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We consider the algorithmic problem of finding a near ground state (near
optimal solution) of a p-spin model. We show that for a class of algorithms
broadly defined as Approximate Message Passing (AMP), the presence of the
Overlap Gap Property (OGP), appropriately defined, is a barrier. We conjec-
ture that, when p ≥ 4, the model does indeed exhibit OGP (and prove it for
the space of binary solutions). Assuming the validity of this conjecture, as an
implication the AMP fails to find near ground states in these models, per our
result. We extend our result to the problem of finding pure states by means
of Thouless, Anderson and Palmer (TAP) based iterations which is yet an-
other example of AMP type algorithms. We show that such iterations fail to
find pure states approximately, subject to the conjecture that the space of pure
states exhibits the OGP, appropriately stated, when p ≥ 4.

1. Introduction. Given an N -tensor A = (Ai1,...,ip ,1 ≤ i1, . . . , ip ≤ N) ∈ (RN)⊗p of
order p and an N -vector u ∈ R

N , define the usual inner tensor product by

A(u)�
∑

1≤i1,...,ip≤N

Ai1,...,ipui1 · · ·uip .(1.1)

Consider the associated normalized variational problem over the binary cube BN � {−1,1}N ,

ηN � 1

N
min
σ∈BN

A(σ).(1.2)

The case when A consists of i.i.d. zero mean Gaussian random entries with variance 1/Np−1,
that is, N (0, 1

Np−1 ) corresponds to the problem of finding a ground state of a p-spin model
with Gaussian couplings and the (unique) vector u∗ achieving the minimization value is
called the ground state [38]. The choice of variance 1/Np−1 and the normalization 1/N

is dictated by the associated Gibbs distribution defined by assigning probability weight pro-
portional to exp(−βA(σ)) to each σ ∈ BN for some fixed inverse temperature parameter
β ∈ R+. In this case the partition function

Z �
∑

σ∈BN

exp
(−βA(σ)

)

is well approximated by NηN as β increases and ηN is known to converge to a strictly neg-
ative limiting value η∗ < 0 with high probability (w.h.p.) as N → ∞. For us, though, the
details of the choice of scaling are immaterial and the variational problem above is equiv-
alent to the case when A consists of i.i.d. standard normal entries and the normalization
1/N is skipped. Another standard assumption in the literature is to assume a symmetry of
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A, for example, assuming that entries are fully determined by i.i.d. entries corresponding to
i1 ≤ · · · ≤ ip . This difference is again immaterial. Indeed, consider the tensor Ā defined by

Āi1,...,ip = 1

p!A
π,

where Aπ is defined by

Aπ
i1,...,ip

= Aπ(i1,...,ip), 1 ≤ i1, . . . , ip ≤ N

for any permutation π of 1, . . . , p. Note that Ā is symmetric and satisfies Ā(u) = Aπ(u) for
every π .

In the present paper we focus on the algorithmic question of solving the minimization
problem (1.2) approximately and efficiently (in polynomial time). That is, the question is one
of existence of a polynomial time algorithm, which for every ε > 0 produces a sequence of
solution σN ∈ BN , satisfying

A(σN)/N ≤ (1 − ε)η∗,

as N → ∞, ideally w.h.p. as N → ∞. This problem was successfully solved recently by
Montanari [37] in the case of the Sherrington–Kirkpatrick model which is the special case
corresponding to p = 2. The result though assumes the validity of a (widely believed) con-
jecture that the overlap distribution function is strictly increasing. In particular, it assumes
the absence of an interval [ν1, ν2] inside the support of the overlap distribution with zero
mass, namely, that the overlap distribution does not exhibit the Overlap Gap Property (OGP).
This approach was extended in [20] to general mixed p-spin models potentially exhibiting
the OGP, where the optimal approximation ratio for their variant of AMP was obtained. The
algorithms in [37] and [20] are based on a variant of Approximate Message Passing (AMP)
type algorithms, which in the context of spin glasses is well motivated by the so-called Thou-
less, Anderson and Palmer (TAP) equation describing the magnetization of spins in spin glass
models. AMP, as a class of algorithms was also found to be one of the most effective classes
of algorithm in many models of signal processing [8, 9, 13, 14, 19, 32, 33], specifically mod-
els involving a “planted signal” (which does not apply to our p-spin model). The algorithmic
result of [37] in its order was inspired by a similar result by Subag [40] regarding the problem
of finding a near ground states in a spherical“mixed p-spin” model. Here, one considers a lin-
ear combination of objectives of the form (1.1), as one varies p with the coefficients being
fixed, and optimizing over the unit sphere {u : ‖u‖2 ≤ 1} instead of BN . Here, a polynomial
time construction of near optimal solutions is provided, under the assumption that the model
does not exhibit OGP (see part (2) of Proposition 1 in [40]). For the case of spherical models,
the necessary and sufficient conditions for the OGP are known [7, 29, 41]. Both p-spin and
spherical p-spin models are related to the Random Energy Model (REM) considered from
the algorithmic perspective by Addario-Berry and Maillard [3], where, in contrast to [37] and
[40], algorithmic hardness is established away from the ground state value. One should note,
however, that REM is an oracle based optimization problem and thus does not fit classical in-
put size based algorithmic complexity questions arising in the context of p-spin and spherical
p-spin models.

At the same time it is known that the OGP does take place in p-spin models when p ≥
4, as was established in [15], Theorem 3. In particular, it was shown that, for every even
p ≥ 4, there exists μ > 0,0 < ν1 < ν2 < 1 such that w.h.p. for every pair of solutions σ1, σ2
satisfying A(σj )/N ≤ η∗ +μ for j = 1,2, the associated normalized overlap, defined simply
as the normalized absolute value of the inner product (1/N)|〈σ1, σ2〉|, is either at most ν1 or
at least some ν2. This naturally raises the question as to whether the OGP creates a barrier to
the success of AMP when p ≥ 4. The main result of our paper, Theorem 3.3, is to establish
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precisely this fact under the assumption that a certain relaxed version of the OGP takes place
when p ≥ 4. The relaxed version concerns the optimization problem minA(u), when u is
relaxed to be in Hilbert cube u ∈ [−1,1]N �HN , and otherwise is defined in the same way
as for BN . This relaxed version would be a rather straightforward implication of the OGP for
binary solutions if one could show that every nearly optimal solution in HN is nearly binary.
Unfortunately, even this fact is not known, and we leave it as an interesting, though, as we
believe, an approachable open problem. As a consequence of our main result, we show that
extension of the AMP result of [37] to the case p ≥ 4 is not possible. As another implication,
we show that a natural iterative scheme of computing the fixed point of the TAP equations
fails as well in the case p ≥ 4. We note that this iterative scheme is known to succeed in the
high temperature regime due to the result of [14]. Another important class of algorithms ruled
out by our negative result is gradient descent type algorithms. Since the gradient of A(u) is a
linear combination of the vectors of the form A(·, u), defined below in (1.3), then a discrete
implementation of the gradient descent algorithm in the form ut = ut−1 + ηt−1∇A(ut−1) for
some step choices ηt is also a special case of our class of AMP algorithms.

One challenge in establishing our result formally is the formalization of the class of AMP
algorithms to begin with. Unfortunately, there is no one formal definition for it, but rather
there is a vaguely proposed scheme for a class of iterations inspired by the Belief Propagation
type algorithms. The iterations take the form ut+1 = Ft(Gt(u

t ),Gt−1(u
t−1), . . . ,G0(u

0)),

t ≥ 0 and are performed for some constant number of rounds t = 0,1, . . . , T , where F t is an
in general t-dependent function involving vector A(·, u) ∈ R

N , defined by

A(·, u) �
( ∑

i2,...,ip

Ai,i2,...,ipui2 · · ·uip,1 ≤ i ≤ N

)
,(1.3)

for any u ∈ R
N as well other nonlinear operators Gt : RN → R

N , defined typically through
some kind of univariate or t variant nonlinear functions gt : Rt → R applied coordinatewise
in some way. We note that (1.3) is simply a matrix vector product Au when p = 2.

Thus, as a first step we introduce a precise class of such iterative algorithms (functions)
F t and associate it with a precise set of assumptions. We show separately that the algorithm
of [37] is a special case. We assume that the results Ut,0 ≤ t ≤ T of each iteration, are
truncated so that the resulting vector always belongs to ‖ · ‖∞ bounded region of the form
[−M,M]N for some constant M . The rational for the truncation is as follows. In the imple-
mentation of the AMP, the iterations F t ,0 ≤ t ≤ T produce a real-valued vector UT ∈ R

N

which is then projected to a vector in BN in a way discussed below. The idea here is that
UT is a vector which is “close enough” to some vector σ ∈ BN which is a near-ground state.
In particular, the typical entries of Ut are “not too far” from interval [−1,1] and, in par-
ticular, are bounded by M . We restrict every vector Ut to be in [−M,M]N for technical
convenience. The rounding scheme [−M,M]N → BN , assumed to be adopted by our class
of AMP, is similar the one that was used in [37]: first, UT is projected to vector V ∈ HN via a
natural truncation x → min(max(x,−1),1), and then some rounding scheme � : HN → BN

is adopted by the algorithm designer, which is guaranteed asymptotically to never lower the
quality of the solution, that is, it guarantees that A(�(V ))/N ≤ A(V )/N + o(1). Our main
result, stated more precisely, says that, for any AMP algorithm thus defined, the vector V

is w.h.p. suboptimal, namely, A(V )/N exceeds η∗ by some fixed constant μ > 0, w.h.p. as
N → ∞. Thus, we establish that the vector V obtained in the penultimate (before �) step of
the AMP is suboptimal. We note that it is precisely this vector, which is shown to be nearly
optimal in the case p = 2, in the argument of [37]. The last step of converting a real vector
V ∈ HN to �(V ) ∈ BN is just used there in order to obtain a genuinely binary vector. We
do not establish that the ultimate vector �(V ) ∈ BN is sub-optimal, and this is a limitation
of our technique. We note, however, that showing near optimality of π(V ) without showing
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near optimality of V would amount to believing that the rounding � is somehow mysteri-
ously capable of producing near optimal binary solution �(V ) from a presumably far from
optimal fractional solution V ∈ HN , which is something which does not seem to be plausible,
and something which is not established in [37]. Nevertheless, it would be admittedly a more
complete result to show directly that �(V ) is far from optimal, without assuming the same
for V , but we are currently unable to make this argument rigorous and leave it for further
investigation.

Proof of the main result. Outline. We now describe the main ingredients of our proof.
First, as a consequence of a result established in [15], we show that the OGP holds w.h.p. not
just for one instance of A but for a continuous family of sets of the form A = (

√
1 − τA +√

τ Â), τ ∈ [0,1] where Â is an independent instance of A. Note that, for each fixed τ , the
corresponding tensor has the same distribution as A. An easy consequence of the OGP result
in [15] and the chaos result of [16] is the fact, which we prove in this paper (Theorem 3.4), that
the OGP holds for A as well in the sense that for any two Aτ1,Aτ2 ∈ A and any σ1, σ2 ∈ BN

satisfying Aτj
(σj )/N ≤ η∗ + μ, it is again the case that N−1|〈σ1, σ2〉| ∈ [0, ν1] ∪ [ν2,1], for

the same values ν1, ν2,μ. The chaos property, roughly speaking, says for any fixed τ1 �= τ2
near optimal solutions of Aτ1 and Aτ2 are nearly orthogonal; see Theorem 3.5 below. Our
main conjecture regarding OGP (Conjecture 3.2), which we use as an assumption of the main
result, is the conjecture that OGP holds, in fact, for near optimal solutions in HN , as opposed
to those in BN for the same family of instances. Establishing this conjecture is an interesting
open question.

