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LOCAL LAWS AND RIGIDITY FOR COULOMB GASES
AT ANY TEMPERATURE
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Courant Institute of Mathematical Sciences, New York University, *scotta@cims.nyu.edu; †serfaty@cims.nyu.edu

We study Coulomb gases in any dimension d ≥ 2 and in a broad tem-
perature regime. We prove local laws on the energy, separation and number
of points down to the microscopic scale. These yield the existence of limit-
ing point processes after extraction, generalizing the Ginibre point process
for arbitrary temperature and dimension. The local laws come together with
a quantitative expansion of the free energy with a new explicit error rate in
the case of a uniform background density. These estimates have explicit tem-
perature dependence, allowing to treat regimes of very large or very small
temperature, and exhibit a new minimal lengthscale for rigidity and screen-
ing, depending on the temperature. They apply as well to energy minimizers
(formally zero temperature). The method is based on a bootstrap on scales
and reveals the additivity of the energy modulo surface terms, via the intro-
duction of subadditive and superadditive approximate energies.
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1. Introduction. We are interested in the N -point canonical Gibbs measure for a d-
dimensional Coulomb gas (d ≥ 2) at inverse temperature β , in a confining potential V , de-
fined by

(1.1) dPN,β(XN) = 1

ZN,β

exp
(−βN

2
d −1HN(XN)

)
dXN,

where XN = (x1, . . . , xN) ∈ (Rd)N and the Hamiltonian HN(XN), which represents the en-
ergy of the system in state XN , is defined by

(1.2) HN(XN) := 1

2

∑
1≤i �=j≤N

g(xi − xj ) + N

N∑
i=1

V (xi),
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where

(1.3) g(x) :=
{− log |x| if d = 2,

|x|2−d if d ≥ 3.

Thus, HN(XN) is the sum of the pairwise repulsive Coulomb interaction between the parti-
cles and the total potential energy of the particles due to the confining potential V , the inten-
sity of which is of order N . The normalizing constant ZN,β in the definition (1.1), called the
partition function, is given by

(1.4) ZN,β :=
ˆ

(Rd)N
exp

(−βN
2
d −1HN(XN)

)
dXN.

We have chosen particular units of measuring the inverse temperature by writing βN
2
d −1 in-

stead of β . As seen in [43], this turns out to be a natural choice, due to scaling considerations,
as our β corresponds to the effective inverse temperature governing the microscopic scale
behavior. This choice does not reduce the generality of our results since, as we will see, our
estimates are explicit in their dependence on β and N which allows to let β depend on N .

This Coulomb gas model, also called a “one-component plasma,” is a standard ensemble
of statistical mechanics which has attracted much attention in the physics literature; see, for
instance, [1, 19, 38, 50, 52, 62] and references therein. Its study in the two-dimensional case is
more developed, thanks in particular to its connection with Random Matrix Theory (see [23,
25, 51]): when β = 2 and V (x) = |x|2, the PN,β in (1.1) is the law of the (complex) eigen-
values of the Ginibre ensemble of N × N matrices with normal Gaussian i.i.d. entries [31].
Several additional motivations come from quantum mechanics, in particular, via the plasma
analogy for the fractional quantum Hall effect [32, 40, 68]. For all of these aspects, one may
consult to [25]. The Coulomb case with d = 3, which can be seen as a toy model for matter,
has been studied in [36, 48, 49]. The theory of higher-dimensional Coulomb systems is much
less well developed.

In such Coulomb systems, if β is not too small and if V grows fast enough at infinity, then
the empirical measure

μ̂N := 1

N

N∑
i=1

δxi

converges, as N → ∞, to a deterministic equilibrium measure μV with compact support
which can be identified as the unique minimizer among probability measures of the quantity

(1.5) E(μ) = 1

2

ˆ
Rd×Rd

g(x − y)dμ(x)dμ(y) +
ˆ
Rd

V (x)dμ(x).

See, for instance, [64], Chapter 2, for the statement of such a result. As the length scale of
suppμV is of order 1 (it is independent of N ), we will call this the macroscopic scale, while

the typical interparticle distance is of order N− 1
d , we will call this the microscopic scale, or

microscale. Intermediate length scales will be called mesoscales.
In this paper we work with a deterministic correction to the equilibrium measure, which we

call the thermal equilibrium measure, which is appropriate for all temperatures and defined
as the probability density μθ minimizing

(1.6) Eθ (μ) := E(μ) + 1

θ

ˆ
Rd

μ logμ,

where we set

(1.7) θ := βN
2
d .
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Let us point out that here and in all the paper we use, alternatively, the notation μ both
for the measure and for its density. By contrast with μV , μθ is positive and regular in the

whole of Rd with exponentially decaying tails. In fact, the quantity θ = βN
2
d corresponds

to the inverse temperature that governs the macroscopic distribution of the particles. The
precise dependence of μθ on θ is studied in [7] where it is shown that when θ → ∞, then μθ

converges to μV with quantitative estimates (see below).
The measure μθ is well known to be the limiting density of the point distribution in the

regime in which θ is fixed independently of N and we send N → ∞, that is, for β � N− 2
d ;

see, for instance, [13, 18, 38, 52]. In this paper we show that μθ is also a more precise
description of the distribution of points, compared to the standard equilibrium measure, even
in the case θ 	 1. This allows us to obtain more precise quantitative results valid for the full
range of β and N and, in particular, in the regime of very small β .

One of the important goals in the study of Coulomb systems is to show concentration
around the (thermal) equilibrium measure and estimates on the so-called linear statistics

(1.8)
ˆ
Rd

ϕ

(
N∑

i=1

δxi
− Nμθ

)
for (not necessarily smooth) test functions ϕ which may be supported in microscopic sized
balls. The study of random variables, such as (1.8), allows us to quantify the weak conver-
gence of the empirical measure μ̂N to the deterministic thermal equilibrium measure μθ . In
particular, we can obtain estimates on the number of points in microscopic balls (local laws).
If the fluctuations of (1.8) are much smaller than for a Poisson point cloud, one speaks of
rigidity or hyperuniformity (see [69]).

In this paper we prove explicit controls on these quantities which then yield the existence
of limiting point processes along subsequences of properly rescaled configurations. While
we cannot rule out the possibility of several point processes arising as limits of different sub-
sequences, we are able for the first time to show their existence by controlling the number of
points in microscopic boxes. This also provides solutions to a number of widely used hierar-
chies and sum rules on correlation functions in this important case of Coulomb interactions
(see discussion below the statement of Corollary 1.1).

A second goal of this paper is to give an expansion in N for N 	 1 of the free en-
ergy − 1

β
logZN,β , which we will complete in the Neumann jellium case here (note that

the mere existence of an order N term, in other words, a thermodynamic limit, has been
known since [49]). This opens the way to obtaining in the companion paper [65] an explicit
error rate for the free energy expansion in the general case (in which μV or μθ are not nec-
essarily constant). This result is crucial to obtain, for the first time in [65], a central limit
theorem for the fluctuations of the type (1.8) in dimensions d ≥ 3 (such a result was ob-
tained in dimension 2 in [10, 44], but the method requires a more precise rate to be applicable
in higher dimension). The third motivation is to formulate a local large deviations principle
(LDP) with microscopic averages for the limiting point processes, analogous to results of [42,
43].

Such questions have recently attracted attention in two dimensions [3, 9, 10, 21, 42, 44,
56] and to a much lesser extent in higher dimension: concentration bounds were given in [21,
28, 57], free energy expansions in [43] and rigidity was described in [22] (in dimension 2)
and [27] (in general dimension) for a “hierarchical” Coulomb gas model (i.e., a version of
the model with a simplified interaction which, essentially, makes renormalization arguments
easier), with estimates for the number variance in a set and for smooth linear statistics. Of
course, much more is known in the well-studied related problem of the one-dimensional log
gas or β-ensemble; see [11, 12, 14–17, 37, 39, 61, 67]. However, as far as we know none of
these works consider the regime of large temperature.
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The program we carry out in this paper was already partly accomplished in dimension 2 in
[9, 42], with local free energy expansions and local laws valid down to mesoscales � ≥ N−α

with α < 1
2 , via a bootsrap on the scales. The high-level approach of the proof is the same, in

particular, as the one of [42]; however, by revisiting it thoroughly we bring in the following
novelties:

• We treat arbitrary dimension d ≥ 2.
• We unveil the importance of the thermal equilibrium measure, even for large θ , and notice

the existence of two effective temperatures, one that governs the macroscopic distribution
of the points (θ ) and one that governs their microscopic behavior (β).

• The local laws are for the first time valid down to the microscale, giving for the first time
access to the proof of existence of limiting point processes.

• The local laws are obtained with quantitative bounds in probability (exponential moments)
and not just with high probability, as in previous works.

• We obtain estimates with an explicit dependence in β as well as N , allowing to consider
very small or very large temperature regimes. These estimates reveal a new β-dependent
minimal length scale ρβ down to which the local laws hold. We prove that for d = 2,3,4

this lengthscale is ∼ N− 1
d max(1, β− 1

2 ), which we believe to be optimal.
• We give an explicit rate of convergence for the free energy expansion in the constant back-

ground case.
• We introduce new sub- and superadditive energy quantities. It is by using estimates on their

additivity defect, which are obtained by a bootstrap or renormalization-type argument, that
we are able to quantify the convergence rate of the free energy and prove our main results.

• We revisit the “screening procedure” used in previous papers, turning it into a truly prob-
abilistic procedure and tuning it in order to get explicit and optimal quantitative estimates.
We optimize the screening lengthscale during the bootstrap procedure, showing it can be
made as small as the minimal lengthscale ρβ .

Statements of the main results. In all the paper we assume that

(1.9)
ˆ
Rd

exp
(−min(1, θ)V

)
< ∞

and that

(1.10) V + g → +∞ as |x| → ∞
which ensures the existence of μV and μθ (see [7]).

The local laws are more easily stated at the level of the “blown-up configurations”: for any

(x1, . . . , xN), we let x′
i = N

1
d xi , and we also let μ = μ′

θ be the push-forward of μθ under this

rescaling, that is, the measure with density μ′
θ (x) = μθ(N

− 1
d x). The local laws are proven

in the “bulk” of μθ . After a suitable “splitting” that removes the constant leading order term
(see Section 2.1), we are led to computing local laws with respect to a generic background μ,
hence our choice of notation here.

In dimension d ≥ 3, we will not use any property of μ besides the fact that it is bounded
above and below in a set 	. In dimension d = 2, we will use the same fact and only three
additional ones:

• μ has sufficiently small tails, in the form of the assumption

(1.11) μ
(
	c)≤ CN

logN
for some constant C > 0.

We comment after Theorem 2 on what is known in that respect; in particular, the assump-
tion is true if β is not too small;
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• μ satisfies

(1.12)
¨

R2×R2
g(x − y)dμ(x)dμ(y) ≥ −CN2 logN

which holds with C = 1
2 as an immediate consequence of the fact that E(μθ ) is finite and

the rescaling;
• μ satisfies

(1.13)
ˆ

U

log z dμ(z) < ∞,

which is also true here, since E(μθ ) < ∞ implies
´
Rd V dμθ < ∞ which in view of (1.10)

implies it.

Throughout the paper C denotes a constant which only depend on d, upper and lower
bounds on μ and the constants in (1.11)–(1.12) and may vary in each occurrence.

As we will see, the dependence of our estimates in β for β small is a bit different in
dimension 2 than in higher dimensions. This is a manifestation of the fact that the Poisson
point process has (or at least is expected to have) infinite Coulomb energy in dimension 2
(see [41] for a discussion). Reflecting this, throughout the paper we will use the notation

(1.14) χ(β) =
{

1 if d ≥ 3,

1 + max(− logβ,0) if d = 2,

and emphasize that χ(β) = 1, unless d = 2 and β is small.
In all our formulas we will have terms which appear only in dimension d; we denote them

with a 1d. The precise meaning of the next-order energy F�R(x) localized in a cube �R(x) of
center x and radius R is alluded to below and defined precisely in Section 2.

THEOREM 1 (Local laws). Assume μ, defined above, satisfies 0 < m ≤ μ ≤ � in a set
	, and, in dimension d = 2, assume also (1.11), (1.12) and (1.13). There exists a constant
C > 0, depending only on d,m, � and in dimension 2 the constants of (1.11) and (1.12),
such that the following holds. There exists ρβ of the form

(1.15) ρβ = C max
(
1, β− 1

2 χ(β)
1
2 , β

1
d−2 −11d≥5

)
such that, if �R(x) is a cube of size R ≥ ρβ centered at x, with

(1.16) dist
(
�R(x), ∂	

)≥ C max
(
χ(β)N

1
d+2 , χ(β)β−1− 1

d ρ−d
β ,N

1
3d β− 1

3 , β− 1
2 1d=2

)
,

we have:

1. (Control of energy)

(1.17)
∣∣∣∣logEPN,β

(
exp

(
1

2
βF�R(x)

))∣∣∣∣≤ Cβχ(β)Rd;

2. (Control of fluctuations) Denoting D := ´
�R(x)

(
∑N

i=1 δx′
i
− dμ), we have

(1.18)
∣∣∣∣logEPN,β

(
exp

(
β

C
R2(1−d)ρd−1

β D2
))∣∣∣∣≤ Cβχ(β)ρd

β

and

(1.19)
∣∣∣∣logEPN,β

(
exp

(
β

C

D2

Rd−2 min
(

1,
|D|
Rd

)))∣∣∣∣≤ Cβχ(β)Rd.
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3. (Control of linear statistics) If ϕ is a 1-Lipschitz function supported in �R(x), then

(1.20)

∣∣∣∣∣logEPN,β

(
exp

β

CRd

(ˆ
Rd

ϕ

(
N∑

i=1

δx′
i
− μ

))2)∣∣∣∣∣≤ Cβχ(β)Rd‖∇ϕ‖2
L∞ .

4. (Minimal distance control) For any point x′
i of the blown-up configuration satisfying

the relation (1.16), denoting

ri := min
(

min
j �=i

∣∣x′
i − x′

j

∣∣, 1

4

)
,

we have

(1.21)
∣∣∣∣logEPN,β

(
exp

(
β

2
g(ri )

))∣∣∣∣≤ Cβχ(β)ρd
β.

Comments on the assumptions. The equilibrium measure μV is characterized by the fact
that there exists a constant c such that g ∗ μV + V − c is zero in the support of μV and
nonnegative outside. In [7] it is proven that if (1.9) and (1.10) hold, and if, in addition,

(1.22) 
V ≥ α > 0 in a neighborhood of suppμV

and the potential g ∗ μV + V − c is bounded below by a positive constant uniformly away
from the support of μV , then for x ∈ suppμV we have μV (x) ≥ m > 0. In particular, we can
take 	 to be the blown-up of suppμV and the assumption μ′

θ ≥ m > 0 holds in 	. We note
that, if V is more regular, [7] also provides an explicit expansion of μθ − μV of the form

(1.23) μθ � μV + 1

cdθ

 log
V + 1

cdθ2 


(

 log
V


V

)
+ · · · in suppμV ;

see [7] for precise results. It is also proven in [7] that, under the previous stated assumptions,
we will have

(1.24) μ′
θ

(
	c)≤ CN√

θ
,

hence in dimension 2 the extra assumption (1.11) is verified as soon as

β ≥ log2 N

N
.

In view of (1.23), one may also substitute μ by μ′
V = μV (N− 1

d x) in the local laws above
while making only a small error.

If θ is fixed, then the lower bound μ′
θ ≥ m > 0 is true on any compact subset of Rd. If

θ � 1, then μθ → 0 pointwise as the measure μθ spreads to infinity, and one needs to give
a stronger weight to the confining potential to confine the system, effectively making the
interaction weaker and the points more independent; thus, this is a situation that needs to be
studied separately (see, for instance, [58] for a discussion of such a “thermal regime” in a
radial situation).

Comments on the results. We note that we can always reduce to m = 1 by scaling in
space and then obtain the explicit dependence on m of all the constants by a rescaling of the
quantities.

An application of Markov’s inequality easily allows to estimate the probability of devi-
ations from these laws. For instance, the probability that the number of points in a cube
deviates by more than o(Rd) from N

´
�R

μθ is very small, and (1.18) provides a bound on
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the variance of the number of points in �R by CρβR2(d−1). We note that (1.18) is stronger
than even the results of [9, 42] in dimension 2. The relation (1.20) can be improved using
more involved techniques if ϕ is assumed to be more regular; this was shown in dimension 2
in [9, 10, 44], and this is the object of [65] in higher dimension.

A closely related setup to our Coulomb gas is that of the jellium model (see, for instance,
[46, 47] and references therein) which is defined as follows. We are given N = Rd points
constrained to be in a cube of size R denoted by �R := (−1

2R, 1
2R)d, neutralized by a uniform

background of unit density, which has a law given by the Gibbs measure

(1.25) dQN,β(XN) = 1

Z
jel
R,β

exp
(−βH

jel
N (XN)

)
dXN,

where

H jel(XN) =
¨

Rd×Rd\�
g(x − y)d

(
N∑

i=1

δxi
− 1�R

)
(x) d

(
N∑

i=1

δxi
− 1�R

)
(y),

the set � := {(x, x) : x ∈ Rd} denotes the diagonal in Rd ×Rd and 1S the indicator of a set S.
This perspective is related to the analysis in the present paper: we consider a variant of (1.25)
with g replaced by the Neumann Green function of the cube �R , the partition function of
which we denote by K(�R) (see Theorem 2 below). As a byproduct of our analysis (we just
apply the arguments verbatim with μ = 1�R

and replacing PN,β by QN,β ), we thereby obtain
analogous quantitative local laws and free energy expansions for QN,β , as we do for PN,β .

The minimal lengthscale and the temperature dependence. One of the main difficulties
in handling the possibly large temperature regime is to obtain the factor βχ(β) instead of 1
in the right-hand side of these estimates when β is small. This is made possible by the use of
the thermal equilibrium measure instead of the usual equilibrium measure.

The other main difficulty is to get the local laws down to the minimal scale ρβ of (1.15). We

believe that the lengthscale max(1, β− 1
2 χ(β)

1
2 ) is optimal in all dimension (or optimal up to

the logarithmic correction in dimension d = 2). The conjectured scenario is that the Coulomb

gas resembles a Poisson process for lengthscales smaller than β− 1
2 N− 1

d and becomes rigid
(in the sense that the number of points in cubes become constrained by the size of the cube)

only at lengthscales larger than β− 1
2 N− 1

d , as evidenced by Theorem 1. If d ≥ 5, the additional
condition in (1.15) makes the result most likely suboptimal and is a limitation of the method
due to boundary effects.

We are able to see the minimal lengthscale β− 1
2 (viewed at the blown-up level) arise in

our proof because, when implementing the bootstrap procedure, we control the (free) en-
ergy errors by β�̃Rd−1 while controlling at the same time the volume errors by Rd−1/�̃ (we
believe these errors to be optimal), where �̃ is the lengthscale that we need to screen the
configurations. Optimizing the total error

(1.26) β�̃Rd−1 + Rd−1

�̃

leads to �̃ = β− 1
2 , and, since we always need to keep �̃ < R, the bootstrap terminates exactly

for R and �̃ of order β− 1
2 . This way we can say that the configurations can effectively be

screened with screening lengthscale β− 1
2 and down to that scale.

Note that the maximal size of a set 	 in which μ = μ′
θ is bounded below by a positive

constant independent of N is (of order) N
1
d , hence the results of the theorem are nonempty
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if and only if ρβ � N
1
d which is equivalent in dimension 3 ≤ d ≤ 5 to θ 	 1 (we expect the

same to be true if d ≥ 5). In the case d = 2, the results are nonempty if and only if β 	 logN
N

.
Note that as soon as θ ≥ θ0 > 0, the third item in (1.16) can be absorbed into the first one, up
to a constant depending on θ0.

As mentioned above, the effective temperature at the macroscale is θ which gives rise to

a natural lengthscale for variations of the macroscopic density μθ of θ− 1
2 = β− 1

2 N− 1
d . This,

strikingly, coincides with the minimal lengthscale for microscopic ridigity ρβ .
It remains to understand more precisely what happens when θ is fixed or θ → 0. In the

latter regime it would be more appropriate to strengthen the confinement, thus weakening the
interaction.

The fact that (1.18) gives a bound on all the moments of the number of points in a compact
set centered at x satisfying (1.16) immediately yields the following statement.

COROLLARY 1.1 (Limiting point processes). Under the same assumptions as in Theo-
rem 1, for every β > 0 fixed independently of N and every point x ∈ 	 with

dist(x, ∂	) ≥ C max
(
χ(β)N

1
d+2 , χ(β)β−1− 1

d ρ−d
β ,N

1
3d β− 1

3 , β− 1
2 1d=2

)
,

the law of the point configuration {x′
1 − x, . . . , x′

N − x} converges as N → ∞, up to extrac-
tion of a subsequence, to a limiting point process with simple points and finite correlation
functions of all order.

