ε)n

∏
�≥�0

e−�k�/2.

The result follows by summing over all such multiindices a. �

LEMMA 6.5. Suppose that we have the same setup as in Proposition 6.3. For each x ∈ R,
we let τx = inf{t ≥ 0 : Re(η′(t)) ≥ x}. For each ρ ∈ (0,1), there exists r > 0 such that the
conditional probability given η′|[0,τx ] that there exists z ∈ [x + r, x +1− r]× [0, π] such that
η′|[τx,τx+1] separates B(z, r) from +∞ is at least ρ.

PROOF. This follows from the conformal Markov property for SLE6. �

LEMMA 6.6. Suppose that we have the same setup as in Proposition 6.3 and let τx be as
in Lemma 6.5. For each β > 0, there exists α > 0 such that the following is true. Fix δ > 0,
let x = uα,δ and let m ∈ N. For each p > 0 there exists a constant cp,m > 0 such that the
probability that η′|[0,τx ] separates from +∞ fewer than m quantum disks of quantum area at
least δβ is at most cp,mδp .

PROOF. Fix ρ ∈ (0,1) and let r > 0 be as in Lemma 6.5 for this value of ρ. Fix σ > 0
small and let n = σ log δ−1. Lemma 6.5 implies that the number of components separated
by η′|[τx−n,τx ] from +∞ which contain a Euclidean disk of radius at least r is stochastically
dominated from below by a Binomial random variable with parameters (n,ρ). In particular,
by choosing ρ sufficiently close to 1 we have that the probability that the number of compo-
nents separated by η′|[τx−n,τx ] from +∞, which contain a Euclidean disk of radius at least r ,
all contained in [x − n,x] × [0, π], is smaller than n/2 is at most a constant times δp .
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Assume that we are working on the complementary event that η′|[τx−n,τx ] separates at least
n/2 such components U1, . . . ,Un/2 and, for each j , we let zj be such that B(zj , r) ⊆ Uj . For
each 1 ≤ j ≤ n/2, we let hj be the harmonic extension of the values of h from ∂B(zj , r) to
B(zj , r). By the Markov property for the GFF with free boundary conditions, we know that
the conditional law of the restriction of h to B(zj , r) given its values outside of B(zj , r) is
that of a GFF in B(zj , r) with zero boundary conditions plus hj conditioned so that uα,δ is
the first time that α log δ is hit by the projection of h onto H1(S ). For γ = √

8/3, let

X∗
j = sup

w∈B(zj ,r/2)

∣∣h(w) − (Q − γ )
(
Re(zj ) − uα,δ

)− α log δ
∣∣.

The argument used to prove Lemma 4.6 implies that there exist constants c0, c1 > 0 such that

(6.12) P
[
X∗

j ≥ η
]≤ c0 exp

(
− c1η

2

σ log δ−1

)
for all η ≥ 0.

Fix ε > 0. It follows from (6.12) that there exist constants c2, c3 > 0 such that

(6.13) G =
{

max
1≤j≤n/2

X∗
j ≥ ε log δ−1

}
we have P[G] ≤ c2 exp

(
−c2ε

2

σ
log δ−1

)
.

In particular, by making σ > 0 small enough we can make it so that P[G] decays to 0 faster
than any fixed positive power of δ. Conditional on Gc, for each j we have that the probability
that the quantum area associated with B(zj , r) is at least a constant times aδγ (ε+α) × δ2σ/3

is at least ρ̃ where ρ̃ → 1 as a → 0. (Here, we have used that |Re(zj ) − uα,δ| ≤ σ log δ−1

so that on Gc, h(zj ) differs from α log δ by at most (Q − γ )σ log δ−1 + ε log δ−1.) We note
that these events are conditionally independent given the values of h on the complement of⋃

j B(zj , r) and on the event Gc. Therefore, by choosing a > 0 small enough, the probability
that we have fewer than n/4 disks with quantum area at least aδγ (ε+α) tends to 0 faster than
any power of δ. Combining implies the result. �

PROOF OF PROPOSITION 6.3. The result follows by combining Lemma 6.4 with
Lemma 6.6. Indeed, Lemma 6.4 implies that η′|[0,δ] is very unlikely to separate at least a
fixed number of components with quantum area a power of δ while Lemma 6.6 implies that
η′|[0,τx ] with x = uα,δ is very likely to separate at least a fixed number of components with
quantum area a power of δ. �

6.2. Quantum distance bounds.

PROPOSITION 6.7. Suppose that (S , h,−∞,+∞) has the law of a
√

8/3-quantum
wedge with the embedding into S so that the projection of h onto H1(S ) first hits 0 at
u = 0. There exist p > 1 and constants c0, c1 > 0 such that the following is true. For each
k ∈ Z with k < 0, we let Dk be the quantum distance from k + iπ/2 to k + 1 + iπ/2 (i.e., the
midpoint of the line segment in S with Re(z) = k to the midpoint of the line segment with
Re(z) = k+1) with respect to the QLE(8/3,0) internal metric in [k−1, k+2]×[π/4,3π/4].
Then we have that

(6.14) E
[
D

p
k

]≤ c0e
c1k.

Let D̃k denote the quantum distance between the points k + 3π/4i and k + iπ/4 with respect
to the QLE(8/3,0) internal metric in [k − 1, k + 1] × [0, π]. We also have (for the same
values of p, c0, c1) that

(6.15) E
[
D̃

p
k

]≤ c0e
c1k.
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We need to collect several lemmas before giving the proof of Proposition 6.7.

LEMMA 6.8. Suppose that (S , h,−∞,+∞) is a
√

8/3-quantum wedge with the em-
bedding into S as in the statement of Proposition 6.7. Fix k ∈ Z with k < 0 and suppose that
B(z, r) ⊆ [k, k + 1] × [π/4,3π/4]. With γ = √

8/3, let

ξ(q) =
(

2 + γ 2

2

)
q − γ 2

2
q2 = 10

3
q − 4

3
q2.

For each M ∈ R, we let AM be the event that the value of the projection of h onto H1(S ) at
k + 1 is in [M,M + 1]. For each q ∈ (0,4/γ 2) = (0,3/2) there exists a constant cq > 0 such
that

E
[
μh

(
B(z, r)

)q |AM

]≤ cqeγ qMrξ(q).

PROOF. This follows from the standard multifractal spectrum bound for the moments of
the quantum measure; recall Proposition 3.4. �

Fix k ∈ Z with k < 0. For α,β > 0 and j ∈ N, we say that a point z ∈ S with Re(z) ∈
[k, k + 1] is (α,β, j)-good if:

1. B(z, e−j ) ⊆ BQ(z, e−αj ) and
2. BQ(z, e−αj ) ⊆ B(z, e−βj ).

LEMMA 6.9. Suppose that (S , h,−∞,+∞) is a
√

8/3-quantum wedge with the em-
bedding into S as in the statement of Proposition 6.7. Suppose that z ∈ [−2,−1] ×
[π/4,3π/4]. For each ε > 0, there exists α,β, c0 > 0 such that the probability that z is
(α,β, j)-good is at least 1 − c0e

−(25/12−ε)j for each j ∈ N.

PROOF. Fix ε > 0. By Lemma 6.8 and Markov’s inequality with q = 5/4 so that ξ(q) =
25/12, we can find α > 0 and a constant c0 > 0 such that with

E = {
μh

(
B
(
z, e−j ))≤ e−αj } we have P

[
Ec]≤ c0e

−(25/12−ε)j .

We are now going to make a comparison between the law of h near z and the law of a
quantum cone near its marked point since this is the setting in which our moment bounds
for quantum distance in Section 5 were established. Let Z be the Radon–Nikodym derivative
between the law of the restriction of h to B(z, 1

4) and the law of a whole-plane GFF on C
restricted to B(z, 1

4) with the additive constant fixed so that its average on ∂B(z,1) is equal to
0. Then Lemma 4.6 and Lemma 5.4 together imply that for each p > 0 there exists a constant
cp < ∞ such that

(6.16) E
[
Zp]≤ cp.

For each δ > 0, we let φδ be a C∞
0 function which agrees with w �→ log |w−z| in B(z,1)\

B(z, δ). It is not hard to see that there is a constant c1 > 0 so that we can find such a function
φδ so that ‖φδ‖2∇ ≤ c1 log δ−1 (e.g., by truncating the log function in a smooth manner).
Combining this with (6.16) implies that the Radon–Nikodym derivative Zδ between the law
of the restriction of h to B(z, 1

4) \ B(z, δ) and the law of a
√

8/3-quantum cone (C, h̃, z,∞)

restricted to B(z, 1
4)\B(z, δ) with the circle average embedding satisfies the property that for

each p > 0 there is a constant c̃p > 0 such that

(6.17) E
[
Zp

δ

]≤ c̃pδ−c1p
2/2.
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Proposition 5.3 implies that for each choice of c3 > 0 there exists a constant c2 > 0 such
that, conditional on E, the probability that the QLE(8/3,0) distance defined from the quan-
tum cone (C, h̃, z,∞) between every point in B(z, e−k) \ B(z, e−k−1) and ∂B(z, e−k−1) is
at most e−c2k with probability at least 1 − e−c3k . Combining this with (6.17) and Hölder’s
inequality, we see that the same is true under h (though with possibly different constants c2,
c3). Iterating this and summing over k implies that there exists α > 0 so that the probability
of the first part of being (α,β, j)-good is at least 1 − c0e

−(25/12−ε)j .
The same change of measures argument but using (4.2) of Proposition 4.2 in place of

Proposition 5.3 yields a similar lower bound of the probability of the second (α,β, j)-good
condition. �

PROOF OF PROPOSITION 6.7. We will first prove the result for k = −2 and then explain
how to extract the result for other values of k from this case. Let a (resp., b) be the midpoint
of the line Re(z) = −2 (resp., Re(z) = −1) in S . Let j ∈ N and for each 0 ≤ � ≤ ej we let

z� = −2 + �

ej
+ i

π

2

be the midpoint of the line Re(z) = −2 + �/ej in S . Let Gj be the event that a = z0,
. . . , zej = b are all (α,β, j)-good. On Gj , we have that

(6.18) dQ(a, b) ≤
ej∑

�=1

dQ(z�−1, z�) ≤ e(1−α)j .

Fix ε > 0 small so that 13/12 − ε > 1. By Lemma 6.9, we know for a constant c0 > 0 that

P
[
Gc

j

]≤ c0e
j × e−(25/12−ε)j = c0e

−(13/12−ε)j .(6.19)

Fix p > 1 so that (1 − α)p − (13/12 − ε) < 0. Let J be the first j so that Gj occurs. Then
we have that

E
[
d

p

Q(a, b)
]= ∞∑

j=1

E
[
d

p

Q(a, b)1{J=j }
]

≤
∞∑

j=1

e(1−α)jpP[J = j ] (by (6.18))

≤
∞∑

j=1

e(1−α)jpP[J > j − 1] ≤
∞∑

j=1

e(1−α)jpP
[
Gc

j−1
]

≤ c0

∞∑
j=1

e(1−α)pj e−(13/12−ε)(j−1) (by (6.19))

< ∞.

This completes the proof of the result for k = −2.
We will now generalize the result to all k ∈ Z with k ≤ −2. Lemma 2.2 implies that adding

a constant C to the field scales distances by the factor eγC/4 for γ = √
8/3. Let X be the

projection of h onto H1(S ). Then we can write Xu = B−2u + (Q − γ )u for u ≤ 0 where
B is a standard Brownian motion with B0 = 0 conditioned so that Xu ≤ 0 for all u ≤ 0.
Let B∗−2(k+2) = supt∈[0,2] B−2(k+2−t) and X∗ = inf{X−t : t ∈ [0,1]}. Let ak (resp., bk) be
the midpoint of the line Re(z) = k (resp., Re(z) = k + 1) in S . With γ = √

8/3, we have

that the conditional law of dQ(ak, bk)e
γ
4 (X∗−(B∗−2(k+2)+(Q−γ )(k+2)) given X is stochastically
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dominated from above by the conditional law of dQ(a, b) given X. It follows for a constant
c1 > 0 that

(6.20) E
[
d

p

Q(ak, bk) |X]≤ c1 exp
(

pγ

4

(
B∗−2(k+2) + (Q − γ )(k + 2) − X∗)).

Since X∗ has finite exponential moments of all orders, by Hölder’s inequality it suffices to
show that there exists p0 > 1 and constants c0, c1 > 0 such that for all p ∈ (0,p0) we have
that

(6.21) E
[
exp

(
pγ

4

(
B∗−2(k+2) + (Q − γ )(k + 2)

))]≤ c0e
c1k.

This, in turn, is not difficult to see as Xu conditioned to be negative for all u ≤ 0 is stochasti-
cally dominated from above by Xu conditioned to be negative only for u = k + 2.

Combining (6.20) and (6.21) implies (6.14). The bound (6.15) is proved in an analogous
manner except one considers evenly spaced points along a vertical rather than horizontal
segment. �

6.3. Proof of moment bounds. We now have the necessary estimates to complete the
proofs of Proposition 6.1 and Proposition 6.2.

PROOF OF PROPOSITION 6.1. Fix α > 0 small and let β = α/2. Recall from the propo-
sition statement that Fα,δ is the event that η′|[0,δ] is contained in S− + uα,δ − 1. We let
γ1 be the shortest dQ-length path from −∞ to the midpoint of the vertical line through
Re(z) = uβ,δ contained in [π/4,3π/4] × R. We then let γ2 be the shortest dQ-path from
a = uβ,δ + iπ/4 − 2 to b = uβ,δ + i3π/4 − 2 contained in [uβ,δ − 5, uβ,δ] × [0, π].

Let fδ be the unique conformal map from the component of S \ η′([0, δ]) with +∞ on
its boundary to S with |fδ(z) − z| → 0 as z → +∞. We also let γ̃3 be the shortest path
with respect to the internal QLE(8/3,0) metric associated with h ◦ f −1

δ + Q log |(f −1
δ )′|

from −∞ to the midpoint of the line with Re(z) = uβ,δ contained in [π/4,3π/4]× R and let
γ3 = f −1

δ (γ̃3). Note that γ1 crosses γ2. Moreover, standard distortion estimates for conformal
maps imply that on Fα,δ we have that γ3 also crosses γ2 for all δ > 0 small enough. It therefore
follows that, on Fα,δ , the distance between −∞ and η′(δ) is bounded from above by the sum
of the dQ lengths of γ1, γ2, γ3. Thus our first goal will be to show that the lengths of these
three paths have a finite pth moment for some p > 1. We will then deduce the result from
this using a scaling argument.

We begin by bounding the length of γ1. Fix p > 1 and ε > 0. Let Dk be as in the statement
of Proposition 6.7. Let n = �uβ,δ� and let d1 =∑n

k=−∞ Dk . Then the length of γ1 is bounded
by d1. Suppose that p > 1. By Jensen’s inequality, with cε =∑∞

k=0 e−εk , we have that

(6.22) d
p
1 =

(
n∑

k=−∞
Dk

)p

=
(

n∑
k=−∞

Dke
−ε(n−k)eε(n−k)

)p

≤ cp−1
ε

n∑
k=−∞

D
p
k eε(n−k)p.

Thus to bound E[dp
1 ] it suffices to bound the expectation of the right-hand side of (6.22).

Proposition 6.7 and scaling together imply that there exists p > 1 and constants c0, c1 > 0
such that E[Dp

k ] ≤ c0e
c1(k−n)δc1α for each k. Thus by choosing ε > 0 sufficiently small, by

inserting this into (6.22) we see that (possibly adjusting c0, c1)

(6.23) E
[
d

p
1

]≤ c0δ
c1α.

The same argument also implies that the pth moments of the lengths of γ2 and γ3 are both at
most c0δ

c1α (possibly adjusting c0, c1 > 0).
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Combining everything implies that there exists p > 1 such that (possibly adjusting c0, c1 >

0)

(6.24) E
[
D

p
δ 1Fα,δ

]≤ c0δ
c1α.

Recall that if we add C to the field then quantum natural time gets scaled by e3γC/4, for
γ = √

8/3 (see [46], Section 6.2) and quantum distance gets scaled by eγC/4 (Lemma 2.2).
In particular, if we add C to h then Dδ becomes eγC/4De3γC/4δ and Fα,δ becomes Fα′,δ′
where α′ = (α log δ + C)/(log δ + 3γC/4) and δ′ = e3γC/4δ. We take C = 4

3γ
log 2

δ
so that

e3γC/4δ = 2. Applying this in the setting of (6.24), we see that (possibly adjusting c0, c1 > 0)

E
[
D

p
2 1F

c log δ−1,2

]≤ c0δ
c1α × (

2δ−1)p/3 = 2p/3c0δ
c1α−p/3

where c =
4

3γ
− α

log 2
+ 4

3γ log δ−1 .