Our main ingredient of the proof is then to show that the iterations UT = UT (A) as func-
tion of A are sufficiently “continuous” to perturbation of the entries of A. Specifically, we
obtain an upper bound on N−1‖UT (Aτ ) − UT (A0)‖2 for the interpolation scheme A which
is sufficiently continuous in τ . This result is the subject of Theorem 6.1. A straightforward
implication is that the same bound applies to N−1‖V (Aτ ) − V (A0)‖2, where, as we recall,
V (A) is projection of UT (A) through the truncation x → min(max(x,−1),1). Separately,
we use the independence of A and Â to argue the near orthogonality of V (A) and V (Â).
The continuity result above then is used to show that, for an appropriate choice of τ , it will
hold that N−1〈V (Aτ ),V (A)〉 ∈ (ν1, ν2). The (conjectured) OGP property implies that this
choice of τ corresponds to a sufficiently suboptimal solution V (Aτ ), which contradicts con-
centration property of A(V (Aτ )), which we establish separately using standard techniques,
including Gaussian concentration of measure and Kirszbraun’s theorem.

Prior results on OGP and algorithmic implications. The concept of OGP originates in
the study of spin glass models, specifically the study of overlap distribution of replicas gen-
erated according to some associated Gibbs distribution, such as the one described above.
Understanding the limiting distribution of overlaps is of an utmost importance to spin glass
theory and has recieved significant attention [5, 6, 30, 31]. The first connections between the
study of the overlaps and algorithms were made in the context of random constraint satis-
faction problems, such as random K-SAT problem and many other similar problems. These
problems exhibit an “infamous” gap between the range of parameters for which a satisfy-
ing assignment exists vs. those for which solutions can be found in polynomial time. The
apparent hardness was linked conjecturally to the clustering (shattering) property of these
models which were discovered to appear roughly in the regime where known polynomial
time algorithms fail [1, 2, 17, 34, 36]. The clustering property says, roughly speaking, that
a large part of the set of satisfying assignments can be partitioned into clusters separated by
Hamming distance which is of the order of the size of the model itself. It is notable that the
proof technique used to establish such a clustering property actually shows something more:
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the overlaps between pairs of typical (random in some appropriate sense) satisfying assign-
ments lie in a disconnected union of intervals [0, ν1] ∪ [ν2,1]. Thus, the set of solutions is
disconnected not only with respect to its ambient metric space but also with respect to its one-
dimensional projection onto the set of possible overlap values. The proof technique relies on
fairly standard application of the moment method. The disconnectivity of overlaps (i.e., the
presence of the overlap gaps of the form (ν1, ν2)) was later used as an obstruction to a class
of local algorithms, defined as so-called Factors of IID in [15, 26, 27, 39], and for random
walk type algorithms in [18]. It is this line of work, which is the closest in spirit to the present
one, as one can think of AMP as a natural definition for “local” algorithms defined on dense
instances—instances not defined on sparse graphs and hypergraphs.

It is important to note that, while OGP implies the clustering property, the converse in gen-
eral is not true. Indeed, if the OGP takes place, then one can partition the set of all solutions
of interest into those which have overlap at least ν2 with some arbitrarily marked solution σo

(thus marked “Cluster 1”) vs. solutions with overlap at most ν1 with σo (thus marked “other
clusters”), leading to a set of at least two clusters separated by a significant distance. On the
other hand, one can easily create a subset of BN for which the set of all overlaps spans the
entire interval [0,1], though at the same time admits clustering partition.

The OGP was further established for some other models, some involving planted sig-
nals [21, 22, 25]. It was shown in [22] to be an obstruction to Glauber Dynamics type algo-
rithms by showing that OGP implies the existence of a free energy well, a property which was
shown to be a barrier for Markov chain type algorithms in problems involving planted sig-
nals [12]. A related notion of free energy barriers associated with these gaps was also shown
to be obstructions for local Markov chain type algorithms for problems of the class consid-
ered herein [11], where it was also shown that these free energy barriers occur in a broad class
of models including both the p-spin and spherical p-spin models. It can be shown that OGP
implies the existence of a free energy barrier at sufficiently low temperatures. It is of interest
to establish the broadest class of algorithms for which OGP is a provable barrier. A step in
this direction is a recent paper by coauthors and Wein [23], which establishes that OGP is
a barrier for algorithms based on low-degree polynomials and algorithms described by the
Langevin dynamics, for the p-spin, spherical p-spin models and the problem of finding a
largest independent set of a sparse random graph.

The remainder of the paper is structured as follows. In the next section we introduce the
formalism of the AMP algorithms. In Section 3 we give the definition of the OGP, state the
corresponding conjecture and state our main result. The validity of OGP for binary solutions,
that is, solutions in BN , is proven in the same section. Some preliminary technical results are
established in Section 4. In Section 5 we show that the OGP conjecture for the Hilbert cube
HN follows from the OGP for the binary cube BN , provided that the validity of another very
plausible Conjecture 3.6 holds which states that every nearly optimal solution in HN should
be nearly binary. Our main technical result is Theorem 6.1 which is stated and proven in
Section 6. We note that it is a purely deterministic result showing that the output of the AMP
depends on the values of the tensor A sufficiently continuously. In Section 7 we establish the
concentration property of the solution V produced by the AMP around its expectation. Our
main theorem is proven in Section 8. In Section 9 we consider TAP solutions and show that
a natural class of iterations suggested by TAP fails to find the fixed point of TAP, modulo the
same Conjecture 3.2, since the iterations are a special case of the class of AMP algorithms
we define. This result is a direct implication of our main result, Theorem 3.3. It contrasts with
the positive result of Bolthausen [14] which establishes that these iterations do converge to
the solution of TAP equations in the high-temperature setting. In Section 10 we verify that
the AMP algorithm constructed in [37] also fit the general definition of AMP introduced in
this paper. Finally, we conclude in Section 11 where we state some open questions.
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2. Approximate message passing iterations formalism. 〈x, y〉 = ∑
1≤i≤N xiyi de-

notes inner product of vectors x, y ∈ RN . For any tensor B ∈ (RN)⊗p ‖B‖2 denotes the
Frobenius norm

√∑
1≤i1,...,ip≤N B2

i1,...,ip
, and ‖B‖op denotes the operator norm

max
u1,...,up

B(u1, . . . , up),

where the maximum is over all u1, . . . , up ∈ R
N,‖uj‖2 = 1,1 ≤ j ≤ p. By Cauchy–Schwarz

inequality ‖B‖op ≤ ‖B‖2.
Throughout the paper A ∈ (RN)⊗p denotes N -size order p tensor consisting of N (0,

N−(p−1)) i.i.d. entries. For any u1, . . . , up−1 ∈ R
N , let

A(u1, . . . , up) = ∑
1≤i1,...,ip≤N

Ai1,i2,...,ipu1
i1

· · ·up
ip

,

so that, for any u ∈ R
N , A(u) = A(u, . . . , u) as in (1.1). Here, ur = (ur

1, . . . , u
r
N). For any

u1, . . . , up−1 ∈ R
N , we also introduce

y = A(·, u1, . . . , up−1) ∈ R
N(2.1)

defined by

yi = ∑
1≤i1,...,ip−1≤N

Ai,i1,...,ip−1u
1
i1

· · ·up−1
ip−1

, 1 ≤ i ≤ N.

Note that, for any u1, . . . , up ∈ R
N ,

A(u1, . . . , up) = 〈
u1,A(·, u2, . . . , up)

〉
.(2.2)

Similarly, for any u ∈ R
N we write A(·, u) instead of A(·, u,u, . . . , u) for short. We recall the

definition of ηN from (1.2). Observe that we may view A(u) as a centered Gaussian process
indexed by HN which has covariance

E
[
A(u)A(v)

] = N

(〈u, v〉
N

)p

.

In particular, |E[A(u)A(v)]| ≤ N for any u, v ∈ R
N with ‖u‖2,‖v‖2 ≤ 1. The following

concentration result is then an immediate consequence of the Borell–TIS inequality, Theo-
rem 2.1.11 of [4].

THEOREM 2.1. For every δ > 0

P
(∣∣ηN −E[ηN ]∣∣ ≥ δ

) ≤ exp
(−(1/4)δ2N

)
,

for all sufficiently large N .

A major consequence of the development in spin glass theory is the existence of the limit

lim
N→∞E[ηN ] = η∗ < 0,(2.3)

which, by Theorem 2.1, also implies that the limit ηN → η∗ holds w.h.p. as N → ∞.
We now introduce a set of assumptions which are used to define a class of AMP al-

gorithms. Fix a positive integer T and an M > 0. Consider two sequences of functions
ft : [−M,M]t →R and Ft :R× [−M,M]t →R,1 ≤ t ≤ T .
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ASSUMPTION 2.2. ft (0) = 0. Furthermore, functions ft ,Ft are Lipschitz continuous on
their respective domains. More precisely, there exists ζ ∈ R+ such that for all 1 ≤ t ≤ T

sup
u,v∈[−M,M]t

∣∣ft (u) − ft (v)
∣∣ ≤ ζ‖u − v‖2,(2.4)

sup
u,v∈R×[−M,M]t

∣∣Ft(u) − Ft(v)
∣∣ ≤ ζ‖u − v‖2.(2.5)

The assumption (2.5) says that the function Ft is Lipschitz on an infinite rectangle R ×
[−M,M]t This will be required due to the special role played by the first variable of Ft .

Fix a positive constant M > 1. Let xM = max(−M,min(x,M)) denote an M-truncation
for any x ∈ R. When x is a vector, xM is assumed to be applied coordinatewise. We now
define the iterations forming the basis of AMP. Fix U0 ∈ [−AnsM,M]N , and define the
sequence Ut ∈ R

N,1 ≤ t ≤ T as follows:

Ut = [
Ft

(
A

(·, ft

(
U0, . . . ,U t−1))

,U0, . . . ,U t−1)]
M ∈ [−M,M]N,(2.6)

where Ft , ft and M are applied componentwise. In other words, in step t , first a vector
ft (U

0, . . . ,U t−1) ∈ R
N is formed by applying ft coordinatewise (recall that the domain

of ft is R
t ). Then, this vector is used to define vector A(·, ft (U

0, . . . ,U t−1)) via (1.3).
This vector is concatinated with prior vectors U0, . . . ,U t−1 to form an N × (t + 1) ma-
trix (A(·, ft (U

0, . . . ,U t−1)),U0, . . . ,U t−1) ∈ R
N×(t+1). Then, function Ft is applied coor-

dinatewise. Finally the M-truncation is applied to each of the N coordinates of the vector
thus obtained, resulting in Ut .

We now describe an algorithm which uses AMP to generate a solution in BN . For this
purposes we assume that the algorithm designer has access to some (computable) projection
function �N : HN → BN . We discuss this further below.

ALGORITHM 2.3 (AMP Algorithm). The algorithm is parametrized by U0,M,T , (ft ,

1 ≤ t ≤ T ), (Ft ,1 ≤ t ≤ T ),�N :

Input A ∈ (RN)⊗p .
Step 1 Compute UT using (2.6).
Step 2 Project UT to HN by applying transformation x → [x]1 = max(min(x,1),−1), co-

ordinatewise. Denote the resulting vector by V ∈ HN .
Step 3 Output σ = �(V ) ∈ BN .

In some sense the details of the projection �N are immaterial to us since our negative
result will be concerned with the quality of the solution V itself and not its projection. Nev-
ertheless, for completeness we describe now the projection used in ([37]), which we denote
by �

sign
N . The projection was defined only for p = 2 which was the case of interest. But it is

straightforward to extend the idea to the case of general p. Set z(0) = V . For j = 1, . . . ,N ,
construct z(j) by making all coordinates � �= j of z(j) to be the same as of z(j−1) and setting
the j th coordinate of z(j) to be the sign opposite of∑

j �=i1 �=i2 �=···�=ip−1

Aj,i1,i2,...,ip−1z
(j−1)
i1,...,ip−1

.(2.7)

In particular, the first j coordinates of z(j) are ±1, but the remaining coordinates are real
valued in general. Set �

sign
N (V ) = z(N).