This is the first time that the existence of a limit point process is shown besides the par-
ticular determinantal case of β = 2 in d = 2, for which the limit process is known to be
the Ginibre point process, with an explicit correlation kernel. These processes can thus be
thought of as β-Ginibre processes, at least in dimension d = 2. We expect that they should
satisfy a variational characterization as in Corollary 1.2.

In the 70’s there was a large statistical mechanics literature (see [33, 34, 50] and references
therein) on sum rules and various relations for correlation functions of interacting particle
systems, in particular Kirkwood–Salzburg, BBGKY, KMS, DLR equations. These can be
shown to be equivalent relations in the case of regular interaction kernels but in the case of
singular interactions like the Coulomb one, the existence of solutions to these hierarchies was
not known. Corollary 1.1 takes a small step toward putting these ideas on firmer ground by
showing, up to a subsequence, the existence of limiting point processes.

Our next main result gives a quantitative estimate of log K(�R) in the particular variant of
the Neumann jellium mentioned after (1.25). Observe that the error term in (1.29), below, is
negligible as soon as R 	 ρβ . Extending this to varying background measures is one of the
main objects of [65].

THEOREM 2 (Free energy expansion, Neumann jellium case). There exists a function
fd : (0,∞) →R and a constant C > 0, depending only on d, such that

−C ≤ fd(β) ≤ Cχ(β),(1.27)

fd is locally Lipschitz in (0,∞) with
∣∣f ′

d(β)
∣∣≤ Cχ(β)

β
,(1.28)

and such that if Rd is an integer, we have

(1.29)
log K(�R)

βRd
= −fd(β) + O

(
χ(β)

ρβ

R
+ β− 1

d χ(β)1− 1
d

R
log

1
d

R

ρβ

)
,

where ρβ is as in Theorem 1 and the O depends only on d.
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The function fd, which depends only on β (and d), already implicitly appears in [43]
(combine relations (1.16) and (1.18) in [43]) where it is given a variational interpretation,

(1.30) fd(β) = min
P

(
1

2
W̃(P ) + 1

β
ent

[
P |�1]),

where the minimum is taken over stationary point processes P of intensity 1, W̃(P ) is the
average with respect to P of the “Coulomb renormalized energy” (per unit volume) for an
infinite point configuration with uniform background 1 (see, for instance, [57, 64], it is the
W̃(·,1) of [43]) and ent[P |�1] is the specific relative entropy (see [26]) of the point process
P with respect to the Poisson point process of intensity 1. Dimension d = 2 is particular since
it is the only one where fd is not expected to be bounded as β → 0; in fact, we expect the
bound we have in | logβ| to be optimal and to reflect the fact that the Poisson point process
should have infinite Coulomb energy W̃ in dimension 2, in contrast with dimension d ≥ 3
where its energy is always finite, as shown in [41]. Note that the formula (1.30) implies that
fd is a convex function of 1

β
.

The error term in 1/R in (1.29) corresponds exactly to a surface term. Such an error agrees
with the predictions on the next order term that are found in the physics literature in dimen-
sion d = 2 [20, 66], which are made for a gas with quadratic confinement, hence constant
equilibrium measure, and which find a next order term in

√
N for N points (

√
N corresponds

to R in dimension 2).
Once these results are proven, we briefly explain how one can deduce a “local” large

deviations principle, generalizing the macroscopic scale LDP of [43] and the two-dimension
mesoscale LDP of [42] to arbitrary dimension and down to the smallest (microscopic) scale.
More precisely, given x0 in suppμV , for a configuration XN , defining its blown up version

to be X′
N = N

1
d XN , we define the “local empirical field” averaged in a cube of microscopic

scale size R around x0 ∈ suppμV by

(1.31) i
x0,R
N (XN) := −

ˆ
�R(N1/dx0)

δTxX′
N |�R(N1/dx0)

dx,

where Tx is the translation by x and |�R(N1/dx0)
denotes the restriction of the configuration

to �R(N1/dx0). In other words, we look at a spatial average of the (deterministic) point
process formed by the configuration. We denote by P

x0,R
N,β the push-forward of PN,β by i

x0,R
N .

Finally, we introduce the rate function of [43] which is defined over the set of stationary point
processes of intensity m (equipped with the topology of weak convergence) by

(1.32) Fm
β (P ) := β

2
W̃m(P ) + ent

[
P |�m],

where W̃m is the renormalized energy, precisely defined in this context in [43] (and originat-
ing in [57, 59, 60]),1 �m is the (law of the) Poisson process of intensity m over Rd and ent is
the specific relative entropy. We also have

(1.33) minFm
β = βm2− 2

d fd
(
βm1− 2

d
)−

(
β

4
m logm

)
1d=2 + m logm,

where fd is as in the previous theorem; this is the scaled version of (1.30), and, as already

seen in [43], if d ≥ 3 an effective temperature βm1− 2
d depending on the density of points

appears here (as well as every time the density dependence is kept explicit).
We recall that, in minimizing (1.32) there is a competition (depending on β) between the

energy term W̃m which prefers ordered configurations (energy-minimizing configurations

1It corresponds to the notation W̃(·,m) in [43].
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are expected to be crystalline in low enough dimensions) and the relative entropy term which
favors disorder and configurations that are more Poissonnian. The choice of temperature scal-
ing that we made in (1.1) is precisely the one for which these two competing effects are of
comparable strength for fixed β .

THEOREM 3 (Local large deviations principle). Assume that, on its support, the equi-
librium measure μV is bounded below and belongs to C0,κ for some κ > 0. Assume

that N
1
d 	 R 	 ρβ as N → ∞ and x0 ∈ suppμV satisfies, for some C > 0 depending only

on d and μV ,

dist(x0, ∂ suppμV )

≥ CN− 1
d max

(
χ(β)N

1
d+2 , χ(β)β−1− 1

d ρ−d
β ,N

1
3d β− 1

3 , β− 1
2 1d=2

)+ C√
θ
.

Then, we have the following:

• If β is independent of N , the sequence {Px0,R
N,β }N satisfies a LDP at speed Rd with rate

function FμV (x0)
β − minFμV (x0)

β .

• If β → 0 as N → ∞, then {Px0,R
N,β }N satisfies a LDP at speed Rd with rate function

ent[P |�m].
• If β → ∞ as N → ∞, then {Px0,R

N,β }N satisfies a LDP at speed βRd with rate function
1
2(W̃μV (x0) − minW̃μV (x0)).

By Theorem 3 we recover for microscopic averages what was proven in [43] for limits
of macroscopic averages and in [42] for mesoscopic averages in dimension 2, and extend it

to general β . We note that the regime with R � N
1
d was treated in [43] for fixed β and can

be extended without difficulty to the present setting of general β . It is for simplicity that we
present results only for mesoscopic and microscopic averages (i.e., by taking that assumption

that N
1
d 	 R 	 ρβ ).

COROLLARY 1.2. Under the assumptions of Theorem 3, we have the following:

• If β is independent of N , the point processes defined as subsequential limits of the push

forward of PN,β by the map i
x0,R
N of (1.31) must, after rescaling by μV (x0)

1
d and for almost

every x0, achieve the minimum in (1.30) among stationary point processes of intensity 1.
• If β → 0, they must be equal to the Poisson point process of intensity 1.
• If β → ∞, they must minimize W̃1 among stationary point processes of intensity 1.

Note that the point processes considered here are not exactly the same as those of Corol-
lary 1.1 since they are obtained by first averaging over cubes. Their stationarity is a simple
consequence of that averaging (see [43] for a proof). Unfortunately, we do not know whether
a minimizer for (1.30) is unique (uniqueness has, however, been very recently proven for the
one-dimensional log gas analogue in [24]); it may very well not be, in particular, if a phase
transition happens at inverse temperature β . If it were, then this would provide the existence
of a unique possible limit point process along the whole sequence N → ∞.

Our results apply as well to minimizers of HN (formally the case β = ∞); they then
improve on the results obtained in two dimensions in [4] and [53] and their generalization
to higher dimension in [54]. It shows (as for the related problem in [2]) that the rate of
convergence of the next-order energy is in 1

R
and gives equidistribution of points and energy

down to the microscales; see Theorem 4 in Section 8 for a precise statement.
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Method of proof. As in [9, 42] and as first introduced in this context in [53], the method
relies on a renormalization procedure, namely, a bootstrap on the length scales which couples
the free energy expansion and the local law information: local laws at large (macroscopic
scales) are used as a first input and allowed to get a first expansion of the free energy, which
in turn yields local laws at a smaller scale, and then a better rate in the free energy expansion,
etc, until one reaches the minimal scale ρβ .

The starting point of our approach is, as in the previous papers [43, 55, 57, 60], the “elec-
tric” reformulation of the energy HN , that is, its rewriting in terms of the (suitably renormal-
ized) Dirichlet energy of the Coulomb (or electric) potential generated by the points and the
background μθ , which really leverages on the Coulomb nature of the interaction, and the fact
that the Coulomb kernel is, up to a multiplicative factor, the fundamental solution to a local
differential operator, the Laplacian. More precisely, we will see that, after removing some
fixed leading order term from HN , we reduce to

(1.34) dPN,β(XN) = 1

NNK(Rd)
exp

(−βF(XN)
)
dμ⊗N(XN),

where K(Rd) is the normalization constant and F is a “next-order energy” of the form

(1.35) F(XN) = 1

2cd

ˆ
Rd

|∇u|2,
where

u = g ∗
(

N∑
i=1

δx′
i
− μ′

θ

)
is the solution of

(1.36) −
u = cd

(
N∑

i=1

δx′
i
− μ′

θ

)
,

where cd is such that −
g = cdδ0. Here, x′
i = N

1
d xi and μ = μ′

θ (·) = μθ(N
1
d ·) represent the

blown-up system, and in (1.35) the integral needs to be understood in a “renormalized” sense;
see Section 2 for more precise definitions. The quantity F�R , encountered in Theorem 2, is
then the analogue of

´
�R

|∇u|2 here.
Our improvement of the scaling of the error in the free energy expansion is based on the

idea of quantifying the additivity of the energy over subregions of the main domain. In the
Coulomb gas setting, the additivity of the energy—once expressed in terms of the Coulomb
potential—was already observed and used, crucially, in [43, 59, 60]. It was proven, via a
screening procedure inspired by the work of [2] on a related problem and introduced in the
Coulomb context in [59], then improved in [55, 57] which yielded non explicit error terms.
In fact, this is the reason why the results of [42] were limited to two dimensions.

In this paper we combine the screening procedure with the idea of using two different
convergent quantities to quantify the additivity error in the free energy: the first quantity
denoted F(XN,�R) is the equivalent of (1.35) with (1.36) solved over the cube with zero
Neumann boundary condition, while the second one, denoted G(XN,�R), which is smaller,
is the equivalent of (1.35) where (1.36) is solved over the cube �R with zero Dirichlet bound-
ary condition. The true energy is naturally bounded below by G and above by F, and we will
obtain quantitative bounds on it indirectly by estimating the difference between G and F.
These quantities are the analogues of those used in [2] for the study of energy minimizers
of a related problem. This idea of using two quantities which converge monotonically (after
dividing by the volume) to the same limit was already present in [2] and is related to a classi-
cal technique for estimating eigenvalues of the Laplacian under various boundary conditions
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that goes by the name Dirichlet–Neumann bracketing. A similar idea also arose in a different
context in the works [5, 8] on quantitative stochastic homogenization, and the central idea
in these works of quantifying the additivity of the energy by a bootstrap (or renormaliza-
tion) argument inspired the strategy of the present paper (see [6] and references therein for
more on these developments). The main difference here from previous works is that we must
apply such ideas in a probabilistic setting, in the context of a Gibbs measure, rather than a
deterministic variational problem.

This requires us to revisit and, significantly, to revise the previous screening construction of
[55, 57, 59]. We simplify it, optimize it and turn it into a probabilistic procedure by sampling
the screening points from a given Gibbs measure instead of constructing them by hand. This
allows us to reduce the energy and volume errors to surface terms, as explained in (1.26),
which is crucial when treating the regime of small β . In particular, compared to [43], we
dispense with the use of several parameters which needed to be sent to 0 with no explicit
rates for the convergences. This is made possible by a new truncation approach borrowed
from [44, 45] and improved here. The precisely quantified screening error allows to estimate
the additivity error of the free energies associated to (a variant of G) and F. As in [2, 8], in
view of their monotonicity one then naturally obtains a rate of convergence to the limit.

Let us now give a more precise glimpse into the bootstrap argument used to prove the
central estimate which is (1.17). We denote K(U) or Kβ(U), the partition function associated
to the energy F in the set U ⊆ Rd. We start by proving a first bound of the form

(1.37)
∣∣log K(U)

∣∣≤ Cβχ(β)|U |
(modulo some additional error terms in dimension d ≥ 5). The upper bound holds thanks to
the general lower bound F(XN) ≥ −CN where N is the number of points, equal to μ(U)

(see Lemma 3.7). The lower bound holds thanks to a Jensen argument inspired by [29] (see
Proposition 3.8). Combining the lower bound for β and the upper bound for β/2, we obtain

that the local law (1.17) holds at the largest scale N
1
d . The result for smaller scales is then

proved by a bootstrap: assuming it is true down to scale 2R, we try to prove that it is true
down to scale R, as long as R ≥ ρβ . Let us consider a hyperrectangle � ⊆ 	 of sidelengths
comparable to R, such that μ(�) is an integer, and let us denote n = μ(�).

For any configuration XN of points in Rd, let us denote by n the number of points it has
in �. To control the left-hand side of (1.17), we start by using (1.34) to write that

EPN,β

(
exp

(
1

2
βF�(XN)

))

≤
´
(Rd)N

exp(−1
2βF�(XN)) exp(−βF�c

(XN)) dμ(x1) · · ·dμ(xN)´
(Rd)N

exp(−βF(XN)) dμ(x1) · · ·dμ(xN)
.

(1.38)

We wish to bound from above the numerator and bound from below the denominator. To
bound the numerator from above, we use the comparison between Neumann-based and
Dirichlet-based energies which easily yields

F�(XN) ≥ G�(XN |�) ≥ G(XN |�,�), F�c

(XN) ≥ G�c

(XN |�c) ≥ G
(
XN |�c,�c),

hence separating the integral according to the value of n, we findˆ
(Rd)N

exp
(
−1

2
βG�(XN)

)
exp

(−βG�c

(XN)
)
dμ(x1) · · ·dμ(xN)

≤
N∑

n=0

(
N

n

)ˆ
�n

exp
(
−1

2
βG(Xn,�)

)
dμ⊗n(Xn)

×
ˆ

(�c)N−n

exp
(−βG

(
XN−n,�

c))dμ⊗(N−n)(XN−n).

(1.39)
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On the other hand, for the denominator we may use the subadditivity of F, which translates
into a superadditivity of the associated partition function, to write thatˆ

(Rd)N
exp

(−βF(XN)
)
dμ(x1) · · ·dμ(xN)

≥
(
N

n

)ˆ
�n

exp
(−βF(Xn,�)

)
dμ⊗n(Xn)

×
ˆ

(�c)N−n
exp

(−βF
(
XN−n,�

c))dμ⊗(N−n)(XN−n).

We can expect the sum above to concentrate near n � n, because other terms correspond to
a large discrepancy in the number of points in �, which we can show leads to a large energy
in �. Reducing to such terms, in order to bound the left-hand side of (1.38) the next step is to
bound from above the Dirichlet energy associated to G in terms of that associated to F. That
is, we show that we may replace G with F in the right-hand side of (1.39), up to a suitably
small error. Then, there only remains Kβ/2(�)/Kβ(�) in the right-hand side of (1.38), for
which we have the desired bound (in Cβχ(β)Rd) thanks to (1.37). The core of the work is
thus to prove thatˆ

�n

exp
(−βG(Xn,�)

)
dμ⊗n(Xn) ≤

ˆ
�n

exp
(−βF(Xn,�)

)
dμ⊗n(Xn)

and the same in �c, up to a small error. This is accomplished thanks to the configuration-
by-configuration screening procedure, which replaces each configuration Xn of n points by
a configuration Xn of the correct number of points n that coincides with Xn except on a
thin boundary layer. The energy and volume errors associated with the procedure are kept as
the small surface errors mentioned in (1.26) by using the fact that the local laws hold at the
slightly larger scale 2R which provides good energy controls.

The local law (1.17) also allows to show the additivity of the free energy itself, up to the
surface error terms in βRd−1 (roughly) for a cube of size R. As in [2, 5], this is the best that
one can hope with such a method. This implies the existence of the order N term in the free
energy expansion, as in [48, 49], except now with an explicit convergence rate. In that sense,
what we prove is a quantitative thermodynamic limit. Note that an expansion up to order N

of the free energy, with the variational interpretation (1.30) for the order N coefficient and
an error o(N), was already obtained in all dimensions in [43]; it came as a corollary of the
LDP. In the two-dimensional case, an error term of N1−ε for some small (explicit) ε > 0 was
obtained in [10] by a Yukawa approximation argument.

In [43, 55], we treated Riesz interactions and one-dimensional logarithmic interactions as
well as Coulomb interactions (with the important motivation of log gases). This introduced
some (not only notational) complications because Riesz kernels are kernels of nonlocal oper-
ators and a dimension extension is needed. This is why we leave the generalization to Riesz
and one-dimensional log gases to future work.

Outline of the paper. The paper is organized as follows. In Section 2 we introduce the
precise definitions of the sub and superadditive energies, the appropriate renormalizations
(whose specifics are new) and of the corresponding partition functions. In Section 3 we give
some preliminary results, including the sub- and superadditivity of the energies, a priori
bounds on the energies and partition functions. Estimates showing how the energies con-
trol the fluctuations of the configurations and adapted from previous work are gathered in
Appendix B. In Section 4 we give the main newly optimized result of the screening proce-
dure that allows to bound from above the additivity error. The proof of the screening itself is
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postponed to Appendix C. Section 5 is the core of the proof that accomplishes the bootstrap
procedure: starting from the a priori bounds on the largest scale, it shows how the screening
allows to obtain energy controls on smaller and smaller scales. In Section 6 we investigate the
consequences of the bootstrap procedure and deduce from the local laws the proof of the al-
most additivity of the free energy, hence the free energy expansion with a rate, in the uniform
background case. In Section 7 we describe the proof of the LDP result of Theorem 3. Finally,
in Section 8 we adapt our results to the case of energy minimizers to obtain Theorem 4.

2. Additional definitions.

2.1. Splitting formula and rescaling. We adapt here the splitting formula, introduced in
[57, 59]. It is an exact formula that allows to separate the leading order term in the energy
from the next order term, already giving the leading order coefficient in the free energy ex-
pansion. Here, we provide a new formula by expanding the energy around the thermal equi-
librium measure Nμθ , yielding more exact results and allowing to prove the local laws even
when the temperature gets large.

We recall that θ = βN
2
d and that the thermal equilibrium measure μθ minimizing (1.6)

satisfies

(2.1) g ∗ μθ + V + 1

θ
logμθ = C in Rd,

where C is a constant. We then define

(2.2) ζθ := −1

θ
logμθ .

LEMMA 2.1 (Splitting formula with the thermal equilibrium measure). For any configu-
ration XN ∈ (Rd)N , we have

HN(XN) = N2Eθ (μθ ) + N

N∑
i=1

ζθ (xi)

+ 1

2

¨
�c

g(x − y)d

(
N∑

i=1

δxi
− Nμθ

)
(x) d

(
N∑

i=1

δxi
− Nμθ

)
(y),

(2.3)

where E is as in (1.5), ζθ as in (2.2) and � denotes the diagonal in Rd ×Rd.

PROOF. It suffices to rewrite HN(XN) as

HN(XN) =
¨

�c

g(x − y)d

(
N∑

i=1

δxi

)
(x) d

(
N∑

i=1

δxi

)
(y) + N

ˆ
Rd

V (x)d

(
N∑

i=1

δxi

)
(x),

expand the integral after writing
∑N

i=1 δxi
= Nμθ + (

∑N
i=1 δxi

− Nμθ) and use (2.1). �

Let us point out that, as mentioned in the Introduction, from this formula we see − 1
θ

logμθ

appearing as an effective confining potential (in place of ζ in the previous splitting for-
mula of [57, 61]). We next rescale the coordinates by setting X′

N to be the configuration

(N
1
d x1, . . . ,N

1
d xN). The blown-up thermal equilibrium measure is μ′

θ (x) = μθ(xN− 1
d ); it

is a measure of mass N which slowly varies. We also define the rescaling of ζθ to be

ζ ′
θ (x) = N

2
d ζθ (xN− 1

d ). By definition (2.2) we thus have

(2.4) ζ ′
θ (x) = − 1

β
logμ′

θ (x).
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We also have the following scaling relation:
¨

�c

g(x − y)d

(
N∑

i=1

δxi
− Nμθ

)
(x) d

(
N∑

i=1

δxi
− Nμθ

)
(y)

= N1− 2
d

¨
�c

g(x − y)d

(
N∑

i=1

δx′
i
− μ′

θ

)
(x) d

(
N∑

i=1

δx′
i
− μ′

θ

)
(y) −

(
N

2
logN

)
1d=2.