(Here, c is determined by the formula c log δ−1 = α′.) We assume that α > 0 is sufficiently
small so that c > 0 for all δ > 0 sufficiently small. Applying this with δ = e−k for k ≥ 0, we
thus see that (possibly adjusting c0, c1 > 0)

(6.25) E
[
D

p
2 1Fck,2

]≤ c0e
c1k.

We have that

E
[
D

p
2

]= E
[
D

p
2 1Fc,2

]+ ∞∑
k=2

E
[
D

p
2 1Fck,2\Fc

c(k−1),2

]

≤ E
[
D

p
2 1Fc,2

]+ ∞∑
k=2

(
E
[
D

pp′
2 1Fck,2

]1/p′
P
[
Fc

c(k−1),2
]1/q ′)

for p′, q ′ > 1 with 1
p′ + 1

q ′ = 1. By choosing α > 0 sufficiently small, we can arrange so

that P[Fc
ck,2] = P[Fc

α,e−k ] decays to 0 as k → ∞ faster than any fixed power of e−k . Also,
for p′ > 1 sufficiently close to 1, by (6.25) we have that the first term in the sum above is
at most a fixed power of ek . Therefore, the sum above is finite. Altogether, this implies that
E[Dp

2 ] < ∞. By scaling, this implies that E[Dp
δ ] < ∞ for all δ ∈ (0,1). In particular, since

the quantum natural time scales as the third power of quantum distance, we obtain (6.1).
The final assertions of the proposition are immediate from the first and Proposition 6.3.

�

PROOF OF PROPOSITION 6.2. This follows from the same argument used to prove
Proposition 6.1, except we have to explain why the analog of Proposition 6.3 holds in this
setting. This, in turn, is a consequence of Proposition 4.4. �

7. Reverse explorations of
√

8/3-LQG spheres. In [46, 47], we constructed forward
explorations of doubly-marked

√
8/3-LQG spheres sampled from the infinite measure M2

SPH
by QLE(8/3,0) and SLE6, respectively. The purpose of this section is to describe the time-
reversals of the unexplored-domain processes which correspond to these explorations. We
will begin with the case of SLE6 in Section 7.1 (see Figure 7) and then do the case of
QLE(8/3,0) in Section 7.2. In Section 7.3, we will collect some consequences of the proper-
ties of the time-reversal of the unexplored domain process for QLE(8/3,0). The reason that
we need to study the time-reversal of the unexplored domain process is to check that the as-
sumptions from the characterization given in Theorem 1.7 of TBM are satisfied in the setting
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FIG. 7. Left: Part of the time-reversal of the unexplored-domain process associated with a whole-plane SLE6
process η′ on a doubly-marked quantum sphere (S, x, y) from x to y. If T denotes the (random) amount of quan-
tum natural time required by η′ to go from x to y and δ > 0, then the green region corresponds to the component
of S \ η′([0, T − δ]), which contains y. This surface is doubly marked by the interior point y and the boundary
point η′(T − δ). The union of the blue and green regions corresponds to the component of S \ η′([0, T − 2δ])
containing y. This surface is also doubly marked, with the interior point being equal to y and the boundary point
equal to η′(T − 2δ). The red region is defined similarly. Each of the green, blue and red regions may individually
be viewed as a doubly-marked surface, where in this case the surface is marked by the first and last point visited
by η′. Right: We separate the three surfaces on the left-hand side into three “necklaces.” As on the left, each
necklace has two marked points. Each necklace also has two marked boundary segments, which we call the “top”
and “bottom” of the necklace. The top corresponds to the boundary segment, which is not part of the circular arc
(hence filled by η′) and the bottom corresponds to the part of the circular arc, which is bold (see Figure 10 for
further explanation). If we glue together the necklaces as shown (with the tip of one necklace identified with the
initial point of the next), then we can recover the left-hand picture.

of the
√

8/3-LQG sphere to complete the proof of Theorem 1.4. In particular, the breadth
first description of the 3/2-Lévy net is described in terms of the evolution of the boundary
lengths between a collection of geodesics as one decreases the radius of a metric ball (recall
Figure 1). Verifying this in the setting of the

√
8/3-LQG sphere in Section 8 will use as input

various independence properties of the time-reversal of thee unexplored domain process for
QLE(8/3,0), which we will collect here.

7.1. Time-reversal of SLE6 unexplored-domain process. Suppose that (S, x, y) has dis-
tribution given by that of a

√
8/3-LQG sphere decorated with a whole-plane SLE6 process η′

from x to y sampled from M2
SPH. We assume that η′ has the quantum natural time parameter-

ization. For each t , we let Ut be the component of S \ η′([0, t]) containing y. We recall from
[46] that the quantum boundary length of Ut evolves as the time-reversal of a 3/2-stable Lévy
excursion e : [0, T ] → R+ with only upward jumps [46], Theorem 1.2. (Recall that the Lévy
excursion measure is an infinite measure.) We let Ũt = U(T −t)+ and note that ŨT = U0 = S .

PROPOSITION 7.1. Using the notation introduced just above, we have that:

(i) The quantum boundary length of ∂Ũt evolves in t as a 3/2-stable Lévy excursion with
only upward jumps from 0 to 0 of length T . (We emphasize that T is the length of the Lévy
excursion and is random and that t can be bigger than T .)

(ii) For each t > 0, on {T > t} we have that the quantum surface parameterized by Ũt

and decorated by the path η′|[T −t,T ] is conditionally independent of the quantum surface
parameterized by S \ Ũt and decorated by the path η′|[0,T −t] given the boundary length of
∂Ũt .
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(iii) For each t > 0, on {T > t} we have that ∂Ũt is a.s. conformally removable.

PROOF. Part (i) is immediate from [46], Theorem 1.2, as mentioned above.
We will deduce part (ii) from the Markov property for forward explorations of quantum

spheres. The argument will be similar to that given for metric explorations of the Brownian
map just before the statement of [48], Proposition 4.4. Let M2

SPH,W denote the distribution

dM2
SPH,W = 1[0,T ](t) dtdM2

SPH,

where T denotes the length of the underlying Lévy excursion and dt denotes Lebesgue mea-
sure on R. Then M2

SPH,W is a measure on triples consisting of a doubly marked quantum
sphere (S, x, y), an independent whole-plane SLE6 from x to y, and a random time t = T U

where T is the length of the Lévy excursion and U is a uniform random variable in [0,1]
independent of everything else. Note that if we integrate out t, then the marginal distribution
of everything else is given by the measure whose Radon–Nikodym derivative with respect
to M2

SPH is equal to T , the length of the Lévy excursion. This is the reason for the subscript
W, which stands for “(length) weighted.” It is proved in [47], Proposition 4.1, that given the
random time t and the quantum surface parameterized by S \Ut and decorated by η′|[0,t], the
conditional law of the quantum surface parameterized by Ut and decorated by η′|[t,T ] is that
of a quantum disk weighted by its quantum area decorated by an independent radial SLE6
targeted at a point chosen independently from the quantum measure. Since t is determined
by the quantum surface S \ Ut decorated by η′|[0,t], this implies that Ut decorated by η′|[t,T ]
is conditionally independent of S \Ut decorated by η′|[0,t] given the boundary length of ∂Ut.

Since U is uniform in [0,1] independently of everything else, we note that T − t = (1 −
U)T has the same conditional distribution as t given everything else. It therefore follows that
S \UT −t decorated by η′|[0,T −t] is conditionally independent of UT −t decorated by η′|[T −t,T ]
given the boundary length of ∂UT −t. Since t is determined by UT −t decorated by η′|[T −t,T ],
it follows that the same conditional independence statement holds when we condition further
on t.

In the previous paragraph, we have proved the desired conditional independence property
in the setting of M2

SPH,W. We note that it is explained in [47], Proposition 4.1, that the con-
ditional distribution of M2

SPH,W given t = t is that of M2
SPH conditioned on the event {T > t},

that is, the length of the Lévy excursion is at least t . Combining, we see that the conditional
law of the path decorated surface consisting of the quantum surface parameterized by UT −t

and decorated by η′|[T −t,T ] given t and the quantum surface parameterized by S \ UT −t and
decorated by η′|[0,T −t] is the same under both M2

SPH and M2
SPH,W. This implies part (ii).

Part (iii) is proved in the same way as part (ii) since we have the a.s. conformal removabil-
ity of ∂Ut under M2

SPH for each fixed t > 0, hence also ∂Ut under M2
SPH,W. �

Throughout, we let M2,t
SPH,R denote the infinite measure on doubly marked surfaces (Ũt , h)

decorated by a path η′ as considered in Proposition 7.1. (The subscript “R” is to indicate
that this law corresponds to a time-reversal.) We emphasize again that T > 0 is random. On
the event that t < T , the quantum surface (Ũt , h) has the topology of a disk. In this case,
one marked point is on the disk boundary and the other marked point is in the interior. The
marked points respectively correspond to the starting and ending points of the restriction of
η′ to Ũt . On the event that t ≥ T , the quantum surface (Ũt , h) = (U0, h) has the topology of
a sphere. In this case, both of the marked points are contained in the interior of the surface
and they correspond to the starting and ending points of η′.

For s, t > 0, we note that there is a natural coupling of M2,t
SPH,R and M2,t+s

SPH,R because we
can produce both laws from M2

SPH, as described just above. Part (ii) of Proposition 7.1 implies
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that the path decorated quantum surface, which is parameterized by Ũs+t \ Ũt is conditionally
independent of the path-decorated quantum surface parameterized by Ũt given the quantum
boundary length of Ũt . We note that both quantum surfaces are doubly marked: Ũt is marked
by the initial and target points of η′ and Ũs+t \Ũt is also marked by the initial and target points
of the SLE6. The usual removability arguments imply that the two path decorated surfaces
together with their marked points a.s. determine the path decorated surface parameterized
by Ũs+t . In particular, this gives us a way of describing a two-step sampling procedure for
producing a sample from M2,t+s

SPH,R. Namely, we:

• Produce a sample from M2,t
SPH,R, and then,

• Given the boundary length, we can glue on a conditionally independent surface which
corresponds to another s units of quantum natural time

and obtain a sample from M2,t+s
SPH,R. We will refer to this operation either as “zipping in s units

of quantum natural time of SLE6” or “gluing in an SLE6 necklace with quantum natural time
length s.” We note that this operation involves adding at most s units of quantum natural time;
however, it may involve adding less in the case that all of the boundary length is exhausted
in fewer than s units (i.e., if s + t > T ). We note that if we iterate this procedure for long
enough, then we will eventually be left with a sample from M2

SPH (i.e., M2
SPH is the limit of

M2,t
SPH,R as t → ∞).

7.2. Reverse QLE(8/3,0) metric exploration. We will now collect some facts about
reverse explorations by QLE(8/3,0). Suppose that (S, x, y) is a doubly marked quantum
sphere and let r be QLE(8/3,0) from x to y. Let D = dQ(x, y). Let Ur = S \ r and
let Ũr = S \ (D−r)+ . We will now collect some facts about the time-reversed unexplored
domain process Ũr .

PROPOSITION 7.2. Suppose that (S, x, y) is a doubly-marked quantum sphere, let (r)

be a QLE(8/3,0) from x to y and let D = dQ(x, y). Then we have that:

(i) The quantum boundary length of ∂Ũr evolves as a 3/2-stable CSBP.
(ii) For each r > 0, on the event {D > r} the quantum surfaces parameterized by D−r

and marked by x and Ũr and marked by y are conditionally independent given the boundary
length of ∂Ũr .

(iii) For each r > 0, on the event {D > r} we have that ∂Ũr is a.s. conformally removable.

PROOF. The first part of the proposition is immediate from the construction of
QLE(8/3,0) and the definition of the quantum distance parameterization.

The second two parts of the proposition follow from the same argument used to prove
part (ii) and part (iii) from Proposition 7.1 except we use the law M2

SPH weighted by the
amount of quantum distance time for  to go from x to y in place of M2

SPH,W. That is, we let
D = dQ(x, y) and then let

dM2
SPH,D = 1[0,D](r) drdM2

SPH,

where dr denotes Lebesgue measure on R. Then M2
SPH,D is a measure on triples consisting

of a doubly marked quantum sphere (S, x, y), the QLE(8/3,0) process  from x to y, and
a random time r = UD where D = dQ(x, y) and U is a uniform random variable in [0,1]
independent of everything else. Then [47], Proposition 4.1, implies that the conditional law
of the surface parameterized by S \ r given r is that of a quantum disk weighted by its
quantum area. In particular, these two quantum surfaces are conditionally independent given
their quantum boundary length. Since D−r= (1−U)D has the same conditional distribution
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as r = UD given everything else, it similarly follows that the surface parameterized by S \
D−r is conditionally independent of D−r given its quantum boundary length. Moreover,
[47], Proposition 4.1, implies that the law of M2

SPH,D given r = r is equal to that of M2
SPH

conditional on {D > r}. Therefore, under M2
SPH, for r > 0 fixed and on {D > r} we have that

D−r is conditionally independent of D−r given its quantum boundary length. This proves
the second part of the proposition. The third part similarly follows since for each fixed r > 0
we have that ∂r is a.s. conformally removable, so under M2

SPH,D we have that ∂r is also
a.s. conformally removable. �

As in the case of QLE(8/3,0), we can also consider the time-reversal of the unexplored-
domain process associated with the time-reversal of the δ-approximation to QLE(8/3,0).
This is also a Markov process but is a bit more complicated to describe than in the case of
QLE(8/3,0) (or SLE6) because the times at which the tip of the SLE6 is rerandomized are
described in terms of the quantum natural time in the forward direction. In particular, there
is an asymmetry in that the final necklace in the δ-approximation to QLE(8/3,0) a.s. does
not have quantum natural time equal to δ. Note that the length of the final necklace is equal
to the length of the corresponding Lévy excursion modulo δ. In particular, once we observe
the length of this necklace, the length of the remainder of the necklaces is an integer multiple
of δ.

Let ρ(t,L) be the density at t > 0 with respect to Lebesgue measure for a 3/2-stable Lévy
process with only upward jumps starting from L to hit 0 at time t . For t ∈ [0, δ), also let
ρt,δ(L) = ∑∞

k=1 ρ(kδ − t,L). Note that for any t ∈ [0, δ), the evolution of such a process
in the time-interval [0, t] conditioned to first hit 0 at an integer multiple of δ is the same
(by a Bayes’ rule calculation) as weighting the unconditioned law by ρt,δ(Xt )/ρ0,δ(X0). We
note that this Radon–Nikodym derivative formula determines the law of a 3/2-stable Lévy
process with only upward jumps conditioned to terminate at an integer multiple of δ. Recall
that in the infinite measure on 3/2-stable Lévy excursions with only upward jumps one has
that the length has distribution given by a constant times t−5/3 dt where dt denotes Lebesgue
measure on R+.

PROPOSITION 7.3. Suppose that (S, x, y) is a doubly-marked quantum sphere, δ > 0,
and (r) is an instance of the δ-approximation to QLE(8/3,0) from x to y (parameterized
by quantum natural time). The time-reversal of the unexplored-domain process is Markovian.
Moreover, conditioned on having quantum natural time at least δ, it can be generated using
the following Markovian procedure:

• Step 1: sample the length Y of the final SLE6 segment. Let Z be sampled from the law
1{t≥δ}t−5/3 dt (normalized to be a probability measure) and let Y = Z mod δ.

• Step 2: sample the path-decorated surface corresponding to the final SLE6 segment. Gen-
erate the time-reversal of the unexplored-domain process for SLE6 conditioned on lasting
at least Y units of time and weighted by ρ0,δ(X) where X is its boundary length at time Y .

• Step 3: tip-rerandomization and iteration. Randomize the location of the tip uniformly
from the quantum boundary measure. Glue in δ units of reverse SLE6 conditioned on the
boundary length process for the time-reversal of the unexplored domain process hitting 0
at an integer multiple of δ (as defined just above the statement). Repeat until the boundary
length process first hits 0.

PROOF. This is a direct description of the time-reversal. �

Let us now make some remarks about the time-reversal of the unexplored-domain process
for the δ-approximation to QLE(8/3,0).
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REMARK 7.1.

(i) First, we note that if we fix k ∈ N and let U be the path-decorated surface which
arises after performing the above Markovian procedure for k steps after the terminal SLE6
segment, then on the event that the boundary length of ∂U is positive, the conditional law of
U is that of a quantum disk weighted by its quantum area conditioned on the δ-approximation
to QLE(8/3,0) terminating between kδ and (k + 1)δ units of quantum natural time.

(ii) Let X be the 3/2-stable Lévy excursion which gives the boundary length associ-
ated with the time-reversal of the unexplored-domain process for the δ-approximation for
QLE(8/3,0). If we run X up until a given time before it has terminated, then from X it-
self it is not possible to determine which increments of time correspond to SLE6 necklaces
(since we need to know the length of the necklace whose length is not equal to δ). How-
ever, we do know that the interval of time which encodes the kth necklace is contained in
[(k − 1)δ, (k + 2)δ]. This will be useful later for proving bounds on the boundary length of
the necklace.