Let us comment on the meaning and motivation behind the steps of the AMP algorithm
above and also the motivation behind the projection �N described above and used in ([37]).
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The idea is that, when the AMP algorithm succeeds, the vector V , while not being an element
of the binary cube BN , should be nearly optimal in the sense that

A(V ) ≈ inf
w∈BN

A(w)

and should not be too far from HN , so that the projecting UT to V ∈ HN does not change the
objective value significantly. That is, A(V ) ≈ A(UT ). Next, one observes that �

sign
N effec-

tively rounds V to a vector z(N) in BN in such a way that the objective value only decreases
asymptotically. This is verified by observing that, for each coordinate j , the dependence of
A(V ) on variable Vj is linear in Vj , except for terms Ai1,...,ip with repeating coordinates (i.e.,
such that i� = ir for some 1 ≤ � �= r ≤ p). Since V ∈ HN and thus |Vj | ≤ 1, the linearity al-
lows to round Vj to −1 or 1 while only decreasing the objective value. This is done trivially
by setting Vj to be the sign opposite of the one of the multiplier of Vj which is (2.7). This
is done iteratively over all N coordinates. The terms corresponding to repeating coordinates
are easily shown to be of lower order of magnitude than the objective value. As a result one
obtains a vector z = z(N) ∈ BN , satisfying

A(z) �A(V ) ≈ inf
σ∈BN

A(σ).

But since z belongs to the solution space itself (the binary cube BN ), it must be the case that,
in fact,

A(z) ≈ A(V ) ≈ inf
σ∈BN

A(σ),

and thus the success of AMP is validated. Importantly, the near optimality of z is argued
from the near optimality of V itself. This discussion is of key essence to the main result of
our work which is stated in the next section.

3. The OGP conjecture and the main result. Consider an arbitrary set A of tensors
A ∈ (RN)⊗p .

DEFINITION 3.1. The set A satisfies the Overlap Gap Property (OGP) with domain
SN ⊂ R

N and parameters μ > 0,0 < ν1 < ν2 < 1 if for every pair Aj ∈ A, j = 1,2 and
every uj , j = 1,2 satisfying

1

N
Aj(uj ) ≤ 1

N
inf

w∈SN

Aj (w) + μ, j = 1,2,

it holds
|〈u1, u2〉|

‖u1‖2‖u2‖2
∈ [0, ν1] ∪ [ν2,1].(3.1)

Namely, every pair of nearly (μ-close) optimal solutions with respect to any two members
of A cannot have normalized inner product in the interval (ν1, ν2).

Consider two independent random tensors A and Â in (RN)⊗p both with i.i.d. N (0,1/

Np−1) entries. Introduce the interpolated set of tensors Aτ �
√

1 − τA + √
τ Â with τ vary-

ing in [0,1]. Note that, for each fixed τ , Aτ is distributed as A. Our main conjecture regarding
the OGP concerns the set A� (Aτ ,0 ≤ τ ≤ 1).

CONJECTURE 3.2. For every even p ≥ 4 here exists μ > 0,0 < ν1 < ν2 < 1 such that
A described above satisfies the OGP with domain SN = HN and parameters μ,ν1, ν2, with
probability at least 1 − exp(−cN), for some c > 0 for all sufficiently large N . Furthermore,
for every δ > 0 and every v1, v2 ∈ HN satisfying A(v1)/N ≤ (1 − δ)E[ηN ], Â(v2)/N ≤ (1 −
δ)E[ηN ], it holds |〈v1, v2〉| ≤ δN with probability at least 1 − exp(−cN) for some c > 0 and
all large N .
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Our main result, stated below, assumes the validity of this conjecture. To state this result,
let us introduce the following. Let M1([−M,M]N) denote the space of probability measures
on [−M,M]N . Let V (A,T ,U0) denote the output of the first two steps of Algorithm 2.3 after
T steps with coefficient matrix A and initial data U0, where the entires of A ∈ (RN)⊗p are
i.i.d. N (0,N−(p−1)). Then, the following holds.

THEOREM 3.3. Let p ≥ 4 be even. Let M ≥ 1 and ζ > 0. Assume that (ft ), (Ft ) satisfy
Assumption 2.2 with Lipschitz constant ζ and that Conjecture 3.2 holds. Then, there exists
μ̄ > 0 and c > 0, such that for N sufficiently large and any ν ∈ M1([−M,M]N), if U0 ∼ ν,
then V = V (A,T ,U0) satisfies

P

(
A(V )

N
≥ minσ∈BN

A(σ)

N
+ μ̄

)
≥ 1 − exp(−cN).

Thus, we argue the failure of the AMP to find a vector V ∈ HN which is a near opti-
mizer of A. As discussed earlier, this is a negative result regarding the performance of AMP,
since finding such near optimal V is a key step toward finding a near optimal member z of
the binary cube BN . Ideally, one would establish that the vector z obtained from V via any
projection scheme, such as the one described above, is also μ-away from optimality. Unfor-
tunately, our proof technique stops short of that due to the potential sensitivity of the sign
function used on obtaining z to perturbation of A, thus potentially violating stability used
crucially in the proof of our main result. We leave this as an interesting open question.

A partial support to the validity of Conjecture 3.2 above is its validity for the domain
SN = BN as we now establish.

THEOREM 3.4. For every even p ≥ 4 here exists μ > 0,0 < ν1 < ν2 < 1 such that A
described above satisfies the OGP with domain S = BN and parameters μ,ν1, ν2, with prob-
ability at least 1 − exp(−cN), for some c > 0 for all sufficiently large N . Furthermore,
for every δ > 0 and every σ1, σ2 ∈ BN satisfying A(σ1)/N ≤ (1 − δ)E[ηN ], Â(σ2)/N ≤
(1 − δ)E[ηN ], it holds |〈σ1, σ2〉| ≤ δN with probability at least 1 − exp(−cN) for some
c > 0 and all large N .

PROOF. We note that in the case SN = BN , since ‖σ‖2 = N for each σ ∈ BN , the re-
quirement (3.1) in definition of OGP simplifies to

|〈σ1, σ2〉|
N

∈ [0, ν1] ∪ [ν2,1].
It was established in [15] Theorem 3, that the OGP holds for a single instance of a tensor A,
that is, A = {A}, with probability at least 1 − exp(−cN) for some c > 0 and all large N . At
the same time the following chaos property was established in [16].

THEOREM 3.5 ([16], Theorem 2). For every ε > 0 and τ ∈ (0,1), there exists C,μ̃ > 0
such that with probability 1 − exp(−CN)/C, for every σ1, σ2 ∈ BN satisfying A(σ1)/N ≤
E[ηN ] + μ̃,Aτ (σ2)/N ≤ E[ηN ] + μ̃ it holds |〈σ1, σ2〉| ≤ εN .

We now combine these two results. We first claim that it suffices to establish OGP
for a discrete finite subsets. Fix δ > 0 such that 1/δ is an integer, and consider Aτ for
τ = 0, δ,2δ, . . . , δ(1/δ). We assume OGP holds for this set for some μ,ν1, ν2 for every suf-
ficiently small such δ. Now, for any σ ∈ BN

Aτ (σ ) − A(σ) = (
√

1 − τ − 1)A(σ) + √
τA(σ).
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In light of concentration bound of Theorem 2.1, for any ε > 0 we can find small enough δ so
that

max
0≤k≤(1/δ)−1

sup
0≤τ≤δ

max
σ∈BN

∣∣Akδ+τ (σ ) − Akδ(σ )
∣∣ ≤ εN

with probability at least 1 − exp(−cN), for some c > 0 and large N . This means that modulo
exponentially small probability, every σ satisfying Akδ+τ (σ )/N ≤ E[ηN ] + ε also satisfies
Akδ(σ )/N ≤ E[ηN ] + 2ε. Thus, if ε < μ − 2ε, then the set (Aτ , τ ∈ [0,1]) satisfies OGP
with μ̂ = μ − 2ε > 0 and the same ν1, ν2, provided that the discrete set (Akδ,0 ≤ k ≤ 1/δ)

satisfies OGP with μ,ν1, ν2. Thus, we now prove OGP for this discrete set.
Let μ,ν1, ν2 be OGP parameters for a single instance A. By the union bounds over k =

0,1, . . . ,1/δ, the OGP holds for each Akδ modulo exponentially small probability. Fix δ > 0.
Applying Theorem 3.5, we find μ̃ so that the theorem claim holds for ε = ν1 and τ = δ.
By union bounds this also holds for all pairs Ak1δ,Ak2δ, k1 �= k2 modulo exponentially small
probability. Then, OGP holds for μ̄ � min(μ̃,μ), ν1, ν2 by considering separately the cases
k1 = k2 and k1 �= k2, where in the latter case for every σj , j = 1,2 satisfying Akj δ(σj )/N ≤
E[ηN ] + μ̄, j = 1,2, we simply have |〈σ1, σ2〉| ≤ ν1N .

The second part of the theorem follows immediately from the chaos property of Theo-
rem 3.5 in the special case τ = 1. �

Conjecture 3.2 follows from Theorem 3.4 if we could establish that every nearly optimal
solution in HN is actually close to a point in BN . This is quite plausible as one does not
expect nearly optimal solutions to exist “deep” inside the Hilbert cube HN . Unfortunately,
we are not able to show this and thus state it as an interesting open problem.

CONJECTURE 3.6. Suppose the entries of A ∈ (RN)⊗p are generated i.i.d. according
to N (0,N−(p−1)). For every ε > 0, there exists δ > 0 such that with probability at least
1 − exp(−cN) for some c > 0 and large enough N , every u ∈ HN satisfying A(u)/N ≤
(1 − δ)E[ηN ] also satisfies minv∈BN

‖u − v‖2 ≤ ε
√

N .

PROPOSITION 3.7. If Conjecture 3.6 holds, then Conjecture 3.2 holds as well.

The proof of this implication is found in Section 5.

4. Preliminary technical results. In this section we establish several preliminary re-
sults. Recall the interpolation set A. We begin by establishing the following uniform version
of Theorem 2.1.

THEOREM 4.1. For every δ > 0, there exists c > 0 such that

P

(
sup

0≤τ≤1

∣∣∣ min
w∈BN

Aτ (w)/N −E[ηN ]
∣∣∣ ≥ δ

)
≤ exp(−cN),

for all sufficiently large N .

PROOF. Consider discretization τi,1 ≤ i ≤ N of interval [0,1] with equal length τi+1 −
τi = 1/N . The proof below actually reveals that any scaling τi+1 − τi = o(1) suffices. By the
union bound the assertion holds for maxi replacing sup0≤τ≤1. Now, fix any τ ∈ [0,1], and
find i with τi ≤ τ ≤ τi+1. Fix any u ∈ BN . We have ‖u‖2 = √

N . Then,∣∣Aτ (u) − Aτi
(u)

∣∣ ≤ sup
τi≤τ≤τi+1

‖Aτ − Aτi
‖opN

p
2
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= sup
τi≤τ≤τi+1

∥∥(√1 − τ − √
1 − τi)A − (

√
τ − √

τi)Â
∥∥

opN
p
2

≤ N
p
2 (

√
1 − τi −

√
1 − τi+1)‖A‖op

+ N
p
2 (

√
τi+1 − √

τi)‖Â‖op.

Since
√

τi+1 − √
τi ≤ 1/

√
N for all i, applying Lemma 4.3, with probability at least 1 −

exp(−cN), the expression above is at most 2C
√

N . We conclude that modulo exponentially
small in N probability

max
1≤i≤N

sup
τi≤τ≤τi+1

max
u∈BN

∣∣Aτ (u) − Aτi
(u)

∣∣ ≤ 2C
√

N,

from which the assertion follows. �

Next, we show that optimization over the Hilbert cube HN results in the asymptotically
same optimal value as when optimizing over the binary cube BN , uniformly over the set A.