(2.5)

We may now define for any point configuration XN and density μ, the next-order energy
to be

(2.6) F(XN,μ) := 1

2

¨
�c

g(x − y)d

(
N∑

i=1

δxi
− μ

)
(x) d

(
N∑

i=1

δxi
− μ

)
(y),

and the next-order partition function to be

(2.7) K(μ) := N−N

ˆ
(Rd)N

exp
(−βF(XN,μ)

)
dμ⊗N(XN).

Inserting (2.3), (2.4) and (2.5) into (1.4) and using the change of variables X′
N = N

1
d XN

and (1.6), we directly find

(2.8) ZN,β = exp
(
−βN1+ 2

dEθ (μθ ) +
(

β

4
N logN

)
1d=2

)
K
(
μ′

θ

)
.

Note that a main difference with using the previous splitting formula is that here no ef-
fective confining potential term remains, and the reduced partition functions are defined with
integrations against μ⊗N instead of the Lebesgue measure which makes handling the entropy
terms much more convenient.

From now on we will thus be interested in expanding the logarithm of partition functions
of the type (2.7) for generic densities μ such that

´
Rd dμ = N .

2.2. Electric formulation and truncations. We now focus on reexpressing F(XN,μ) in
“electric form”, that is, via the electric (or Coulomb) potential generated by the points. This
is the crucial ingredient that exploits the Coulomb nature of the interaction and makes the
energy additive. We rely here on a rewriting via truncations, as in [55, 57], but using, as in
[44, 45], the nearest neighbor distance as a specific truncation distance so that no error term
is created. This technical improvement is crucial and, in particular, allows to dispense with
the “regularization procedure” of [43].

We consider the potential h created by the configuration XN and the background μ, defined
by

(2.9) h(x) :=
ˆ
Rd

g(x − y)d

(
N∑

i=1

δxi
− μ

)
(y).

Since g is (up to the constant cd), the fundamental solution to Laplace’s equation in dimension
d, we have

(2.10) −
h = cd

(
N∑

i=1

δxi
− μ

)
.

We note that h tends to 0 at infinity because
´

μ = N and the “system” formed by the
positive charges at xi and the negative background charge Nμ is neutral. We would like to
formally rewrite F(XN,μ), defined in (2.6), as

´ |∇h|2; however, this is not correct due to
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the singularities of h at the points xi which make the integral diverge. This is why we use a
truncation procedure which allows to give a renormalized meaning to this integral.

For any number η > 0, we denote

(2.11) fη(x) := (
g(x) − g(η)

)
+,

where (·)+ denotes the positive part of a number and point out that fη is supported in B(0, η).

This is a truncation of the Coulomb kernel. We also denote by δ
(η)
x the uniform measure of

mass 1 supported on ∂B(x, η) which is a smearing of the Dirac mass at x on the sphere of
radius η. We notice that

(2.12) fη = g ∗ (δ0 − δ
(η)
0

)
so that

(2.13) −
fη = cd
(
δ0 − δ

(η)
0

)
.

For any �η = (η1, . . . , ηN) ∈ RN and any function h satisfying a relation of the form

(2.14) −
h = cd

(
N∑

i=1

δxi
− μ

)
,

we then define the truncated potential,

(2.15) h�η = h −
N∑

i=1

fηi
(x − xi).

We note that, in view of (2.13), the function h�η then satisfies

(2.16) −
h�η = cd

(
N∑

i=1

δ(ηi)
xi

− μ

)
.

We then define a particular choice of truncation parameters: if XN = (x1, . . . , xN) is a
N -tuple of points in Rd, we denote for all i = 1, . . . ,N ,

(2.17) ri := 1

4
min

(
min
j �=i

|xi − xj |,1
)
,

which we will think of as the nearest-neighbor distance for xi . The following is proven in
[44], Proposition 2.3, and [63], Proposition 3.3 (here, we just need to rescale it).

LEMMA 2.2. Let XN be in (Rd)N . If (η1, . . . , ηN) is such that 0 < ηi ≤ ri for each
i = 1, . . . ,N , we have

(2.18) F(XN,μ) = 1

2cd

(ˆ
Rd

|∇h�η|2 − cd

N∑
i=1

g(ηi)

)
−

N∑
i=1

ˆ
Rd

fηi
(x − xi) dμ(x),

where h is as in (2.9).

This shows, in particular, that the expression in the right-hand side is independent of the
truncation parameter, as soon as it is small enough. Choosing ηi = ri thus yields an exact
(electric) representation for F. In Appendix B we provide monotonicity results which show
that taking truncation parameters ηi larger than ri can only decrease the value of the right-
hand side of (2.18).
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2.3. Dirichlet and Neumann local problems. We now introduce new local versions of
these problems, that will serve to define the sub- and superadditive energy approximations.
Let us consider U a subset of Rd with piecewise C1 boundary, bounded or unbounded. Most
often, U will be Rd, a hyperrectangle or the complement of a hyperrectangle. Although N

originally denoted the number of points in Rd and defined the blown-up scale at which we
are working, when ambiguous, we will also use the notation N to denote the total number of
points a system has in a generic set U which may not be the whole space.

The main quantity we will use is one obtained by solving a relation of the type (2.14) with
a zero Neumann boundary condition. We need to introduce a new modified version of the
minimal distance to make the energy subadditive: we let

(2.19) r̂i := 1

4
min

(
min

xj∈U,j �=i
|xi − xj |,dist(xi, ∂U),1

)
.

In order to have an energy which is always bounded from below, we need to add some energy
to points that approach the boundary. To that effect we define

(2.20) h(xi) :=
(

g
(

1

4
dist(xi, ∂U)

)
− g

(
1

4

))
+
.

If μ(U) = N , an integer, for a configuration XN of points in U , we now define

F(XN,μ,U)

:= 1

2cd

(ˆ
U

|∇ûr|2 − cd

N∑
i=1

g(̂ri )

)
−

N∑
i=1

ˆ
U

f̂ri (x − xi) dμ(x) +
N∑

i=1

h(xi),
(2.21)

where u solves

(2.22)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−
u = cd

(
N∑

i=1

δxi
− μ

)
in U,

∂u

∂ν
= 0 on ∂U.

Note that, under the condition μ(U) = N , the solution of (2.22) exists and is unique up to
addition of a constant. Unless ambiguous, we will denote F(XN,U) instead of F(XN,μ,U).
We note that from (2.18), F(·,Rd) coincides with F defined in (2.6).

We will use a localized version of this energy: if u solves (2.22) and � is a strict (closed)
subset of U , we define

(2.23) r̃i := 1

4

⎧⎪⎨⎪⎩min
(

min
xj∈�,j �=i

|xi − xj |,dist(xi, ∂U ∩ �)1
)

if dist(xi, ∂� \ ∂U) ≥ 1

2
,

min
(
1,dist(xi, ∂U ∩ �)

)
otherwise;

and

F�(XN,U)

:= 1

2cd

(ˆ
�

|∇ũr|2 − cd

∑
i,xi∈�

g(̃ri )
)

− ∑
i,xi∈�

ˆ
U

f̃ri (x − xi) dμ(x) + ∑
i,xi∈�

h(xi).
(2.24)

We will also use the following variant of r̃i which only differs near ∂� \ ∂U :

(2.25)
≈
ri := 1

4

⎧⎨⎩min
(

min
xj∈�,j �=i

|xi − xj |,dist(xi, ∂U ∩ �),1
)

if dist(xi, ∂� \ ∂U) ≥ 1,

min
(
1,dist(xi, ∂U ∩ �)

)
otherwise.

Let us point out that when � = U , then r̃i =≈
ri = r̂i .
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Our second quantity is obtained by minimizing the energy with respect to all possible
functions u compatible with the points in the sense of satisfying (2.14), it naturally leads to
a Dirichlet problem and to a superadditive energy. For a configuration XN of points in U ,
imitating (2.18) we define the energy relative to the set U as

(2.26) G(XN,μ,U) := 1

2cd

(ˆ
U

|∇ṽr|2 − cd

N∑
i=1

g(̃ri )

)
−

N∑
i=1

ˆ
U

f̃ri (x − xi) dμ(x),

where r̃ is as in (2.23) with ∅ in place of U and U in place of �, and

(2.27)

⎧⎪⎪⎨⎪⎪⎩
−
v = cd

(
N∑

i=1

δxi
− μ

)
in U,

ṽr = 0 on ∂U.

We will often omit (unless ambiguous) the dependence in μ in the notation and simply write
G(XN,U). Using standard variational arguments, we may check that we have

G(XN,U) = min

{
1

2cd

(ˆ
U

|∇ũr|2 − cd

N∑
i=1

g(̃ri )

)
−

N∑
i=1

ˆ
U

f̃ri (x − xi) dμ(x) :

−
u = cd

(
N∑

i=1

δxi
− μ

)
in U

}
.

(2.28)

We will not use G very much but rather a variant (mixed version of the energy), for � a
subset of U that may touch ∂U . For XN , a configuration of N points in � ∩ U , imitating the
definition of G we set

(2.29) HU(XN,�) := 1

2cd

(ˆ
�∩U

|∇w̃r|2 − cd

N∑
i=1

g(̃ri )

)
−

N∑
i=1

ˆ
�∩U

f̃ri (x − xi) dμ(x),

where r̃ is as in (2.23) and

(2.30)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
−
w = cd

(
N∑

i=1

δxi
− μ

)
in � ∩ U,

∂w

∂ν
= 0 on ∂U ∩ �,

w̃r = 0 on ∂(� ∩ U) \ ∂U.

We can check that

HU(XN,�)

= min

{
1

2cd

(ˆ
�∩U

|∇w̃r|2 − cd

N∑
i=1

g(̃ri )

)
−

N∑
i=1

ˆ
�∩U

f̃ri (x − xi) dμ(x) :

−
w = cd

(
N∑

i=1

δxi
− μ

)
in U ∩ �,

∂w

∂ν
= 0 on ∂U ∩ �

}
.

(2.31)

We then define a localized version: if ω is a subset of �,

(2.32) Hω
U(XN,�) := 1

2cd

(ˆ
ω∩U

|∇w̃r|2 − cd

∑
i,xi∈ω

g(̃ri )
)

− ∑
i,xi∈ω

ˆ
�∩U

f̃ri (x − xi) dμ(x),

where r̃i is now relative to ∂ω. We note that if U = Rd or if � is a strict subset of U , HU

coincides with G.
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2.4. Partition functions. We next define a partition function relative to U . If μ(U) = N ,
then we define

(2.33) K(U,μ) := N−N

ˆ
UN

exp
(−βF(XN,μ,U)

)
dμ⊗N(XN).

We also define the associated Gibbs measure by

(2.34) Q(U,μ) := 1

NNK(U,μ)
exp

(−βF(XN,μ,U)
)
dμ⊗N(XN).

We may also consider in the same way (although we will not give details)

(2.35) PN(U,μ) := 1

NNLN(U,μ)
exp

(−βG(XN,μ,U)
)
dμ⊗N(XN).

We will assume without loss of generality that the points in XN never intersect the bound-
ary of the considered cubes which is legitimate since this would correspond to a zero-measure
set in the integrals defining K. As above, we will simply denote (unless ambiguous) these
quantities by K(U) and Q(U). We note that K(Rd,μ) coincides with K(μ), defined in (2.7),
and that in view of the splitting formula (2.3) and (2.8), Q(Rd) coincides with the original
Gibbs measure PN,β , defined in (1.1).

3. Preliminary results.

3.1. Partitioning into hyperrectangles with quantized mass. We will use throughout the
paper the following definition.

DEFINITION 3.1. For any R we let QR be the set of hyperrectangles Q whose side-
lengths belong to [R,2R] and which are such that μ(Q) is an integer.

LEMMA 3.2. Assume μ ≥ m > 0 in a set U . There exists a constant R0 > 0 depend-
ing only on d and m such that, given any R > R0, there exists a collection KR of closed
hyperrectangles with disjoint interiors belonging to QR and such that

(3.1)
{
x ∈ U : d(x, ∂U) ≤ R

}⊆ U \ ⋃
K∈KR

K ⊆ {
x ∈ U : d(x, ∂U) ≤ 2R

}
.

Moreover, if U is a hyperrectangle, we can require that
⋃

K∈KR
K = U .

PROOF. The proof can easily be adapted from [60], Lemma 7.5. �

3.2. Sub- and superadditivity. Here, we show that F is subadditive, as desired (one can
also easily check that G is superadditive). We will use various results on the monotonicity
of the energy with respect to the truncation parameter which are stated and proven in Ap-
pendix B. In the rest of the paper, when talking about “disjoint union of two sets,” we mean
the union of the closures of two sets whose interiors are disjoint.

LEMMA 3.3. For any configuration XN defined in U with N = μ(U), if � is a subset of
U and ω a subset of �, we have

(3.2) F�(XN,U) ≥ HU(XN |�,�), Hω
U(XN,�) ≥ Hω

U(XN |ω,ω)

and if ω is the disjoint union of ω1 and ω2,

(3.3) Hω
U(XN,�) ≥ Hω1

U (XN,�) + Hω2
U (XN,�).
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PROOF. Let us first change r̃i relative to ω into r̃i relative to ω1 for xi ∈ ω1, respectively,
r̃i relative to ω2 for xi ∈ ω2. This increases these truncation parameters, hence, in view of
Lemma B.1, it may only decrease the computed value of HU . Splitting the obtained integral
into two pieces, we deduce that

Hω
U(XN,�) ≥ 1

2cd

(ˆ
ω1

|∇w̃ri |2 − cd

∑
i,xi∈ω1

g(̃ri )
)

− ∑
i,xi∈ω1

ˆ
�∩U

f̃ri (x − xi) dμ(x)

+ 1

2cd

(ˆ
ω2

|∇w̃ri |2 − cd

∑
i,xi∈ω2

g(̃ri )
)

− ∑
i,xi∈ω2

ˆ
�∩U

f̃ri (x − xi) dμ(x),

where w is as in (2.30) and the r̃i are those relative to ω1, resp. ω2. It follows that (3.3) holds.
The first item of (3.2) is a consequence of the minimality property (2.31). The second item is
proven by using the minimality property (2.31). �

As already observed and used in [43, 55, 57, 59, 60], solving Neumann problems allows to
get subadditive energy estimates over subcubes by using the following lemma (whose proof
we omit) which exploits that the Neumann electric field is the L2 projection of any compatible
electric field onto gradients.

LEMMA 3.4 (Projection lemma). Assume that U is a compact subset of Rd with piece-
wise C1 boundary. Assume E is a vector field satisfying a relation of the form

(3.4)

⎧⎪⎪⎨⎪⎪⎩
−divE = cd

(
N∑

i=1

δxi
− μ

)
in U,

E · ν = 0 on ∂U,

and u solves ⎧⎪⎪⎪⎨⎪⎪⎪⎩
−
u = cd

(
N∑

i=1

δxi
− μ

)
in U,

∂u

∂ν
= 0 on ∂U.

Then,
ˆ

U

|∇ũr|2 ≤
ˆ

U

∣∣∣∣∣E −
N∑

i=1

∇ f̃ri (· − xi)

∣∣∣∣∣
2

.

We now check that the energies F is subadditive, as desired. One can check that G is
superadditive as a consequence of (3.3).

LEMMA 3.5 (Sub- and superadditivity). Assume U is the union of two sets U1, U2 with
disjoint interiors and piecewise C1 boundaries. If XN is a configuration in U1 and YN ′ , a
configuration in U2 with μ(U1) = N , μ(U2) = N ′, then

(3.5) F(XN ∪ YN ′,U) ≤ F(XN,U1) + F(YN ′,U2).

PROOF. For (3.5) let u and u′ be the solutions to the Neumann problems associated with
the definition of F in (2.21), and set E = ∇u, E′ = ∇u′. We have

(3.6) −divE = cd

(
N∑

i=1

δxi
− μ

)
in U1, −divE′ = cd

(
N ′∑
i=1

δyi
− μ

)
in U2.
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We may now define E0 = E1U1 + E′1U2 and note that it satisfies

(3.7)

⎧⎪⎪⎨⎪⎪⎩
−divE0 = cd

( ∑
p∈XN∪YN ′

δp − μ

)
in U,

E0 · ν = 0 on ∂U.

Indeed, no divergence is created across ∂U1 ∩ ∂U2 thanks to the vanishing normal compo-
nents on both sides. The result then follows from Lemma 3.4. �

The subadditivity property has the following counterpart for the partition functions.

LEMMA 3.6. Assume U is partitioned into p disjoint sets Qi , i ∈ [1,p] which are such
that μ(Qi) = Ni with Ni integer. We have

(3.8) K(U) ≥ N !N−N

N1! · · ·Np!N−N1
1 · · ·N−Np

p

p∏
i=1

K(Qi).

PROOF. It suffices to partition the phase space into sets of the form {xi1, . . . , xiNj
∈ Qj }

for each j = 1, . . . , p, then to use (3.5), noting that the number of ways to distribute N points
in the p sets with Ni points in each set is N !

N1!...Np ! . �

3.3. Preliminary energy and free energy controls. We start with a rough bound on F
which yields an upper bound for K.

LEMMA 3.7 (Upper bound for K(U)). Assume μ(U) = N , then we have for any XN ,

(3.9) F(XN,U) ≥ −CN

and

(3.10) log K(U) ≤ CβN,

where C > 0 depends only on d and �.

PROOF. The relation (3.9) is a consequence of (B.8) and (3.10) follows directly. �

Obtaining a lower bounds is a much more delicate task. For that we use an argument
inspired by [29]. We have the following a priori lower bound, in which the logarithmic cor-
rection χ(β) (in dimension 2, for β small) appears for the first time. At this point, we need to
distinguish between the number of points a configuration has in a generic set U , that we will
denote N , and the number of points in the original problem, denoted N , which corresponds

to μ(Rd) and also dictated the blow-up lengthscale N− 1
d .

PROPOSITION 3.8. Assume U is either Rd or a finite disjoint union of hyperrectangles

with parallel sides belonging to QR for some R ≥ max(1, β− 1
d ), all included in 	, or the

complement of such a set. Let μ be a density such that 0 < m ≤ μ ≤ � in the set 	 and satis-
fying (1.13). Assume μ(U) = N is an integer. If d = 2, assume in addition (if U is unbounded)
that

(3.11) μ
(
	c ∩ U

)≤ C
N

logN
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and

(3.12)
¨

U2
g(x − y)dμ(x)dμ(y) ≥ −CN

2
logN.

There exists C > 0, depending only on m,d and � and the constants in (3.11) and (3.12),
such that

(3.13) log K(U) ≥ −C

{
βχ(β)N in d = 2,

βN + |∂U |min
(
β

1
d−2 ,1

)
in d ≥ 3.

We note that (3.12) is automatically satisfied by scaling with C = 1
2 if μ is the blown-up

of μθ by N
1
d .

PROOF OF PROPOSITION 3.8. Step 1: The case of the whole space. In the whole space
with μ(U) = μ(Rd) = N , we have

(3.14) F
(
XN,Rd)= 1

2

¨
�c

g(x − y)d

(
N∑

i=1

δxi
− μ

)
(x) d

(
N∑

i=1

δxi
− μ

)
(y).

Starting from (2.33), we have

K
(
Rd)= N−N

ˆ
(Rd)N

exp
(−βF

(
XN,Rd))dμ⊗N(XN).

Using Jensen’s inequality, as inspired by [29], we may then write

log K
(
Rd)≥ − β

NN

ˆ
(Rd)N

F
(
XN,Rd)dμ⊗N(XN).

We next insert the result of (3.14) to obtainˆ
(Rd)N

F
(
XN,Rd)dμ⊗N

= 1

2

ˆ
(Rd)N

(∑
i �=j

g(xi − xj ) − 2
N∑

i=1

ˆ
Rd

g(xi − y)dμ(y)

+
¨

Rd×Rd
g(x − y)dμ(x)dμ(y)

)
dμ⊗N(XN)

= 1

2

(
N(N − 1)NN−2 − 2NNN−1 + NNN−1)¨

(Rd)2
g(x − y)dμ(x)dμ(y)

= −1

2
NN−1

¨
(Rd)2

g(x − y)dμ(x)dμ(y).

It follows that

(3.15) log K
(
Rd)≥ β

2N

¨
(Rd)2

g(x − y)dμ(x)dμ(y).