7.3. Filled-metric ball complements and metric bands. Suppose that we have a doubly-
marked quantum sphere (S, x, y), (r) is the QLE(8/3,0) from x to y, and D = dQ(x, y).
Conditionally on the event that {D > r}, we let Cr be the law of the quantum surface which is
parameterized by S \ D−r . Proposition 7.2 implies that the conditional law the surface pa-
rameterized by D−r depends only on the quantum boundary length � of ∂D−r . Moreover,
by scaling, this law can be sampled from by first sampling from the law in the case that the
boundary length is equal to 1 and then scaling so that the quantum boundary length is equal
to �. Recall that this has the effect of scaling quantum distances by �1/2 (Lemma 2.2) and
quantum areas by �2. If we start off with such a surface of quantum boundary length �, and
then we explore the metric ball in reverse for s units of distance, then we refer to this surface
as a (reverse) metric band of inner boundary length � and width s. That is, conditionally on
{D > r}, we call the quantum surface D−r \ D−r−s a metric band of length � (where � is
the quantum boundary length of ∂D−r ) and of width s. The inner boundary is ∂D−r and
the outer boundary is ∂D−r−s (when it is nonempty). We call B�,s the law on such surfaces.
In other words, the law of the quantum surface parameterized by D−r \ D−r−s given that
{D > r} and the boundary length of ∂D−r is � is B�,s . We emphasize that B�,s is a probabil-
ity measure since it is defined from an infinite measure conditioned on a positive and finite
measure event. We make the following observations about B�,s (see Figure 8).

PROPOSITION 7.4. Fix �, s > 0 and suppose that B has the law B�,s . Then B is topo-
logically either an annulus or a disk (it is a disk in the case that the target point has dis-

FIG. 8. Left: An instance (S, x, y) of a doubly-marked
√

8/3-LQG sphere decomposed into four metric bands.
Note that a metric band can have the topology of either a disk or an annulus. Right: If we mark the inside and
outside of each metric band, then we can uniquely reconstruct (S, x, y) by gluing the bands together according to
boundary length, with the marked point on each band identified with the corresponding marked point on the next
band.
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tance less than s from the boundary of the band). Moreover, if we fix a sequence (rk) of
positive numbers with

∑
k rk = ∞ and we decompose (S, x, y) into its successive bands

Bk = 
D−∑k−1

j=1 rj
\ D−∑k

j=1 rj
of width rk , then the Bk are conditionally independent given

the quantum length of their inner and outer boundaries.

We note that in the statement of Proposition 7.4, there exists k0 (random) such that Bk =∅

for all k ≥ k0.

PROOF OF PROPOSITION 7.4. The first assertion follows from the continuity results
established earlier (Theorem 1.1 and Theorem 1.2).

The second assertion is immediate from the construction and Proposition 7.2. �

Suppose that we are in the setting of Proposition 7.4 and we mark the outer boundary of
each Bk with a point chosen uniformly at random from the quantum measure, so that each
metric band is doubly marked (one point on the inside boundary and one point on the out-
side boundary). Then the removability of each ∂Bk implied by the construction and Proposi-
tion 7.2 (combined with the usual removability arguments, e.g., [57]) implies that there is a.s.
a unique way to glue these doubly marked metric bands together to reconstruct the original
doubly-marked quantum sphere (S, x, y). That is, the doubly marked bands a.s. determine
the entire doubly-marked quantum surface.

This decomposition will be important for us in Section 8.3, in which we show that the
quantum boundary lengths between geodesics along the boundary of a filled metric ball
evolve as independent 3/2-stable CSBPs.

8. Emergence of the 3/2-Lévy net. In this section, we will see the 3/2-Lévy net struc-
ture [48] appear in the

√
8/3-LQG sphere. We will establish this by successively considering

three different approximations to geodesics.
We will describe the first approximation in Section 8.1. It is based on a reverse exploration

by the δ-approximation to QLE(8/3,0) (Section 7.2). Using Proposition 6.1 and Proposi-
tion 6.2 established in Section 6, we will then show in Section 8.2 that these first approxi-
mations to geodesics converge (at least along a subsequence) to limiting continuous paths.
These subsequential limits serve as our second approximation to geodesics.

Although it may not be obvious from the construction that the first and second approxi-
mations to geodesics are related to actual geodesics, these approximations will be useful to
analyze. This is because, as we will show in Section 8.2.6, it will follow from the construc-
tion that if one considers two such second approximations to geodesics and then performs
a reverse metric exploration, then the quantum lengths of the two segments of the boundary
of the reverse metric exploration between the two paths evolve as independent 3/2-stable
CSBPs. In fact, we will show that this holds more generally for any finite collection of such
paths. At this point, we will start to see some of the (breadth first) 3/2-Lévy net structure
from [48] to emerge.

We will see in the proofs that these second approximations to geodesics are finite length
paths but we will not rule out in the construction that they can be strictly longer than an ac-
tual geodesic. This will lead us to our third approximation to geodesics, which will be paths
whose expected length is at most (1 + ε) times the length of an actual geodesic with the ad-
ditional property that the quantum boundary lengths between such paths along the boundary
of a reverse metric exploration evolve approximately like independent 3/2-stable CSBPs. We
will then use that quantum boundary lengths and quantum distances have different scaling ex-
ponents to deduce that the quantum boundary lengths between any finite collection of actual
geodesics also evolve as independent 3/2-stable CSBPs.
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Once we have finished all of this, it will not require much additional work in Section 8.4
to combine the results of this article with Theorem 1.7 to complete the proof of Theorem 1.4.

Throughout this section, for a doubly-marked surface (S, x, y) and r > 0, we will write
B•
Q(x, r) for the hull of the closure of BQ(x, r) relative to y. That is, B•

Q(x, r) is the com-
plement of the y-containing component of S \ B•

Q(x, r). Equivalently, B•
Q(x, r) is equal to

the hull of the QLE(8/3,0) growth from x to y with the quantum distance parameterization
stopped at time r .

8.1. First approximations to geodesics. Fix r, δ > 0. Suppose that we have a doubly-
marked quantum sphere (S, x, y) which has distribution M2

SPH and which is decorated by an
instance δ of the δ-approximation to QLE(8/3,0) from x to y. Assume that δ is parameter-
ized by quantum natural time and for each t ≥ 0 we let Uδ

t = S \ δ
t . We also let Ũ δ

t = Uδ
T −t

where T is the amount of quantum natural time required by δ to go from x to y and let
Xδ

t be the quantum boundary length of ∂Ũδ
t . We also let τ δ

r = inf{t ≥ 0 : ∫ t
0 (Xδ

s )
−1 ds ≥ r}

be the first time that r units of quantum distance time have accumulated in the time-reversal
of δ . We then let σ δ

r be the first time after time τ δ
r that one of the SLE6 necklaces in δ

is finished being glued in and set Ũ
r,δ
t = Ũ δ

σ δ
r +t

. For each u ≥ 0, we let Xr,δ
u be the quantum

boundary length of ∂Ũ r,δ
u . By Proposition 7.3, Xr,δ evolves as a 3/2-stable Lévy process with

only upward jumps conditioned to first hit 0 at a time which is an integer multiple of δ.
We augment the construction of Ũ r,δ by simultaneously building what we will call a first

approximation to a geodesic as follows. For each j , we let N r,δ
j be the j th SLE6 necklace

which is glued to Ũ r,δ in the reverse δ-approximation to QLE(8/3,0) exploration where we
take the indexing so that N r,δ

1 is the necklace being glued into Ũ r,δ starting at time 0. We
note that N r,δ

j is encoded by Xr,δ|[(j−1)δ,jδ] and the corresponding collection of quantum

disks. We can divide the outer boundary of N r,δ
j into two parts: the bottom and the top (see

Figure 9). The second part is what gets glued to Ũ
r,δ
(j−1)δ and it is marked by the tip of the

SLE6 segment and the bottom is marked by the initial point of the path. Let T
r,δ
j (resp., B

r,δ
j )

denote the quantum length of the top (resp., bottom) of N r,δ
j . In the case that the top is not

disjoint from the bottom (as illustrated in Figure 10, corresponding to when the SLE6 has not
wrapped around its target point), then we can also divide the top and bottom into their left
and right sides. The left-hand (resp., right) side of the top is the part which is to the left (resp.,
right) of the marked point up until it hits the outer boundary of the necklace. The left-hand
(resp., right) side of the bottom is the part which is to the left-hand (resp., right) side of the
bottom up until it hits top.

We are now going to derive formulas for T
r,δ
j and B

r,δ
j . In order to motivate these formulas,

we will first recall an analogous formula in the context of a quantum wedge. Namely, suppose
that (H, h,0,∞) is a

√
8/3-quantum wedge and η′ is an independent SLE6 on H from 0 to ∞

which has been parameterized by quantum natural time. Let Lt (resp., Rt ) denote the change
in the boundary length of the outer boundary of η′([0, t]) relative to time 0 (so that L0 = R0 =
0). Then the boundary length of the part of the outer boundary of η′([0, t]), which is to the
left (resp., right) of η′(t) is given by Lt − infs∈[0,t] Ls (resp., Rt − infs∈[0,t] Rs ). These lengths
correspond to the left-hand and right-hand sides of the top of η′([0, t]). Therefore, the length
of the top of the outer boundary of η′([0, t]) is given by Lt +Rt − infs∈[0,t] Ls − infs∈[0,t] Rs .
Similarly, the length of the interval that η′([0, t]) has separated from ∞ (corresponding to
the bottom of η′([0, t])) is equal to − infs∈[0,t] Ls − infs∈[0,t] Rs .

We will now extend the formulas from the setting of a forward exploration of a quantum
wedge to the setting of a reverse exploration of a quantum sphere. The main difference be-
tween these two cases is that when one explores a sphere or disk with an SLE6, there is the
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FIG. 9. Shown is an SLE6 necklace N of length δ. When referring to the boundary of N , we mean the boundary
of the region, which is cut off from the target point by the corresponding SLE6. (We will only show this part of the
necklace in illustrations in subsequent figures.) We can divide the boundary of N into two parts: the top (heavy
red) and the bottom (blue), as shown. The top is marked by the terminal point of the SLE6 and the bottom is
marked by the initial point. If T (resp., B) denotes the quantum length of the top (resp., bottom) of the necklace
and X is the 3/2-stable Lévy process with only upward jumps which encodes the change in the boundary length
of the time-reversal of the unexplored-domain process as one glues in N then we have that B − T = Xδ − X0. In
the case that the top is not disconnected to the bottom (as shown, corresponding to the case that the SLE6 does
not wrap around its target point), then we can divide the top and the bottom into their left-hand and right-hand
sides. The left (resp., right) part of the top is the part of the top which is to the left (resp., right) of the marked
point up until it hits the outer boundary of the necklace. The left-hand (resp., right) side of the bottom is defined
similarly.

possibility that it can wrap around its target point. In terms of necklaces, this corresponds to
when the top is disconnected from the bottom and happens when T

r,δ
j = X

r,δ
(j−1)δ . We note

that B
r,δ
j − T

r,δ
j = X

r,δ
jδ − X

r,δ
(j−1)δ . On the event that T

r,δ
j < X

r,δ
(j−1)δ , for u ∈ [0, δ] we let

X
j,r,δ,L
u (resp., X

j,r,δ,R
u ) denote the change in the left (resp., right) boundary length of the

FIG. 10. Illustration of one step in the construction of the first approximations to geodesics. Left: The disk
represents the surface parameterized by Ũ

r,δ
(j−1)δ

. Shown is the event A
r,δ
j that the top of the SLE6 necklace

N r,δ
j is glued to a boundary segment, which contains the marked boundary point w

r,δ
j−1 at step j . Right: The

disk represents the surface parameterized by Ũ
r,δ
jδ , which is formed by gluing N r,δ

j to Ũ
r,δ
(j−1)δ

. The path η
r,δ
j ,

indicated in green, is a shortest path in the internal metric (recall Section 5.3.4) associated with Ũ
r,δ
jδ , which

connects the marked boundary point w
r,δ
j at step j to the marked boundary point w

r,δ
j−1 from step j − 1.
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SLE6 which forms N r,δ
j as it is being zipped in so that

X
r,δ
(j−1)δ+u − X

r,δ
(j−1)δ = Xj,r,δ,L

u + Xj,r,δ,R
u .

On the event that T
r,δ
j < X

r,δ
(j−1)δ , we have that

(8.1) T
r,δ
j = −

(
inf

u∈[0,δ]X
j,r,δ,L
u + inf

u∈[0,δ]X
j,r,δ,R
u

)
and
(8.2) B

r,δ
j = X

j,r,δ,L
δ + X

j,r,δ,R
δ −

(
inf

u∈[0,δ]X
j,r,δ,L
u + inf

u∈[0,δ]X
j,r,δ,R
u

)
.

When one performs a reverse SLE6 exploration of a quantum sphere as described in Sec-
tion 7.1, the left and right boundary length processes of the SLE6 necklaces are independent
3/2-stable Lévy processes with only upward jumps up until the first time that the length of
the top is equal to the length of the outer boundary of the previous necklace. The reason for
this is that the overall boundary length process is a 3/2-stable Lévy process with only upward
jumps. The left (resp., right) boundary length process can then be generated from the overall
boundary length process by considering those jumps which are to the left (resp., right) of the
tip and each such jump is to the left (resp., right) independently with probability 1/2. Indeed,
whether a jump is to the left or right corresponds to the orientation of the boundary of the
corresponding quantum disk. In the setting of a reverse δ-approximation to QLE(8/3,0) ex-
ploration, the situation is a little bit more complicated because the boundary length process
for the SLE6 necklaces (except for the first one) is conditioned to first hit 0 at an integer mul-
tiple of δ. When the overall boundary length is bounded from below, it is not difficult to see
that the Radon–Nikodym derivative between the conditioned and unconditioned processes
run for δ units of time is bounded from above and below by constants. Therefore, Lemma 2.8
implies that T

r,δ
j has an exponential moment on the event that the overall boundary length is

bounded from below in the corresponding time interval. This will be important for us in our
later arguments.

We suppose that w
r,δ
0 is picked uniformly from ∂Ũ

r,δ
0 using the quantum boundary mea-

sure. Assume that we have defined w
r,δ
0 , . . . ,w

r,δ
j−1. Then we inductively define w

r,δ
j as fol-

lows. If w
r,δ
j−1 is contained in the interval of ∂Ũ

r,δ
(j−1)δ to which the top of N r,δ

j is glued,

then we take w
r,δ
j to be equal to the marked point on the bottom of N r,δ

j (see Figure 10).
Otherwise, we take w

r,δ
j to be equal to w

r,δ
j−1 (see Figure 11).

FIG. 11. (Continuation of Figure 10) Illustration of one step in the construction of an approximate geodesic.
Left: Shown is the case that (A

r,δ
j )c occurs, that is, the top of the SLE6 necklace N r,δ

j is glued to a boundary

segment which does not contain the marked point w
r,δ
j−1 from step j −1. Right: Shown is the surface parameterized

by Ũ
r,δ
jδ . In this case, η

r,δ
j is the constant path which is equal to the point w

r,δ
j−1 = w

r,δ
j .
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We then form a path ηr,δ , our first approximation to a geodesic, by connecting the points
w

r,δ
0 , . . . ,wr,δ

n with paths η
r,δ
j where we take η

r,δ
j to be the shortest path in the internal metric

of the surface, which has been explored by time j (i.e., the surface parameterized by Ũ
r,δ
jδ )

between w
r,δ
j and w

r,δ
j−1. Note that T

r,δ
j is typically of order δ2/3 while the quantum length

of ∂Ũ
r,δ
jδ is typically of order 1. Thus, the probability that w

r,δ
j 	= w

r,δ
j−1 is of order δ2/3. In

particular, the number of j such that w
r,δ
j 	= w

r,δ
j−1 is of order δ−1/3.

We have so far defined a single path ηr,δ . By repeating this construction with independently
chosen initial points on ∂Ũ

r,δ
0 , we can construct many such paths.

8.2. Second approximations to geodesics. Fix r > 0. We will now show that the joint law
of (S, x, y) and the paths ηr,δ constructed in Section 8.1 (first approximations to geodesics)
just above converges weakly, at least along a subsequence (δk), to a limiting doubly-marked
quantum sphere (S, x, y) with law M2

SPH decorated by a path ηr which connects a uniformly
random point on the boundary of the reverse metric exploration at time r to x. Since M2

SPH is
an infinite measure, we need to clarify what we mean by weak convergence. In this context,
we mean that for each a > 0 the sequence of probability measures given by M2

SPH conditioned
on the total mass of S being at least a converge weakly.

The exact topology that we use here is not important, but to be concrete we will make
the following choice. By applying a conformal transformation, we can parameterize (S, x, y)

using S2 with x (resp., y) taken to the south (resp., north) pole and the starting point of ηr,δ

taken to a fixed point on the equator. We recall that the ηr,δ are parameterized according to
arc length using dQ. We use the uniform topology on paths on S2 and the weak topology on
measures on S2 for the area measure which encodes the quantum surface.