THEOREM 4.2. The assertion of Theorem 4.1 when BN is replaced by HN .

PROOF. Fix any realization A. Clearly, minw∈BN
A(w) ≥ minw∈HN

A(w). For any A,
write A(w) as a sum Ahom(w) + Arest(w) where Ahom corresponds to the terms of the form
Ai1,...,ip with the property that all i1, . . . , ip are distinct (corresponding to a homogeneneous
polynomial in w), and Arest(w) corresponds to the remaining terms. A simple observation is
that

min
w∈HN

Ahom(w) ≥ min
w∈BN

Ahom(w).

Indeed, each fractional solution w ∈ HN can be rounded to a binary solution w̄ ∈ BN se-
quentially over coordinates without ever increasing the value. For the second term we use
the fact that ‖Arest‖op ≤ CN−p

2 modulo exponentially small in N probability. The proof of
this fact follows similarly to the proof of Lemma 4.3, with only adjusting to the size of the
corresponding net being at most p(4/ε)pN−1 adjusting for repeated coordinates appearing in
terms of Arest. Thus, ∣∣∣ min

w∈HN

Arest(w)
∣∣∣ ≤ CN−p

2 ‖w‖p
2

≤ CN−p
2 N

p
2

= C,

which is dominated by NE[ηN ] = (N). This proves that

P

(∣∣∣ min
w∈HN

A(w)/N −E[ηN ]
∣∣∣ ≥ δ

)
≤ exp(−cN)

for a fix random A.
The proof of the uniform over A version follows similarly to the proof of the uniform

version for BN . �

Recall the following operator norm bound.

LEMMA 4.3. There exist constants C,c > 0, such that

P
(‖A‖op > CN1−p/2) ≤ e−cN

for all sufficiently large N .
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PROOF. The proof of this result is verbatim that from [10], Lemma 4.7. We include this
for completeness.

Let SN = {x : ‖x‖2 = 1} denote the unit �2- ball. We may then view A as a centered
Gaussian process on (SN)×p , with covariance

E
[
A(x1, . . . , xp)A(y1, . . . , yp)

] = 1

N(p−1)

∏
1≤i≤p

〈xi, yi〉.

This process is rotationally invariant. Fix an ε > 0, let �ε denote an ε− net for S
N with

respect to ‖ · ‖2 norm and let �
p
ε denote is p-fold cartesian product. By multilinearity of A,

‖A‖op ≤ sup
(x1,...,xk)∈�

p
ε

A(x1, . . . , xp) + εp‖A‖op.

If we choose ε so that 2pε ≤ 1, we have

P
(‖A‖op > λ

) ≤ P

( ⋃
x∈�

p
ε

{
A(x1, . . . , xp) ≥ λ/2

})
.

To bound the right-hand side, note that for any fixed (x1, . . . , xp) ∈ (SN)p , A(x1, . . . , xp) is
a centered Gaussian with variance N−p+1, so that

P
(
A(x1, . . . , xp) ≥ λN1−p/2) ≤ e−Nλ2/2,

where, in the second line, (x1, . . . , xp) is any point in �p , |�k| denotes its cardinality and the
final inequality comes from a Gaussian tail bound since A(x1, . . . , xp) is a centered Gaussian
with variance N−p+1. Note furthermore that we may choose this net so that |�ε | ≤ (4/ε)N ,
[44], Lemma 5.1. Thus, by rotation invariance and a union bound we see that

P
(‖A‖op ≥ λN1−p/2) ≤

(
4

ε

)pN

e−Nλ2/2.

Choosing λ sufficiently large yields the result. �

Recall the set A = √
1 − τA + √

τ Â, introduced earlier. Since ‖√1 − τA + √
τ Â‖op ≤

‖A‖op + ‖Â‖op, we obtain the following immediate extension.

LEMMA 4.4. There exist constants C,c > 0, such that

P

(
sup

0≤τ≤1
‖Aτ‖op > CN1−p/2

)
≤ e−cN

for all sufficiently large N .

PROPOSITION 4.5. There exists c2, c > 0, which depend on M , such that

P

(
sup

0≤τ≤1
max

u,v∈[−M,M]N
‖A(·, u) − A(·, v)‖2

‖u − v‖2
≥ c2

)
≤ exp(−cN)

for all sufficiently large N .

PROOF. By multilinearity of A, the triangle inequality and the definition of the operator
norm,∥∥A(·, u, . . . , u) − A(·, v, . . . , v)

∥∥
2 ≤ ∥∥A(·, u − v, . . . , u)

∥∥
2 + · · · + ∥∥A(·, v, . . . , v, u − v)

∥∥
2

≤ ‖A‖op max
{‖v‖p−2

2 ,‖u‖p−2
2

}‖u − v‖2.

Since u, v ∈ [−M,M]N , it follows that ‖v‖2,‖u‖2 ≤ M
√

N . Applying the bound from
Lemma 4.4, we obtain the result. �
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LEMMA 4.6. There exist c,C > 0 such that with probability at least 1 − exp(−cN) for
all large N the following holds: for every η > 0, every u ∈ HN satisfying A(u) ≤ −ηN also
satisfies ‖u‖2 ≥ Cη1/p

√
N .

PROOF. Note that by Lemma 4.3, with probability at least 1 − exp(−cN)∣∣∣ max
‖u‖2≤δ

√
N

A(u)
∣∣∣ ≤ δpN

p
2 · ‖A‖op ≤ CδpN.

Thus, if A(u) ≤ −ηN , it must be that ‖u‖p
2 ‖A‖op ≥ ηN , so that

‖u‖2 ≥ 1

C
η1/pN1/2,

where C is as in Lemma 4.3. �

5. Conjecture 3.2 is implied by Conjecture 3.6. Now, we show that Conjecture 3.6
implies Conjecture 3.2 and thus, ultimately, the main result Theorem 3.3.

PROOF OF PROPOSITION 3.7. We first show that the property described in Conjec-
ture 3.6 holds uniformly for members of the set A.

LEMMA 5.1. If Conjecture 3.6 holds, then for every ε > 0 there exists a δ > 0 such that
with probability at least 1 − exp(−cN) for some c > 0 and all large enough N the following
holds. For every A ∈ A, if u ∈ HN satisfies A(u)/N ≤ (1 − δ)E[ηN ], then it also satisfies
minv∈BN

‖u − v‖2 ≤ ε
√

N .

PROOF. The proof is similar to the proof of Theorem 4.1. We provide it for convenience.
Consider discretization τi,1 ≤ i ≤ N of interval [0,1] with equal length τi+1 − τi = 1/N .
The proof below actually reveals that any scaling τi+1 − τi = o(1) suffices. By assumption
of the conjecture and the union bound, with probability at least 1 − exp(−cN) for large
enough N , for every i and every u ∈ HN satisfying Aτi

(u)/N ≤ (1 − δ)E[ηN ] there exists
v ∈ BN with ‖u − v‖2 ≤ ε

√
N . (The constant c > 0 might need to be adjusted for the union

bound purposes.) Fix any τ ∈ [0,1], and find i with τi ≤ τ ≤ τi+1. Let u ∈ HN be such that
Aτ (u)/N ≤ (1 − δ/2)E[ηN ]. We have ‖u‖2 ≤ √

N . Then,∣∣Aτ (u) − Aτi
(u)

∣∣ ≤ sup
τi≤τ≤τi+1

‖Aτ − Aτi
‖opN

p
2

= sup
τi≤τ≤τi+1

∥∥(√1 − τ − √
1 − τi)A − (

√
τ − √

τi)Â
∥∥

opN
p
2

≤ N
p
2 (

√
1 − τi −

√
1 − τi+1)‖A‖op

+ N
p
2 (

√
τi+1 − √

τi)‖Â‖op.

Since
√

τi+1 − √
τi ≤ 1/

√
N for all i, applying Lemma 4.3, with probability at least

1 − exp(−cN) the expression above is at most C
√

N < (δ/2)|E[ηN ]|N for all i, and thus
Aτi

(u)/N ≤ (1 − δ)E[ηN ]. By the above there exists v ∈ BN with ‖u − v‖2 ≤ ε
√

N . �

We now return to the proof of the conjecture. Let μ,ν1, ν2 be parameters for the OGP for
BN as in Theorem 3.4. Recall the constant c2 from Proposition 4.5. For any ε > 0, choose
δ = δ(ε) as per the assumption of the conjecture and its implication in Lemma 5.1. As we are
free to decrease δ by construction, let us assume that ε and δ are small enough to satisfy

δ
∣∣E[ηN ]∣∣ + 2c2ε ≤ (11/12)μ.(5.1)
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Since limE[ηN ] < 0, we may fix μ̄ > 0 small enough so that for all large enough N

E[ηN ] + μ̄ ≤ (1 − δ/2)E[ηN ].
Fix any τ1, τ2 ∈ [0,1] and u1, u2 ∈ HN with

Aτj
(uj )/N ≤ min

w∈HN

Aτj
(w)/N + μ̄, j = 1,2.

By the uniform concentration bound Theorem 4.2 we have

Aτj
(uj )/N ≤ (1 − δ)E[ηN ], j = 1,2.

Thus, by Lemma 5.1 we can find vj ∈ BN, j = 1,2 with ‖uj − vj‖2 ≤ ε
√

N .
Now, let A be either Aτ1 or Aτ2 , and (u, v) be either (u1, v1) or (u2, v2), respectively.

Applying (2.2), we have that

A(v) − A(u) = 〈
v,A(·, v)

〉 − 〈
u,A(·, u)

〉
= 〈

v,A(·, v) − A(·, u)
〉 + 〈

v − u,A(·, u)
〉
.

Applying the Cauchy–Schwarz inequality,∣∣A(v) − A(u)
∣∣ ≤ ‖v‖2

∥∥A(·, v) − A(·, u)
∥∥

2 + ‖v − u‖2
∥∥A(·, u)

∥∥
2

≤ √
N

∥∥A(·, v) − A(·, u)
∥∥

2 + ‖v − u‖2
∥∥A(·, u)

∥∥
2.

Applying Proposition 4.5 for the case M = 1, for a certain c2 we have∥∥A(·, v) − A(·, u)
∥∥

2 ≤ c2‖v − u‖2 ≤ c2ε
√

N,

modulo exp(−cN) probability. Similarly, ‖A(·, u)‖2 ≤ c2‖u‖2 ≤ c2
√

N , modulo same prob-
ability. We conclude that modulo, an event with probability exp(−cN) (with c > 0 adjusted
appropriately), ∣∣A(v) − A(u)

∣∣ ≤ 2c2εN,

and thus

A(v)/N ≤ (1 − δ)E[ηN ] + 2c2ε.

Applying (5.1), we find that v1, v2 ∈ BN satisfy Aτj
(vj ) ≤ E[ηN ] + (11/12)μ. By the uni-

form concentration property of Theorem 4.1,

Aτj
(vj ) ≤ min

w∈BN

Aτj
(w) + μ.

Then, by the OGP, |〈v1, v2〉|/N ∈ [0, ν1] ∪ [ν2,1]. We have

〈u1, u2〉 = 〈u1 − v1, u2〉 + 〈v1, u2 − v2〉 + 〈v1, v2〉.
Applying the Cauchy–Schwarz inequality for the first and second term on the right-hand side
above and triangle inequality, we obtain∣∣∣∣〈u1, u2〉| − |〈v1, v2〉

∣∣∣∣ ≤ ∣∣〈v1, v2〉
∣∣ + 2ε,

and thus the OGP holds for the set A over the domain HN with parameters μ̄ and ν1 +
2ε, ν2 − 2ε. This completes the proof of the first assertion of Conjecture 3.2.