If d ≥ 3, g ≥ 0, hence this yields log K(Rd) ≥ 0 which implies the desired result. If d = 2, this
yields log K(R2) ≥ −βN logN which is unsufficient if β is not very small. We will improve
this below.
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Step 2: The case of a more general domain.
Substep 2.1: Setting up the Green function.
Let U be a general domain with piecewise C1 boundary such that μ(U) = N , an integer.

We note that the assumption on U implies that ∂U is a bounded set.
Denote Û := {x ∈ U : dist(x, ∂U) ≤ 1}, and let μ be defined in Û by

(3.16) μ(x) :=
{
μ(x) exp

(−βMh(x)
)

if β ≤ 1,

0 if β > 1,

where h is as in (2.20) and M > 0 is a constant to be selected below. Below (in Substep 2.3)
we will extend the definition of μ to the rest of U in such a way that it remains bounded,
that μ = μ on {x ∈ U : dist(x, ∂U) > 2} and that μ(U) = μ(U) = N .

First, we claim that we have

F(XN,U) = 1

2

¨
�c

GU(x, y) d

(
N∑

i=1

δxi
− μ

)
(x) d

(
N∑

i=1

δxi
− μ

)
(y)

+ 1

2

N∑
i=1

HU(xi) +
N∑

i=1

h(xi),

(3.17)

where GU is the Neumann Green kernel of U , characterized as the solution of⎧⎪⎪⎨⎪⎪⎩
−
GU(x, y) = cd

(
δy(x) − 1

μ(U)
μ

)
in U,

−∂GU

∂ν
= 0 on ∂U,

and

(3.18) HU(x) := lim
y→x

GU(x, y) − g(x − y).

We check that GU and thus HU exist and are well defined up to an additive constant.
First, under our assumptions we claim that v = g ∗ (δy − 1

μ(U)
μ) is well defined. Indeed,

in dimension d ≥ 3 the convolution of g with μ is well defined (since μ ∈ ⋂
p Lp) and

is in Lp by the Hardy–Littlewood–Sobolev inequality. In dimension d = 2, we need that´
U

g(x − z) dμ(z) < ∞. If U is bounded, then this is immediate from the boundedness of μ

and μ. If U is unbounded, since μ and μ differ only near ∂U which is bounded, it follows
from (1.13). Second, we may solve for w = GU − v, which satisfies⎧⎨⎩−
w = 0 in U,

∂w

∂ν
= −∂v

∂ν
on ∂U,

which can be done variationally since ∂U is bounded.
We may now observe that u := ´

U
GU(x, y)df (y) is solution to

(3.19)

⎧⎪⎪⎨⎪⎪⎩
−
u = cd

(
f − μ

μ(U)

ˆ
U

f

)
in U,

∂u

∂ν
= 0 on ∂U.

The function u of (2.22) is thus equal to
´
U

GU(x, y) d(
∑N

i=1 δxi
−μ)(y). To obtain the claim

(3.17), it then suffices to integrate by parts from the formula (2.21) similarly as in (2.18).
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Substep 2.2: Lower bound.
Starting from (2.33), we have in both cases β ≥ 1 or β ≤ 1,

K(U) ≥ N
−N

ˆ
UN

exp

(
−βF(XN,U) −

N∑
i=1

log
μ

μ
(xi)

)
dμ⊗N(XN),

with the convention that μ logμ = 0 when μ = 0. Using Jensen’s inequality, we may then
write

log K(U) ≥ 1

N
N

ˆ
UN

(
−βF(XN,U) −

N∑
i=1

log
μ

μ
(xi)

)
dμ⊗N(XN).

We next insert the result of (3.17) to find

ˆ
UN

(
F(XN,U) + 1

β

N∑
i=1

log
μ

μ
(xi)

)
dμ⊗N(XN)

= 1

2

ˆ
UN

(∑
i �=j

GU(xi, xj ) − 2
N∑

i=1

ˆ
U

GU(xi, y) dμ(y) +
¨

U2
GU dμdμ

)
dμ⊗N(XN)

+
ˆ

UN

(
1

2

N∑
i=1

HU(xi) +
N∑

i=1

h(xi) + 1

β

N∑
i=1

log
μ

μ
(xi)

)
dμ⊗N(XN)

= 1

2
N(N − 1)N

N−2
¨

U2
GU(x, y) dμ(x)dμ(y) − N

N
¨

U2
GU(x, y) dμ(x)dμ(y)

+ 1

2
N

N
¨

U2
GU(x, y) dμ(x) dμ(y)

+ 1

2
N

N
ˆ

U

(
HU(x) + 2

β
log

μ

μ
(x) + 2h(x)

)
dμ(x)

= 1

2
N

N
[¨

U2
GU(x, y) d(μ − μ)(x) d(μ − μ)(y) − 1

N

¨
U2

GU(x, y) dμdμ

+
ˆ

U

(
HU + 2

β
log

μ

μ
+ 2h

)
dμ

]
.

It follows that

log K(U)

≥ −β
1

2

[¨
U2

GU(x, y) d(μ − μ)(x) d(μ − μ)(y)

− N
−1

¨
U2

GU(x, y) dμ(x)dμ(y) +
ˆ

U

(
HU + 2

β
log

μ

μ
+ 2h

)
dμ

]
.

(3.20)

Substep 2.3: Discussion of the three terms and the definition of μ. We now give an up-
per bound for the three terms in the right-hand side. We observe that, by definition (3.16),
controlling

´
(2 log μ

μ
+ 2βh) dμ involves evaluating

´
βg(r) exp(−Cβ(g(r) − C))dr , while

bounding
´ |μ − μ| involves evaluating

´ | exp(−Cβ(g(r) − C)) − 1|dr , where r is the dis-
tance to ∂U .
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With explicit computations, using the expression for g and a change of variables, we ob-
serve that

(3.21)
ˆ 1

0
βg(r) exp

(−βg(r)
)
dr ≤ C

{
min

(
1, β

1
d−2

)
if d ≥ 3,

min(1, β) if d = 2,

and

(3.22)
ˆ 1

0

∣∣exp
(−βg(r)

)− 1
∣∣dr ≤ C

{
min

(
1, β

1
d−2

)
if d ≥ 3,

min(1, β) if d = 2.

Thus, we find

(3.23)
ˆ

Û

|μ − μ| +
ˆ

Û

(
log

μ

μ
+ βh(x)

)
dμ ≤ Cμ(Û)

{
min

(
1, β

1
d−2

)
if d ≥ 3,

min(1, β) if d = 2.

We next claim that we can distribute μ − μ in {x ∈ U,dist(x, ∂U) ≤ 2} \ Û so that

(3.24)
¨

U2
GU(x, y) d(μ − μ)(x) d(μ − μ)(y) ≤ Cμ(Û)

and

(3.25)
ˆ

U

log
μ

μ
dμ ≤ Cμ(Û)

{
min

(
1, β

1
d−2

)
if d ≥ 3,

min(1, β) if d = 2.

This will allow us to extend μ − μ by 0 in {x ∈ U,dist(x, ∂U) ≥ 2} in such a way that
μ(U) = μ(U) and μ ≤ C. This is accomplished by partitioning {x ∈ U,dist(x, ∂U) ≤ 2} into
disjoint cells Ci of bounded size; then, design μ in Ci so that μ remains bounded by a constant
depending only on d,m and �, and

´
Ci

μ − μ = 0. We may then solve for −
ui = μ − μ

with zero Neumann data on the boundary of each cell Ci . Letting E = ∑
i 1Ci

∇ui we have
that −divE = μ − μ in U and E · ν = 0 on ∂U . Then, by L2 projection argument, as in
Lemma 3.4, we find that¨

U2
GU(x, y) d(μ − μ)(x) d(μ − μ)(y) ≤

ˆ
U

|E|2 ≤∑
i

ˆ
Ci

|∇ui |2,

and this is bounded by a constant times the number of cells, which is proportional to |∂U |,
hence equivalently to μ(Û) since μ is bounded below in 	 and ∂U must be included in 	 by
assumption. This proves (3.24) and (3.25) is bounded by the number of cells times the bound
of (3.21).

We then apply Proposition A.1 of the Appendix with the measure μ
μ(U)

, up to adding a
constant to GU (hence subtracting it from HU which has a null total effect in the above
right-hand side); we have

(3.26)
ˆ

U

GU(x, y) dx = 0

and

(3.27) HU(x) ≤ −N
−1

ˆ
U

g(x − z) dμ(z) + C max
(
g
(
dist(x, ∂U)

)
,1
)
.

We then deduce that, in view of (3.16), we have in Û ,

HU + 2

β
log

μ

μ
+ h ≤ −N

−1
ˆ

U

g(x − z) dμ(z) + C max
(
g
(
dist(x, ∂U)

)
,1
)− 2Mh + h.
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In U \ Û , since dist(x, ∂U) ≥ 1, thanks to (3.27), we have instead

HU + h ≤ −N
−1

ˆ
U

g(x − z) dμ(z) + C.

Choosing M so that 2M − 1 = C with C the same constant as in (3.27) and using (3.25), we
deduce thatˆ

U

(
HU + 2

β
log

μ

μ
+ h

)
dμ ≤ −N

−1
¨

U2
g(x − y)dμ(x)dμ(y)

+ CN + Cμ(Û)

⎧⎪⎪⎨⎪⎪⎩
1

β
min

(
1, β

1
d−2

)
if d ≥ 3,

1

β
min(1, β) if d = 2.

(3.28)

In view of (3.19), we have that
´
U

GU(x, y)dμ(y) = cst , while
˜

U2 GU(x, y)dμ(y)dx = 0
from (3.26), hence cst = 0. It follows that

(3.29)
¨

U2
GU dμ(x)dμ(y) = 0.

Finally,

N
−1

¨
U2

g(x − y)dμ(x)dμ(y) ≥

⎧⎪⎪⎨⎪⎪⎩
0 if d ≥ 3,

−CN(logR + 1) if d = 2, U = QR ,

−CN logN otherwise.

Inserting this and (3.29), (3.28) and (3.24) into (3.20) and using (3.12), we conclude that, for
a constant C > 0 depending only on d, m and �,

log K(U) ≥ −Cμ(Û)

{
min

(
1, β

1
d−2

)
if d ≥ 3,

min(1, β) if d = 2

− Cβ

⎧⎪⎪⎨⎪⎪⎩
0 if d ≥ 3,

N(logR + 1) if d = 2, U = QR,

N logN if d = 2, U unbdd.

(3.30)

In the case d ≥ 3, this completes the proof.
We next treat the case of a cube in d = 2 by a superadditivity argument.
Substep 2.4: The superadditivity argument. Let us now partition U = QR into p hyperrect-

angles in Qr with r = max(1, β− 1
2 ). Note that this scale is roughly equal to ρβ , the minimal

lengthscale at temperature β; see (1.15). For each hyperrectangle we have, from (3.30), a
log K bounded below by −Crd−1 min(1, β) − Cβrd(1 + log r).

Using (3.8) and Stirling’s formula (the log(N !N−N) cancels with
∑

i log(Ni !N−Ni

i ) up to
order logN ) and since p = O(βN), we thus get

log K(U) ≥ −Cp log rd − Cp + p
(−C min(1, β)rd−1 − Cβrd(1 + log r)

)
≥
{−CNβ

(
1 + | logβ|) if β ≤ 1,

−CβN if β > 1.

In view of (1.14), we thus conclude, as desired, that

(3.31) log K(U) ≥ −Cβχ(β)N.
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This completes the proof in the case d = 2 and U is a cube. We can check that the same
argument works as well for other nondegenerate Lipschitz cells.

Step 3: The case of general U . We split 	 ∩U (which is a set which a Lipschitz boundary)

into nondegenerate cells Qi of size min(1, β− 1
2 ) with μ(Qi) integer. The same superadditiv-

ity argument, as in the last step, provides the bound

(3.32) log K(	 ∩ U) ≥ −Cβχ(β)μ(	 ∩ U) ≥ −Cβχ(β)N.

On the other hand, we may insert (3.11) into (3.30) to get log K(	c ∩ U) ≥ −CβN . Another
application of the superadditivity (3.8) relative to 	 ∩ U and 	c ∩ U concludes the proof
of (3.13). �

Thanks to the a priori bounds (3.10) and (3.13), we deduce a first control on the exponential
moments of the energy. (In the rest of the paper, we highlight, when needed, the dependence
in β of the partition functions as a superscript.)

COROLLARY 3.9. Assume U and μ are as in Proposition 3.8, and μ(U) = N . There
exists a constant C > 0, depending only on d,m, � and the constants in (3.11) and (3.12),
such that

(3.33) logEQ(U)

(
exp

(
β

2
F(XN,U)

))
≤ log

Kβ/2(U)

Kβ(U)
≤ Cβχ(β)N +C|∂U |min

(
β

1
d−2 ,1

)
.

4. Comparison of Neumann and Dirichlet problems by screening. The screening
procedure first introduced in [59] using ideas of [2] consists in taking a configuration Xn

in a set whose energy H or G is known. Modifying it near the boundary of the set to produce
some configurations Yn with a corrected number of points for which the energy F is con-
trolled by H(Xn) plus a small, well-quantified error. It has been improved over the years, and
we here provide for the first time a result with optimal errors. An informal description of the
method as well as the proof of the following main result are postponed to Appendix C.

In the following result, two lengthscales, � and �̃, will appear; �̃ represents the distance
over which one needs to look for a good contour by a mean value argument, then � represents
the distance needed to screen the configuration away from that good contour. The screening
will only be possible if that distance is large enough compared to the boundary energy. In
other words, only configurations with well-controlled boundary energy are “screenable.”

For any given configuration, the set O (like “old”) represents the interior set in which the
configuration and the associated field are left unchanged, while in the complement, denoted
N (like “new”), the configuration is discarded and replaced by an arbitrary configuration with
the correct number of points. Because we are dealing with statistical mechanics, we need not
only to construct one screened configuration but also a whole family of them in order to
retrieve a sufficient volume of configurations. A new feature here is to sample the new points
of the screened configuration according to a Coulomb Gibbs measure in the set N (this done
in Proposition 4.2).

By abuse of notation, we will also write QR+t to denote the t-neighborhood of QR if t ≥ 0
and the set {x ∈ QR,dist(x, ∂QR) ≥ |t |}, if t ≤ 0.

We have to perform two variants of the screening: an “outer screening” when � = QR and
an “inner screening” when � = U \ QR . Both are entirely parallel. The main result is the
following.

PROPOSITION 4.1 (Screening). Assume U is either Rd or a finite disjoint union of hy-

perrectangles with parallel sides belonging to QR for some R ≥ max(1, β− 1
d ), all included
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in 	, or the complement of such a set. Assume μ is a density satisfying 0 < m ≤ μ ≤ �

in � = QR ∩ U (outer case), respectively, � = U \ QR (inner case), where QR is a hy-
perrectangle of sidelengths in [R,2R] with sides parallel to those of U and such that
μ(�) = n, an integer. There exists C > 5, depending only on d,m and �, such that the
following holds. Let � and �̃ be such that R ≥ �̃ ≥ � ≥ C, and in the inner case also assume
QR ∩ U ⊆ {x ∈ U,dist(x, ∂	 ∩ U) ≥ �̃}.

Let Xn be a configuration of points in �, and let u solve

(4.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−
u = cd

(
n∑

i=1

δxi
− μ

)
in �,

∂u

∂ν
= 0 on ∂U ∩ �.

We denote if � = QR ∩ U

(4.2) S(Xn) =
ˆ

(QR−�̃\QR−2�̃)∩U

|∇u≈
r
|2, S′(Xn) = sup

x

ˆ
(QR−�̃\QR−2�̃)∩��̃(x)∩U

|∇u≈
r
|2,

respectively, if � = U \ QR ,

(4.3) S(Xn) =
ˆ

(QR+2�̃\QR+�̃)∩U

|∇u≈
r
|2, S′(Xn) = sup

x

ˆ
((QR+2�̃\QR+�̃)∩��̃(x))∩U

|∇u≈
r
|2,

where
≈
r is defined as in (2.25).

Assume the screenability condition

(4.4) �d+1 > C min
(
S′(Xn),

S(Xn)

�̃

)
.

There exists a T ∈ [�̃,2�̃], a set O such that QR−T −1 ∩ U ⊆ O ⊆ QR−T +1 ∩ U (respec-
tively, U \ QR−T +1 ⊆ O ⊆ U \ QR−T −1), a subset I∂ ⊆ {1, . . . , n} and a positive measure μ̃

in N := � \O (all depending on Xn) such that the following holds:

• nO being the number of points of Xn such that B(xi, r̃i ) intersects O, we have

μ̃(N ) = n − nO,
∣∣μ(N ) − μ̃(N )

∣∣≤ C

(
Rd−1 + S(Xn)

�̃

)
,(4.5)

‖μ − μ̃‖L∞(N ) ≤ m

2
,

ˆ
N

(μ̃ − μ)2 ≤ C
S(Xn)

��̃
.(4.6)

• We have #I∂ ≤ C S(Xn)

�̃
.

• For any configuration Zn−nO of n − nO points in N , the configuration Yn in �, made by
the union of the points xi of Xn such that B(xi, r̃i) intersects O and the points zi of Zn−nO ,
satisfies

F(Yn,�) ≤ HU(Xn,�)

+ C

(
�S(Xn)

�̃
+ Rd−1�̃ + F(Zn−nO , μ̃,N ) + |n − n| + ∑

(i,j)∈J

g(xi − zj )

)
,

(4.7)

where the index set J = J (Xn) in the sum is given by

(4.8) J := {
(i, j) ∈ I∂ × {1, . . . ,n − nO} : |xi − zj | ≤ r̃i

}
.
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Once this result is established, one may tune the parameters �, �̃ to obtain the best results.
For instance, at the beginning we may only know that

´
QR

|∇ur|2 is bounded by O(Rd), we

then bound S(Xn) and S′(Xn) by O(Rd), optimize the right-hand side of (4.7) and choose
� ≤ �̃, satisfying the constraints and obtain

F(Yn,�) ≤ HU(Xn,�) + C
(
Rd−σ + |n − n|)

for some σ > 0, that is, we get an error which is smaller than the order of the energy. The
error |n − n| can be controlled via the energy on a slightly larger domain and shown to be
negligible as well.

At the end of the bootstrap argument, we will know that the energy and points are well
distributed down to say, scale C. This means that we then know that (for good configurations)
S′(Xn) is controlled by �̃d and S(Xn) by Rd−1�̃. The condition (4.4) is then automatically
satisfied, and we can thus take � = C, �̃ = C, and we may also control n − n by O(Rd−1) to
obtain a bound

F(Yn,�) ≤ HU(Xn,�) + CRd−1,

that is, with an error only proportional to the surface, the best one can hope to achieve by this
approach.

The above proposition is sufficient when studying energy minimizers, but when study-
ing Gibbs measures, we actually need to show that, given a set of configurations with well-
controlled energy, we may screen them and sample new points in N to obtain a set with large
enough volume in which (4.7) holds. This is possible and yields comparison of partition
functions (reduced to screenable configurations) as stated in the following.

PROPOSITION 4.2. With the same assumptions and notation as in the previous proposi-

tion, assume, in addition, that �̃ ≥ β− 1
2 if d = 2. Let us define the set Ds,z to be

(4.9) Ds,z = {
Xn ∈ �n,S(Xn) ≤ s and S′(Xn) ≤ z

}
,

where S,S′ are as in (4.2), resp. (4.3). For any number s such that

(4.10) �d+1 > C min
(

s

�̃
, z

)
and

(4.11) s < c�̃2Rd−1

for some c > 0 small enough (depending only on d,m,�), there exists α,α′ satisfying

(4.12)
∣∣∣∣α′

α
− 1

∣∣∣∣≤ C

(
1

�̃
+ s

�̃2Rd−1

)
,

1

C
�̃Rd−1 ≤ α ≤ C�̃Rd−1

such that letting

(4.13) εe := C

(
s�

�̃
+ Rd−1�̃χ(β) + |n − n|

)
and

εv := C
s

��̃
+ α − α′ + (n − n − α) log

α

α′

−
(
α + n − n + 1

2

)
log

(
1 + n − n

α

)
+ 1

2
log

n

n
,

(4.14)

we have

(4.15) n−n

ˆ
Ds,z

exp
(−βHU(Xn,�)

)
dμ⊗n(Xn) ≤ CK(�) exp(βεe + εv).
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Here, the quantity εe corresponds to the energy error while εv corresponds to the volume
error. We want the volume errors to be bounded by O(β) times the volume which is more
difficult to obtain when β is small.