We will refer to the path ηr as our second approximation to a geodesic because it has finite
dQ-length from a point on ∂B•

Q(x, dQ(x, y)− r) to x. In the process of proving the existence
of ηr , we will also show that it has certain properties that will be useful for us in the next
section. We will later show that the quantum boundary length of the two segments along the
boundary of a metric ball between two such paths started at uniformly random points evolve
as independent 3/2-stable CSBPs and, more generally, that the same is true for any finite
number of paths.

PROPOSITION 8.1. Fix r > 0. There exists a sequence (δk) of positive numbers with
δk → 0 as k → ∞ such that the following is true. The joint law of the doubly marked quan-
tum surfaces (S, x, y) and paths ηr,δk converges weakly (using the topology described just
above) to that of a limiting doubly marked quantum surface/path pair (S, x, y), ηr where the
marginal of (S, x, y) is given by M2

SPH and the following hold:

(i) Almost surely, ηr(t) ∈ ∂B•
Q(x, dQ(x, y) − (r + t)) for all t ∈ [0, dQ(x, y) − r].

(ii) For each t ≥ 0, given the quantum boundary length of ∂B•
Q(x, dQ(x, y) − (r + t)),

the quantum surface parameterized by B•
Q(x, dQ(x, y) − (r + t)) and marked by the pair

(ηr(t), x) is independent of the quantum surface parameterized by S \ B•
Q(x, dQ(x, y) −

(r + t)) and marked by the pair (ηr(t), y).

Fix T > 0, C > 1, and let Er
C,T be the event that the quantum boundary length of

∂B•
Q(x, dQ(x, y) − (r + t)) stays in [C−1,C] for t ∈ [0, T ] and let �r

T be the arc length of
ηr |[0,T ]. Then there exists a constant K > 0 depending only on C, T such that E[�r

T 1Er
C,T

] ≤
K . In particular, for every ε > 0 there exists δ > 0 such that if we have an event Q, which
occurs with probability at most δ then E[�r

T 1Er
C,T ∩Q] ≤ ε.
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Finally, by passing to a further subsequence if necessary, we can construct a coupling of a
countable collection of paths which each satisfy (i) and (ii), which start at a countable dense
set of points chosen i.i.d. from the quantum boundary measure on ∂B•

Q(x, dQ(x, y)− r), and
do not cross.

We will break the proof of Proposition 8.1 into several steps, which are carried out in
Sections 8.2.1–8.2.5. The part of the proof contained in Section 8.2.1 is instructive to read
on a first reading because it provides some intuition as to why the second approximations
should be related to geodesics. The estimates from Sections 8.2.2–8.2.5 may be skipped on
a first reading, since the material here is mainly technical and is focused on transferring the
moment bounds from Section 6 to the present setting.

We will establish the statement regarding the evolution of the quantum boundary lengths
between a finite number of paths as in Proposition 8.1 in Section 8.2.6.

8.2.1. Step count distance passes to limit. We begin by establishing a lemma which we
will later argue implies part (i) of Proposition 8.1. This will be important because it will imply
that along any subsequence which ηr,δ converges we have that the limiting path ηr does not
trace along ∂B•

Q(x, dQ(x, y) − (r + t)) for any value of t . Equivalently, this will imply that
ηr is a continuous path if we parameterize it according to its distance from x and the proof
will show that this is in fact the natural parameterization to use for ηr .

LEMMA 8.2. There exists a constant c > 0 such that the following is true. For each j ,
we let A

r,δ
j be the event that w

r,δ
j 	= w

r,δ
j−1 and let I

r,δ
j = 1

A
r,δ
j

. Fix any value of t > 0 and let

N = min

{
m ≥ 1 : c−1δ1/3

m∑
j=1

I
r,δ
j ≥ t

}
.

On the event that dQ(x, y) > r + t , we have that dQ(w
r,δ
N , x) converges in probability as

δ → 0 to dQ(x, y) − (r + t).

PROOF. Note that
∑m

j=1 I
r,δ
j counts the number of times that the marked point moves in

mδ units of quantum natural time. That is,
∑m

j=1 I
r,δ
j is the “step count distance” of w

r,δ
j to

∂B•
Q(x, dQ(x, y) − r) because it counts the number of steps that the marked point has taken

after m SLE6 necklaces have been added in the reverse exploration.
For each s, we let s = �δ−1s�δ. Assume that u > 0 is fixed, let ε > 0 and τ r,δ

ε = u∧ inf{s ≥
0 : Xr,δ

s = ε}. Note that Xr,δ
s is a nonnegative càdlàg process with only upward jumps. More-

over, it is not difficult to see that the law of Xr,δ|[0,τ
r,δ
ε ] converges in total variation as δ → 0

to that of a 3/2-stable Lévy process with only upward jumps run up to the corresponding
time. It is therefore easy to see that (in probability)∣∣∣∣∫ τ r,δ

ε

0

1

X
r,δ
s

ds −
∫ τ r,δ

ε

0

1

X
r,δ
s

ds

∣∣∣∣→ 0 as δ → 0.

Let F r,δ
s be the filtration generated by Xr,δ

s and recall from (8.1) that T
r,δ
j is the quantum

boundary length of the top of N r,δ
j . We assume that δ > 0 is sufficiently small so that δ2/3 ≤ ε.

Let Q
r,δ
j = {T r,δ

j < X
r,δ
(j−1)δ}. On the event that jδ ≤ τ r,δ

ε so that X
r,δ
jδ ≥ ε, using that 1

Q
r,δ
j+1

=
1 − 1

(Q
r,δ
j+1)

c , we have for a constant c > 0 that

(8.3) P
[
A

r,δ
j+1,Q

r,δ
j+1 |F r,δ

jδ

]= E
[T

r,δ
j+1

X
r,δ
jδ

1
Q

r,δ
j+1

∣∣∣F r,δ
jδ

]
= cδ2/3

X
r,δ
jδ

− P
[(

Q
r,δ
j+1

)c |F r,δ
jδ

]
.
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(The constant c appearing in (8.3) is the value of c that we take in the statement of the lemma.)
Let n = �δ−1τ r,δ

ε /c� and let Gr,δ
ε be the event that T

r,δ
j < X

r,δ
jδ for all j such that τ r,δ

ε ≥ jδ.

By Lemma 2.8, we have that P[Gr,δ
ε ] → 1 as δ → 0 with r , ε fixed. Consequently, it follows

that

δ1/3
n∑

j=1

I
r,δ
j 1

(Q
r,δ
j )c

→ 0

in probability as δ → 0 with r , ε fixed. Using that P[(Qr,δ
j+1)

c |F r,δ
jδ ] → 0 as δ → 0 faster

than any power of δ (Lemma 2.8) on the event that jδ ≤ τ r,δ
ε , and using the notation o(1) to

indicate terms which tend to 0 as δ → 0 with r , ε fixed, we have that

(8.4)

E

[(
c−1δ1/3

n∑
j=1

I
r,δ
j 1

Q
r,δ
j

−
∫ τ r,δ

ε

0

1

X
r,δ
s

ds

)2]

= δ2/3E

[
n∑

j,k=1

(
c−1I

r,δ
j 1

Q
r,δ
j

− δ2/3(Xr,δ
(j−1)δ

)−1)(
c−1I

r,δ
k 1

Q
r,δ
k

− δ2/3(Xr,δ
(k−1)δ

)−1)]

+ o(1)

= δ2/3E

[
n∑

j=1

(
c−1I

r,δ
j 1

Q
r,δ
j

− δ2/3(Xr,δ
(j−1)δ

)−1)2]+ o(1) (by (8.3))

= δ2/3E

[
n∑

j=1

(
c−2I

r,δ
j 1

Q
r,δ
j

+ δ4/3(Xr,δ
(j−1)δ

)−2 − 2c−1δ2/3I
r,δ
j

(
X

r,δ
(j−1)δ

)−11
Q

r,δ
j

)]

+ o(1)

= δ2/3E

[
n∑

j=1

(
c−2I

r,δ
j 1

Q
r,δ
j

− δ4/3(Xr,δ
(j−1)δ

)−2)]+ o(1) (by (8.3))

= δ2/3E

[
n∑

j=1

c−2I
r,δ
j 1

Q
r,δ
j

]
− δ2E

[
n∑

j=1

(
X

r,δ
(j−1)δ

)−2

]
+ o(1).

For the first summand in (8.4), we have that

(8.5)
c−2δ2/3E

[
n∑

j=1

I
r,δ
j 1

Q
r,δ
j

]
= c−1δ4/3E

[
n∑

j=1

(
X

r,δ
(j−1)δ

)−1

]
+ o(1) (by (8.3))

≤ c−1uε−1δ1/3 + o(1) → 0 as δ → 0.

To bound the second summand in (8.4), we can use the deterministic bound

(8.6) δ2
n∑

j=1

(
X

r,δ
jδ

)−2 ≤ uε−2δ → 0 as δ → 0.

Combining (8.5) and (8.6) implies that (8.4) tends to 0 as δ → 0. This completes the proof
because the boundary of the time-reversal of the δ-approximation to the reverse metric ex-
ploration at quantum distance time r + ∫ u

0 (Xr,δ
s )−1 ds converges as δ → 0 to the boundary of

the radius dQ(x, y) − (r + ∫ u
0 (Xr,δ

s )−1 ds) ball. �
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8.2.2. Conditional law of necklace given top glued to marked point. Conditioning on the
event A

r,δ
j that w

r,δ
j 	= w

r,δ
j−1 introduces a bias into the law of N r,δ

j because necklaces with
longer top boundary lengths are more likely to be glued to a given marked boundary point.
As we will see in the following lemma, this bias corresponds to weighting the law of N r,δ

j by
the quantum boundary length T

r,δ
j of its top.

LEMMA 8.3. We have that:

(i) The conditional law of N r,δ
j given A

r,δ
j and X

r,δ
(j−1)δ on {T r,δ

j < X
r,δ
(j−1)δ} is that of an

SLE6 necklace weighted by T
r,δ
j .

(ii) Given A
r,δ
j , {T r,δ

j < X
r,δ
(j−1)δ}, and X

r,δ
(j−1)δ we have that w

r,δ
j−1 is distributed uniformly

from the quantum boundary measure on the boundary of the top of N r,δ
j .

PROOF. The first assertion of the lemma is a standard sort of Bayes’ rule style calcula-
tion. Fix an event A such that P[N r,δ

j ∈ A |Xr,δ
(j−1)δ] > 0 and A ⊆ {T r,δ

j < X
r,δ
(j−1)δ}. We have

that

(8.7) P
[
N r,δ

j ∈ A |Ar,δ
j ,X

r,δ
(j−1)δ

]= P[Ar,δ
j |N r,δ

j ∈ A,X
r,δ
(j−1)δ]

P[Ar,δ
j |Xr,δ

(j−1)δ]
P
[
N r,δ

j ∈A |Xr,δ
(j−1)δ

]
.

We can read off from (8.7) the Radon–Nikodym derivative of the law of N r,δ
j given A

r,δ
j ,

X
r,δ
(j−1)δ on the event that {T r,δ

j < X
r,δ
(j−1)δ} with respect to the unconditioned law of N r,δ

j . Fix

ε, a, b > 0. Assume that on A we have that T
r,δ
j ∈ [a, a + ε] where a + ε < X

r,δ
(j−1)δ . Then

we have that

(8.8)
a

X
r,δ
(j−1)δ

≤ P
[
A

r,δ
j |N r,δ

j ∈ A,X
r,δ
(j−1)δ

]≤ a + ε

X
r,δ
(j−1)δ

.

The first assertion follows by combining (8.7) and (8.8) and sending ε → 0.
The second assertion of the lemma is obvious from the construction. �

8.2.3. Comparison of explored surface to a quantum disk. In order to make use of Propo-
sition 6.1 and Proposition 6.2 in the proof of Proposition 8.1 given just below, we will need
to make a comparison between:

• the quantum surface which arises when running the time-reversal to the δ-approximation
to QLE(8/3,0) in the setting of a

√
8/3-quantum sphere and

• a
√

8/3-quantum wedge.

We will accomplish this with a cutting/gluing argument.
Conditional on the boundary length of ∂Ũ

r,δ
jδ being equal to L, we note that the law of the

surface parameterized by Ũ
r,δ
jδ can be sampled from as follows. Let e be a 3/2-stable Lévy

excursion with only upward jumps conditioned to have maximum at least L. Let tL be the
last time that e hits L and let ẽt = etL−t . That is, ẽ is the time-reversal of e starting from when
e last hits L. We consider ẽ conditioned on the following event. Let S be the amount of Lévy
process time elapsed by ẽ when it has been run for jδ units of Lévy process time and then
r units of CSBP time (i.e., after performing a time-change as in (2.30)). Then we condition
ẽ on the event that it first hits 0 in the interval between δ�S/δ� and δ�S/δ�. The surface
parameterized by Ũjδ is then constructed by associating with each jump of ẽ a conditionally
independent quantum disk whose boundary length is equal to the size of the jump. In the
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first δ�S/δ� units of quantum natural time, each chunk of surface which corresponds to δ-
units of quantum natural time corresponds to an SLE6 necklace and the necklaces are glued
together by gluing the tip of one necklace onto the previous necklaces at a uniformly random
point chosen from the quantum boundary measure. The final segment of Lévy process time
corresponds to an SLE6 necklace whose quantum natural time length is smaller than δ.

We can make a comparison between the law of the surface parameterized by Ũ
r,δ
jδ and that

of a quantum disk weighted by its quantum area with quantum boundary length equal to L

decorated by the δ-approximation to QLE(8/3,0) as follows. First, we recall that this latter
law can be encoded using the time-reversal of a 3/2-stable Lévy excursion with maximum at
least L starting from where it last hits L and then run until it first hits 0.

Let ρδ(s, t,L) be the probability of the following event for the time-reversal ẽ of a 3/2-
stable Lévy excursion e starting from when it last hits L. Let S be the amount of Lévy process
time elapsed after ẽ has evolved for s units of CSBP time and let R be the time at which ẽ

first hits 0. Then ρδ(s, t,L) is the probability of the event that R + t is in the interval between
δ�(S + t)/δ� and δ�(S + t)/δ�. We also let ρj,δ(r,L) denote the probability of the following
event. Let S be the amount of Lévy process time elapsed by ẽ when it has been run for jδ

units of Lévy process time and then r units of CSBP time. Then ρj,δ(r,L) is the probability
that ẽ first hits 0 in the time interval between δ�S/δ� and δ�S/δ�. Then the Radon–Nikodym
derivative between the law of the process which encodes the δ-approximation to (forward)
QLE(8/3,0) on Ũ

r,δ
jδ up until r − ζ units of quantum distance time after jδ units of quantum

natural time with respect to the law of a quantum disk weighted by its quantum area decorated
by the δ-approximation to (forward) QLE(8/3,0) up until the same time, by a Bayes’ rule
calculation, is equal to

(8.9)
ρδ(ζ, T ,X)

ρj,δ(r,L)
.

Here, X is the boundary length of the surface at this time and T is the amount of Lévy process
time which has elapsed. For r , ζ , and L fixed, it is easy to see that this Radon–Nikodym
derivative is a bounded, continuous function of X and T (and the bound only depends on r ,
ζ , L). Moreover, if C > 1 and r , ζ are fixed, the bound is also uniform in L ∈ [C−1,C].

We consider three laws on disk-homeomorphic growth-process-decorated quantum sur-
faces with fixed quantum boundary length L:

Law 1: A quantum disk weighted by its quantum area with quantum boundary length
equal to L (i.e., M1,L

DISK) decorated by the δ-approximation to QLE(8/3,0) run for jδ units of
quantum natural time then for r − ζ units of quantum distance time conditioned not to hit the
uniformly random marked point.

Law 2: A quantum disk weighted by its quantum area with quantum boundary length
equal to L (i.e., M1,L

DISK) decorated by the δ-approximation to QLE(8/3,0) for jδ units of
quantum natural time and then for r − ζ units of quantum distance time weighted by the
Radon–Nikodym derivative in (8.9) (with the value of ζ fixed).

Law 3: The growth-process-decorated quantum surface corresponding to exploring Ũ
r,δ
jδ

with the δ-approximation to QLE(8/3,0) conditioned on the boundary length of ∂Ũ
r,δ
jδ being

equal to L.

Then we know that:

• We can transform from Law 3 to Law 2 by cutting out the last ζ units of quantum distance
time of the QLE(8/3,0) and then gluing in a quantum disk weighted by quantum area
decorated by a uniformly random marked point. The continuation of the growth process is
given by the δ-approximation to QLE(8/3,0).
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• We can transform from Law 2 to Law 1 by unweighting by the Radon–Nikodym derivative
in (8.9).