The proof of the second part is similar. �
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6. Continuous dependence. When we view Algorithm 2.3 as a discrete time dynamical
system, it is natural to expect that this admits a similar dependence on the tensor A as a
time-inhomogenous differential equation of the same form. Thus, our proof of continuous
dependence of iterations on the tensor A can be viewed as a discrete analogue of similar
standard result for differential equations; see, for example, [42], Section 2.4.

Given any tensor B ∈ (RN)⊗p , let

c2(B) � sup
u�=v∈[−M,M]N

‖B(·, u) − B(·, v)‖2

‖u − v‖2
.(6.1)

We now state the main result of this section.

THEOREM 6.1. Let B, B̂ ∈ (RN)⊗p , and let V̂ t , V t denote the corresponding sequences
output by Step 2 of Algorithm 2.3 with the same initial vector U0 = Û0. Under Assump-
tion 2.2 there is some constant K , which depends only on ζ and c2(B̂), such that for every
T ≥ 1 and U0,

sup
1≤t≤T

∥∥V̂ t − V t
∥∥ ≤ KT ‖B̂ − B‖op(ζM

√
NT )p−1.

PROOF. Define Ut and Û t as in Step 1 of Algorithm 2.3, and let Ut = (Us)0≤s≤t and
Ût = (Û s)0≤s≤t . Since the map f (x) = [x]M is 1-Lipschitz for any M , we see that the claim
of the theorem follows, provided that

βN(t) � ‖Ut − Ût‖2 =
√∑

s≤t

∥∥Us − Û s
∥∥2

2

satisfies

βN(t) ≤ (
K

(
c2(B̂) + 1

))t‖B̂ − B‖op(ζM
√

Nt)p,(6.2)

as trivially ‖Û t − Ut‖2 ≤ βN(t).
Thus, we establish (6.2). By 1-Lipschitz continuity of [·]M , we have∥∥Û t+1 − Ut+1∥∥

2

≤ ∥∥Ft+1
(
B̂

(·, ft+1
(
Û t , Û t−1, . . . , Û0

))
, Û0, . . . , Û t )

− Ft+1
(
B

(·, ft+1
(
U0, . . . ,U t )),U0, . . . ,U

t )∥∥
2.

Applying the part of Assumption 2.2 regarding Ft , we see that
∥∥Û t+1 − Ut+1∥∥

2 ≤ ζ

√
β2

N(t) + ∥∥B̂(·, ft+1(Ût )
) − B

(·, ft+1(Ut )
)∥∥2

2,

so that

βN(t + 1) ≤ (
1 + ζ 2)√

β2
N(t) + ∥∥B̂(·, ft+1(Ût )

) − B
(·, ft+1(Ut )

)∥∥2
2.

By the triangle inequality,∥∥B̂(·, ft+1(Ût )
) − B

(·, ft+1(Ut )
)∥∥

2

≤ ∥∥B̂(·, ft+1(Ût )
) − B̂

(·, ft+1(Ut )
)∥∥

2 + ∥∥B̂(·, ft+1(Ut )
) − B

(·, ft+1(Ut )
)∥∥

2

= I + II.

By definition of c2(B̂),

I ≤ c2(B̂)
∥∥ft+1(Ût ) − ft+1(Ut )

∥∥
2 ≤ ζc2(B̂)βN(t).
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We now analyze II. Note that, by Assumption 2.2,∥∥ft+1(Ut )
∥∥2

2 ≤ ζ 2
∑

0≤i≤t

∥∥Ui
∥∥2

2 ≤ ζ 2(t + 1)M2N.

Then,

II ≤ ‖B̂ − B‖op
(
Mζ

√
N(t + 1)

)p−1
.

Combining these bounds, we obtain,∥∥B(·, ft+1(Ut )
) − B̂

(·, ft+1(Ût )
)∥∥

2 ≤ ζc2(B̂)βN(t) + ‖B̂ − B‖op
(
ζM

√
N(t + 1)

)p−1
.

Plugging this in to the above yields

βN(t + 1) ≤ (
1 + ζ 2)√

β2
N(t) + (

ζc2(B̂)βN(t) + ‖B̂ − B‖op(ζM
√

Nt)p−1
)2

.

We can write the inequality above in the form

βN(t + 1) ≤ KβN(t) + b(t),

where b(t) is nondecreasing and K > 1 which depends only on c2(B̂) and ζ . The inequality
above is a discrete version of Gronwall’s inequality and, using βN(0) = 0, easily leads to a
bound

βN(t) ≤ Ktb(t) = Kt‖B̂ − B‖op(ζM
√

Nt)p−1 �

7. Concentration property of the AMP solution. In this section we establish that the
value associated with the solution V produced by the AMP is concentrated around its expec-
tation.

THEOREM 7.1. Suppose that Assumption 2.2 holds. For any ε,M,T , ζ , there exists c >

0 such that the value A(V ) associated with the solution V produced in Step 2 of Algorithm
2.3 satisfies

sup
U0∈[−M,M]N

P
(∣∣A(V ) −E

[
A(V )|U0]∣∣ ≥ εN |U0) ≤ exp(−cN)

for all sufficiently large N .

PROOF. Fix U0. Our approach is based on Gaussian concentration combined with
Kirszbraun’s theorem. Let Z ∈ (RN)⊗p denote a tensor consisting of i.i.d. standard normal

entries, so that A = Z/N
p−1

2 in distribution. We let f (Z) = A(V (A)) = Z(V (Z/N
p−1

2 ))/

N
p−1

2 , where V = V (Z) is again the solution produced by AMP viewed as a function of Z

and thus introduce f : (RN)⊗p → R, defined by f (z) = z(V (z/N
p−1

2 ))/N
p−1

2 . We first es-
tablish that this function is Lipschitz with an appropriate constant on an appropriate subspace
of (RN)⊗p . Recall the constant c2 introduced in Proposition 4.5. Let

K2,N =
{
z ∈ (

R
N )⊗p : c2

(
z

N
p−1

2

)
≤ c2

}
.

In particular, a random Z with i.i.d. standard normal entries satisfies

P(Z ∈ K2,N ) ≥ 1 − exp(−cN)(7.1)

for all large enough N , where c is as in the proposition.
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LEMMA 7.2. There exists a constant c = c(M,c2, ζ, T ) such that, for every z1, z2 ∈
K2,N, ∣∣f (z2) − f (z1)

∣∣ ≤ c
√

N‖z2 − z1‖2.

PROOF. Applying Theorem 6.1, for any z1, z2 ∈ K2,N we have∥∥V (
z2/N

p−1
2

) − V
(
z1/N

p−1
2

)∥∥
2 ≤ cN

p−1
2

∥∥N−p−1
2 (z2 − z1)

∥∥
op

= c‖z2 − z1‖op,

(7.2)

where c = c(M,c2, ζ, T ) is an appropriate constant.
Next, ∣∣f (z1) − f (z2)

∣∣ = N−p−1
2

∣∣z2
(
V

(
z2/N

p−1
2

)) − z1
(
V

(
z1/N

p−1
2

))∣∣
≤ N−p−1

2
∣∣z2

(
V

(
z2/N

p−1
2

)) − z1
(
V

(
z2/N

p−1
2

))∣∣(7.3)

+ N−p−1
2

∣∣z1
(
V

(
z2/N

p−1
2

)) − z1
(
V

(
z1/N

p−1
2

))∣∣.
We first analyze the second summand above. For simplicity, we use v1, v2 in place of

V (z1/N
p−1

2 ) and V (z2/N
p−1

2 ). Note z1(u) = 〈u, z(·, u)〉. Thus,∣∣z1(v2) − z1(v1)
∣∣ = ∣∣〈v2, z1(·, v2)

〉 − 〈
v1, z1(·, v1)

〉∣∣
≤ ∣∣〈v2, z1(·, v2)

〉 − 〈
v2, z1(·, v1)

〉∣∣ + ∣∣〈v2, z1(·, v1)
〉 − 〈

v1, z1(·, v1)
〉∣∣.

Then,∣∣〈v2, z1(·, v2)
〉 − 〈

v2, z1(·, v1)
〉∣∣ = ∣∣〈v2, z1(·, v2) − z1(·, v1)

〉∣∣ ≤ ‖v2‖2
∥∥z1(·, v2) − z1(·, v1)

∥∥
2

≤ M
√

NN
p−1

2 c2
(
z1/N

p−1
2

)‖v2 − v1‖2.

Since z1 ∈ K2,N , we obtain instead a bound

M
√

NN
p−1

2 c2‖v2 − v1‖2 ≤ M
√

NN
p−1

2 c2c‖z2 − z1‖op,

where the inequality follows from (7.2).
For the second term we have∣∣〈v2, z1(·, v1)

〉 − 〈
v1, z1(·, v1)

〉∣∣ ≤ ‖v2 − v1‖2
∥∥z1(·, v1)

∥∥
2.

Since z1 ∈ K2,N and z1(·,0) = 0, then∥∥z1(·, v1)
∥∥

2 ≤ N
p−1

2 c2‖v1‖2 ≤ N
p−1

2 c2M
√

N.

Using (7.2) to ‖v2 − v1‖2, we obtain a bound c‖z2 − z1‖opN
p−1

2 c2M
√

N .
Applying both bounds to (7.3) and using ‖ · ‖op ≤ ‖ · ‖2, we complete the proof. �

We now complete the proof of the theorem. For every z ∈ (RN)⊗p , define

g(z) = inf
ẑ∈K2,N

(
f (ẑ) + c

√
N‖ẑ − z‖2

)
,

where c is as in Lemma 7.2. Kirszbraun’s theorem says that g is a Lipschitz continuous
function with constant c

√
N and g = f on K2,N . This is easy to verify. Indeed, fix any

z1, z2 ∈ (RN)⊗p and ε > 0. Find ẑ1 ∈ K2,N such that∣∣g(z1) − (
f (ẑ1) + c

√
N‖ẑ1 − z1‖2

)∣∣ ≤ ε.
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Then,

g(z2) − g(z1) ≤ f (ẑ1) + c
√

N‖ẑ1 − z2‖2 − (
f (ẑ1) + c

√
N‖ẑ1 − z1‖2

) + ε

= c
√

N
(‖ẑ1 − z2‖2 − ‖ẑ1 − z1‖2

) + ε ≤ c
√

N‖z2 − z1‖2.

Using a similar reversed inequality, the Lipschitz continuity of g is established. Now, if z ∈
K2,N , then by Lemma 7.2 for every ẑ ∈ K2,N ,

f (ẑ) + c
√

N‖ẑ − z‖2 ≥ f (z),

implying that the infimum is achieved by ẑ = z, establishing the Kirszbraun’s theorem.
In conclusion, g is a Lipschitz continuous function with constant c

√
N . Thus, by Gaussian

concentration (see, e.g., [44]), for every t ≥ 0,

P
(∣∣g(Z) −E

[
g(Z)|U0]∣∣ ≥ tN |U0) ≤ exp

(
− t2N

4c2

)
.

We now use the fact that f = g on the high probability set K2,N . Specifically,

E
[
g(Z)|U0] = E

[
f (Z)|U0] −E

[
f (Z)1(Z /∈ K2,N )|U0] +E

[
g(Z)1(Z /∈ K2,N )|U0]

.