PROOF OF PROPOSITION 4.2. For each Xn ∈ Ds,z with s, z satisfying (4.10), the screen-
ing construction of Proposition 4.1 can be applied, providing a number nO(Xn) and a
set O(Xn) (we emphasize here for a moment their dependence on Xn). When screening,
we delete n − nO points in the configuration; for those that fell outside of O, there are

( n
nO

)
ways of choosing the indices of the points that get deleted. In terms of volume of configura-
tions, this loses at most μ(N )n−nO volume. In addition, we glue each Xn|O with n − nO
points of Zn−nO = (z1, . . . , zn−nO); there are

( n
nO

)
ways of choosing the indices for the

gluing, resulting in configurations Yn in �n satisfying (4.7). We integrate the choices of
(z1, . . . , zn−nO) with respect to the measure μ restricted to N . We deduce thatˆ

�n
exp

(−βF(Yn,�)
)
dμ⊗n(Yn)

≥
ˆ
Ds,z

ˆ
N (Xn)n−nO

exp
[
−βHU(Xn,�) − Cβ

(
s�

�̃
+ Rd−1�̃

+ F
(
Zn−nO , μ̃(Xn),N (Xn)

)+ |n − n| + ∑
(i,j)∈J

g(xi − zj )

)]

×
( n
nO

)( n
nO

) 1

μ(N )n−nO
dμ|⊗(n−nO)

N (Zn−nO) dμ⊗n(Xn).

(4.16)

Below we will show that, for each Xn ∈Ds,z, we haveˆ
N n−nO

exp
(
−Cβ

(
F(Zn−nO , μ̃,N ) + ∑

(i,j)∈J

g(xi − zj )

))
dμ|⊗(n−nO)

N (Zn−nO )

≥ (n − nO)n−nO exp
(ˆ

N
μ̃ log

μ

μ̃
− Cβχ(β)Rd−1�̃

)
.

(4.17)

Before giving the proof of (4.17), we use it to obtain the proposition. Thanks to (4.6), (4.11)
and (4.5) we have |μ

μ̃
− 1| < 1

2 if c is chosen small enough, and thus by Taylor expansion

(4.18)
ˆ
N

μ̃ log
μ

μ̃
=
ˆ
N

μ − μ̃ + O

(ˆ
N

|μ − μ̃|2
μ̃

)
= μ(N ) − μ̃(N ) + O

(
s

��̃

)
.

By Stirling’s formula,

log
(

n!(n − nO)!
n!(n − nO)!

(n − nO)n−nO

μ(N )n−nO

)

≥ n log n − n logn + (n − nO) log
n − nO
μ(N )

+ 1

2
log

n(n − nO)

n(n − nO)
− C.

(4.19)

Combining (4.17)–(4.19) and inserting into (4.16), we obtain, for a constant C depending
only on d,m and �,ˆ

�n
exp

(−βF(Yn,�)
)
dμ⊗n(Yn)

≥ exp
(
−Cβ

(
s�

�̃
+ Rd−1�̃χ(β) + |n − n|

)
− C

s

��̃

)



76 S. ARMSTRONG AND S. SERFATY

×
ˆ
Ds,z

[
exp

(−βHU(Xn,�) + n log n − n logn + μ(N ) − μ̃(N )
)

× exp
(
(n − nO) log

n − nO
μ(N )

+ 1

2
log

n(n − nO)

n(n − nO)
− C

)]
dμ⊗n(Xn).

We may next use a mean-value argument to obtain, for some configuration X0
n ∈ �n,ˆ

�n
exp

(−βF(Yn,�)
)
dμ⊗n(Yn)

≥ exp
[
n log n − n logn + μ

(
N
(
X0

n

))− μ̃
(
N
(
X0

n

))+ (
n − nO

(
X0

n

))
log

n − nO(X0
n)

μ(N (X0
n))

+ 1

2
log

n(n − nO(X0
n))

n(n − nO(X0
n))

− C − Cβ

(
s�

�̃
+ Rd−1�̃χ(β) + |n − n|

)
− Cs

��̃

]

×
ˆ
Ds,z

exp
(−βHU(Xn,�)

)
dμ⊗n(Xn).

Letting then α = μ̃(N (X0
n)) and α′ = μ(N (X0

n)), we have in view of (4.5) that (4.12) holds,
and we may rewrite the second exponential term as

exp
(

n log n − n logn + α′ − α + (n − n + α) log
n − n + α

α′ + 1

2
log

n(n − n + α)

nα

)
.

Rearranging terms, we obtain the proposition.
It remains to prove (4.17). Applying Jensen’s inequality, we findˆ
N n−nO

exp
(
−Cβ

(
F(Zn−nO , μ̃,N ) + ∑

(i,j)∈J

g(xi − zj )

))
dμ|⊗(n−nO)

N (Zn−nO)

=
ˆ
N n−nO

exp

[
−Cβ

(
F(Zn−nO , μ̃,N ) + ∑

(i,j)∈J

g(xi − zj )

)

+
n−nO∑
i=1

log
μ

μ̃
(zi)

]
dμ̃⊗(n−nO)(Zn−nO )

≥ μ̃(N )n−nO exp

[
μ̃(N )nO−n

ˆ
N n−nO

(
−Cβ

(
F(Zn−nO , μ̃,N ) + ∑

(i,j)∈J

g(xi − zj )

)

+
n−nO∑
i=1

log
μ

μ̃
(zi)

)
dμ̃⊗(n−nO)(Zn−nO)

]
,

where we recall that μ̃(N ) = n − nO. We then use the same proof as that of Proposition 3.8.
The term

∑
(i,j)∈J g(xi − zj ) adds a contribution,

−Cβ(n − nO)n−nO
∑
i∈I∂

ˆ
|z−xi |≤̃ri

g(xi − z) dμ̃(z) ≥ −Cβ(n − nO)n−nO#I∂,

and, by #I∂ ≤ Cs/�̃ and (4.11), we conclude thatˆ
N n−nO

exp
(
−Cβ

(
F(Zn−nO , μ̃,N ) + ∑

(i,j)∈J

g(xi − zj )

))
dμ|⊗(n−nO)

N (Zn−nO)

≥ (n − nO)n−nO exp
(ˆ

N
μ̃ log

μ

μ̃
− CβRd−1�̃

(
1 + (logR)1d=2

))
.
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In the case d = 2, in view of the fact that �̃ ≥ β− 1
2 , we see from its construction (in Ap-

pendix C) that N can be partitioned into disjoint nondegenerate cells of size max(1, β− 1
2 ) in

which μ̃ integrates to an integer. Using superadditivity, as in the proof of Proposition 3.8, we
conclude that (4.17) holds. �

COROLLARY 4.3. With the same assumptions and notation as in the previous proposi-
tion, there exists C > 0, depending only on d,m,�, such that the following holds. Let

Bn =
{
Xn ∈ �n, sup

x

ˆ
{(∂�)−2�̃∩�L(x)

|∇u≈
r
|2 ≤ χ(β)MLd

}
,

where (∂�)−2�̃ denotes QR−�̃ \ QR−2�̃ ∩ U if � = QR ∩ U and QR+2�̃ \ QR+�̃ ∩ U if
� = U \ QR . If

(4.20) R > L > CM max
(
1, β− 1

2 1d=2
)

and dist(QR, ∂	 ∩ U) ≥ L, we have

n−n

ˆ
Bn

exp
(−βHU(Xn,�)

)
dμ⊗n(Xn)

≤ CK(�) exp
(
β
(
CRd−1Lχ(β)M + |n − n|)+ CMχ(β)Rd−1

L
(4.21)

+ α − α′ + (n − n − α) log
α

α′ −
(
α + n − n + 1

2

)
log

(
1 + n − n

α

)
+ 1

2
log

n

n

)
,

with α,α′ satisfying ∣∣∣∣α′

α
− 1

∣∣∣∣≤ C
χ(β)

L
,

1

C
LRd−1 ≤ α ≤ CLRd−1.

PROOF. If Xn in Bn then

S(Xn) ≤ Rd−1

Ld−1 Mχ(β)Ld, S′(Xn) ≤ Mχ(β)Ld,

using the definition (4.2) or (4.3). We check that setting � = �̃ = L and s = M Rd−1

Ld−1 χ(β)Ld

and z = Mχ(β)Ld, we have that, if (4.20) holds, then up to making the constant larger
in (4.20), (4.10) and (4.11) hold, and the result follows by applying the result of Proposi-
tion 4.2. �

REMARK 4.4. When summing the contributions over � where n points fall and U \ �

where N − n points fall, the errors of (4.14) compensate and add up to a well-bounded error.
More precisely, if α,α′, respectively, γ, γ ′ satisfy (4.12), then for every n we have

α − α′ + (n − n − α) log
α

α′

−
(
α + n − n + 1

2

)
log

(
1 + n − n

α

)
+ 1

2
log

n

n

+ γ ′ − γ + (n − n − γ ) log
γ

γ ′

−
(
γ + n − n + 1

2

)
log

(
1 + n − n

γ

)
+ 1

2
log

N − n

N − n

≤ C

(
Rd−1

�̃
+ s2

�̃3Rd−1

)
.

(4.22)



78 S. ARMSTRONG AND S. SERFATY

PROOF. First, we notice that, since the expressions arising here originate in Stirling’s
formula, they can be restricted to the case of α + n − n ≥ 1, γ + n − n ≥ 1, n ≥ 1 and
N − n ≥ 1 (all the quantities involved are integers).

We then study the expression in the left-hand side of (4.22) as a function of the real variable
n (with the above constraints). Differentiating in n, we find that it achieves its maximum when

log
γα′

γ ′α
− log

(
1 + n − n

α

)
+ 1

2(α + n − n)
+ log

(
1 + n − n

γ

)

− 1

2(γ + n − n)
+ 1

2n
− 1

2(N − n)
= 0.

Using α + n − n ≥ 1, γ + n − n ≥ 1, n ≥ 1, N − n ≥ 1 and (4.12) we deduce that∣∣∣∣log
(

1 + n − n

γ

)
− log

(
1 + n − n

α

)∣∣∣∣≤ C

and thus

1 + n−n
γ

1 + n−n
α

is bounded above and below

and it follows easily in view of (4.12) that |n − n| ≤ C�̃Rd−1. To find the maximum of (4.22)
it thus suffices to maximize it for such n’s. But for such n’s we may check that 1

2 log(1+ n−n
α

),
1
2 log(1 + n−n

γ
), log n

n and log N−n
N−n are all bounded by a constant depending only on d,m,�,

hence it suffices to obtain a bound for

α − α′ + (n − n − α) log
α

α′ − (α + n − n) log
(

1 + n − n

α

)
+ γ ′ − γ + (n − n − γ ) log

γ

γ ′ − (γ + n − n) log
(

1 + n − n

γ

)
.

(4.23)

Differentiating in n, we find that this expression is maximal exactly for

1 + n − n

γ
= γ ′α

γα′
(

1 + n − n

α

)
⇔ n = n +

γ
γ ′ − α

α′
1
γ ′ + 1

α′
.

Inserting this into (4.23) we find that the expression is then equal to

α − α′ − α log
α

α′ − α log
(

1 + n − n

α

)
− γ log

(
1 + n − n

γ

)
+ (n − n) log

γ ′

γ

= O

(
Rd−1

�̃
+ s2

�̃3Rd−1

)
,

where we used a Taylor expansion and (4.12). �

The next goal is to select s, �, �̃ to optimize the errors made in Proposition 4.2. This way
we obtain the main result of this section, which shows that, if one has good energy controls
at some scale, one can deduce some control at slightly smaller scales.

In all the rest of the paper, we will denote the event that XN has n points in � by

(4.24) An := {
XN ∈ UN,#

({XN } ∩ �
)= n

}
.
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PROPOSITION 4.5. Assume U is either Rd or a finite disjoint union of disjoint hyper-

rectangles, all included in 	 with parallel sides belonging to Qρ for some ρ ≥ max(1, β− 1
2 ),

or the complement of such a set. Let μ be a density such that 0 < m ≤ μ ≤ � in the set 	

and μ(U) = N is an integer. Let C0 = 2C
4cd

for the constant C of (B.8).
There exists a constant C > 0, depending only on d,m and �, such that the following

holds. Assume that QR is a hyperrectangle of sidelengths in [R,2R] with sides parallel to
those of U , that μ(QR ∩ U) = n and QR ∩ U ⊆ 	. Assume that there exists a cube �L of
size L such that

(4.25)
∣∣∣∣logEQ(U)

(
exp

(
β

2

(
F�L(·,U) + C0#

({XN } ∩ �L

))))∣∣∣∣≤ Cβχ(β)Ld

with C > 1, and such that �L contains QR+�̃ ∩ U with

L ≥ R ≥ 1

2
L,

�̃ = CC max
(
χ(β)R

d
d+2 , χ(β)β−1− 1

d R−1,R
1
3 β− 1

3 , β− 1
2 1d=2

)
(4.26)

and

(4.27) R > C′ max
(
1, β− 1

2 χ(β)
1
3
)

for some C′ depending only on d, m,�, the constant C in (4.26) and C. Assume, in addition,
that

(4.28) dist(QR ∩ U,∂	 ∩ U) ≥ �̃.

Then, there exists a sequence γn satisfying

(4.29)
N∑

n=0

γn ≤ exp
(−Cβχ(β)Rd),

such that we have

EQ(U)

(
exp

(
β

2
FQR−2�̃ (XN,U)1An

))

≤ γn + K
β
2 (QR)

Kβ(QR)
exp

(
β

(C
4
χ(β)Rd + |n − n| + C0

2
n

))
.

(4.30)

Once one has obtained local laws down to the minimal scale ρβ , Corollary 4.3 will allow
to improve the error term and bound it by Rd−1.

PROOF OF PROPOSITION 4.5. Step 1: The case of excess energy. Recalling the definition
of An in (4.24) and letting S be as in (4.2) and M > 0 be a constant to be determined below,
we define

Bn := {
XN ∈ An, S(XN |�c) ≤ MCχ(β)Ld, S(XN |�) ≤ MCχ(β)Ld}.

We also define

B+
n := {

XN−n ∈ (U \ �)N−n, S(XN−n) ≤ MCχ(β)Ld},
B−

n := {
Xn ∈ �n,S(Xn) ≤ MCχ(β)Ld}.

It is clear that if XN ∈ Bn, then XN |�c ∈ B+
n and XN |� ∈ B−

n . Also, if XN ∈ Bc
n, then, in

view of (B.8) and the definition of S, we have

F�L\ ◦
�(XN,U) + C0#

({XN } ∩ �L

)≥ MCχ(β)Ld

C
,
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hence

EQ(U)

(
exp

(
β

2

(
F�L(·,U) + C0#

({XN } ∩ �L

))
1Bc

n

))

≥ exp
(

β

2

MCχ(β)Ld

C

)
EQ(U)

(
exp

(
β

2
F

◦
�(·,U)

)
1Bc

n

)
.

It follows that

(4.31) EQ(U)

(
exp

(
β

2
F

◦
�(·,U)

)
1Bc

n

)
≤ γn,

with
∑N

n=0 γn ≤ exp(−Cβχ(β)Rd) in view of (4.25), provided M is chosen large enough,
depending only on d,m,�. Henceforth, we fix M .

Step 2: The case of good energy bounds.
We now wish to estimate the same quantity in the event Bn. Let �̃ < 1

4R, to be determined
later, and set

(4.32) � :=
(

CMCχ(β)Ld

�̃

) 1
d+1

with C as in (4.10). This way, choosing s = MCχ(β)Ld, the screenability condition (4.10)

is verified. To apply Proposition 4.2, we also need C max(1, β− 1
2 1d=2) < � ≤ �̃ ≤ 1

4R and
s < c�̃2Rd−1; thus, we need

(4.33) max
(
β− 1

2 1d=2,
(
MCχ(β)Ld) 1

d+2
)
< �̃ < CMCχ(β)Ld, �̃ ≤ 1

4
R

and

(4.34) CMCχ(β)Ld < �̃2Rd−1.

Using (3.3), (3.2) and (B.8), we have

β

2
F

◦
�(XN,U) − βF(XN,U)

≤ β

2
F

◦
�(XN,U) − βF�(XN,U) − βFU\�(XN,U)

≤ β

2
F

◦
�(XN,U) − β

2
F�(XN,U) − β

2
F�(XN,U) − βFU\�(XN,U)

≤ −β

2
F�\ ◦

�(XN,U) − β

2
F�(XN,U) − βFU\�(XN,U)

≤ −β

2
F�(XN,U) − βFU\�(XN,U) + β

2
C0n

≤ −β

2
HU(XN |�,�) − βHU(XN |U\�,U\�) + β

2
C0n

Thus,

EQ(U)

(
exp

(
β

2
F

◦
�(·,U)

)
1Bn

)
= 1

N
N

K(U)

ˆ
Bn

exp
(

β

2
F

◦
�(XN,U) − βF(XN,U)

)
dμ⊗N
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≤ 1

N
N

K(U)

N !
n!(N − n)!

ˆ
�n∩B−

n

exp
(
−β

2
HU(·,�) + β

2
C0n

)
dμ⊗n

×
ˆ

(U\�)N−n∩B+
n

exp (−βHU(·,U\�))dμ⊗(N−n).

Inserting (4.15) applied in � (with β/2 instead of β) and in U\� and using Remark 4.4, we
deduce that

EQ(U)

(
exp

(
β

2
F

◦
�(·,U)

)
1Bn

)

≤ 1

N
N

K(U)

N !
n!(N − n)!Cnn(N − n)N−nK

β
2 (�)Kβ(U\�) exp

(
βεe + εv + β

2
C0n

)

with

εe := C

(
�
MCχ(β)Ld

�̃
+ Rd−1�̃χ(β) + |n − n|

)

and

εv := C

(
MCχ(β)Ld

��̃
+ Rd−1

�̃
+ (MCχ(β)Ld)2

�̃3Rd−1

)
,

where we used the choice s := MCχ(β)Ld. We may also bound from below K(U) using
(3.8) applied with � and U\�, which yields

N !nn(N − n)N−n

N
N

K(U)n!(N − n)!
K

β
2 (�)Kβ(U\�) ≤ K

β
2 (�)

Kβ(�)
.

Inserting into the above, we obtain that

EQ(U)

(
exp

(
β

2
F

◦
�(·,U)

)
1Bn

)

≤ C
n!(N − n)!nn(N − n)N−n

n!(N − n)!nn(N − n)N−n

K
β
2 (�)

Kβ(�)
exp

(
βεe + εv + β

2
C0n

)

By Stirling’s formula, for every n ≤ N , we have

n!(N − n)!nn(N − n)N−n

n!(N − n)!nn(N − n)N−n
∼
√√√√ n(N − n)

n(N − n)
≤ C.

Therefore, we may absorb the log of this quantity into εv and conclude that

(4.35) EQ(U)

(
exp

(
β

2
F

◦
�(·,U)

)
1Bn

)
≤ C

K
β
2 (�)

Kβ(�)
exp

(
βεe + εv + β

2
C0n

)
.
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We now search for the smallest �̃ such that the terms of βεe + εv (except those involving n

and n) are ≤ β C
4 Rd, that is, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
MCχ(β)Ld�

�̃
≤ C

4
Rd,

CRd−1�̃χ(β) ≤ C
4
Rd,

C
MCχ(β)Ld

��̃
≤ C

4
βRd,

C
Rd−1

�̃
≤ C

4
βRd,

C
(MCχ(β)Ld)2

�̃3Rd−1
≤ C

4
βRd

and also (4.33), (4.34) are satisfied. Inserting (4.32), after direct computations we find that
this reduces to the conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�̃ ≥ CCMχ(β)LdR− d(d+1)
d+2 ,

�̃ ≤ CR

Cχ(β)
,

�̃ ≥ CMχ(β)β−1− 1
d R−1−dLd,

�̃ ≥ CR−1β−1C−1,

�̃ ≥ M
2
3C 1

3 χ(β)
2
3 L

2d
3 R

1−2d
3 β− 1

3 ,(
Cχ(β)Ld) 1

d+2 ≤ �̃ ≤ M

C
Cχ(β)Ld,

C�̃ ≤ R,

�̃ ≥ β− 1
2 1d=2,

CMCχ(β)Ld < �̃2Rd−1

for some constant C > 0 large enough, and depending only on d,m and �. With our choice
R ≤ L ≤ 2R, this reduces to the following list of conditions (notice the sixth one above ends
up redudant with the first and seventh and the seventh with the second):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�̃ ≥ CCMχ(β)R
d

d+2 ,

�̃ ≤ CR

Cχ(β)
,

�̃ ≥ CMχ(β)β−1− 1
d R−1,

�̃ ≥ CR−1β−1,

�̃ ≥ MCR
1
3 β− 1

3 ,

�̃ ≥ β− 1
2 1d=2,

�̃ ≥ (
RMCχ(β)

) 1
2 .