As we will see momentarily, Law 1 is the one which is easiest to make the comparison with
a

√
8/3-quantum wedge (hence apply Proposition 6.1 and Proposition 6.2). This is because

when we parameterize a quantum disk by S , the local behavior of the field near the marked
points at ±∞ is the same as that of a

√
8/3-quantum wedge near its origin (i.e., the finite

marked point). On the other hand, to prove Proposition 8.1 we will need to work with Law 3.

8.2.4. Comparison of explored surface near w
r,δ
j to a

√
8/3-quantum wedge. We are

now going to introduce events on which we will truncate when making the comparison to a√
8/3-quantum wedge. In what follows, we will indicate a quantity associated with Law 1

(resp. Law 2) using the notation ȧ (resp., ä). In other words, one (resp., two) dots indicates
Law 1 (resp., Law 2). We will indicate quantities associated with Law 3 in a manner which
is consistent with the notation from the preceding text.

Suppose that (D, ḧ) is a quantum surface with Law 2 described just above in the case that
j = 0. We assume that we have taken the embedding of the surface so that the marked point
is equal to 0. Fix a function φ ∈ C∞

0 (S ) with φ ≥ 0 and
∫

φ(z) dz = 1. For each r > 0,

M,C > 1 and ζ ∈ (0, r) we let �
φ
M be the set of conformal transformations ψ : D → D

where D ⊆ S contains supp(φ) with |ψ ′(z)| ∈ [M−1,M] for all z ∈ ψ−1(supp(φ)) and let
G

r,δ
ζ,M,C be the event that

inf
{(

ḧ − Q log
∣∣ψ ′∣∣, ∣∣ψ ′∣∣2φ ◦ ψ

) : ψ ∈ �
φ
M

}≥ −C.

LEMMA 8.4. For r , M fixed, the probability under the law considered just above for
which G

r,δ
ζ,M,C occurs tends to 1 as C → ∞ uniformly in δ.

PROOF. This follows from the argument given in [17], Proposition 10.18 and Proposi-
tion 10.19, as in [17], Section 10. �

Let (S , h
r,δ
j ,r,δ,j ) be the growth-process decorated surface with Law 3 and we let

(S , ḣ
r,δ
j , ̇r,δ,j ) and (S , ḧ

r,δ
j , ̈r,δ,j ) be growth-process decorated surfaces with Law 1 and

Law 2, respectively. We assume that (S , h
r,δ
j ,r,δ,j ) and (S , ḧ

r,δ
j , ̈r,δ,j ) have been cou-

pled together so that the surfaces parameterized by r,δ,j and ̈r,δ,j agree except for the last
ζ units of quantum distance time. In other words, it is possible to transform from the for-
mer to the latter using the cutting/gluing operation described at the end of Section 8.2.3 just
above. We take the embedding for (S , ḧ

r,δ
j ) into S by taking the tip of the SLE6 necklace

just glued in (i.e., at time j ) to be −∞ and we then pick another point uniformly from the
quantum boundary measure in the complement of the interval with quantum length (2C)−1

centered at the tip and send this point to +∞. We take the horizontal translation so that the
target point z̈

r,δ
j of ̈r,δ,j has real part equal to 0.

For each j , we let ẅ
r,δ
j (resp., N̈ r,δ

j ) be the point on ∂̈
r,δ
jδ (resp. SLE6 necklace), which

corresponds to w
r,δ
j (resp., N r,δ

j ). Under the coupling that we have constructed, we have that

N̈ r,δ
j is equal to N r,δ

j (as path decorated quantum surfaces).

We also let F
r,δ
j,M,C be the event that:

1. The quantum boundary length of (S , ḧ
r,δ
j ) is in [C−1,C].

2. The quantum area of (S , ḧ
r,δ
j ) is in [C−1,C].
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3. The Euclidean distance between ∂S ∪ ̈
r,δ,j
jδ and the support of φ is at least M−1/2.

The same is also true with z̈
r,δ
j in place of supp(φ).

Note that the third condition of the definition of F
r,δ
j,M,C implies that the following is

true. Let ψ be the unique conformal transformation D → S \ ̈
r,δ,j
jδ with ψ(0) = z̈

r,δ
j

and ψ ′(0) > 0. Then, by the distortion theorem, there exists a constant c0 > 0 such that
|ψ ′(z)| ≥ c0M

−1/2 for all z ∈ ψ−1(supp(φ)). In particular, |ψ ′(z)| ∈ [M−1,M] for all
z ∈ ψ−1(supp(φ)) provided M is at least some universal constant. Thus if we assume that
we are working on the event G

r,δ
ζ,M,C so that ψ ∈ �

φ
M , by the change of coordinates formula

for quantum surfaces we have that (ḧ
r,δ
j , φ) = (ḧ − Q log |ψ ′|, |ψ ′|2φ ◦ ψ) ≥ −C.

LEMMA 8.5. For each C > 1 and ζ > 0, there exists a constant K > 0 such that on the
event that the quantum boundary length of (S , ḧ

r,δ
j ) is in [C−1,C] we have that the Radon–

Nikodym derivative between the law of (S , ḧ
r,δ
j , ̈r,δ,j ) and (S , ḣ

r,δ
j , ̇r,δ,j ) is at most K .

PROOF. This follows by combining the observations made just after (8.9). �

LEMMA 8.6. Suppose that (S , ĥ) has the Bessel quantum disk law conditioned on the
event that supr∈R(ĥ, φ(· + r)) ≥ 0 and let r∗ be the value of r ∈ R at which the supremum is
achieved. Let Y ∗ be equal to the value of the projection of ĥ onto H1(S ) at r∗. There exist
constants c0, c1 > 0 such that

P
[∣∣Y ∗ − (ĥ, φ

(· + r∗))∣∣≥ u
]≤ c0e

−c1u
2

for all u ≥ 0.

PROOF. This is immediate from the construction. �

LEMMA 8.7. We assume that we are working on G
r,δ
ζ,M,C ∩F

r,δ
j,M,C . There exist constants

c0, c1 > 0 depending only on C, M , ζ such that the following is true. The probability that the
supremum of the projection of ḧ

r,δ
j onto H1(S ) is smaller than u is at most c0e

−c1u
2

for all
u ∈ R−.

PROOF. Let ψ : D → S \ ̈
r,δ,j
jδ be the unique conformal map with ψ(0) = z̈

r,δ
j and

ψ ′(0) > 0. As explained above, it follows from the definition of the event G
r,δ
ζ,M,C ∩ F

r,δ
j,M,C

that (ḧ − Q log |ψ ′|, |ψ ′|2φ ◦ ψ) ≥ −C. Applying the change of coordinates rule for quan-
tum surfaces, this implies that (ḧ

r,δ
j , φ) ≥ −C. Note that on G

r,δ
ζ,M,C ∩ F

r,δ
j,M,C , the law of

ḧ
r,δ
j (modulo horizontal translation) is absolutely continuous with bounded Radon–Nikodym

derivative with respect to the law on distributions which comes from the Bessel law condi-
tioned on quantum disks so that supr∈R(ĥ, φ(· + r)) ≥ −C. Consequently, the result follows
by applying Lemma 8.6. �

Assuming that ζ , M , C are fixed, we can choose c sufficiently large so that with c0, c1 as
in the statement of Lemma 8.7 we have with

(8.10) u0 = −c

√
log δ−1

that c0e
−c1u

2
0 ≤ δ2. For each j ∈ N and α > 0, we let ür

j,α,δ ∈ R be where the projection of

ḧ
r,δ
j onto H1(S ) first hits α log δ; we take ür

j,α,δ = +∞ if the supremum of this projection is

smaller than α log δ. We also let H
r,δ
j,α be the event that:
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1. The supremum of the projection of ḧj onto H1(S ) is at least u0.
2. T

r,δ
j ≤ δ2/3−α where T

r,δ
j is the quantum length of the top of N r,δ

j (equivalently, of

N̈ r,δ
j ).

3. N̈ r,δ
j is contained in S− + ür

j,α,δ .

4. Let (S , h́j−1) be the quantum surface which is given by reembedding the quantum
surface (S , ḧ

r,δ
j−1) so that the point on ∂S where the tip of N̈ r,δ

j is glued to form the quan-

tum surface (S , ḧ
r,δ
j ) is sent to −∞ (with +∞ fixed and the horizontal translation left

unspecified). Let úr
j−1,α,δ be where the projection of h́j−1 onto H1(S ) first hits α log δ.

Then the interval of the boundary of (S , h́j−1) to where N̈ r,δ
j gets glued to is contained in

∂S− + úr
j−1,α,δ .

We then let E
r,δ
j,ζ,M,C,α = G

r,δ
ζ,M,C ∩ F

r,δ
j,M,C ∩ H

r,δ
j,α and E

n,r,δ
ζ,M,C,α =⋂n

j=1 E
r,δ
j,ζ,M,C,α .

We will now combine the estimates established earlier to get that it is possible to adjust
the parameters in the definition of E

n,r,δ
ζ,M,C,α so that it occurs with probability as close to 1 as

we like.

LEMMA 8.8. For every ε, a0 > 0, there exists M,C > 1, α, ζ, δ0 > 0, and φ ∈ C∞
0 (S )

such that δ ∈ (0, δ0) implies that P[(En,r,δ
ζ,M,C,α)c] ≤ ε where n = �a0δ

−1�.

PROOF. We explained just after the definition of G
r,δ
ζ,M,C why there exists M,C > 1 and

ζ > 0 such that P[(Gr,δ
ζ,M,C)c] ≤ ε. Therefore, it is left to explain why we have the corre-

sponding property for
⋂n

j=1 F
r,δ
j,M,C and

⋂n
j=1 H

r,δ
j,α .

From the definition of F
r,δ
j,M,C , elementary distortion estimates for conformal maps, and el-

ementary estimates for Lévy processes, it is easy to see that by choosing M,C > 1 sufficiently
large and by making the support of φ sufficiently small, we have that P[(⋂n

j=1 F
r,δ
j,M,C)c] ≤ ε.

It is left to explain why P[(⋂n
j=1 H

r,δ
j,α)c] ≤ ε. The first two parts of the definition follow

from Lemma 2.8 and Lemma 8.7. The second two parts of the definition respectively follow
from (6.3) of Proposition 6.1 and (6.6) of Proposition 6.2. �

8.2.5. Moment bounds. For each j , we let D
r,δ
j (resp., D̈

r,δ
j ) denote the quantum dis-

tance between w
r,δ
j (resp., ẅ

r,δ
j ) and w

r,δ
j+1 (resp., ẅ

r,δ
j+1) with respect to the internal metric of

(S , h
r,δ
j ) (resp., (S , ḧ

r,δ
j )). We let S

r,δ
j be the event that the shortest path from w

r,δ
j to w

r,δ
j+1

does not hit the part of the surface that we cut out in order to transform from (S , h
r,δ
j ) to

(S , ḧ
r,δ
j ). On S

r,δ
j , we have that D

r,δ
j = D̈

r,δ
j . We note that this is the case for all 1 ≤ j ≤ n

on E
n,r,δ
ζ,M,C,α .

Fix a0 > 0 and let n = �a0δ
−1� as in the statement of Lemma 8.8. Suppose that Q is any

event. Using that D
r,δ
j = 0 on (A

r,δ
j )c in the last step, we have that

(8.11)

E

[(
n∑

j=1

D
r,δ
j

)
1
E

n,r,δ
ζ,M,C,α

1Q

]
= E

[(
n∑

j=1

D̈
r,δ
j

)
1
E

n,r,δ
ζ,M,C,α

1Q

]

≤
n∑

j=1

E
[
D̈

r,δ
j 1

F
r,δ
j,M,C∩H

r,δ
j,α

1Q

]

=
n∑

j=1

E
[
D̈

r,δ
j 1

F
r,δ
j,M,C∩H

r,δ
j,α

1Q |Ar,δ
j

]
P
[
A

r,δ
j

]
.
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We next aim to bound the right-hand side of (8.11).

LEMMA 8.9. There exist constants c0, σ > 0 such that

(8.12) E
[
D̈

r,δ
j 1

F
r,δ
j,M,C∩H

r,δ
j,α

1Q |Ar,δ
j

]≤ c0δ
1/3P[Q]σ .

PROOF. We let D́
r,δ
j be the quantum distance (with respect to the internal metric of

(S , ḧ
r,δ
j )) between the tip of N̈ r,δ

j and a point which is chosen uniformly at random from
the quantum measure on the top of N̈ r,δ

j . Conditionally on A
r,δ
j , we have by Lemma 8.3 that

D́
r,δ
j

d= D̈
r,δ
j . Let p > 1 be such that both Proposition 6.1 and Proposition 6.2 apply and let

q ∈ (1,∞) be conjugate to p, that is, p−1 + q−1 = 1. We begin by noting that

E
[
D̈

r,δ
j 1

F
r,δ
j,M,C∩H

r,δ
j,α

|Ar,δ
j

]
= E

[
D́

r,δ
j 1

F
r,δ
j,M,C∩H

r,δ
j,α

|Ar,δ
j

]
≤ c0E

[
D́

r,δ
j T

r,δ
j 1

F
r,δ
j,M,C∩H

r,δ
j,α

]
(by Lemma 8.3)

≤ c0E
[(

D́
r,δ
j

)p1
F

r,δ
j,M,C∩H

r,δ
j,α

]1/pE
[(

T
r,δ
j

)q]1/q (Hölder’s inequality)

≤ c1E
[(

D́
r,δ
j

)p1
F

r,δ
j,M,C∩H

r,δ
j,α

]1/p (by Lemma 2.8).

We note that the constant c1 depends on q . By Lemma 8.5, we know that there exists a
constant K > 0 such that

E
[(

D́
r,δ
j

)p1
F

r,δ
j,M,C∩H

r,δ
j,α

]1/p ≤ KĖ
[(

D́
r,δ
j

)p1
H

r,δ
j,α

]1/p
,

where Ė denotes the expectation under the law (S , ḣ
r,δ
j , ̇r,δ,j ). We let D́

1,r,δ
j denote the

quantum distance between the base and the tip of N̈ r,δ
j and we let D́

2,r,δ
j denote the quantum

distance between the tip of N̈ r,δ
j and the uniformly random point ẅ

r,δ
j on the top of N̈ r,δ

j in

the surface which arises after cutting out N̈ r,δ
j . We will establish (8.12) by bounding the pth

moments of D́
1,r,δ
j and D́

2,r,δ
j .

By the definition of the event H
r,δ
j,α , we have that Re(ẅr,δ

j ) ≤ ür
j,α,δ . Note that the law of the

field ḣ
r,δ
j in S− + u̇r

j,α,δ is absolutely continuous with bounded Radon–Nikodym derivative
to the law of a

√
8/3-quantum wedge with the usual embedding into S restricted to the part

of S up to where the projection of the field onto H1(S ) first hits α log δ. Consequently, it
follows from Proposition 6.2 that for a constant c2 > 0 we have that

(8.13) Ė
[(

D́
2,r,δ
j

)p1
H

r,δ
j,α

]1/p ≤ c2δ
1/3.

It similarly follows from Proposition 6.1 that, by possibly increasing the value of c2 > 0, we
have that

(8.14) Ė
[(

D́
1,r,δ
j

)p1
H

r,δ
j,α

]1/p ≤ c2δ
1/3.

Combining (8.13) and (8.14) implies the result. �

PROOF OF PROPOSITION 8.1. We take the path that we have constructed and parame-
terize it according to arc length with respect to the quantum distance. Using (8.11) and the
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fact that the conditional probability of A
r,δ
j given that the boundary length is not too short

is of order δ2/3 (since T
r,δ
j is of order δ2/3 and has exponential moments), it follows from

Lemma 8.8 and Lemma 8.9 that the length of ηr,δ|[0,T ] is tight as δ → 0. Since the length of
ηr,δ|[0,T ] is equal to its Lipschitz constant times T (as we assume ηr,δ to be parameterized
according to arc length), it follows that the law of ηr,δ|[0,T ] is in fact tight as δ → 0. This
completes the proof of the tightness of the law of ηr,δ|[0,T ] for each T > 0.

Let ηr be any subsequential limit. Lemma 8.2 implies that for any fixed t > 0 we have that
ηr(t) ∈ ∂B•

Q(x, dQ(x, y) − (t + r)) a.s. Therefore, this holds a.s. for all t ∈ Q+ simultane-
ously and, combining with the continuity of ηr , we have that ηr(t) ∈ ∂B•

Q(x, dQ(x, y)− (t +
r)) for all t > 0 a.s. (Note that this property does not imply that ηr is a geodesic since it could
“spiral” around as it approaches x.)

The conditional independence statement in the limit is immediate since it holds for the
approximations.