Using g(Z) ≤ f (0) + c
√

N‖Z‖2 = c
√

N‖Z‖2, we have

E
[
g(Z)1(Z /∈ K2,N )|U0] ≤ c

√
NE

[‖Z‖21(Z /∈ K2,N )
]

≤ c
√

N
(
E

[‖Z‖2
2
]) 1

2P
1
2 (Z /∈ K2,N )

≤ exp(−c4N)

for some appropriately chosen c > 0 and all sufficiently large N , where, in the second
line, we used that U0 and A are independent and the last inequality follows from (7.1)

and from E[‖Z‖2
2] = NO(1). Similarly, since f (Z) ≤ N−p−1

2
∑ |Zi1,...,ip |, we also have

E[f 2(Z)|U0] = NO(1), and thus E[f (Z)1(Z /∈ K2,N )|U0] is at most exp(−c4N) for all large
enough N , where we used the same notation for constant c4 as above for convenience. We
conclude ∣∣E[

g(Z)|U0] −E
[
f (Z)|U0]∣∣ ≤ exp(−c5N),

for some c5 > 0 and all large N .
Thus, for any t > 0,

P
(∣∣f (Z) −E

[
f (Z)|U0]∣∣ ≥ tN

)
≤ P

(∣∣g(Z) −E
[
f (Z)|U0]∣∣ ≥ tN,1(Z ∈ K2,N )

) + P(Z /∈ K2,N )

≤ P
(∣∣g(Z) −E

[
g(Z)|U0]∣∣ ≥ tN − (

E
[
g(Z)|U0] −E

[
f (Z)|U0])) + exp(−CN)

≤ P
(∣∣g(Z) −E

[
g(Z)|U0]∣∣ ≥ (t/2)N

) + exp(−CN) ≤ exp(−c6N),

for all large enough N and appropriately chosen c6 > 0. As U0 was arbitrary, the result then
follows. �

8. OGP is an obstruction to AMP. Proof of the main result. In this section we com-
plete the proof of the main result, Theorem 3.3. Let us begin by first conditioning on the
value of U0. Let A ∈ (RN)⊗p be a tensor with i.i.d. N (0,1/Np−1) entries. Recall that by as-
sumption A and U0 are independent. Let V = V (A) be the result of the Step 2 of Algorithm
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2.3 after T steps. Applying the concentration properties given by Theorems 2.1 and 7.1, it
suffices to show that, for every ε > 0,

E[A(V )|U0]
N

≥ E[ηN ] + μ − ε

for all large enough N , where μ is as in Conjecture 3.2, as in this case the main result would
be established for μ̄ = μ − 2ε for every ε > 0.

Thus, for the purposes of contradiction, assume

E
[
A(V )|U0]

/N ≤ E[ηN ] + μ2(8.1)

for some μ2 < μ for infinitely many N .
Generate a tensor Â ∈ (RN)⊗p distributed as A and independent from A and U0. Consider

the interpolated set A = (Aτ , τ ∈ [0,1]) described in Section 3. Denote by EOGP the high-
probability OGP event defined in Conjecture 3.2 with parameters μ,ν1, ν2. Let Vτ be the
vector produced by AMP when run on tensor Aτ , τ ∈ [0,1]. For any τ ∈ [0,1], we have

c2(Aτ ) = sup
u�=v∈[−M,M]N

‖√1 − τA(·, u) + √
τ Â(·, u) − (

√
1 − τA(·, v) + √

τÂ(·, v))‖2

‖u − v‖2

≤ √
1 − τc2(A) + √

τc2(Â) ≤ c2(A) + c2(Â).

Applying Proposition 4.5, we have c2(A) + c2(Â) ≤ 2c2 modulo exponentially small in N

probability. We conclude that supτ∈[0,1] c2(Aτ ) ≤ 2c2 modulo exponentially small probabil-
ity.

By Theorem 6.1 then modulo exponentially small probability, using ‖ · ‖op ≤ ‖ · ‖2, we
have that, for any τ1, τ2 ∈ [0,1],∥∥V τ1 − V τ2

∥∥
2 ≤ CT N

p−1
2 ‖Aτ1 − Aτ2‖2

for some constant C > 0 which incorporates c2, ζ , and M (and which may change from line
to line). We have

‖Aτ1 − Aτ2‖2 = ‖√
1 − τ1A − √

1 − τ2A + √
τ1Â − √

τ2Â‖2

≤ (|√1 − τ1 − √
1 − τ2| + |√τ1 − √

τ2|)(‖A‖2 + ‖Â‖2
)
.

Since ‖A‖2
2 is distributed as N−p−1 ∑

1≤i≤Np Z2
i , which is N in expectation, then by standard

large deviations estimates, P(‖A‖2 ≥ cN) is exponentially small for any c > 1. In particular,
‖A‖2 + ‖Â‖2 ≤ 4

√
N , modulo exponentially small probability.

Combining and letting h(τ1, τ2) = |√1 − τ1 − √
1 − τ2| + |√τ1 − √

τ2|, we obtain∣∣∥∥V τ1
∥∥

2 − ∥∥V τ2
∥∥

2

∣∣ ≤ ∥∥V τ1 − V τ2
∥∥

2 ≤ CT N
p
2 h(τ1, τ2)(8.2)

for all τ1, τ2 modulo exponentially small in N probability.
Next, for any τ1, τ2 ∈ [0,1],

〈V 0,V τ2〉
‖V 0‖2‖V τ2‖2

− 〈V 0,V τ1〉
‖V 0‖2‖V τ1‖2

= ‖V τ1‖2〈V 0,V τ2〉 − ‖V τ2‖2〈V 0,V τ1〉
‖V 0‖2‖V τ1‖2‖V τ2‖2

.

For the numerator, applying the Cauchy–Schwarz inequality,∣∣∥∥V τ2
∥∥

2

〈
V 0,V τ1

〉 − ∥∥V τ1
∥∥

2

〈
V 0,V τ2

〉∣∣
= ∣∣∥∥V τ2

∥∥
2

〈
V 0,V τ1

〉 − ∥∥V τ1
∥∥

2

〈
V 0,V τ1

〉 + ∥∥V τ1
∥∥

2

〈
V 0,V τ1

〉 − ∥∥V τ1
∥∥

2

〈
V 0,V τ2

〉∣∣
≤ ∣∣∥∥V τ2

∥∥
2 − ∥∥V τ1

∥∥
2

∣∣ ∥∥V 0∥∥
2

∥∥V τ1
∥∥

2 + ∥∥V τ1
∥∥

2

∥∥V 0∥∥
2

∥∥V τ2 − V τ1
∥∥

2
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Provided (8.2) holds, we obtain∣∣∣∣ 〈V 0,V τ2〉
‖V 0‖2‖V τ2‖2

− 〈V 0,V τ1〉
‖V 0‖2‖V τ1‖2

∣∣∣∣ ≤ 2CT N
p
2 h(τ1, τ2)

‖V τ2‖2
.

Next, we fix α > 0, to be specified later, let δ = N−α . We assume for convenience that
1/δ = Nα is an integer. Introduce a discrete sequence τn = nδ,0 ≤ n ≤ 1/δ. By Lemma 4.6,
applying union in Nα terms bound, we have that ‖V τn‖ ≥ C2

√
N for some C2 > 0 for all

sufficiently large N , modulo exponentially small probability. Provided this holds, the bound
above can be replaced by

2CT N
p
2 h(τ1, τ2)

C2
√

N
= CT h(τ1, τ2)N

p−1
2 .

Now, we have

h(τn1, τn2) ≤ CT N
α
2 (τn2 − τn1) = CT N

α
2 N−α(n2 − n1) = CT N− α

2 (n2 − n1)

for all n1, n2 and some C > 0.
Combining, we conclude that modulo exponentially small in N probability for all n =

0, . . . ,Nα , ∣∣∣∣ 〈V 0,V τn+1〉
‖V 0‖2‖V τn+1‖2

− 〈V 0,V τn〉
‖V 0‖2‖V τn‖2

∣∣∣∣ ≤ CT N
p−1

2 N− α
2

and, provided α > p − 1, the bound above is o(1) and, in particular, is smaller than ν2 − ν1
for N sufficiently large.

Next, we examine 〈V 0,V τn 〉
‖V 0‖2‖V τn‖2

in the extreme case n = 0 and n = Nα . The value is clearly
1 when n = 0. Applying the second part of Conjecture 3.2, we have that for every ε, this
value is at most ε/C2 modulo exponentially small probability, where C is the constant from
Lemma 4.6. In particular, at n = Nα this value is at most ν1. It follows that there must exist
an index n∗, (which is random in general) such that∣∣∣∣ 〈V 0,V τn∗ 〉

‖V 0‖2‖V τn∗ ‖2

∣∣∣∣ ∈ (ν1, ν2).

Now, in the event that OGP holds, which by Conjecture 3.2 holds modulo exponentially small
probability, this implies A(V τn∗ )/N ≥ E[ηN ] + μ and, therefore, the larger event

max
0≤n≤Nα

A
(
V τn

)
/N ≥ E[ηN ] + μ.

However, this contradicts assumption (8.1) and the concentration bound of Theorem 7.1 ap-
plied in the union over n = 0, . . . ,Nα bound. This yields the result conditionally on U0.
Since the lower bound we obtain does not depend on U0, we can take the expectation in U0

and obtain the main result.

9. TAP-type iteration schemes. One motivations for the AMP algorithm discussed in
the Introduction is the prediction that the minimizers of A(u) satisfy a selfconsistent equation,
called a “mean-field” equation. In this setting, equations of this type are called Thouless–
Anderson–Palmer (TAP) equations, after the work of those three authors in [43] on mean-
field equations in the case p = 2 on BN , in a certain physically motivated relaxation. For
a discussion of these and related results, see also [35]. In this section we show that, as an
implication of Theorem 3.3, the iterative methods designed to produce solutions to TAP-like
equations fail, modulo Conjecture3.2.
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More precisely, consider the following modification of the objective. Recall the Bernoulli
entropy, S : [−1,1] → R+

S(x) = 1

2
(1 + x) log(1 + x) + 1

2
(1 − x) log(1 − x).

For any β > 0, let fβ : [−1,1] →R

fβ(x) = β2

2

(
1 − xp − pxp−1(1 − x)

)
.

Finally, define the one-parameter family of functions Fβ : HN →R
N given by

Fβ(x) = βA(x) − S(x) + fβ

(‖x‖2

N

)
.

Observe that, as β → ∞,

Fβ(u)

β
→

{
A(x) x ∈ BN,

∞ x ∈ HN \BN.

Thus, one expects that for β very large, minimizers of Fβ are near minimizers for A(u).
In particular, one approach to computing near minimizers for (1.2) would be to produce
minimizers of F .

Differentiating Fβ , we see that the critical points of F satisfy the fixed point equation

(9.1) x = tanh
[
β∇A(x) + 2f ′

(‖x‖2

N

)
x

]
.

Thus, one approach to produce these minimizers is to construct solutions of these fixed point
equations. The AMP algorithm is one such method, based off of a deep intuition in the physics
literature that suggests that in the case p = 2.

Another approach would be a more naive approach and, in the spirit of standard AMP
iterations, would be to simply iteratively construct solutions to (9.1) as in [14]. It is expected
that the critical points of this equation satisfy

‖x‖2

N
= q∗(β),

where q∗(β) is an explicit constant, called the Edwards–Anderson order parameter and is
given by as in [37]. Motivated by this, consider the following class of AMP iterations:

Ut = tanh
(
βA

(·,Ut−1) + at−2U
t−2)

, U0 = 1Nq,U−1 = 0,1 ≤ t ≤ T ,

where q > 0 is a fixed constant and at is any bounded sequence. For instance, we may take
at = 2f ′(q∗) and q = q∗. One might make the replacement at �→ f ′(‖Ut‖2

2/N); however,
one can show that this will not change the performance if the original sequence was chosen
appropriately. See Section 10 for a similar argument in the more detailed case of the AMP
iteration from [37].

As a consequence of OGP, we see that the above iteration will fail to produced fixed points
which are also near optimizers of A(u) for β large. More precisely, we have the following.

COROLLARY 9.1. Suppose that the entries of A ∈ (RN)⊗p are i.i.d. N (0,N−p+1) and
p ≥ 4 is even. Assuming the validity of Conjecture 3.2, there exists a μ̄ > 0 such that, for any
M,T > 0 and β sufficiently large, if V = V (A) is the result of the firs two steps of the AMP
algorithm after T iterations, then

1

β
Fβ(V ) ≥ minx∈HN

F (x)

N
+ μ̄.
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PROOF. First note that this iteration is of the form (2.6), for some functions Ft , ft satis-
fying Assumption 2.2. Indeed, let

ft (u1, . . . , ut ) = ut ,

Ft (u0, . . . , ut ) = tanh(βu0 + at−2ut−2).