It suffices to take⎧⎨⎩�̃ := CCM max
(
χ(β)R

d
d+2 , χ(β)β−1− 1

d R−1,R
1
3 β− 1

3 , β− 1
2 1d=2

)
,

R > C(C,M)max
(
1, β− 1

2 χ(β)
1
3
)

for some sufficiently large C > 0, depending only on d,m,�. Combining (4.35) with (4.31),
we obtain the result. �
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5. Main bootstrap and first conclusions. This section contains the core of the proof,
that is, the bootstrap procedure that allows to show that if local laws hold down to a certain
scale, they hold at slightly smaller scales. We note that the local laws are valid up to the
boundary as long as one remains in the set where μ ≥ m > 0.

PROPOSITION 5.1. Assume μ and U are as in Proposition 3.8. Let μ be a density such
that 0 < m ≤ μ ≤ � in the set 	. Assume that μ(U) = N is an integer and that

(5.1) if d ≥ 3, |∂U |min
(
1, β

1
d−2

)≤ βN.

There exists C > 2, depending only on d,m and �, such that the following holds. Let

(5.2) ρβ = C max
(
1, β− 1

2 χ(β)
1
2 , β

1
d−2 −11d≥5

)
.

Let �R(x) be a cube of size R ≥ ρβ centered at x, included in 	 and satisfying

dist
(
�R(x), ∂	 ∩ U

)
≥ d0 := C max

(
χ(β)N

1
d+2 , χ(β)β−1− 1

d ρ−1
β ,N

1
3d β− 1

3 , β− 1
2 log(βN)1d=2

)
.

(5.3)

Then, we have, for C0 := 2C
4cd

with C, the constant in (B.8),

(5.4) logEQ(U)(exp
(

1

2
β
(
F�R(x)∩U(·,U) + C0#

({XN } ∩ �R(x)
)))≤ Cβχ(β)Rd.

PROOF. We first note that it is enough to prove the result in hyperrectangles QR ∈ QR ,
with sides parallel to those of U and even more generally in QR−2�̃ if �̃ < 1

4R, with R ≥ ρβ

as in (5.2). Indeed, thanks to the lower bound on μ, general cubes of size satisfying (5.2)
can be covered by a finite number of such hyperrectangles. The proof then proceeds by a
bootstrap on the scales: we wish to show that if

(5.5) logEQ(U)

(
exp

(
β

2

(
F�L(x)(·,U) + C0#

({XN } ∩ �L(x)
))))≤ Cβχ(β)Ld

for any �L(x) sufficiently far from ∂	, then if 3
4L ≥ R ≥ 1

2L and as long as R is large
enough, we have

(5.6) logEQ(U)

(
exp

(
β

2

(
FQR−2�̃ (·,U) + C0#

({XN } ∩ QR

))))≤ Cβχ(β)Rd.

By iteration, this will clearly imply the result: indeed, in view of Corollary 3.9 and (5.1)

and up to changing C if necessary, we have that (5.5) holds for L ≥ 1
2N

1
d . Without loss of

generality, we may now assume for the rest of the proof that L ≤ 1
2N

1
d .

To make sure that the constants are independent of β and R, we have used the notation C,
and we wish to prove (5.6) with the same constant C as in (5.5). In the sequel, unless specified,
all constants C > 0 will be independent of C, that is, they may depend only on d,m and �.

Let us now consider QR ∈ QR , denote n = μ(QR ∩ U) and, as previously, denote by An

the event that XN , a configuration of N points in U , has n points in QR ∩ U . We wish to
control

EQ(U)

(
exp

(
β

2

(
FQR−2�̃ (·,U) + C0n

)))

=
N∑

n=0

exp
(

β

2
C0n

)
EQ(U)

(
exp

(
β

2

(
FQR−2�̃ (·,U)

)
1An

))
.
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The terms in the sum for which n is close to n, more precisely, |n − n| ≤ KRd− 1
2 are easily

treated using (4.30). The terms for which |n − n| > KRd− 1
2 will be handled separately and

controlled by energy-excess considerations.
To apply Proposition 4.5, we need QR+�̃ to be included in a cube �L in which the local

laws hold and at distance ≥ �̃, as in (4.26) from ∂	. At the first iteration L is of order N
1
d

and R ≥ 1
2L, so we need

dist(QR, ∂	) ≥ CC max
(
χ(β)N

1
d+2 , χ(β)β−1− 1

d N− 1
d ,N

1
3d β− 1

3 , β− 1
2 1d=2

)
which is (5.3). At further iterations, to have QR+�̃ be included in �L, we need a fur-

ther distance of CC max(χ(β)R
d

d+2 , χ(β)β−1− 1
d R−1,R

1
3 β− 1

3 , β− 1
2 1d=2). Since R is mul-

tiplied by a factor in [1
2 , 3

4 ] at each step, and since we only consider R ≥ ρβ , we have
at most O(log(βN)) steps; summing the series over the iterations gives a total distance

≥ max(χ(β)N
1

d+2 , χ(β)β−1− 1
d ρ−1

β ,N
1

3d β− 1
3 , β− 1

2 log(βN)1d=2), hence a condition of the
form (5.3) suffices.

Step 1: The bad event. We claim that in the bad event |n − n| ≥ KRd− 1
2 , we have

(5.7) FQR+3(XN,U) − FQR(XN,U) ≥ CR1−d|n − n|2 − CNQR+3,

where NQR+3 denotes the number of points in QR+3 and C > 0 depends only on � and d.
Assuming this and changing C0 to the larger constant in (5.7) if necessary, we then write

EQ(U)

(
exp

(
β

2

(
FQR(·,U) + C0n

))
1An

)
≤ EQ(U)

(
exp

(
β

2

(
FQR+3(·,U) + C0NQR+3

))
1An

)
× exp

(−βCR1−d|n − n|2 + βC0n
)
.

(5.8)

Since L ≤ 2R and |n − n| ≥ KRd− 1
2 , we now see that, if we choose K := C

√
Cχ(β) where

C > 0 is large enough and depends only on C,C0 and d, the exponent in the second term in
the right-hand side is at most −Cβχ(β)Ld.

Using (3.2), (3.3) and (B.8), we may check that

FQR+3(·,U) + C0NQR+3 ≤ F�L(·,U) + C0N�L
,

hence in view of (5.8) and the assumption that (5.5) satisfied in a cube �L containing QR+3,
we may bound

N∑
n=KRd

logEQ(U)

(
exp

(
β

2

(
FQR(·,U) + C0n

))
1An

)

≤ exp
(−Cβχ(β)Ld) N∑

n=0

EQ(U)

(
exp

(
β

2

(
F�L(·,U) + βC0N�L

))
1An

)
≤ 1.

(5.9)

To prove the claim, in view of (B.10) we may write

(5.10) C

ˆ
QR+2\QR+1

|∇u≈
r
|2 ≥ CR1−d(|n − n| − C

(
1 + ‖μ‖L∞

)
Rd−1)2 ≥ cR1−d|n − n|2

if K is chosen large enough (depending on d and �), where c > 0 is a constant depending
only on d,m and �. In view of (3.3), we have

(5.11) FQR+3(XN,U) − FQR(XN,U) ≥ FQR+3\QR(XN,U).
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By (B.8) we may write that

CFQR+3\QR(XN,U) ≥
ˆ

QR+3\QR

|∇u≈
r
|2 − CNQR+3,

where u≈
r
is computed with respect to QR+3 \QR . But by definition,

´
QR+3\QR

|∇u≈
r
|2 is larger

than
´
QR+2\QR−1

|∇u≈
r
|2, with this time

≈
r computed with respect to U which is bounded below

by (5.10). Inserting into (5.11), we thus conclude (5.7).

Step 2: The good event. We next consider the terms for which |n −n| ≤ KRd− 1
2 . For those

we may apply Proposition 4.5 (at least if R > C with C made large enough). We need to
assume (4.27). In view of (4.30), we may thus write∑

|n−n|≤KR
d− 1

2

EQ(U)

(
exp

(
β

2

(
FQR−2�̃ (·,U) + C0n

))
1An

)

≤
n+KR

d− 1
2∑

n=n−KR
d− 1

2

exp
(
β

(C
4
χ(β)Rd + |n − n| + C0n

))
K

β
2 (QR)

Kβ(QR)
+ γn exp

(
β

2
C0n

)
.

Recalling the choice of K as C
√
Cχ(β) and using that n = μ(QR) ≤ �Rd, we have that

if |n − n| ≤ KRd− 1
2 , then if R ≥ Cχ(β), we have KRd− 1

2 ≤ CRd and n ≤ CRd, with C

depending only on d,m,�.
Using (4.29) and the fact that, by (3.10) and (3.13),

(5.12) log
(

Kβ/2(QR)

Kβ(QR)

)
≤ Cβχ(β)Rd + CRd−1 min

(
1, β

1
d−2

)
,

we deduce that, for every R ≥ Cχ(β),

n+KRd−1/2∑
n=n−KRd−1/2

EQ(U)

(
exp

(
β

2

(
FQR−2�̃ (·,U) + C0n

))
1An

)

≤ 2Rd exp
(
β

(
3C
8

χ(β)Rd + C0CRd
))

exp
(
Cβχ(β)Rd + C min

(
β

1
d−2 ,1

)
Rd−1)

+ exp
(
βC0CRd − Cβχ(β)Rd).

Making C larger, if necessary (compared to the constants C0, C appearing here), we deduce

n+KRd−1∑
n=n−KRd−1

EQ(U)

(
exp

(
β

2

(
FQR−2�̃ (·,U) + C0n

))
1An

)

≤ exp
(
β
C
2
χ(β)Rd + C min

(
β

1
d−2 ,1

)
Rd−1 + C logR

)
.

(5.13)

The term in min(β
1

d−2 ,1)Rd−1 can be absorbed into βχ(β)Rd if we assume, in addition, that

R ≥ Cβ
1

d−2 −1 (for dimension d ≥ 3), this condition itself is implied by R > Cβ− 1
2 if d = 3,4.

The logarithmic term can then also be absorbed using (5.2).
Step 3: Conclusion. Combining (5.9) and (5.13), we conclude that (5.6) holds, and this

finishes the proof. �
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COROLLARY 5.2. Assume the hypotheses of Proposition 5.1 for �R(x) with R ≥ ρβ as
in (5.2), and let B be a ball such that 2B ⊆ �R(x). There exists C > 0, depending only on
d,m and �, such that

(5.14) logEQ(U)

(
exp

(
β

C
R2(1−d)ρd−1

β

(ˆ
�R

N∑
i=1

δxi
− dμ

)2))
≤ Cβχ(β)ρd

β,

and, letting

D :=
ˆ

B

(
N∑

i=1

δxi
− dμ

)
,

we have

(5.15) logEQ(U)

(
exp

(
β

C

D2

Rd−2 min
(

1,
|D|
Rd

)))
≤ Cβχ(β)Rd.

PROOF. We may suppose x = 0. First, we observe that, by choice of C0 and (B.8), we
have for any R ≥ ρβ

(5.16) logEQ(U)

(
exp

(
1

2C
β

ˆ
�R

|∇u≈
r
|2
))

≤ Cβχ(β)Rd,

where
≈
r is computed with respect to ∂�R . To deduce from this a control of the discrepancy,

we next may use either first (B.9)–(B.10) or second (B.11)–(B.12).
In the first way we cover �R+2 \ �R−2 by at most O((R/ρβ)d−1) cubes Qk of size ρβ .

Applying (5.16) for the cubes Qk and using the generalized Hölder inequality,

(5.17) E(f1 · · ·fk) ≤
k∏

i=1

E
(
f k

i

) 1
k ,

which can be proved by induction, we find

(5.18) logEQ(U)

(
exp

(
C−1β

(
R

ρβ

)1−d ˆ
�R+ρβ

\�R−ρβ

|∇u≈
r
|2
))

≤ Cβχ(β)ρd
β,

for some constants C, depending only on d,m and �. In view of (B.9)–(B.10), we then bound∣∣∣∣∣
ˆ

�R

N∑
i=1

δxi
− dμ

∣∣∣∣∣
2

≤ C‖μ‖2
L∞R2(d−1) + CRd−1

ˆ
�R+1\�R−1

|∇u≈
r
|2.

Inserting into (5.18), we find (5.14).
In the second way, we simply bound

´
B2R

|∇u≈
r
|2 using (5.16). Inserting into (B.11)–(B.12)

directly yields (5.15). �

5.1. Conclusion: Proof of Theorem 1. We apply Proposition 5.1 in U = Rd, since (5.1) is
then automatically satisfied, it yields that, for any �R(x) satisfying (1.16), the estimate (5.4)
holds. Then, (1.18) and (1.19) follow from Corollary 5.2. The bound (1.20) follows from the
combination of (5.4) and (B.15) applied in Rd. Finally, (1.21) is a consequence of (B.7) and
(5.4) applied with R = ρβ .

REMARK 5.3. We note that, similarly, all the results of Theorem 1 hold for the
Neumann–Gibbs measure Q(U) of (2.34) for any U and they can also be proven to hold
for the Dirichlet–Gibbs measure PN(U) of (2.35) away from the boundary.
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5.2. Proof of Corollary 1.1. Let us recall the setup for point processes, following [43].
We denote by X (A) the set of local finite point configurations on A ⊆Rd or, equivalently, the
set of nonnegative, purely atomic Radon measures on A giving an integer mass to singletons.
We use C for denoting a point configuration, and we will write C for

∑
p∈C δp and |C|(A) for

the number of points of the configuration in A. We endow X (Rd) with the topology induced
by the topology of weak convergence of Radon measure (also known as vague convergence or
convergence against compactly supported continuous functions), and we define the following
distance on X :

(5.19) dX
(
C,C′)=

∞∑
k=1

1

2k

sup{´�k
f d(C − C′),‖∇f ‖L∞(Rd) ≤ 1}

|C|(�k) + |C′|(�k)
.

The subsets X (A) inherit the induced topology and distance. As seen in [43], Lemma 2.1,
the space X (A) is then a Polish space.

Now, let β be fixed, and let x be a point as in the statement of the corollary. Let PN denote
the the push-forward of PN,β under the map from (Rd)N to X (Rd) given be

(x1, . . . , xN) �→
N∑

i=1

δxi−x.

We wish to show that PN is tight. Indeed, since X (A) is Polish, Prokhorov’s theorem will
then imply the existence of a convergent subsequence for the topology on X (A). B+Now,
let Nk denote the map C �→ |C|(�k), that is, Nk(C) gives the number of points of X in �k .
By (1.19) we have that, for any k, if M is large enough,

PN,β

(
Nk

({x1 − x, . . . , xN − x})≥ Mkd)≤ exp
(−CβM2kd+2)

or, in other words, by definition of PN ,

PN

(
Nk(C) ≥ MRd)≤ exp

(−CβM2kd+2).
It follows that letting KM =⋂∞

k=1{C,Nk(C) ≤ MRd},

PN(KM) ≥ 1 − 1

M
,

hence to conclude that PN is tight; it suffices to justify that KM is compact in X (Rd). Let
(Cn)n be a sequence of point configurations in KM . By definition |Cn|(�k) is bounded uni-
formly by some pk independent of n for each k, hence by compactness of �pk

k , we may find
a subsequence such that Cn converges in X (�1), and by diagonal extraction we may find
a subsequence of n such that Cn converges in X (�k) for each k. By definition of the dis-
tance (5.19), this implies that (after extraction) Cn converges in X (Rd). This proves that KM

is compact and finishes the proof of convergence of PN up to extraction.
The fact that the points are simple under the limiting process is a consequence of (1.21).

The finiteness of the moments of all order then follows in view of the bound of all moments
of the number of points, provided by (1.19).

6. Leveraging on the local laws: Free energy estimates.

6.1. An almost additivity result. We next prove a general subadditivity result that makes
use of the local laws. Comparing it with the a priori superadditivity result of (3.8) gives
additivity up to an error.
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PROPOSITION 6.1. Assume that 0 < m ≤ μ ≤ � in 	. Assume Û is a subset of 	 at
distance d ≥ d0 from ∂	 with d0, as in (5.3), and is a disjoint union of p hyperrectangles Qi

belonging to QR , with R ≥ ρβ satisfying

(6.1) R ≥ ρβ +
(

1

βχ(β)
log

Rd−1

ρd−1
β

) 1
d
,

and, in addition, if d ≥ 4,

(6.2) R ≥ max
(
β

1
d−2 −1,1

)
N

1
d d−1.

Then, there exists C, depending only on d,m and �, such that∣∣∣∣∣log K
(
Rd)−

(
log K

(
Rd \ Û

)+
p∑

i=1

log K(Qi)

)∣∣∣∣∣
≤ Cp

(
βRd−1ρβχ(β) + β1− 1

d χ(β)1− 1
d

(
log

R

ρβ

) 1
d
Rd−1

)
.

(6.3)

If U is a subset of 	 equal to a disjoint union of p hyperrectangles Qi belonging to QR , with
R ≥ ρβ satisfying (6.1), Ni = μ(Qi), then we have, with C as above,

(6.4)

∣∣∣∣∣log K(U) −
p∑

i=1

log K(Qi)

∣∣∣∣∣≤ Cp

(
βRd−1χ(β)ρβ + β1− 1

d χ(β)1− 1
d

(
log

R

ρβ

) 1
d
Rd−1

)
.

PROOF. We will only prove upper bounds for log K(Rd) and log K(U), since the matching
lower bounds are direct consequences of (3.8), Stirling’s formula and the control (6.8) below.

We recall that the local laws hold down to scale ρβ in U = Rd. In particular, for any cube �
in Û of size r ≥ ρβ , we have

(6.5) logEQ(Rd)

(
exp

(
1

2C
β

ˆ
�

|∇u≈
r
|2
))

≤ Crdβχ(β).

Let Q1 be the first rectangle in the list, and let us denote by n the number of points a config-
uration has in Q1 and by n = μ(Q1). Let us also define

Q̂1 := {
x ∈ Q1,dist(x, ∂Q1) ≤ r

}
and

B :=
{
XN ∈ (

Rd)N : |n − n| ≤ ε, sup
x

ˆ
Q̂1∩�r (x)

|∇u≈
r
|2 ≤ Mχ(β)rd

}
,

where we let

ε := M
(
Rd−1

√
χ(β)ρβ

)
and M > 0 is to be selected below. The first condition |n − n| ≤ ε in the definition of B has
large probability in view of (5.14). For the second condition, by a covering argument we have
Rd−1

rd−1 conditions to satisfy, and each of them has probability of the complement bounded by
exp(−Mβχ(β)rd) if M is large enough in view of (6.5). Using a union bound, we thus have

Q
(
Rd)[Bc]≤ Rd−1

rd−1 exp
(−Mβχ(β)rd),
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and this is ≤ 1
2 if

Rd−1

rd−1 exp
(−Mβχ(β)rd)≤ 1

2
,

so we choose

(6.6) r = Mρβ +
(

1

βχ(β)
log

Rd−1

ρd−1
β

) 1
d

which satisfies the condition if M is large enough. It follows that

N−N

ˆ
Bc

exp
(−βF(·))dμ⊗N = Q

(
Rd)[Bc]K(Rd)≤ 1

2
K
(
Rd).

We thus have

NN

2
K
(
Rd)≤

ˆ
B

exp
(−βF(·))dμ⊗N

≤
n+ε∑

n=n−ε

N !
n!(N − n)!

ˆ
B

exp
(−βHRd(·,Q1)

)
dμ⊗n

×
ˆ
B

exp
(−βHRd

(·,Rd \ Q1
))

dμ⊗(N−n),

where for the second line we subdivided the event over the possible values of n and ap-
plied (3.2).

We now apply the results of Corollary 4.3 with L = r to Q1 and Rd \ Q1, combined with
Remark 4.4. For that we check that (4.20) is satisfied, since r ≥ ρβ , and obtain

K
(
Rd)≤ 2K(Q1)K

(
Rd \ Q1

) n+ε∑
n=n−ε

N !N−N

n!(N − n)!n
n(N − n)N−n

× exp
(
Cβ

(
Rd−1rχ(β)M + ε

)+ M2χ(β)2Rd−1

r

)
.

Next, using Stirling’s formula we have

N !N−Nnn(N − n)N−n

n!(N − n)! ≤ C

√
N

2πn(N − n)
≤ C,

and we deduce

log K
(
Rd)

≤ log K(Q1) + log K
(
Rd \ Q1

)+ C + log ε + β
(
MRd−1rχ(β) + ε

)+ M2χ(β)2Rd−1

r
.