The final assertion of the proposition is immediate from the argument given above. �

8.2.6. Boundary lengths between second approximations of geodesics.

PROPOSITION 8.10. Fix r > 0 and suppose that (S, x, y) has the law M2
SPH conditioned

so that dQ(x, y) > r . Suppose that x1, . . . , xk are picked independently from the quantum
boundary measure on ∂B•

Q(x, dQ(x, y) − r) and then reordered to be counterclockwise. We
let ηr

1, . . . , η
r
k be second approximations to geodesics starting from x1, . . . , xk as constructed

in Proposition 8.1. For each 1 ≤ j ≤ k and t ∈ [0, dQ(x, y) − r], we let X
r,j
t be the quantum

boundary length of the counterclockwise segment of ∂B•
Q(x, dQ(x, y) − (r + t)) between

ηr
j (t) and ηr

j+1(t) (with the convention that ηr
k+1 = ηr

1). Given X
r,1
0 , . . . ,X

r,k
0 , the processes

X
r,j
t evolve as independent 3/2-stable CSBPs with initial values X

r,j
0 .

In the setting of Proposition 8.10, the processes Xr,j are independent of each other. The
time at which Xr,j first hits 0 corresponds to when the paths ηr,j and ηr,j+1 intersect and
merge into each other. The time sup{t > 0 : max1≤j≤k X

r,j
t > 0} is equal to dQ(x, y)− r . We

also note that M2
SPH conditioned on dQ(x, y) > r is a probability measure since this event has

finite and positive M2
SPH measure by [47], Proposition 4.2.

PROOF OF PROPOSITION 8.10. We will prove the result in the case that k = 2 for sim-
plicity; the proof for general values of k ∈ N with k ≥ 3 follows from the same argument.
See Figure 12 for an illustration. We will prove the result by showing that X

r,1
t , X

r,2
t have the

property that if we reparameterize the time for each using the time change
∫ t

0 X
r,j
s ds, then

the resulting processes evolve as independent 3/2-stable Lévy processes with only upward
jumps and stopped at the first time that they hit 0. This suffices because if we invert the time
change, then the Lamperti transform (recall (2.31)) implies that the resulting processes (i.e.,
we recover Xr,1, Xr,2) are independent 3/2-stable CSBPs.

We fix δ > 0 and consider the boundary lengths between two points as in the construction
of the first approximations to geodesics. As earlier, for each j we let w

r,1,δ
j , w

r,2,δ
j be the

locations of the two marked points when we have glued on the j th SLE6 necklace. We let
X

r,1,δ
t , X

r,2,δ
t be the quantum boundary lengths between the points and assume that we have

the quantum distance parameterization for the overall boundary length process X
r,δ
t in the

δ-approximation to the reverse metric exploration. We let σ
r,δ
j be the j th time that the top

of a necklace gets glued to one of the marked points and we let τ
r,δ
j be the end time of
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FIG. 12. Illustration of the argument to prove Proposition 8.10, which states that the boundary lengths between
second approximations to geodesics evolve as independent 3/2-stable CSBPs. The green region parameterizes
Ũ

r,δ
0 , which we recall is equal to the reverse metric exploration at time r and the disk parameterizes Ũ

r,δ
(j−1)δ

. The

orange paths are first approximations to geodesics starting from points w
r,1,δ
0 , w

r,2,δ
0 , which are independently

chosen from the quantum boundary measure on ∂Ũ
r,δ
0 . Shown is the SLE6 necklace N r,δ

j , which is about to be

glued to the surface parameterized by Ũ
r,δ
(j−1)δ

to form Ũ
r,δ
jδ . In the case that the top of N r,δ

j is contained in

the counterclockwise (resp., clockwise) segment from w
r,1,δ
j−1 to w

r,2,δ
j−1 , the boundary length of the corresponding

segment gets an increment of δ units of Lévy process time. In the case that the top of N r,δ
j is glued to an interval

which contains either w
r,1,δ
j−1 or w

r,2,δ
j−1 , then the boundary lengths of both segments are changed. Since the prob-

ability that this happens is of order δ2/3 (i.e., proportional to the quantum length of the top of N r,δ
j ) and there

are of order δ−1 necklaces overall, the number of such necklaces will be of order δ−1/3. Since the change to the
boundary lengths, which result from such a necklace is of order δ2/3, the overall change to the boundary lengths
which results from such necklaces will be of order δ1/3, hence tend to 0 in the δ → 0 limit.

that necklace (τ r,δ
j occurs δ units of quantum natural time after σ

r,δ
j ). For each t > 0, we let

I
r,k,δ
t = 1 (resp., I

r,k,δ
t = 0) if the starting point of the necklace being glued in at time t is in

the counterclockwise (resp., clockwise) segment between w
r,k,δ
j and w

r,3−k,δ
j . Let

A
r,k,δ
t =

∫ t

0
I r,k,δ
s Xr,δ

s ds.

We will first argue that A
r,k,δ
t − ∫ t

0 Xr,k,δ
s ds → 0 in L1 as δ → 0.

For each s ≥ 0, we let s be the time that the necklace being glued in at time s first appears
in the reverse exploration. We have that

(8.15)

E
∣∣∣∣∫ t

0
I r,k,δ
s Xr,δ

s ds −
∫ t

0
Xr,k,δ

s ds

∣∣∣∣≤ E
∣∣∣∣∫ t

0
I r,k,δ
s X

r,δ
s ds −

∫ t

0
X

r,k,δ
s ds

∣∣∣∣
+
∫ t

0
E
∣∣Xr,k,δ

s − X
r,k,δ
s

∣∣ds

+
∫ t

0
E
∣∣Xr,δ

s − X
r,δ
s

∣∣ds.

We note that the second term on the right-hand side of (8.15) tends to 0 as δ → 0 because
we have for each fixed s ∈ [0, t] that |Xr,k,δ

s − X
r,k,δ
s | → 0 in probability as δ → 0 and there

exists a constant c > 0 and p > 1 so that E|Xr,k,δ
s − X

r,k,δ
s |p ≤ c for all s ∈ [0, t]. The third

term on the right-hand side of (8.15) tends to 0 as δ → 0 for the same reason.
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We will now argue that the first term on the right-hand side of (8.15) tends to 0 if we
take a limit as δ → 0. To see this, we assume that t is at a time at which a necklace is first
being glued in and let L be the number of necklaces, which have been glued in by time t . Let
[t r,δj , t

r,δ
j+1) be the time-interval in which the j th necklace is being glued in. Since the values

of I r,k,δ
s , X

r,δ
s , X

r,k,δ
s do not change in [t r,δj , t

r,δ
j+1), we can write the first term on the right-

hand side of (8.15) as the expectation of the absolute value of

(8.16)

∫ t

0

(
I r,k,δ
s − X

r,k,δ
s

X
r,δ
s

)
X

r,δ
s ds =

L∑
j=0

�
r,δ
j X

r,δ

t
r,δ
j

(
t
r,δ
j+1 − t

r,δ
j

)

where �
r,δ
j =

(
I

r,k,δ

t
r,δ
j

−
X

r,k,δ

t
r,δ
j

X
r,δ

t
r,δ
j

)
.

Note that |�r,δ

t
r,δ
j

| ≤ 1 for each k and

E
[
I

r,k,δ

t
r,δ
j

|Xr,k,δ

t
r,δ
j

,X
r,δ

t
r,δ
j

]= X
r,k,δ

t
r,δ
j

X
r,δ

t
r,δ
j

.

Consequently, Mr,δ
n =∑n

j=0 �
r,δ
j X

r,δ

t
r,δ
j

(t
r,δ
j+1 − t

r,δ
j ) is a martingale. Note that we can write

(8.17)

X
r,δ

t
r,δ
j

(
t
r,δ
j+1 − t

r,δ
j

)= ∫ t
r,δ
j+1

t
r,δ
j

X
r,δ

t
r,δ
j

ds ≤
X

r,δ

t
r,δ
j

inf
s∈[t r,δj ,t

r,δ
j+1] X

r,δ
s

∫ t
r,δ
j+1

t
r,δ
j

Xr,δ
s ds

= δ

X
r,δ

t
r,δ
j

inf
s∈[t r,δj ,t

r,δ
j+1] X

r,δ
s

.

Due to the definition of the times t
r,δ
j , we note that inf

s∈[t r,δj ,t
r,δ
j+1] X

r,δ
s gives the infimum of

a 3/2-stable Lévy process with only upward jumps starting from X
r,δ

t
r,δ
j

in a time interval of

(Lévy process time) δ. Therefore, if we fix ε > 0 and let nε = min{j ∈ N : Xr,δ

t
r,δ
j

< ε} it follows

from Lemma 2.8 that on j ≤ nε we have that the ratio on the right-hand side of (8.17) has
finite moments of all orders. In particular, Mn∧nε is an L2 martingale each of whose O(δ−1)

increments have second moment which is O(δ2). It therefore follows that the first term on
the right-hand side of (8.15) tends to 0 as δ → 0.

We let B
r,j,δ
t be the right-continuous inverse of A

r,j,δ
t . For a given value of t > 0 and each

k, we also let τ̃
r,j,δ
k = t ∧ A

r,j,δ

τ
r,δ
k

and σ̃
r,j,δ
k = t ∧ A

r,j,δ

σ
r,δ
k

. Then we note that we can write

(8.18) X
r,j,δ

B
r,j,δ
t

=∑
�

(
X

r,j,δ

B
r,j,δ

σ̃
r,j,δ
�+1

− X
r,j,δ

B
r,j,δ

τ̃
r,j,δ
�

)+∑
�

(
X

r,j,δ

B
r,j,δ

τ̃
r,j,δ
�

− X
r,j,δ

B
r,j,δ

σ̃
r,j,δ
�

)
.

To complete the proof, we need to show that in the limit as δ → 0 we have that X
r,j,δ

B
r,j,δ
t

evolves

as a 3/2-stable Lévy process. We will establish this by showing that the first term in (8.18) in
the δ → 0 limit evolves as 3/2-stable Lévy process and the second term in (8.18) tends to 0
as δ → 0.
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We begin with the second term in the right-hand side of (8.18). We note that the probability
that a necklace hits one of the marked points is proportional to the quantum length of the top
of the necklace. By Lemma 2.8, we know that the probability for this length to be larger than
cδ2/3 for c > 0 decays exponentially in c. Since the total number of necklaces is of order
δ−1, we see that there will be with high probability δ−1/3 necklaces whose top is glued to
one of the marked points. The change in the boundary length for the left (resp., right) side
of (8.18) evolves like a 3/2-stable Lévy process conditioned to hit 0 for the first time at
an integer multiple of δ and these Lévy processes are independent across necklaces. So the
overall magnitude of the error, which comes from necklaces of this type is dominated by the
sum of the supremum of the absolute value of order δ−1/3 3/2-stable Lévy processes, each
run for time δ. The expectation of the supremum of the absolute value of such a process is of
order δ2/3, so the overall error is of order δ−1/3 × δ2/3 = δ1/3. We conclude that the amount
of change, which comes from these time intervals, tends to 0 as δ → 0.

We now turn to the first term in the right-hand side of (8.18). In each of the other intervals,
we know that the boundary length evolves as a 3/2-stable Lévy process conditioned to hit 0
for the first time at an integer multiple of δ. The total amount of Lévy process time for each
of the two sides is equal to t minus the time, which corresponds to those necklaces whose top
was glued to a marked point. As we have just mentioned above, this corresponds to time of
order δ2/3 and, therefore, makes a negligible contribution as δ → 0. �

8.3. Third approximations to geodesics and the 3/2-Lévy net. We will now show that the
statement of Proposition 8.10 holds in the setting of geodesics starting from the boundary of
a filled metric ball.

PROPOSITION 8.11. Fix r > 0 and suppose that (S, x, y) has the law M2
SPH conditioned

so that dQ(x, y) > r . Suppose that x1, . . . , xk are picked independently from the quantum
boundary measure on ∂B•

Q(x, dQ(x, y) − r) and then reordered to be counterclockwise. We
let ηr

1, . . . , η
r
k be the a.s. unique (recall Proposition 5.19) geodesics from x1, . . . , xk to x. For

each 1 ≤ j ≤ k and t ∈ [0, dQ(x, y) − r], we let X
j,r
t be the quantum boundary length of the

counterclockwise segment of ∂B•
Q(x, dQ(x, y)− (r + t)) between ηr

j (t) and ηr
j+1(t) (with the

convention that ηr
k+1 = ηr

1). Given X
r,1
0 , . . . ,X

r,k
0 , the processes X

r,j
t evolve as independent

3/2-stable CSBPs with initial values X
r,j
0 .

In order to prove Proposition 8.11, we will need to construct our third approximations to
geodesics. We will carry this out in Section 8.3.1. We will then compare these third approx-
imations with the second approximations in Section 8.3.2. This comparison together with a
scaling argument will lead to Proposition 8.11.

8.3.1. Construction of third approximations to geodesics.

LEMMA 8.12. For each ε > 0 and C > 1, there exists L0,M0 > 0 such that for all
L ≥ L0 and M ≥ M0 the following is true. Suppose that B has the law BL,1 (i.e., is a metric
band with inner boundary length L and width 1) and that w is chosen uniformly at random
from the quantum measure restricted to the inner boundary of the band. Let η be the path
from w to the outer boundary of the band as constructed in Proposition 8.1 (i.e., a second
approximation to a geodesic), let z be the point on the outside of the band where this path
terminates and let IM be the interval of quantum length M on the outside of the band, which
is centered at z. Let EC be the event that the quantum boundary length of the outer boundary
of the reverse metric exploration starting from the inner boundary of B and terminating at the
outer boundary of B stays in [C−1L,CL]. Conditionally on EC , we have that the expected
distance inside of B starting from w to IM is at most 1 + ε.
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FIG. 13. Left: Illustration of the statement of Lemma 8.12. Shown is a metric band B with inner boundary length
L and width 1 together with a second approximation of a geodesic η starting from a uniformly random point w

chosen on the inner boundary of B and the length M interval IM starting from the point z where η terminates on
the outer boundary of B. Lemma 8.12 implies that, if M is large enough, then the expected distance from w to IM
is at most 1 + ε. Right: Illustration of the setup of the proof Lemma 8.13.

See Figure 13 for an illustration of the statement of Lemma 8.12. We call a shortest length
path in a metric band as in the statement of Lemma 8.12, which connects w to the closest
point to w along IM a third approximation to a geodesic. We first record the following before
giving the proof of Lemma 8.12.

LEMMA 8.13. For each ε,D > 0 there exists L0,M0 > 0 such that for all L ≥ L0 and
M ≥ M0 the following is true. Suppose that B has the law BL,1 (i.e., is a metric band with
inner boundary length L and width 1) and that w is chosen uniformly at random from the
quantum measure restricted to the inner boundary of the band. Let η be the path from w to the
outer boundary of the band as constructed in Proposition 8.1 (i.e., a second approximation
to a geodesic) let z be the point on the outside of the band where this path terminates, and
let IM be the interval of quantum length M on the outside of the band, which is centered
at z. The probability that the quantum distance between the complement of IM in the outer
boundary to w is at least D is at least 1 − ε.

PROOF. Let M2
SPH,D be as in the proof of Proposition 7.2. Suppose that (S, x, y) and

r are sampled from M2
SPH,D. As explained in the proof of Proposition 7.2, we know that

the conditional law of (S, x, y) given r = r is that of a sample from M2
SPH conditioned on

{dQ(x, y) > r}.
Let r be the QLE(8/3,0) metric ball starting from x and targeted at y. Fix δ > 0. Note

that the conditional law of the quantum surface parameterized by dQ(x,y)−r \ dQ(x,y)−r−δ

given that the quantum boundary length of ∂dQ(x,y)−r is L is that of BL,δ . Since the con-

ditional laws of r and dQ(x, y) − r given everything else are the same, it follows that the
conditional law of the quantum surface parameterized by r \ r−δ given that the quantum
length of ∂r is equal to L is that of BL,δ . Before we study r \ r−δ , we will first study the
quantum surface parameterized by r+δ \ r.

Let r be the QLE(8/3,0) metric ball starting from y and targeted at x. Let w be the
unique element of dQ(x,y)−r−δ ∩ r+δ . In other words, w is the point on ∂r+δ , which is

first hit by r . Let z0 be the point on ∂r which is closest to w using the internal metric in
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r+δ \ r. Note that in fact z0 is the first point on r which is hit by r . Let JN,δ be the
interval on ∂r centered at z0 of length Nδ2 and let a0, b0 be its left and right endpoints. Let
η0 be the shortest path from a0 to b0 in S \ r (if there is more than one, breaking ties by
taking the one which is rightmost). Let d0 be the distance in S \ r from η0 to z0. Then note
that the distance from w to ∂r \ JN,δ using the internal metric in r+δ \r is at least d0 − δ.
Indeed, this follows because:

• Computing distances to z0 versus w changes them by at most δ by the triangle inequality.
• Any path from a point on ∂r \ JN,δ to z0 in r+δ \ r must pass η0.
• The distance from η0 to z0 gets smaller if we use the internal metric of S \ r instead of

the internal metric in r+δ \ r.