These functions are Lipschitz on the relevant domains as tanh(x) is smooth with bounded
derivatives. Thus, by Theorem 3.3,

A(V ) ≥ min
x∈BN

A(x)/N + μ̄.

Now, observe that Fβ(x) satisfies Fβ(x) ≥ βA(x) − log(2) on HN . In particular, this is an
equality on BN . As a result,

1

Nβ
Fβ(V ) ≥ A(V )

N
− log 2

βN
≥ min

x∈BN

A(x)

N
+ μ̄

≥ min
x∈BN

Fβ(x)

βN
+ μ̄ + log(2)

2β
≥ min

x∈HN

Fβ(x)

βN
+ μ̄/2,

where in the last line we take β >
log(2)

2μ̄
by assumption. �

10. Verification for AMP for p-spin models. In this section we show that the AMP
algorithm defined in [37] is a special case of the AMP defined in Section 2, modulo some
truncation and averaging steps which we discuss below. Here, p = 2 so A ∈ R

N×N is a
matrix. The algorithm constructed in [37] is as follows. A one-dimensional measure μ is
fixed which is a solution of the minimization problem of the Parisi functional. A function
� : [0,1] × R → R is a solution of the associated PDF. It is known that ∂x�(t, x) and
∂xx�(t, x) of this function are Lipschitz continuous. A certain value q∗ ∈ [0,1] is fixed (it is
Edward–Anderson parameter). Let u−1 = 0 ∈ R

N,u0 be i.i.d. standard normal vector in R
N :

u0 d= N (0, IN), g−2 = 0 ∈ R
N,g−1 = 1N ∈ R

N,b0 = 0 ∈ R
N . Given a, b ∈ R

N , a · b ∈ R
N

denotes a coordinatewise product of a and b. Then, for t = 0,1, . . . , �q∗/δ�� T :

ut+1 = A
(
gt−1 · ut ) − btgt−2 · ut−1,(10.1)

xt = xt−1 + β2μ(tδ)∂x�
(
tδ, xt−1)δ + β

√
δut ,(10.2)

gt = √
N∂xx�

(
tδ, xt )/∥∥∂xx�

(
tδ, xt )∥∥

2,(10.3)

bt = N−1
∑

1≤i≤N

gt
i ,(10.4)

where everywhere the functions are applied coordinatewise.
We first consider modifications of these iterations and justify them. First set M to be a

large constant. Since u0 d= N (0, IN), then the fraction of coordinates of u0 with absolute
values larger than N decreases to zero as a function of M . Replace (10.1) by

ut+1 = [
A

(
gt−1 · ut ) − btg

t−2 · ut−1]
M.(10.5)

In the final step of algorithm in [37], the resulting vectors u1, . . . , ut are used to construct

z = √
δ

∑
1≤t≤�q∗/δ�

gt−1 · ut ,

and then z is rounded to a vector in HN via max(−1,min(1, ·)) operator. It is thus expected
that the truncation of ut in (10.5) by a value M does not affect the result significantly, pro-
vided M is large, though we do not prove this fact.
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Next, as an implication of the analysis in [37], as N → ∞, the norm ‖�(tδ, xt )‖2 is
concentrated around a deterministic function of t which has value (

√
N). In particular,

there it is argued that the empirical measure E t
N = 1

N

∑
δxt

i
converges to some deterministic

limit E t weakly almost surely. Since ∂xx� is smooth and bounded ([28], Theorem 4), it then
follows that

∥∥∂xx�
(
tδ, xt )∥∥/√N =

√∫
∂xx�(tδ, y) dE t

N (y) → h(t).

Denoting this function by
√

Nh(t), t = 0,1, . . . , T , we thus rewrite (10.3) as

gt = h−1(t)∂xx�
(
tδ, xt ).(10.6)

Similarly, bt , which per (10.4) is defined as coordinatewise average of gt , as N → ∞ is
concentrated around a deterministic function of t , which we denote by η(t), t = 0,1, . . . , T .
Thus, we replace (10.4) by bt = ηt .

We now fit these iterations into our framework, as defined in Section 2. We begin by
defining ft . In light of (10.6) replacing (10.3), we may define ft :Rt+1 →R as follows:

ft

(
u0, . . . , ut ) = gt−1(

u0, . . . , ut−1)ut ,(10.7)

where the function gt :Rt →R is a one-dimensional version of gt , namely,

gt

(
u0, . . . , ut ) = h−1(t)∂xx�

(
tδ, xt ),

where xt is defined through a one-dimensional version of (10.2),

xt = xt−1 + β2μ(tδ)∂x�
(
tδ, xt−1)δ + β

√
δut .

Since ∂xx� and ∂xx� are Lipschitz continuous in the second argument for each fixed first
argument, it is then immediate to verify that gt :Rt →R is Lipschitz continuous as a function
of u0, . . . , ut , wrt ‖ · ‖∞ norm, say with constant Ct and satisfies gt (0) = 0. This implies
‖gt (x)‖∞ ≤ Ct‖x‖∞. Then, by (10.7) we have, for every u0, . . . , ut and v0, . . . , vt ,∣∣ft

(
u0, . . . , ut ) − ft

(
v0, . . . , vt )∣∣ = ∣∣gt−1(

u0, . . . , ut−1)ut − gt−1(
v0, . . . , vt−1)

vt
∣∣

≤ Ct max
j

(max
(∣∣uj

∣∣, ∣∣vj
∣∣)∥∥(

u0, . . . , ut ) − (
v0, . . . , vt )∥∥∞.

Thus, ft is Lipschitz continuous on [−M,M]t+1 and thus satisfies the first part of Assump-
tion 2.2.

Now, motivated by (10.1) or rather (10.5), we define Ft :Rt+1 →R by

Ft

(
y,u0, . . . , ut ) = y − btg

t−2 · ut−1

= y − η(t)h−1(t − 2)∂xx�
(
(t − 2)δ, xt

) · ut−1.

We see that Ft is Lipschitz continuous on R×[−M,M]t+1 and thus satisfies the second part
of Assumption 2.2.

11. Some open questions. We now list some questions which remain open. First, vali-
dating Conjectures 3.2 and 3.6 is of interest. It is conceivable that the first of these conjectures
can be approached by analyzing the Parisi measure directly on the Hilbert cube HN , as op-
posed to the binary cube BN . Carrying out the corresponding technical analysis of the asso-
ciated variational problem could be quite daunting though. Another interesting question left
open in this work is establishing the negative result for the binary output �(V ) of the AMP
scheme (Step 3) directly, as opposed to one for the penultimate state V . Lifting the truncation
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[·]M assumption adopted by our class of AMP algorithms is another question which remains
open.

Next, it would be interesting to extend the main result of this paper to the p-spin spher-
ical spin glass model and complement the positive result of Subag [40]. We expect that our
negative result extends to this model within the same scope of algorithms almost verbatim.
Furthermore, by similar arguments one can show that (continuous time) gradient flow started
from a uniform at random point fails to reach near minimizers of the spherical p-spin model
in log(N) time with probability tending to 1. That being said, it is important to note that
Subag’s algorithm is based on an iterative sequence of computations which involve linear
projections of gradient and Hessians of A(u) to the linear space orthogonal to u. As such,
this computational scheme does not formally fit our framework of algorithms. It is conceiv-
able though that the projection step can be approximated well by iterations of the form we
consider, say perhaps by imitating the power iteration approach for spectral computations.
Perhaps as an easier challenge, one could try to show that Subag’s scheme specifically fails
to find near ground states in models exhibiting OGP. A related question is whether there exists
a connection between the OGP and the algorithmic hardness of the CREM model discussed
in [3].

Our approach was formulated in terms of bounded (N -independent) number of iterations
T . It is easy to see though that the proof method extends without a change to the case T ≤
c logN for small enough constant c. At the same time we believe that AMP scheme is not
effective in computing near ground states, regardless of the scale of the number of iterations.
Thus, an interesting open question is to see whether an AMP scheme achieving near ground
states can be designed, say when T = NO(1).

Finally, perhaps the most intriguing question which remains open is one regarding the gen-
uine hardness of the problem of finding ground states in models exhibiting the OGP. While
formal hardness of problems associated with spin glass models is known, in particular, it is
shown in [24] that computing the partition function of the p-spin models is hard on aver-
age, even in p = 2 regime; these results are established using more “standard” average case
hardness proof approaches and do not take advantage of the intricate solution space topology,
such as the one expressed by OGP. At the same time, as of now we have very compelling
consistence of the presence of OGP and the apparent hardness of the associated optimization
problem in many models. What is lacking, however, is the formal link between the two within
a class of algorithms which is broader than AMP. An interesting and challenging conjecture is
that the OGP implies formal average case hardness of the underlying optimization problem,
perhaps even within the class of all polynomial time algorithms.

Acknowledgments. The first author acknowledges the support from the Office of Naval
Research Grant N00014-17-1-2790. The second author acknowledges the support of the Na-
tional Science Foundation Grant NSF OISE-1604232 and Natural Sciences and Engineering
Research Council of Canada [RGPIN-2020-04597, DGECR-2020-00199]. Cette recherche
a été financée par le Conseil de recherches en sciences naturelles et en génie du Canada
(CRSNG).

REFERENCES

[1] ACHLIOPTAS, D. and COJA-OGHLAN, A. (2008). Algorithmic barriers from phase transitions. In Founda-
tions of Computer Science, 2008. FOCS’08. IEEE 49th Annual IEEE Symposium on 793–802. IEEE,
New York.

[2] ACHLIOPTAS, D., COJA-OGHLAN, A. and RICCI-TERSENGHI, F. (2011). On the solution-space geometry
of random constraint satisfaction problems. Random Structures Algorithms 38 251–268. MR2663730
https://doi.org/10.1002/rsa.20323

http://www.ams.org/mathscinet-getitem?mr=2663730
https://doi.org/10.1002/rsa.20323


204 D. GAMARNIK AND A. JAGANNATH

[3] ADDARIO-BERRY, L. and MAILLARD, P. (2019). The algorithmic hardness threshold for continuous ran-
dom energy models. Mathematical Statistics and Learning 2 77–101.

[4] ADLER, R. J. and TAYLOR, J. E. (2007). Random Fields and Geometry. Springer Monographs in Mathe-
matics. Springer, New York. MR2319516

[5] AUFFINGER, A. and CHEN, W.-K. (2015). On properties of Parisi measures. Probab. Theory Related Fields
161 817–850. MR3334282 https://doi.org/10.1007/s00440-014-0563-y

[6] AUFFINGER, A., CHEN, W.-K. and ZENG, Q. (2017). The SK model is full-step replica symmetry breaking
at zero temperature. Preprint. Available at arXiv:1703.06872.