Since

(6.7) r ≥ ρβ ≥ max
(
1, χ(β)

1
2 β− 1

2
)≥ 1,

we have χ(β)
r

≤ βr , so we may absorb the last term. Also, since r ≥ ρβ ≥ 1 and χ(β) ≥ 1,
by definition of ε we may absorb ε into MRd−1rχ(β). Since R ≥ ρβ ≥ √

χ(β), we have

Rd−1
√

χ(β)ρβ ≤ CRd, so, inserting the definition of r , we find

log K
(
Rd)≤ log K(Q1) + log K(U \ Q1) + C logR + CβRd−1ρβχ(β)

+ Cβ1− 1
d Rd−1

(
log

R

ρβ

) 1
d
χ(β)1− 1

d .
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Finally, since R ≥ ρβ ≥ Cχ(β)
1
2 β− 1

2 , we have that, for every R ≥ ρβ ,

(6.8) logR ≤ Cβχ(β)ρβRd−1

which allows us to absorb the logR term into the others.
We may now iterate this by bounding log K(Rd \ ⋃j

i=1 Qi) in the same way, thanks to
the local laws up to the boundary of Proposition 5.1. For this we check that, for every j ≤ p,
Rd \⋃j

i=1 Qi is a set satisfying the assumptions of the proposition, in particular (5.1): indeed,

μ

(
Rd \

j⋃
i=1

Qi

)
≥ mdN1− 1

d

C
,

where we recall d ≥ d0, while

∣∣∂(Rd \
j⋃

i=1

Qi

)∣∣≤ CpRd−1 ≤ C
N

Rd
Rd−1 = C

N

R
,

hence the condition (5.1) if (6.2) holds. This yields (6.3).
The proof of (6.4) is analogous; using that, the local laws hold up to the boundary for Q(U)

and that, for any union of hyperrectangles in QR with R ≥ ρβ , we have min(1, β
1

d−2 )|∂U | ≤
Cβμ(U) for some C > 0, depending only on d,m,�; hence, (5.1) is also satisfied. �

6.2. Free energy for uniform densities on hyperrectangles: Proof of Theorem 2. We are
now ready to compute log K(QR) when the density is constant in a rectangle QR , taking
advantage of the superaddivity of log K and the almost additivity provided by (6.4). We rein-
troduce the μ dependence in the notation K(U,μ).

PROPOSITION 6.2. There exists a function fd on (0,+∞] and a constant C > 0, de-
pending only on d, such that the following hold:

• For every β > 0,

(6.9) −C ≤ fd(β) ≤ Cχ(β).

• fd is locally Lipschitz in (0,+∞) with

(6.10)
∣∣f ′

d(β)
∣∣≤ Cχ(β)

β
.

• If QR ∈ QR and R ≥ ρβ satisfy

R ≥ ρβ +
(

1

βχ(β)
log

Rd−1

ρd−1
β

) 1
d
,

then

(6.11)
∣∣∣∣ log K(QR,1)

β|QR| + fd(β)

∣∣∣∣≤ C

(
χ(β)

R

(
ρβ + β− 1

d χ(β)−
1
d log

1
d

R

ρβ

))
.

PROOF. We first start by treating the case of a cube �R with Rd integer. In view of (3.8),
we have

1

β
log K(�2R,1) ≥ O

(
logN

β

)
+ 2d

β
log K(�R,1).
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Thus, denoting φ(R) = log K(�R,1)

βRd , this means that

φ(2R) ≥ φ(R) + O

(
logR

βRd

)
,

and summing these relations, we have

φ(∞) ≥ φ(R) + O

( ∞∑
k=1

logR

β2kR

)
,

that is,

(6.12) φ(R) ≤ φ(∞) + O

(
logR

βRd

)
.

On the other hand, in view of (6.4) we have

(6.13) K(�2R,1) ≤ 2d log K(�R,1) + CβRd
(

χ(β)

R

(
ρβ + β− 1

d χ(β)−
1
d log

1
d

R

ρβ

))
,

that is,

φ(2R) ≤ φ(R) + C

(
χ(β)

R

(
ρβ + β− 1

d χ(β)−
1
d log

1
d

R

ρβ

))
.

Summing these relations, we conclude just as above that

(6.14) φ(∞) ≤ φ(R) + O

(
χ(β)

R

(
ρβ + β− 1

d χ(β)−
1
d log

1
d

R

ρβ

))
.

Denoting by −fd(β) the value φ(∞) and recalling (6.8), we have the desired bounds for
QR = �R by combining (6.12) and (6.14). We may then generalize to QR ∈ QR by an-
other application of the sub/superaddivity of (3.8) and (6.4) and the a priori bounds (3.10)
and (3.13).

In view of (3.10) and (3.13) applied with μ = 1 and U = �R , we also have −Cχ(β) ≤
φ(R) ≤ C with C independent of β . This implies that −C ≤ fd(β) ≤ Cχ(β).

To prove that fd is locally Lipschitz, let us temporarily highlight the β-dependence and
compute

log
Kβ+δ(�R)

Kβ(�R)
= logEQ(�R)

(
exp

(−δF(·,�R)
))

≤ 2|δ|
β

logEQ(�R)

(
exp

(
1

2
βF(·,�R)

))
≤ C|δ|χ(β)Rd,

using Hölder’s inequality and (5.4). Dividing by βRd and sending R → ∞ yields (6.10). �

The proof of Theorem 2 is now complete.
We may scale the formula (6.11) to obtain the limit for any uniform density: we have if

Q ∈QR and Q′ = m
1
d Q.

F(XN,m,Q) =
⎧⎪⎨⎪⎩

m1− 2
d F
(
m

1
d XN,1,Q′) if d ≥ 3,

F
(
m

1
d XN,1,Q′)− m|Q|

4
logm if d = 2.
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Thus, highlighting the β dependence, we have that

Kβ(Q,m) = m−m|Q|Kβm
1− 2

d (
Q′,1

)
exp

(
β

4
|Q|m logm1d=2

)
.

It follows that

log Kβ(Q,m)

β|Q| = m2− 2
d

log Kβm
1− 2

d
(Q′,1)

βm1− 2
d |Q′|

+ 1

β

(
−m logm + β

4
m logm1d=2

)
.

Using the result (6.11), we deduce that

log Kβ(QR,m)

β|QR| = −m2− 2
d fd

(
βm1− 2

d
)− m

β
logm + 1

4
m(logm)1d=2

+ O

(
χ(β)

R

(
ρβ + β− 1

d χ(β)−
1
d log

1
d

R

ρβ

))
,

(6.15)

where the implicit constant in the O(·) depends only on d and m.

6.3. Case of a varying μ. In [65] we will obtain precise expansions for the expansion of
log K when μ varies; however, in preparation for Theorem 3, we give a first rougher estimate
that we deduce from (6.15) combined with (6.3). For this we will need to assume some
regularity of μ.

LEMMA 6.3. Assume μ(QR) is an integer. Let μ be another measure with μ(QR) =
μ(QR), and assume that both μ and μ have densities bounded below by m and above by �.
Then, there exists C > 0, depending only on d,m and �, such that∣∣∣∣log

K(QR,μ)

K(QR,μ)

∣∣∣∣≤ CβRd+2‖μ − μ‖2
L∞(QR) + C‖μ − μ‖L∞(QR)

(
β
√

χ(β)Rd+1 + Rd)
+ C‖μ‖C0,κ

√
χ(β)Rd + C

β
.

(6.16)

PROOF. Let us denote N = μ(QR). Let Q(QR) denote the Gibbs measure for the den-
sity μ. We have

K(QR,μ)

K(QR,μ)
= EQ(QR)

(
exp

(
β
(
F(XN,μ) − F(XN,μ)

)+ N∑
i=1

(logμ − logμ)(xi)

))
.

Then, from (2.21) we have

∣∣F(XN,μ,QR)−F(XN,μ,QR)
∣∣≤ ˆ

QR

|∇w|2 +2
ˆ

QR

|∇w||∇ûr|+‖μ−μ‖L∞
N∑

i=1

ˆ
|f̂ri |,

where u is the solution to (2.22) with μ, and w is the mean-zero solution to

(6.17)

⎧⎨⎩−
w = μ − μ in QR,
∂w

∂ν
= 0 on ∂QR.

Using (B.8) and since
≈
r = r̂ in this instance, we haveˆ

QR

|∇ûr|2 ≤ C
(
F(XN,QR,μ) + CRd)
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while testing (6.17) against w and using Poincaré’s inequality, allows us to show thatˆ
QR

|∇w|2 ≤ CRd+2‖μ − μ‖2
L∞(QR)

and the third term can be bounded by Rd‖μ − μ‖L∞(QR) using that

(6.18)
ˆ
Rd

|fα| ≤ Cα2

with C depending only on d. For the logμ terms we write

N∑
i=1

(logμ − logμ)(xi) =
ˆ

QR

(logμ − logμ)dμ +
ˆ

QR

(logμ − logμ)d

(
N∑

i=1

δxi
− μ

)
.

Let us denote ωN for
∑N

i=1 δxi
− μ. By interpolation between Hölder spaces, we have

‖ωN‖(C0,κ )∗ ≤ ‖ωN‖1−κ

(C0)∗‖ωN‖κ
(C0,1)∗ ≤ CN

1−κ‖ωN‖κ
(C0,1)∗ ≤ CRd(1−κ)‖ωN‖κ

(C0,1)∗,

hence, using the local law (1.20), we have

(6.19)
∣∣∣∣logEQ(QR)

(
exp

β

C
‖ωN‖2

(C0,κ )∗

)∣∣∣∣≤ Cβχ(β)R2d.

Using now that x ≤ εβx2 + 1
4βε

, we deduce that, for every ε ≤ 1
C

with C from the above
inequality, we have∣∣∣∣logEQ(QR)

(
exp

(ˆ
QR

ϕωN

))∣∣∣∣≤ logEQ(QR)

(
exp

(
εβ

(ˆ
QR

ϕωN

)2
+ 1

4βε

))

≤ 1

4βε
+ Cεβχ(β)R2d‖ϕ‖2

C0,κ ,

where we have used Hölder’s inequality and (6.19). Optimizing over ε ≤ 1 and applying to
ϕ = logμ − logμ, we deduce that∣∣∣∣logEQ(QR)

(
exp

(ˆ
QR

(logμ − logμ)ωN

))∣∣∣∣≤ C‖μ‖C0,κ

√
χ(β)Rd + C

β
.

It follows that ∣∣∣∣∣logEQ(QR)

(
exp

(
N∑

i=1

(logμ − logμ)(xi)

))∣∣∣∣∣
≤ CRd‖μ − μ‖L∞ + C‖μ‖C0,κ

√
χ(β)Rd + C

β
.

Combining these estimates with the local law (5.4), we deduce that, for every λ, we have∣∣∣∣log
K(QR,μ)

K(QR,μ)

∣∣∣∣≤ Cλβχ(β)Rd +
(

C

λ
+ 1

)
βRd+2‖μ − μ‖2

L∞(QR) + CβRd‖μ − μ‖L∞

+ CRd‖μ − μ‖L∞ + C‖μ‖C0,κ

√
χ(β)Rd + C

β
.

Optimizing over λ yields the result. �
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PROPOSITION 6.4. Assume ‖μ‖C0,κ ≤ CN− κ
d for some κ > 0, and R 	 ρβ as N → ∞.

Then, as N → ∞,

log K(QR,μ) = −β

ˆ
QR

μ2− 2
d fd

(
βμ1− 2

d
)+

(
β

4
1d=2 − 1

)ˆ
QR

μ logμ

+ o
(
(1 + β)Rd),(6.20)

where the term o(·) on the right side is independent of β .

PROOF. For any r ∈ [ρβ,R], we may partition QR into cubes Qi belonging to Qr . In
view of (6.4), we obtain

log K(QR,μ) =
p∑

i=1

log K(Qi,μ) + O

(
βχ(β)

Rd

r

(
ρβ + β− 1

d χ(β)−
1
d log

1
d

r

ρβ

))
.

Using (6.16) and letting μi denote the average of μ in Qi , we then obtain

log K(QR,μ) =
p∑

i=1

log K(Qi,μi) + O

(
βχ(β)

Rd

r

(
ρβ + β− 1

d χ(β)−
1
d log

1
d

r

ρβ

))

+ O

(
βRd

(
r2+2κN− 2κ

d + CN− κ
d

(√
χ(β)rκ+1 + rκN− κ

d

β

))
+ 1

β

)
.

For R 	 ρβ , we have 1
β

� Rd, hence we check that we may choose ρβ � r � R such that

the right-hand side errors are o((1 + β)Rd). Inserting also (6.15) and using the Lipschitz
bound on fd (6.10), we obtain (6.20). �

7. The large deviations principle: The proof of Theorem 3. First, we note that the
assumption dist(x, ∂ suppμV ) ≥ Cθ−1/2 and the fact that μV ∈ C0,κ ensure, in view of [7],
that μθ is also in C0,κ in �R(x). Translated to the blown-up scale, this gives us a bound
by CN−κ/d for the C0,κ norm of μ = μ′

θ so that we may apply Proposition 6.4. Since we

assumed that R � N
1
d , this also implies that, as N → ∞,

(7.1)
∥∥μ − μV (x0)

∥∥
L∞(�2R(N1/dx0))

≤ o(1).

We consider P a probability measure on infinite point configurations, stationary, with in-
tensity μV (x0) and B(P, ε) a ball for some distance that metrizes the weak topology. By
exponential tightness (see [43], Section 4) it suffices to prove a weak LDP, that is, relative to
balls B(P, ε).

We thus focus on proving upper and lower bounds on logPx0,R
N,β (B(P, ε)). For simplicity,

let us denote �R for �R(N1/dx0).
Step 1: Reducing to good number of points and good energy. Since R is large enough, we

may include �R in a hyperrectangle QR ∈ QR such that |QR| − |�R| = O(Rd−1) = o(Rd).
Let us denote by n the number of points a configuration has in QR and by n = μ(QR)

which is an integer. Since we assume R 	 ρβ ≥ C max(β− 1
2 χ(β)

1
2 ,1), for σ small enough

we have R2−3σ ≥ χ(β), hence in view of the local law (1.19) and (5.16) we may write that,
for some σ > 0,

(7.2) PN,β

(|n − n| ≥ Rd−σ )≤ exp
(−CβRd+1)

and

(7.3) PN,β

(
sup
x

ˆ
�

R1+σ/d

|∇u≈
r
|2 ≥ Cχ(β)Rd+σ

)
≤ exp

(−χ(β)βRd+σ )
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for some C large enough independent of R and β . Hence, we may restrict the study to the
event

B =
{
|n − n| ≤ Rd−σ , sup

x

ˆ
�

R1+σ/d

|∇u≈
r
|2 ≤ χ(β)Rd+σ

}
,

since the complement has a probability which is negligible in the speed in which we are
interested.

Step 2: Upper bound. We recall that i
x0,R
N is defined in (1.31). Using (3.3) and (3.2) (recall

G = HRd), we have

P
x0,R
N,β

(
B(P, ε) ∩ i

x0,R
N (B)

)
= 1

NNK(Rd)

ˆ
i
x0,R

N (XN)∈B(P,ε)∩B
exp

(−βG
(
XN,Rd))dμ⊗N(XN)

≤ 1

NNK(Rd)

×
ˆ

i
x0,R

N (XN)∈B(P,ε)∩B
exp

(−βG(XN |QR
,QR) − βG

(
XN |Qc

R
,Qc

R

))
dμ⊗N(XN).

Splitting up the events as in the proof of Proposition 5.1 with n being the number of points
of the configuration which belong to QR , and using that i

x0,R
N (XN) depends only on the

configuration in �R hence in QR , we may then write

P
x0,R
N,β

(
B(P, ε) ∩ i

x0,R
N (B)

)
≤ 1

NNK(Rd)

n+Rd−σ∑
n=n−Rd−σ

N !
n!(N − n)!

ˆ
Bn∩(Qc

R)N−n

exp
(−βG

(·,Qc
R

))
dμ⊗(N−n)

×
ˆ

i
x0,R

N (Xn)∈B(P,ε)

exp
(−βG(Xn,QR)

)
dμ⊗n(Xn),

(7.4)

where Bn is B intersected with the event that XN has n points in QR .
On the one hand, noting that HRd = G, (4.21) applied with L such that R 	 L 	 ρβ and

combined with Remark 4.4 yieldsˆ
Bn∩(Qc

R)N−n

exp
(−βG

(·,Qc
R

))
dμ⊗(N−n)

≤ (N − n)!(N − n)N−n

(N − n)! K
(
Qc

R

)
exp

(
C
(
βχ(β) + 1

)
o
(
Rd))

with C independent of β .
On the other hand, Proposition 2.4 in [42] (stated there for dimension 2 but extends with

no change to general dimension) itself relying on [30], Theorem 3.1, states that2 if m =
limR→∞ n

Rd , then

lim
ε→0

lim
R→∞

1

Rd
log

1

n!L
⊗n{ix0,R

N (Xn) ∈ B(P, ε)
}= −(ent

[
P |�m]− m + m logm

)
.

Therefore, we have

lim
ε→0

lim
R→∞

1

Rd
log

1

n!μ
⊗n{ix0,R

N (Xn) ∈ B(P, ε)
}= −(ent

[
P |�m]− m

)
2In fact, the factor 1

n! was missing in [42, 43]
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with m = μV (x0), in view of (7.1), the fact that n = μ(QR) and |n − n| = o(Rd). In what
follows we continue to denote m for either μV (x0) or a generic point density (not to be
confused with the lower bound for μ that we had been using so far in the paper).

Moreover, the lower semicontinuity of the energy and the characterization of G by (2.26),
the fact that |QR| \ |�R| = o(Rd) ensure, see, for instance, [55] or proof of Proposition 4.6
in [42], Proposition 5.2, that if i

x0,R
N (Xn) ∈ B(P, ε), then

lim inf
N→∞

1

Rd
G(Xn,QR) ≥ 1

2
W̃m(P ) − oε(1).

Combining these facts and inserting them into (7.4) leads to

P
x0,R
N,β

(
B(P, ε) ∩ i

x0,R
N (B)

)
≤ exp

(
−Rd

(
β

2
W̃m(P ) + (

ent
[
P |�m]− m

)+ (1 + β)oε,N (1) + Cβχ(β)R−σ

))

× 1

NNK(Rd)

n+Rd−σ∑
n=n−Rd−σ

N !
(N − n)!(N − n)N−nK

(
Qc

R

)
.

(7.5)

On the other hand, using (3.8), we have

K
(
Rd)≥ N !N−N

n!(N − n)!n−n(N − n)−(N−n)
K(QR)K

(
Qc

R

)
,

and inserting this into (7.5), we find

P
x0,R
N,β

(
B(P, ε) ∩ i

x0,R
N (B)

)
≤ Rd−σ exp

(
−Rd

(
β

2
W̃m(P ) + ent

[
P |�m]− m + (1 + β)oε,N(1)

))
K(QR)−1n!n−n

≤ exp
(
−Rd

(
β

2
W̃m(P ) + ent

[
P |�m]− m + (1 + β)oε,N(1)

)
− n + o(n)

)
K(QR)−1,

where we used Stirling’s formula and R 	 ρβ . To estimate K(QR), we use (6.20) and the
Lipschitz bound on fd to write, using again (7.1),

(7.6) log K(QR) = −β|QR|m2− 2
d fd

(
βm1− 2

d
)+(

β

4
1d=2 −1

)
|QR|m logm+o

(
(1+β)Rd).

Since n = m|QR| + o(Rd), we obtain

logPx0,R
N,β

(
B(P, ε)

)
≤ −Rd

(
β

2
W̃m(P ) + ent

[
P |�m]− m2− 2

d βfd
(
βm1− 2

d
)+

(
β

4
1d=2 − 1

)
m logm

)
+ (1 + β)oε,N

(
Rd),

(7.7)

with m = μV (x0) which concludes the upper bound.
Step 3: Lower bound. Retranscribed in our notation, [42], Lemma 5.1, shows that, given

any P such that W̃m(P )+ ent[P |�m] is finite, we can construct a family A of configurations
Xn of n points in QR such that i

x0,R
N (Xn) ∈ B(P, ε) and

(7.8) F(Xn,QR) ≤ Rd W̃
m(P )

2
+ o

(
Rd),
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uniformly on A, and

(7.9) log
(

1

n!L
⊗n(A)

)
≥ −Rd(ent

[
P |�m]− m + m logm

)+ o
(
Rd).

Applying this with m = μV (x0), we may thus write with the help of (3.5)

P
x0,R
N,β

(
B(P, ε)

)
= 1

NNK(Rd)

ˆ
i
x0,R

N (XN)∈B(P,ε)

exp
(−βF

(
XN,Rd))dμ⊗N(XN)

≥ 1

NNK(Rd)

N !
n!(N − n)!

ˆ
(Qc

R)N−n
exp

(−βF
(·,Qc

R

))
dμ⊗(N−n)(XN)

×
ˆ

A

exp
(−βF(Xn,QR)

)
dμ⊗n(Xn)

= 1

NNK(Rd)

N !
n!(N − n)!(N − n)−(N−n)

K
(
Qc

R

)ˆ
A

exp
(−βF(Xn,QR)

)
dμ⊗n(Xn).