We are now going to show that δ−1d0 converges in law as δ → 0 to an N -dependent limit
which, in turn, tends to ∞ as N → ∞.

We know that the quantum surface parameterized by S \ r is a quantum disk weighted
by its quantum area. If we add 4

γ
log δ−1 to the field so that distances are multiplied by δ−1

and boundary lengths are multiplied by δ−2 and send δ → 0, then the law of the surface
near z0 will converge to a

√
8/3-LQG wedge, say (H, h,0,∞). Let p < 0 < q be such that

νh([p,0]) = N/2 and νh([0, q]) = N/2. Then the law of δ−1d0 will converge to that of the
distance from 0 of the shortest path from p to q computed using the metric associated with h.
By the scaling properties of the metric and boundary lengths (i.e., if we add 4

γ
logC to h then

distances get multiplied by C and boundary lengths by C2), it follows that the distance to 0
of the aforementioned shortest path converges in probability to ∞ as N → ∞.

Note that the total variation distance between the conditional law of (r, r+ δ) given every-
thing else and that of (r − δ, r) tends to 0 as δ → 0. It therefore follows from the above that
if we define z, JN,δ and a0 in the same way but in terms of r \ r−δ then we also have that
δ−1d0 converges to the same limit as δ → 0. The same analysis applies with e0 in place of
d0.

Since Bδ−2L,1 can be obtained from BL,δ by adding 4
γ

log δ−1 to the field, it follows from
the above that we have established the following statement. For every ε,D > 0, there exists
L0, N0 such that for every L ≥ L0 and N ≥ N0 the following is true. Suppose that B has law
BL,1 and let z0 be the point on the outer boundary of the band which is closest to w. Note
that the distance between z0 and w is equal to 1. Let JN be the interval of quantum length N

on the outside of B centered at z0. Then the probability that the distance between w and the
complement of JN is at least D is at least 1 − ε/2. On the other hand, Proposition 8.1 implies
that by possibly increasing the value of N , we have that the probability that the length of η

is at most the distance between w and complement of JN is at least 1 − ε/2. In particular, on
the intersection of these two events (which occurs with probability at least 1 − ε), we have
that JN ⊆ I2N and, therefore, with M = 2N the distance of w to the complement of IM is at
least D. �

PROOF OF LEMMA 8.12. For each j , we let Ij be the interval of quantum length j

centered at z as in the statement of the proposition and let Xj be the distance from w to Ij

inside of B. Then we have that Xj+1 ≤ Xj for every j . We also have that X0 is at most the
length of η. We also know that Xj = 1 on the event Fj that the geodesic terminates in Ij

since B has width 1. Then we have that

E[Xj |EC] = E
[
Xj(1Fj

+ 1Fc
j
) |EC

]≤ 1 + E[X01Fc
j
|EC].

Lemma 8.13 implies that by adjusting the parameters, we can make P[Fc
j |EC] as small as

we like. Therefore, the result follows from the uniform integrability of the length of η on EC

established in Proposition 8.1. �
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8.3.2. Subsequential limits of rescalings of concatenations of third approximations of
geodesics are geodesics. We can now complete the proof of Proposition 8.11. See Figure 14
for an illustration of the argument.

PROOF OF PROPOSITION 8.11. Fix α ∈ (0,1). Fix ε > 0, C > 1 and let L0, M0 be as in
Lemma 8.12 for these values of ε, C. Fix r, s > 0 and assume that (S, x, y) is sampled from
M2

SPH conditioned on both:

• dQ(x, y) > r
√

L and
• the quantum boundary length of the boundary of the reverse metric exploration at quantum

distance time r
√

L being in [L,CL].
That is, the quantum boundary length of ∂B•

Q(x, dQ(x, y) − r
√

L) is contained in [L,CL].
Let (Bj ) be the sequence of width-1 metric bands in the reverse exploration from S starting
from ∂B•

Q(x, dQ(x, y)−r
√

L) and targeted toward x. We let E be the event that the boundary
length of the reverse metric exploration starting from quantum distance time r

√
L stays in

[C−1L,CL] for quantum distance time s
√

L. By scaling quantum lengths by L−1 so that
quantum distances scale by L−1/2 (recall also the scaling rules for 3/2-stable CSBPs from
Section 2.5), we observe that the conditional probability of E assigned by M2

SPH conditioned
as described just above is bounded from below by a positive constant, which depends only
on C and s.

Assume that we have chosen L ≥ L0, M ≥ M0, and that we have picked w
1,r
0 from the

quantum measure on the inner boundary of B1. Let w
1,r
1 be the point where the second ap-

FIG. 14. Illustration of the comparison argument used to prove Proposition 8.11, which implies that the bound-
ary lengths between geodesics from the boundary of the reverse metric exploration up to time r back to the root
evolve as independent 3/2-stable CSBPs. Each of the k layers shown represents a metric band of a fixed width
(where each band is as illustrated in Figure 8). The two orange paths are second approximations to a geodesic
across all k metric bands. Each blue path represents a second approximation to a geodesic across a single band
starting from the terminal point of the corresponding blue path across the previous band, which is a third approxi-
mation to a geodesic. Note that on a high probability event the terminal point of each of the red paths is contained
in a green interval centered at the corresponding second approximation to a geodesic. These green intervals each
have quantum length equal to a fixed constant M . The evolution of the boundary lengths between any pair of
blue paths, orange paths or pair consisting of a blue path and an orange path is given by independent 3/2-stable
CSBPs. By construction, the evolution of the boundary lengths between the red paths is then close to being that
of independent 3/2-stable CSBPs. Due to the way that boundary lengths and quantum distances scale, this error
can be made to be arbitrarily small by first taking k to be large and then rescaling. We will then argue that we
can make the red paths as close to geodesics as we like by taking ε > 0 very small, which in turn implies that
boundary lengths between geodesics evolve as independent 3/2-stable CSBPs.
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proximation to a geodesic starting from w
1,r
0 hits the outside of B1. Lemma 8.12 implies

that, conditionally on E, the expected length of the shortest path starting from w
1,r
0 and ter-

minating in the quantum length M interval centered at w
1,r
1 is at most 1 + ε. Let z

1,r
1 be the

terminal point of this path. Assuming that w
1,r
1 , . . . ,w

1,r
k and z

1,r
1 , . . . , z

1,r
k have been defined,

we let w
1,r
k+1 be the terminal point of the second approximation of a geodesic starting from

z
1,r
k across the band Bk+1 and we let z

1,r
k+1 be the terminal point of the shortest path starting

from z
1,r
k and terminating in the boundary length M interval centered at w

1,r
k+1. Lemma 8.12

implies that, conditionally on E, the expected length of the this path is at most 1 + ε.
Let u

1,r
0 , u

1,r
1 , . . . be the points on the inner boundaries of the successive metric bands

visited by a second approximation to a geodesic starting from u
1,r
0 = w

1,r
0 .

For each k, we let S
1,r
k be the quantum length of the shorter boundary segment between

z
1,r
k and u

1,r
k . By the triangle inequality, we have that S

1,r
k is at most the sum of M and the

boundary length distance between u
1,r
k and w

1,r
k . The law of the latter, in turn, can be sampled

from by evolving a 3/2-stable CSBP starting from S
1,r
k−1 for one unit of time. That is,

S
1,r
k ≤ M + �

1,r
k + S

1,r
k−1,

where �
1,r
k = Y k

1 − Y k
0 and Y k has the law of a 3/2-stable CSBP starting from Y k

0 = S
1,r
k−1.

This implies that we can write

S
1,r
k ≤ Mk +

k∑
j=1

�
1,r
j .

Since E[�1,r
j ] = 0 for all j (as a 3/2-stable CSBP is a martingale), we have that

(8.19) E
[
S

1,r
k

]≤ Mk.

Recall that if we rescale so that distances are multiplied by L−1/2, then quantum lengths
are rescaled by the factor L−1. Therefore, if we rescale so that distances are rescaled by
L−1/2, we have a pair of paths γ r,1 and γ̃ r,1, which connect ∂B•

Q(x, dQ(x, y) − r) to
∂B•

Q(x, dQ(x, y) − (r + s)) where γ r,1 (resp., γ̃ r,1) is a rescaled second approximation to
a geodesic (resp., rescaled concatenation of third approximations to geodesics). Moreover,
the expectation of the quantum length of the segment of ∂B•

Q(x, dQ(x, y) − (r + s)), which
connects the tip of γ r,1 to the tip of γ̃ r,1 is at most

(8.20) ML1/2 × L−1 = ML−1/2.

Also, the conditional expectation of the length of γ̃ r,1 is at most (1 + ε)s given E. Sup-
pose that γ r,2, γ̃ r,2 is another pair of such paths starting from a uniformly random point on
∂B•

Q(x, dQ(x, y) − r), which is conditionally independent (given the surface) of the start-
ing point of γ 1,r , γ̃ 1,r . Then Proposition 8.10 implies that the boundary lengths of the two
boundary segments between γ 1,r and γ 2,r evolve as independent 3/2-stable CSBPs when
performing a reverse metric exploration. Indeed, Proposition 8.10 implies that this is the case
for second approximations to geodesics and, as this property is scale invariant, it also holds
for rescalings of second approximations to geodesics.

We will now take limits first as L → ∞, then as ε → 0, and then finally as C → ∞ to
complete the proof.

• Step 1: limit as L → ∞. Since we can take M to be of constant order as L → ∞, it
follows from (8.20) that by taking L to be very large we can arrange so that the bound-
ary length distance between the tips of γ 1,r , γ̃ 1,r and γ 2,r , γ̃ 2,r is arbitrarily small.
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In particular, as L → ∞, we find that the boundary lengths of the two segments of
∂B•

Q(x, dQ(x, y) − (r + s)) has law given by starting with the boundary lengths between
the two segments of ∂B•

Q(x, dQ(x, y) − r) and then evolving according to a pair of inde-
pendent 3/2-stable CSBPs for s units of time. Since this holds for each fixed s, we have
that the finite dimensional distributions of the boundary lengths of the two segments of
∂B•

Q(x, dQ(x, y) − (r + s)) are the same as the finite dimensional distributions of a pair
of independent 3/2-stable CSBPs.

• Step 2: limit as ε → 0. By an abuse of notation, we write γ̃ 1,r , γ̃ 2,r for the paths which
arise after taking the limit as L → ∞ from the previous step. As ε → 0, the length of γ̃ 1,r

and γ̃ 2,r converges to s. If we parameterize these paths according to quantum distance,
then this in particular implies that their Lipschitz constant converges to 1, and thus admit
subsequential limits as ε → 0 which are in fact geodesics. Proposition 5.19 implies that
there is only possible limit and, therefore, Proposition 5.19 implies that γ̃ 1,r , γ̃ 2,r converge
as ε → 0 to the a.s. unique geodesic, which connects their starting points back to x.

• Step 3: limit as C → ∞. Since P[E] → 1 as C → ∞, the proof is complete. �

8.3.3.
√

8/3-LQG unembedded metric net is the 3/2-stable Lévy net. We will now com-
bine Proposition 7.2 with Proposition 8.11 to show that the unembedded metric net from x to
y in a sample (S, x, y) from M2

SPH is the 3/2-stable Lévy net of [48].
We recall that there are several equivalent definitions of the 3/2-stable Lévy net, which are

given in [48]. We will make the comparison here between the construction of the 3/2-stable
Lévy net given in [48], Section 3.6, which is based on a breadth-first approach.

We are now going to give a brief review of the definition and basic properties of the 3/2-
stable Lévy net [48], Definition 3.1. The 3/2-stable Lévy net is an infinite measure on A
which can be sampled from as follows. Suppose that XLN : [0, T ] → R+ is the cadlag modi-
fication of the time-reversal of a 3/2-stable Lévy excursion with only upward jumps sampled
from the infinite measure on such excursions [9], Chapter VIII.4. Note that XLN has down-
ward jumps as it is the time-reversal of a process with upward jumps. We note that the lifetime
T of XLN is not deterministic. Let Y be the height process associated with XLN. This means
that for each t ∈ [0, T ], we have that Yt is equal to the amount of local time that XLN|[t,T ]
spends at its running infimum. We then take Y LN

t = −(Yt/T − sups∈[0,T ] Ys) and define KLN

as follows. We have that (s, t) ∈ T2 with s < t is in KLN if and only if:

(i) XLN
sT = XLN

tT and the horizontal chord from (sT ,XLN
sT ) to (tT ,XLN

tT ) lies below the
graph of XLN, or

(ii) Y LN
s = Y LN

t and the horizontal chord from (s, Y LN
s ) to (t, Y LN

t ) lies below the graph
of Y LN, or

(iii) Y LN
s = Y LN

t and the horizontal chords from (s, Y LN
s ) to (0, Y LN

s ) and from (t, Y LN
t )

to (1, Y LN
t ) lie below the graph of Y LN.

We also have that if (s, t) ∈ KLN then (t, s) ∈ KLN. Then KLN defines a topologically closed
equivalence relation on T1 and (Y LN,KLN) takes values in A.

Let us recall a few additional facts about the Lévy net. The process Y LN attains its mini-
mum of 0 at a unique time and this corresponds to the root of the tree encoded by Y LN. The
process Y LN also attains its maximum value D at a unique time and this corresponds to the
dual root. The reason for this terminology is that if we quotient T1 by the equivalence relation
described by KLN then the resulting topological space can be viewed as a gluing of two trees:
the tree encoded by Y LN and the looptree encoded by XLN [48], Figure 3.3. The root of the
Lévy net is the root of the former and the dual root is the root of the latter.

Although the topological space obtained by quotienting T1 by the equivalence relation
KLN does not a priori come with the structure of a metric, we refer to Y LN as the contour



LIOUVILLE QUANTUM GRAVITY AND THE BROWNIAN MAP II 2821

function of the geodesic tree T LN and we note that distances are defined in T LN in the usual
way for real trees. We let η be the geodesic in T LN, which connects the root to the dual root.
For each r ≥ 0, we let BLN

r be the metric ball of radius r in T LN centered at the root. It is
explained in the beginning of [48], Section 3.6, that it is possible to define an overall boundary
length ZLN

r of ∂BLN
r . Then we moreover have that r �→ ZLN

D−r for r ∈ [0,D] evolves as a 3/2-
stable CSBP [48], Proposition 3.14. This is the starting point for the breadth-first construction
of the Lévy net (instead of the depth-first construction, which is the one defined using XLN).
Whenever ZLN

D−r makes an upward jump, it corresponds to (s, t) ∈ KLN with s < t and tT

is a jump time of XLN [48], Proposition 3.15. The size of the upward jump made by ZLN
D−r

turns out to be the same as the size of the downward jump made by XLN at time tT [48],
Proposition 3.15. More generally, there is a boundary length measure defined on ∂BLN

r with
total boundary length described by ZLN and which is right continuous [48], Proposition 3.26.
Two points in a, b ∈ T LN are equivalent under KLN (which induces an equivalence relation
on T LN) if and only if a, b ∈ ∂BLN

r for some r ≥ 0 and the boundary length of either the
clockwise or counterclockwise segment of ∂BLN

r from a to b is zero [48], Proposition 3.25.

(i) Suppose that we fix a value of r and then sample z1, . . . , zn uniformly from the bound-
ary length measure on ∂BLN

D−r then reorder z1, . . . , zn to be counterclockwise. Then we have
that the boundary lengths between the geodesics from the zi to the root evolve as independent
3/2-stable CSBPs. The amount of time that it takes the boundary length between zi and zj to
reach 0 is equal to 1/2 the distance between zi and zj in T LN [48], Proposition 3.19.

(ii) Finally, if we condition on the boundary length ZLN
D−r of ∂BLN

D−r , then the inside
and the outside of BLN

D−r are independent together with the set of points in each which are
equivalent under the equivalence relation defined by KLN ([48], Proposition 3.25, together
with the beginning of [48], Section 3.6).

As explained in the proof of Lemma 8.15, the form of the boundary length evolution between
geodesics characterizes the whole geodesic tree in the following sense. Suppose that T̃ is a
random rooted plane tree, and for each r ≥ 0 we let B̃r be the set of points in T̃ at distance at
most r from the root of T̃ . Suppose that (for each r ≥ 0) ∂B̃r comes equipped with a length
measure so that properties (i), (ii) hold. Then T̃ has the same law as T LN.

PROPOSITION 8.14. Suppose that (S, x, y) is an instance of the
√

8/3-LQG sphere.
Then the unembedded metric net of S has the law of a 3/2-stable Lévy net.

Throughout, we will let (S, x, y) be an instance of the
√

8/3-LQG sphere. Let (Y LQG,

KLQG) be the unembedded metric net of S . We will proceed by first showing (Lemma 8.15)
that the leftmost geodesic tree in the metric net of S (i.e., the tree encoded by Y LQG) has
the same law as the geodesic tree of the Lévy net. Upon showing this, as explained in [48],
Proposition 3.7, there exists a coupling of Y LQG and an instance of the 3/2-stable Lévy net
(Y LN,KLN) where Y LN = Y LQG. We will then show that the associated equivalence relation
KLQG is equal to KLN. The first step is to show that KLQG ⊇ KLN (Lemma 8.16) and the
second step is to show that KLQG ⊆ KLN (Lemma 8.17).