[7] AUFFINGER, A. CHEN, W.-K. and ZENG, Q. (2020). The SK model is infinite step replica symmetry
breaking at zero temperature. Comm. Pure Appl. Math. 73 921–943. https://doi.org/10.1002/cpa.21886

[8] BAYATI, M., LELARGE, M. and MONTANARI, A. (2015). Universality in polytope phase transitions and
message passing algorithms. Ann. Appl. Probab. 25 753–822. MR3313755 https://doi.org/10.1214/
14-AAP1010

[9] BAYATI, M. and MONTANARI, A. (2011). The dynamics of message passing on dense graphs, with appli-
cations to compressed sensing. IEEE Trans. Inf. Theory 57 764–785. MR2810285 https://doi.org/10.
1109/TIT.2010.2094817

[10] BEN AROUS, G., GHEISSARI, R. and JAGANNATH, A. (2020). Bounding flows for spherical
spin glass dynamics. Comm. Math. Phys. 373 1011–1048. MR4061404 https://doi.org/10.1007/
s00220-019-03649-4

[11] BEN AROUS, G. and JAGANNATH, A. (2018). Spectral gap estimates in mean field spin glasses. Comm.
Math. Phys. 361 1–52. MR3825934 https://doi.org/10.1007/s00220-018-3152-6

[12] BEN AROUS, G., GHEISSARI, R. and JAGANNATH, A. (2020). Algorithmic thresholds for tensor PCA.
Ann. Probab. 48 2052–2087. https://doi.org/10.1214/19-AOP1415

[13] BERTHIER, R., MONTANARI, A. and NGUYEN, P.-M. (2020). State evolution for approximate message
passing with non-separable functions. Inf. Inference: A Journal of the IMA 9 33–79. MR4079177
https://doi.org/10.1093/imaiai/iay021

[14] BOLTHAUSEN, E. (2014). An iterative construction of solutions of the TAP equations for the
Sherrington–Kirkpatrick model. Comm. Math. Phys. 325 333–366. MR3147441 https://doi.org/10.
1007/s00220-013-1862-3

[15] CHEN, W.-K., GAMARNIK, D., PANCHENKO, D. and RAHMAN, M. (2019). Suboptimality of local algo-
rithms for a class of max-cut problems. Ann. Probab. 47 1587–1618. MR3945754 https://doi.org/10.
1214/18-AOP1291

[16] CHEN, W.-K., HANDSCHY, M. and LERMAN, G. (2018). On the energy landscape of the mixed
even p-spin model. Probab. Theory Related Fields 171 53–95. MR3800830 https://doi.org/10.1007/
s00440-017-0773-1

[17] COJA-OGHLAN, A. and EFTHYMIOU, C. (2011). On independent sets in random graphs. In Proceedings of
the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms 136–144. SIAM, Philadel-
phia, PA. MR2857116

[18] COJA-OGHLAN, A., HAQSHENAS, A. and HETTERICH, S. (2017). Walksat stalls well below satisfiability.
SIAM J. Discrete Math. 31 1160–1173. MR3656499 https://doi.org/10.1137/16M1084158

[19] DONOHO, D. L., MALEKI, A. and MONTANARI, A. (2009). Message-passing algorithms for compressed
sensing. Proc. Natl. Acad. Sci. USA 106 18914–18919.

[20] EL ALAOUI, A., MONTANARI, A. and SELLKE, M. (2020). Optimization of mean-field spin glasses.
Preprint. Available at arXiv:2001.00904.

[21] GAMARNIK, D. and ILIAS, Z. (2017). High dimensional regression with binary coefficients. Estimating
squared error and a phase transtition. In Conference on Learning Theory 948–953.

[22] GAMARNIK, D., JAGANNATH, A. and SEN, S. (2019). The overlap gap property in principal submatrix
recovery. Preprint. Available at arXiv:1908.09959.

[23] GAMARNIK, D., JAGANNATH, A. and WEIN, A. S. (2020). Low-degree hardness of random optimization
problems. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS). To
appear.

[24] GAMARNIK, D. and KIZILDAG, E. (2018). Computing the partition function of the Sherrington–Kirkpatrick
model is hard on average. Preprint. Available at arXiv:1810.05907.

[25] GAMARNIK, D. and LI, Q. (2018). Finding a large submatrix of a Gaussian random matrix. Ann. Statist. 46
2511–2561. MR3851747 https://doi.org/10.1214/17-AOS1628

[26] GAMARNIK, D. and SUDAN, M. (2017). Limits of local algorithms over sparse random graphs. Ann.
Probab. 45 2353–2376. MR3693964 https://doi.org/10.1214/16-AOP1114

[27] GAMARNIK, D. and SUDAN, M. (2017). Performance of sequential local algorithms for the random NAE-
K-SAT problem. SIAM J. Comput. 46 590–619. MR3620150 https://doi.org/10.1137/140989728

http://www.ams.org/mathscinet-getitem?mr=2319516
http://www.ams.org/mathscinet-getitem?mr=3334282
https://doi.org/10.1007/s00440-014-0563-y
http://arxiv.org/abs/arXiv:1703.06872
https://doi.org/10.1002/cpa.21886
http://www.ams.org/mathscinet-getitem?mr=3313755
https://doi.org/10.1214/14-AAP1010
http://www.ams.org/mathscinet-getitem?mr=2810285
https://doi.org/10.1109/TIT.2010.2094817
http://www.ams.org/mathscinet-getitem?mr=4061404
https://doi.org/10.1007/s00220-019-03649-4
http://www.ams.org/mathscinet-getitem?mr=3825934
https://doi.org/10.1007/s00220-018-3152-6
https://doi.org/10.1214/19-AOP1415
http://www.ams.org/mathscinet-getitem?mr=4079177
https://doi.org/10.1093/imaiai/iay021
http://www.ams.org/mathscinet-getitem?mr=3147441
https://doi.org/10.1007/s00220-013-1862-3
http://www.ams.org/mathscinet-getitem?mr=3945754
https://doi.org/10.1214/18-AOP1291
http://www.ams.org/mathscinet-getitem?mr=3800830
https://doi.org/10.1007/s00440-017-0773-1
http://www.ams.org/mathscinet-getitem?mr=2857116
http://www.ams.org/mathscinet-getitem?mr=3656499
https://doi.org/10.1137/16M1084158
http://arxiv.org/abs/arXiv:2001.00904
http://arxiv.org/abs/arXiv:1908.09959
http://arxiv.org/abs/arXiv:1810.05907
http://www.ams.org/mathscinet-getitem?mr=3851747
https://doi.org/10.1214/17-AOS1628
http://www.ams.org/mathscinet-getitem?mr=3693964
https://doi.org/10.1214/16-AOP1114
http://www.ams.org/mathscinet-getitem?mr=3620150
https://doi.org/10.1137/140989728
https://doi.org/10.1214/14-AAP1010
https://doi.org/10.1109/TIT.2010.2094817
https://doi.org/10.1007/s00220-019-03649-4
https://doi.org/10.1007/s00220-013-1862-3
https://doi.org/10.1214/18-AOP1291
https://doi.org/10.1007/s00440-017-0773-1


OGP AND AMP FOR p-SPIN MODELS 205

[28] JAGANNATH, A. and TOBASCO, I. (2016). A dynamic programming approach to the Parisi functional. Proc.
Amer. Math. Soc. 144 3135–3150. MR3487243 https://doi.org/10.1090/proc/12968

[29] JAGANNATH, A. and TOBASCO, I. (2017). Low temperature asymptotics of spherical mean field spin
glasses. Comm. Math. Phys. 352 979–1017. MR3631397 https://doi.org/10.1007/s00220-017-2864-3

[30] JAGANNATH, A. and TOBASCO, I. (2017). Some properties of the phase diagram for mixed p-spin glasses.
Probab. Theory Related Fields 167 615–672. MR3627426 https://doi.org/10.1007/s00440-015-0691-z

[31] JAGANNATH, A. and TOBASCO, I. (2018). Bounds on the complexity of replica symmetry breaking for
spherical spin glasses. Proc. Amer. Math. Soc. 146 3127–3142. MR3787372 https://doi.org/10.1090/
proc/13875

[32] JAVANMARD, A. and MONTANARI, A. (2013). State evolution for general approximate message pass-
ing algorithms, with applications to spatial coupling. Inf. Inference 2 115–144. MR3311445
https://doi.org/10.1093/imaiai/iat004

[33] KABASHIMA, Y. (2003). A CDMA multiuser detection algorithm on the basis of belief propagation. J. Phys.
A: Math. Gen. 36 11111.

[34] MÉZARD, M., MORA, T. and ZECCHINA, R. (2005). Clustering of solutions in the random satisfiability
problem. Phys. Rev. Lett. 94 197205. https://doi.org/10.1103/PhysRevLett.94.197205

[35] MÉZARD, M., PARISI, G. and VIRASORO, M. A. (1987). Spin Glass Theory and Beyond. World Scientific
Lecture Notes in Physics 9. World Scientific Co., Inc., Teaneck, NJ. MR1026102

[36] MÉZARD, M., PARISI, G. and ZECCHINA, R. (2002). Analytic and algorithmic solution of random satisfi-
ability problems. Science 297 812–815.

[37] MONTANARI, A. (2019). Optimization of the Sherrington–Kirkpatrick Hamiltonian. In 2019 IEEE 60th
Annual Symposium on Foundations of Computer Science (FOCS) 1417–1433. IEEE, New York.

[38] PANCHENKO, D. (2013). The Sherrington–Kirkpatrick model. Springer Science & Business Media.
[39] RAHMAN, M. and VIRÁG, B. (2017). Local algorithms for independent sets are half-optimal. Ann. Probab.

45 1543–1577. MR3650409 https://doi.org/10.1214/16-AOP1094
[40] SUBAG, E. (2017). The geometry of the Gibbs measure of pure spherical spin glasses. Invent. Math. 210

135–209. MR3698341 https://doi.org/10.1007/s00222-017-0726-4
[41] TALAGRAND, M. (2006). Free energy of the spherical mean field model. Probab. Theory Related Fields

134 339–382. MR2226885 https://doi.org/10.1007/s00440-005-0433-8
[42] TESCHL, G. (2012). Ordinary Differential Equations and Dynamical Systems. Graduate Studies in Mathe-

matics 140. Amer. Math. Soc., Providence, RI. MR2961944 https://doi.org/10.1090/gsm/140
[43] THOULESS, D. J., ANDERSON, P. W. and PALMER, R. G. (1977). Solution of’solvable model of a spin

glass’. Philos. Mag. 35 593–601.
[44] VERSHYNIN, R. (2018). High-Dimensional Probability. Cambridge Series in Statistical and Proba-

bilistic Mathematics 47. Cambridge Univ. Press, Cambridge. MR3837109 https://doi.org/10.1017/
9781108231596

http://www.ams.org/mathscinet-getitem?mr=3487243
https://doi.org/10.1090/proc/12968
http://www.ams.org/mathscinet-getitem?mr=3631397
https://doi.org/10.1007/s00220-017-2864-3
http://www.ams.org/mathscinet-getitem?mr=3627426
https://doi.org/10.1007/s00440-015-0691-z
http://www.ams.org/mathscinet-getitem?mr=3787372
https://doi.org/10.1090/proc/13875
http://www.ams.org/mathscinet-getitem?mr=3311445
https://doi.org/10.1093/imaiai/iat004
https://doi.org/10.1103/PhysRevLett.94.197205
http://www.ams.org/mathscinet-getitem?mr=1026102
http://www.ams.org/mathscinet-getitem?mr=3650409
https://doi.org/10.1214/16-AOP1094
http://www.ams.org/mathscinet-getitem?mr=3698341
https://doi.org/10.1007/s00222-017-0726-4
http://www.ams.org/mathscinet-getitem?mr=2226885
https://doi.org/10.1007/s00440-005-0433-8
http://www.ams.org/mathscinet-getitem?mr=2961944
https://doi.org/10.1090/gsm/140
http://www.ams.org/mathscinet-getitem?mr=3837109
https://doi.org/10.1017/9781108231596
https://doi.org/10.1090/proc/13875
https://doi.org/10.1017/9781108231596

	Introduction
	Proof of the main result. Outline
	Prior results on OGP and algorithmic implications

	Approximate message passing iterations formalism
	The OGP conjecture and the main result
	Preliminary technical results
	Conjecture 3.2 is implied by Conjecture 3.6
	Continuous dependence
	Concentration property of the AMP solution
	OGP is an obstruction to AMP. Proof of the main result
	TAP-type iteration schemes
	Veriﬁcation for AMP for p-spin models
	Some open questions
	Acknowledgments
	References