LEMMA 8.15. Up to a monotone reparameterization, we have that Y LQG has the law of
the contour function of the leftmost geodesic tree in the 3/2-stable Lévy net.

PROOF. Since we have shown in Proposition 7.2 that the overall boundary length of
∂B•

Q(x, dQ(x, y) − s) for s ∈ [0, dQ(x, y)] evolves as a 3/2-stable CSBP excursion, it fol-
lows that we can couple (S, x, y) with a 3/2-stable Lévy net so that the overall boundary
length processes agree.
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We recall from the construction given in [48], Section 3.6, on the event that the length
d = dQ(x, y) of the 3/2-stable CSBP excursion used to generate the Lévy net is at least r

for r > 0 fixed, the boundary lengths between geodesics starting from equally spaced points
on the boundary of a ball of radius d − r evolve as independent 3/2-stable CSBPs as the
radius of the ball decreases from d − r to 0. The same is also true if the geodesics start from
randomly chosen points on the boundary of the ball and then ordered to be counterclockwise.

For any fixed value of r , Proposition 8.11 implies that the same is true for the bound-
ary lengths between the geodesics in a reverse metric exploration of (S, x, y), which
start from a finite number of points chosen i.i.d. from the quantum boundary measure on
∂B•

Q(x, dQ(x, y)−r). Therefore, for a fixed value of r , we can couple these boundary lengths
to be the same as in the Lévy net. By sending the number of geodesics considered to ∞,
we can couple so that the evolution of the boundary lengths between all of the (leftmost)
geodesics starting from ∂B•

Q(x, dQ(x, y) − r) to x agree with the corresponding boundary
length evolutions in the Lévy net instance.

Suppose that 0 < r1 < · · · < rk are fixed and we are working on the event that dQ(x, y) >

rk . As explained above, we can couple all of the (leftmost) geodesics from ∂B•
Q(x, dQ(x, y)−

r1) to ∂B•
Q(x, dQ(x, y) − r2) with those in the Lévy net so that the evolution of the bound-

ary length between any pair agrees. Recall from Proposition 7.2 that B•
Q(x, dQ(x, y) − r2)

is conditionally independent of S \ B•
Q(x, dQ(x, y) − r2) given its boundary length. The

same is also true in the case of the Lévy net. Therefore, we can couple all of the (left-
most) geodesics from ∂B•

Q(x, dQ(x, y) − r2) to ∂B•
Q(x, dQ(x, y) − r3) with those in the

Lévy net so that the evolution of the boundary length between any pair agrees. By iterating
this, we can more generally couple all of the (leftmost) geodesics from ∂B•

Q(x, dQ(x, y) −
rj ) to ∂B•

Q(x, dQ(x, y) − rj+1) with those in the Lévy net so that the evolution of the
boundary length between any pair agrees for 1 ≤ j ≤ k − 1. Since each geodesic from
∂B•

Q(x, dQ(x, y)−rj ) to x consists of a concatenation of geodesics from ∂B•
Q(x, dQ(x, y)−

ri) to ∂B•
Q(x, dQ(x, y) − ri+1) for each i ≤ j ≤ k (taking rk+1 = dQ(x, y)), it follows that

under this coupling we have that the boundary lengths between all of the pairs of (leftmost)
geodesics from every point of ∂B•

Q(x, dQ(x, y) − rj ) to x agrees with that in the Lévy net
for each 1 ≤ j ≤ k.

Sending the number of r values to a countable dense set, we obtain a coupling in which
the whole leftmost geodesic trees agree, from which the result follows. �

Let Y LN = Y LQG. As we mentioned above, Y LN can be coupled with a 3/2-stable Lévy
net instance (Y LN,KLN). Let XLN : [0, T ] → R+ be the corresponding time-reversed Lévy
excursion. We now proceed to show that KLQG = KLN.

LEMMA 8.16. We have that KLQG ⊇ KLN.

PROOF. We are first going to argue that if (s, t) ∈ KLN with s < t and tT is a jump time
of XLN then (s, t) ∈ KLQG. We will then show that KLN is equal to the closure of the set of
such pairs of times together with the set of pairs of times, which are equivalent in the real tree
encoded by Y LN = Y LQG. Together, this will imply that KLQG ⊇ KLN.

The first step is to argue that the locations at which the bubbles appear when performing
a reverse metric exploration in S are the same as in the Lévy net instance encoded by Y LN.
To show that this is the case, fix δ > 0 and for each j ∈ N we let τj,δ be the j th time that the
overall boundary length process for the reverse metric exploration makes an upward jump of
size at least δ. This corresponds to a bubble Uj,δ of boundary length at least δ, which is cut
off from y by ∂B•

Q(x, dQ(x, y) − τj,δ). Then we have that ∂Uj,δ ∩ ∂B•
Q(x, d(x, y) − τj,δ)
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consists of a single point xj,δ . It therefore follows that there are two distinct geodesics in S
from x to xj,δ . One of them is the leftmost geodesic from xj,δ to x and the other is the limit
of the leftmost geodesic from z to x as z ∈ ∂B•

Q(x, dQ(x, y) − τj,δ) tends to xj,δ from the
right.

Since the overall boundary length process for the reverse metric exploration of S is the
same as for (Y LN,KLN), it follows that there is a corresponding jump in the boundary length
measure for the Lévy net. Let η be the unique geodesic from y to x and so that η(τj,δ) is the
unique intersection point of η with ∂B•

Q(x, d(x, y) − τj,δ). We will show that the location
of xj,δ is the same as in the corresponding jump in the Lévy net boundary length measure in
that the counterclockwise boundary length distance from xj,δ to η(τj,δ) is the same as for the
location of the jump in the Lévy net measure. Since we have chosen δ > 0 to be arbitrary, we
will get that the attachment points for all of the bubbles cut off by a metric exploration in S
are the same as the locations of the jumps in the boundary length measure for the Lévy net.

To prove the claim, we fix ε > 0. For each k ∈ N, we fix points on ∂B•(x, d(x, y) − kε)

in counterclockwise order with boundary length spacing ε starting from η(kε). Then we
know that the boundary lengths between the geodesics starting from these points back to
x evolve as independent 3/2-stable CSBPs. By construction, the boundary lengths between
the corresponding geodesics in the Lévy net are the same. Therefore if the overall boundary
length process makes an upward jump of size at least δ in [kε, (k + 1)ε], then the boundary
length between a pair of one of the aforementioned geodesics also makes an upward jump of
size at least δ and the pair is the same for both the Lévy net and for S . By sending ε → 0,
we see that the counterclockwise boundary length distance between each xj,δ to η(τj,δ) is the
same as the corresponding boundary length distance in the Lévy net.

Suppose that (s, t) ∈ KLN with s < t . If tT is a jump time of XLN, then by what we have
just proved above we have that (s, t) ∈ KLQG. Suppose that tT is not a jump time of XLN. By
the definition of KLN, we have that the horizontal chord connecting (sT ,XLN

sT ) and (tT ,XLN
tT )

lies below the graph of XLN|[sT ,tT ]. Then there exists a sequence of times tk so that XLN has
a downward jump at time tkT such that if sk < tk is such that XLN

skT
= XLN

tkT
and the horizontal

chord from (skT ,XLN
skT

) to (tkT ,XLN
tkT

) lies below the graph of XLN|[skT ,tkT ] and sk ↑ s and

tk ↓ t as k → ∞. Then (sk, tk) ∈ KLQG for each k ∈ N by what we explained at the beginning
of the proof. Since KLQG is closed, it follows that (s, t) ∈ KLQG. �

LEMMA 8.17. We have that KLQG ⊆ KLN. In particular, KLQG = KLN.

PROOF. Suppose that (s, t) ∈ KLQG and s < t . If tT is a jump time of XLN, then as
we explained in the proof of Lemma 8.16 we have that (s, t) ∈ KLN. We may therefore
assume that tT is not a jump time of XLN. Then there exists r > 0 so that Y

LQG
s = Y

LQG
t =

dQ(x, y) − r . We recall from the breadth-first construction of the Lévy net that the boundary
length measure is defined for all radii simultaneously and is right continuous. Let ρLN : T1 →
T LN be the projection map from T1 to the tree encoded by Y LN. We consider two possibilities:
either one of the boundary lengths along the clockwise or counterclockwise segments of
∂BLN

dQ(x,y)−r
from ρLN(s) to ρLN(t) is equal to zero or both boundary lengths are positive.

If one of the boundary lengths is equal to zero, then it follows that (s, t) ∈ KLN by the
breadth-first construction of the Lévy net. Suppose that both boundary lengths are positive.
Let ρLQG : T1 → S be the map which embeds the (completion of) the leftmost geodesic tree
into S . We will obtain a contradiction by showing that ρLQG(s) 	= ρLQG(t).

Fix ε > 0 small and rational and let k = �r/ε� − 1. Since tT is not a jump time for
XLN, it follows that for all such ε > 0 sufficiently small we can find u, v ∈ ∂BLN

dQ(x,y)−kε

to the root of T LN and with counterclockwise boundary length distance from the unique
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geodesic from the dual root to the root in T LN given by a multiple of ε so that the follow-
ing is true. The geodesics from u, v to the root pass through the counterclockwise segment
of ∂BLN

dQ(x,y)−r
from ρLN(s) to ρLN(t) before merging. By the proof of Lemma 8.15, this

implies that the corresponding leftmost geodesics in S also do not merge before passing
through the counterclockwise segment of ∂B•(x, dQ(x, y) − r) from ρLQG(s) to ρLQG(t).
In particular, this interval has nonempty interior. We can likewise find a pair of points so
that the leftmost geodesics to x do not merge before passing through the clockwise segment
of ∂B•(x, dQ(x, y) − r) from ρLQG(s) to ρLQG(t). In particular, this interval also has non-
empty interior. This implies that ρLQG(s) 	= ρLQG(t) so that (s, t) /∈ KLQG as desired. �

PROOF OF PROPOSITION 8.14. As explained above, this follows by combining Lemmas
8.16 and 8.17. �

8.4. Proof of Theorem 1.4 and Corollary 1.5. PROOF OF THEOREM 1.4. Proposi-
tion 8.14 implies that, in a

√
8/3-LQG sphere sampled from M2

SPH, we have that the metric net
from x to y has the same law as in the 3/2-stable Lévy net. [17], Proposition 5.11, implies
that the construction is invariant under the operation of resampling x and y independently
from the quantum area measure. We also have the conditional independence of the unex-
plored region going in the forward direction from the construction of QLE(8/3,0) given in
[47]. Therefore, all of the hypotheses of Theorem 1.7 are satisfied; hence our metric measure
space is a.s. isometric to TBM. If we condition on the total mass of the surface being equal
to 1 then the resulting metric measure space is isometric to the standard unit-area Brownian
map measure. �

PROOF OF COROLLARY 1.5. As explained just after the statement of Corollary 1.5, this
immediately follows from Theorem 1.4. �

9. Open problems. We now state a number of open problems which are related to the
present work.

PROBLEM 9.1. Compute the Hausdorff dimension of the outer boundary of a
QLE(8/3,0) process, stopped at a deterministic time r . In other words, consider the outer
boundary of a dQ metric ball of radius r , interpret this as a random closed subset of the
Euclidean sphere or plane, and compute its (Euclidean) Hausdorff dimension.

To begin to think about this problem, suppose that z is chosen from the boundary measure
on a filled metric ball boundary. What does that surface look like locally near z? We under-
stand that the “outside” of the filled metric ball near z should look locally like a weight 2
quantum wedge, and that the inside should be an independent random surface—somewhat
analogous to a quantum wedge—that corresponds to the local behavior of a filled metric ball
at a typical boundary point. If we had some basic results about the interplay between metric,
measure and conformal structure near z, such as what sort of (presumably logarithmic) sin-
gularity the GFF might have near z, this could help us understand the number and size of the
Euclidean balls required to cover the boundary.

Update: The Hausdorff dimension of the boundary of a metric ball in γ -LQG was com-
puted in [22, 30] (see also the update to Problem 9.7 below). The question of computing the
dimension of the outer boundary is still open.

PROBLEM 9.2. Compute the Hausdorff dimension of a
√

8/3-LQG geodesic (interpreted
as a random closed subset of the Euclidean sphere or plane).
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As in the case of a metric ball, we can also consider the local structure near a point z

chosen at random from the length measure of a geodesic between some distinct points a

and b. This z lies on the boundary of a metric ball (of appropriate radius) centered at a, and
also on the boundary of a metric ball centered at z. These two ball boundaries divide the local
picture near z into four pieces, two of which look like independent weight 2 wedges, and the
other two of which look like the surfaces one gets by zooming in near metric ball boundaries.
As before, if we knew what type of GFF thick point z corresponded to, this could enable to
extract the dimension.

We emphasize that the KPZ formula cannot be applied in the case of either Problem 9.1
or Problem 9.2 because in both cases the corresponding random fractal is a.s. determined by
the underlying quantum surface. To the best of our knowledge, there are no existing physics
predictions for the answers to Problem 9.1 and Problem 9.2.

PROBLEM 9.3. Show that a geodesic between two quantum typical points on a
√

8/3-
LQG sphere is a.s. conformally removable.

We note that the coordinate change trick used to prove the removability of the outer bound-
ary of QLE given in [44] does not apply in this particular setting because we do not have an
explicit description of the field, which describes the quantum surface in a geodesic slice. Re-
lated removability questions include establishing the removability of SLEκ for κ ∈ [4,8) as
well as the entire QLE(8/3,0) trace (as opposed to just its outer boundary).

Update: Problem 9.3 was solved in [40].
In [49], we will show that the embedding of TBM into

√
8/3-LQG constructed in this

article is a.s. determined by the instance of TBM, up to Möbius transformation. This implies
that TBM comes equipped with a unique conformal structure, which in turn implies that we
can define Brownian motion on TBM, up to time-change, by taking the inverse image of
a Brownian motion on the corresponding

√
8/3-LQG instance under the embedding map.

The existence of the process with the correct time change was constructed in [7, 21] and
some rough estimates of its associated heat kernel have been obtained in [2, 39]. Following
the standard intuition from heat kernel theory, one might guess that the probability that a
Brownian motion gets from x to y in some very small ε amount of time should scale with
ε in a way that depends on the metric distance between x and y (since any path that gets
from x to y in a very short time would probably take roughly the shortest possible path). This
leads to the following question (left deliberately vague for now), which could in principle be
addressed using the techniques of this paper independently of [49].

PROBLEM 9.4. Relate the heat kernel for Liouville Brownian motion in the case that
γ = √

8/3 to the QLE(8/3,0) metric.

It has been conjectured that the heat kernel pt(x, y) should satisfy (for some constants
c0, c1 > 0) the bound

(9.1)
c0

t
exp

(
−dQ(x, y)4/3

c0t1/3

)
≤ pt(x, y) ≤ c1

t
exp

(
−dQ(x, y)4/3

c1t1/3

)
.

See, for example, the discussion in [13].
A number of versions of the KPZ relation [34] have been made sense of rigorously in the

context of LQG [4–6, 8, 17–19, 23, 53]. One of the differences between these formulations
is how the “quantum dimension” of the fractal set is computed.

PROBLEM 9.5. Does the KPZ formula hold when one computes Hausdorff dimensions
using QLE(8/3,0) metric balls?
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Update: The KPZ formula was shown to hold for γ -LQG metric balls in [29] (see also the
update to Problem 9.7 below).

In this article, we have constructed the metric space structure for
√

8/3-LQG and have
shown that in the case of a quantum sphere, quantum disk and quantum cone the correspond-
ing metric measure space has the same law as in the case of TBM, the Brownian disk and the
Brownian plane, respectively. The construction of the metric is a local property of the surface,
so we also obtain the metric for any other

√
8/3-LQG surface. One particular example is the

torus. The natural law on
√

8/3-torii is described in [14] and the Brownian torus, the scaling
limit of certain types of random planar maps, will be constructed in [10].

PROBLEM 9.6. Show that the
√

8/3-LQG torus of [14], endowed with the metric defined
by QLE(8/3,0) using the methods of this paper, agrees in law (as a random metric measure
space) with the Brownian torus of [10].

Finally, a major open problem is to rigorously describe an analog of TBM that corresponds
to γ -LQG with γ 	= √

8/3, to extend the results of this paper to that setting. A partial step
in this direction appears in [24], which shows the existence of a certain distance scaling
exponent (but does not compute it explicitly).

PROBLEM 9.7. Construct a metric on γ -LQG when γ 	= √
8/3. Work out the appropriate

dimension and scaling relations (as discussed in Section 1.4.1).

Update. The metric for γ ∈ (0,2) was constructed in [15, 16, 25–28].
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