But in view of (6.3) we have

log K
(
Rd)= log K(QR) + log K

(
Qc

R

)+ o
((

1 + βχ(β)
)
Rd),

so we find, using also Stirling’s formula, that

logPx0,R
N,β

(
B(P, ε)

)
≥ −n − log K(QR) − β

2
RdW̃m(P ) + βo

(
Rd)− Rd(ent

[
P |�m]− m

)+ o
(
Rd).

Inserting (7.6) to estimate K(QR), we obtain

logPx0,R
N,β

(
B(P, ε)

)
≥ −Rd

(
β

2
W̃m(P ) + ent

[
P |�m]− βm2− 2

d fd
(
βm1− 2

d
)+

(
β

4
1d=2 − 1

)
m logm

)
+ (1 + β)oε,N

(
Rd).

(7.10)

Applying this to P , a minimizer of βW̃m(P ) + ent[P |�m], we deduce that

inf
P

(
β

2
W̃m(P ) + ent

[
P |�m])≥ βm2− 2

d fd
(
βm1− 2

d
)+

(
1 − β

4
1d=2

)
m logm,

with m = μV (x0). We may write this for any m, thus deducing that

(7.11) infF1
β ≥ βfd(β).

Step 4: Conclusion. By exponential tightness (see [43]), we then upgrade the conclusions
of the previous steps to a strong LDP result: for any Borel set E, it holds that, as N → ∞,

logPx0,R
N,β (E)

≤ − inf
E

Rd
(

β

2
W̃m(P ) + ent

[
P |�m]− βm2− 2

d fd
(
βm1− 2

d
)+

(
β

4
1d=2 − 1

)
m logm

)
(7.12)

+ (1 + β)o
(
Rd)
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and

logPx0,R
N,β (E)

≥ − inf◦
E

Rd
(

β

2
W̃m(P ) + ent

[
P |�m]− βm2− 2

d fd
(
βm1− 2

d
)+

(
β

4
1d=2 − 1

)
m logm

)
(7.13)

+ (1 + β)o
(
Rd).

Applying this relation to E equal the whole space, we find

− inf
(

β

2
W̃m(P ) + ent

[
P |�m]− βm2− 2

d fd
(
βm1− 2

d
)+ β

4
m logm1d=2 − m logm

)
≥ 0.

When m = 1, we find infF1
β ≤ βfd(β), which with (7.11) allows to prove the claim (which

already follows from the result of [43]), that minF1
β = βfd(β). With the scaling properties of

W̃m and ent[·|�m] with respect to m (see [43]), we deduce that

(7.14) infFm
β = βm2− 2

d fd
(
βm1− 2

d
)+

(
1 − β

4
1d=2

)
m logm.

Inserting into (7.12) and (7.13), the stated LDP result follows if β is fixed. The generalization
to β → 0 or β → ∞ is straightforward from (7.7) and (7.10). This concludes the proof of
Theorem 3.

8. The case of energy minimizers. To consider energy minimizers, we define an analo-
gous quantity to the partition function

(8.1) K∞(U,μ) = min
XN

F(XN,U,μ),

with N = μ(U). In view of (3.5), we have that if U is partitioned into regions Qi , with
μ(Qi) = Ni integer, then

(8.2) K∞(U,μ) ≤
p∑

i=1

K∞(Qi,μ).

We have easy a priori bounds: if N = μ(U)

(8.3) −CN ≤ K∞(U,μ) ≤ CN,

with C > 0, depending only on d,m and �. Indeed, the lower bound follows from (B.8),
while for the upper bound we may deduce from (3.13), applied with β = 1, that there exists
at least one XN ∈ UN such that F(XN,U) ≤ CN for some C large enough.

THEOREM 4.

1. (Neumann problems in cubes) Let �R be a cube of size R with Rd = N an integer. We
have

(8.4)
∣∣∣∣K∞(�R,1)

Rd
− fd(∞)

∣∣∣∣≤ C

R
,

where fd(∞) = 1
2 minW̃1 = limβ→∞ fd(β) and C > 0 depend only on d. Moreover, if XN is

a minimizer for K∞(�R,1), for any cube ��(x) ⊆ �R , we have

(8.5)

∣∣∣∣∣
ˆ

��(x)

(
N∑

i=1

δxi
− 1

)∣∣∣∣∣≤ C�d−1,
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and the energy is uniformly distributed in the sense that

(8.6) F��(x)(XN,�R,1) = �dfd(∞) + O
(
�d−1).

2. (Minimizers of the Coulomb gas energy). Assume that the equilibrium measure μV

satisfies m ≤ μV ≤ � on its support and μV ∈ C0,κ on its support, for some κ > 0. If XN

minimizes HN and if �R(x) is a cube of size R centered at x satisfying

dist
(
�R(x), ∂ suppμV

)≥ CN
−2

d(d+2) ,

we have

(8.7)

∣∣∣∣∣
ˆ

�R(x)

N∑
i=1

δxi
− N

ˆ
�R(x)

dμV

∣∣∣∣∣≤ C
(
N

1
d R

)d−1

and

(8.8) F�R(x)(X′
N,μ′

V

)= fd(∞)

ˆ
�R(x)

(
μ′

V

)2− 2
d − 1

4
1d=2

ˆ
�R(x)

μ′
V logμ′

V + o
(
Rd),

where C and o depend only on d,m and �.

REMARK 8.1. The explicit rate in (8.6) is the improvement compared to [53, 54], in
the same way (8.8) can be improved; see [65]. As in [53], we can also prove with the same
method the same results on minimizers and the minimum of the renormalized energy W1 of
[55, 57]. For instance, the limit as R → ∞ that defines W1 can be shown to be fd(∞) with
rate 1/R: the upper bound is by periodization of a minimizer for K∞ while the lower bound
is obtained as in (8.13) to be combined with (8.4).

PROOF OF THEOREM 4. Step 1: Bootstrap. Let μ satisfy 0 < m ≤ μ ≤ � in 	, and let
X0

N
be a minimizer of F(·,U) among configurations with N points. We claim that if �R(x)

satisfies the same assumptions as in Proposition 5.1, in particular (5.3) with β = ∞ and if R

is large enough, then

(8.9) F�R(x)(X0
N

,U
)+ C0#

({
X0

N

}∩ �R(x)
)≤ CRd

for some C depending only on d and μ. This is proven by a bootstrap: assume this is true for
some L, that is, assume

(8.10) F�L(x)(X0
N

,U
)+ C0#

({
X0

N

}∩ �L(x)
)≤ CLd;

we need to show it is true for R ≥ L/2. Let us proceed as in the proof of Proposition 5.1,
reducing to QR ∈ QR and denoting by n = #({X0

N
} ∩ �R(x)) and n = μ(QR ∩ U). First,

by (8.10) and the choice of C0 we have from (B.8) and (B.9)–(B.10) that

(8.11) |n − n| ≤ CRd−1 + C
√
CRd− 1

2 .

We then apply Proposition 4.1 with S(XN) ≤ CLd, �̃ = MLdR− d(d+1)
d+2 , � = R

d
d+2 and Zn−nO

minimizing F(·, μ̃, nO) (recall that that minimum is bounded by the order of the volume;
see (8.3)). We may check that as soon as M is large enough and R is larger than some constant
depending only on d and M , � ≤ �̃ ≤ R and (4.10) is satisfied. The proposition yields in view
of (8.11) and (8.10)

(8.12) K∞(
Qc

R

)≤ HU

(
X0

N
|Qc

R
,Qc

R

)+ C

( C
M

Rd + Rd−1 + √
CRd− 1

2

)
.
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Choosing M large enough and combining (3.2), (8.2), (8.3) and (8.12), it follows that

FQR
(
X0

N
,U

)+ HU

(
X0

N
|Qc

R
,Qc

R

)≤ F
(
X0

N
,U

)= K∞(U) ≤ K∞(QR) + K∞(
Qc

R

)
≤ K∞(QR) + HU

(
X0

N
|Qc

R
,Qc

R

)+ 1

2
CRd.

Hence, if R is large enough (depending on C), we have

FQR
(
X0

N
,U

)≤ K∞(QR) + 1

2
CRd.

In view of (8.11), we have as well n ≤ 1
2CRd. With (8.3) this concludes the proof of (8.9).

Step 2: Local laws. Now that we know (8.9) down to scale C, we can use it to control
|n − n| by CRd−1 with (B.9)–(B.10) and then return to (8.12) and upgrade it to have an error
Rd−1, that is, we find

FQR
(
X0

N
,U

)≤ K∞(QR) + CRd−1

and |n − n| ≤ CRd−1. By Proposition 4.1 we also have

(8.13) K∞(QR) ≤ FQR
(
X0

N
,U

)+ CRd−1,

so

(8.14) FQR
(
X0

N
,U,μ

)= K∞(QR,μ) + O
(
Rd−1),

with the O depending only on d,m and �.
Step 3: Energy expansion. We may use the well-known characterization

− log Kβ(QR)

β
= min

P∈P(QN
R )

ˆ
F(XN,QR)dP (XN) + 1

β

ˆ
P(XN) logP(XN)dXN

to write that, for each fixed N ,

lim
β→∞− log Kβ(QR)

β
= min

XN

F(XN,QR) = K∞(QR).

We may thus compute K∞(QR,1) via (6.11) and find

K∞(QR,1) = |QR| lim
β→∞fd(β) + O

(
Rd−1),

where the limit exists in view of the form (1.30) and is equal to 1
2 minW̃1. In the case of

general μ, we find from (6.20) that if ‖μ‖C0,κ ≤ CN− κ
d , then

(8.15) K∞(QR,μ) = fd(∞)

ˆ
QR

μ2− 2
d − 1

4
1d=2

ˆ
QR

μ logμ + o
(
Rd)

as N → ∞.
Step 4: Conclusion. The relation (8.4) has been proven. (8.6) follows from (8.14) applied

with U = QR and μ = 1, and (8.5) follows from (B.9) and (B.10) combined with (B.8).
We now turn to the proof of (2). (8.8) is a consequence of (8.15) and (8.4) applied with U =

Rd, μ = μ′
V and then a blow-down; (8.7) follows from (B.9)–(B.10) combined with (B.8).

�
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APPENDIX A: ESTIMATES ON GREEN FUNCTIONS

In this appendix we prove the following estimate on the Neumann Green functions of a
domain. (It may be known, but we were not able to locate it in the literature.)

PROPOSITION A.1. Let U be a Lipschitz domain (bounded or unbounded). Let GU be
the Neumann Green function relative to U with background μ (

´
U

μ = 1), that is, solving⎧⎨⎩−
GU(x, y) = cd(δy − μ) in U,
∂GU

∂ν
= 0 on ∂U.

Then, if
´

g(x−y)dμ(y) < ∞, up to addition of a constant to GU we have
´
U

GU(x, y) dx =
0 and

sup
x∈U

∣∣∣∣GU(x, y) − g(x − y) +
ˆ

U

g(x − z) dμ(z)

∣∣∣∣
≤ C min

(
max

(
g
(
dist(y, ∂U)

)
,1
)
,g(x − y)

)
,

(A.1)

where C depends only on d and the Lipschitz type of U .

PROOF. First, the upper bound by Cg(x − y) is standard (one can also deduce it from
integrating in time (A.9) below), so there remains to prove the other one. Let �t denote the
heat kernel in dimension d,

�t(x) = 1

(4πt)
d
2

exp
(
−|x − y|2

4t

)
.

First, we claim that

(A.2) GU(x, y) =
ˆ ∞

0
w(t, x) dt,

where w solves ⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tw − 
w = 0 in U,

w(0, x) = cd(δy − μ) in U,
∂w

∂ν
= 0 on ∂U.

To prove this, it suffices to write that


x

ˆ ∞

0
w =

ˆ ∞

0
∂tw dt = −w(0, x) = −cd(δy − μ).

Thus, the Laplacian of both quantities in (A.2) is the same and so is their normal derivative
on the boundary. The two functions must then coincide up to a constant, which we choose to
be 0. Let us then set

(A.3) u(x, y) = cd

(
g(x − y) −

ˆ
U

g(x − z) dμ(z)

)
.

Similarly as the previous claim, we may write

u(x, y) = g ∗ (δy − μ) =
ˆ ∞

0
w̃(t, x) dt,

where

(A.4) w̃(t, x) := cd

ˆ
U

�t(x − z)(δy − μ)(z).
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We thus turn to bounding

(A.5) GU(x, y) − u(x, y) =
ˆ ∞

0

(
w(t, x) − w̃(t, x)

)
dt.

For that we note that w − w̃ := f solves

(A.6)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tf − 
f = 0 in U,

f (0, x) = 0 in U,
∂f

∂ν
= −∂w̃

∂ν
on ∂U.

We break the integral in (A.5) into two pieces, from 0 to t∗ := min(1,dist2(y, ∂U)) and from
t∗ to +∞.

Step 1: The bound on [0, t∗). Let T > 0. We consider the solution of the adjoint equation
to (A.6), that is,

(A.7)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂th − 
h = 0 in U,

h(0, x) = f (T , x)η(x) in U,
∂h

∂ν
= 0 on ∂U,

where η is a smooth cutoff function to be specified later satisfying
´

η = 1. We may write
that

(A.8) h(t, x) = pt ∗ (f (T , x)η
)

where pt is the Neumann heat kernel relative to U . As can be found in [35], in Lipschitz
domains we have estimates of the form

(A.9) pt(x) ≤ Ct−
d
2 exp

(
−C

|x − y|2
t

)
so that

(A.10)
∣∣h(T − t, x)

∣∣≤ ∥∥f (T , ·)∥∥L∞(suppη) sup
z∈suppη

exp
(
−C

|x − z|2
T − t

)
(T − t)−

d
2 .

We then compute using (A.6) and (A.7),

∂t

ˆ
U

f (t)h(T − t) =
ˆ

U


f (t)h(T − t) −
ˆ

U

f (t)
h(T − t)

=
ˆ

∂U

∂f

∂ν
(t)h(T − t)

=
ˆ

∂U

∂w̃

∂ν
(t)h(T − t).

Integrating between t = 0 and t = T and then using (A.10), it follows that∣∣∣∣ˆ
U

f 2(T , x)η(x)

∣∣∣∣= ∣∣∣∣ˆ T

0

ˆ
∂U

∂w̃

∂ν
(t)h(T − t) dt

∣∣∣∣
≤
ˆ T

0

ˆ
∂U

∣∣∣∣∂w̃

∂ν
(t)

∣∣∣∣∥∥f (T , ·)∥∥L∞(suppη)

× sup
z∈suppη

exp
(
−C

|x − z|2
T − t

)
(T − t)−

d
2 dx dt.
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The quantity ∂w̃
∂ν

(t) can be computed explicitly from (A.4) which yields∥∥∥∥∂w̃

∂ν

∥∥∥∥
L∞(∂U)

≤ Ct−
d
2

dist(y, ∂U)

t
exp

(
−dist2(y, ∂U)

4t

)

≤ Ct−
d
2 − 1

2 exp
(
−dist2(y, ∂U)

8t

)
.

We thus obtain∣∣∣∣ˆ
U

f 2(T , x)η(x)

∣∣∣∣≤ C
∥∥f (T , ·)∥∥L∞(suppη)

×
ˆ T

0
t−

d
2 − 1

2 exp
(
−dist2(y, ∂U)

8t

)
(T − t)−

d
2

×
ˆ

∂U

sup
z∈suppη

exp
(
−C

|x − z|2
T − t

)
dx dt.

Using the change of variables x′ = x(T − t)− 1
2 and then s = dist2(y,∂U)

t
, we obtain∣∣∣∣ˆ

U

f 2(T , x)η(x)

∣∣∣∣≤ C
∥∥f (T , ·)∥∥L∞(suppη)

ˆ T

0
t−

d
2 − 1

2 exp
(
−dist2(y, ∂U)

8t

)
dt

× sup
z∈suppη

ˆ
exp

(
−C

∣∣∣∣x′ − z√
T − t

∣∣∣∣2)dx′

≤ C
∥∥f (T , ·)∥∥L∞(suppη) dist(y, ∂U)1−d

ˆ ∞
dist2(y,∂U)

T

exp
(
−1

8
s

)
s

d−3
2 ds.

For some constants C2 ≥ C1 > 0,

C1 exp
(
−dist2(y, ∂U)

8T

)(
dist2(y, ∂U)

T

) d−3
2

≤
ˆ 2 dist2(y,∂U)

T

dist2(y,∂U)
T

exp
(
−1

8
s

)
s

d−3
2 ds

≤ C2 exp
(
−dist2(y, ∂U)

8T

)(
dist2(y, ∂U)

T

) d−3
2

,

(A.11)

and, by an integration by parts,

ˆ ∞

2 dist2(y,∂U)
T

exp
(
−1

8
s

)
s

d−3
2 ds = 8 exp

(
−dist2(y, ∂U)

4T

)(
2

dist2(y, ∂U)

T

) d−3
2

+ 4(d − 3)

ˆ ∞

2 dist2(y,∂U)
T

exp
(
−1

8
s

)
s

d−5
2 ds.

If we consider only T ≤ dist2(y, ∂U), then the last term in the right-hand side can be absorbed
into the quantity of (A.11), and we conclude that

ˆ ∞
dist2(y,∂U)

T

exp
(
−1

8
s

)
s

d−3
2 ds ≤ C exp

(
−dist2(y, ∂U)

8T

)(
dist2(y, ∂U)

T

) d−3
2

.
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Inserting into the above, this implies that, for T ≤ t∗,∣∣∣∣ˆ
U

f 2(T , x)η(x)

∣∣∣∣≤ C
∥∥f (T , ·)∥∥L∞(suppη) dist(y, ∂U)−2 exp

(
−dist2(y, ∂U)

8T

)
T

3−d
2 .

Choosing η to converge to δx0 , we deduce that

∣∣f (T , x0)
∣∣≤ C dist(y, ∂U)−2 exp

(
−dist2(y, ∂U)

8T

)
T

3−d
2 .

Since this is true for every t ≤ t∗ and every x0 ∈ U , it follows that
ˆ t∗

0

∥∥f (t, ·)∥∥L∞(U) dt ≤ C dist(y, ∂U)−2
ˆ min(1,dist2(y,∂U))

0
exp

(
−dist2(y, ∂U)

8t

)
t

3−d
2 dt.

With the change of variables s = t/dist2(y, ∂U), we are led toˆ t∗

0

∥∥f (t, ·)∥∥L∞ dt ≤ C dist(y, ∂U)3−d.

This is ≤ g(dist(y, ∂U)) if dist(y, ∂U) ≤ 1. If dist(y, ∂U) ≥ 1, we do not perform the

change of variables but instead bound the integral by
´ 1

0 exp(− 1
8t

)t
3−d

2 dt ≤ C and find
dist(y, ∂U)−2 ≤ C. We conclude thatˆ t∗

0
‖f ‖L∞(U) ≤ C(max

(
g
(
dist(y, ∂U),1

))
.

Step 2: Bound on [t∗,+∞). We use that w̃ = cd�t ∗ (δy − μ) and w = cdpt ∗ (δy − μ)

with pt the Neumann heat kernel as above that satisfies (A.9). It follows that∣∣∣∣ˆ 1

t∗
‖w̃ − w‖L∞(U) dt

∣∣∣∣≤ C

ˆ 1

t∗
t−

d
2 dt ≤ C

⎧⎨⎩t
1− d

2∗ if d ≥ 3,

− log t∗ if d = 2.

On the other hand, we may write, with u as in (A.3),ˆ ∞

1
w̃ dt = cd

ˆ ∞

1

ˆ
U

�t(x − z)(δy − μ)(z) = −
ˆ ∞

1

ˆ
Rd

�t(x − z)
u(z, y) dt

= −
ˆ ∞

1

ˆ
Rd


�t(x − z)u(z, y) dt = −
ˆ ∞

1

ˆ
Rd

∂t�t(x − z)u(z, y) dt dz

=
ˆ
Rd

�1(x − z)u(z, y) dz = 1

(4π)
d
2

ˆ
Rd

exp
(
−|x − z|2

4

)
u(z, y) dz ≤ C.

In the same way, we findˆ ∞

1
w dt = −

ˆ ∞

1

ˆ
U

pt(x − z)
GU(z, y) dt =
ˆ

U

p1(x − z)GU(z, y) dz

≤ C

ˆ
U

exp
(
−|x − z|2

4

)
GU(z, y) dz ≤ C,

by using the bound GU(z, y) ≤ Cg(z − y).
Combining all these results and using the definition of t∗, it follows that

sup
x∈U

∣∣GU(x, y) − u(x, y)
∣∣≤ C

(
max

(
g
(
dist(y, ∂U)

)
,1
))

from which we deduce the result. �
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APPENDIX B: AUXILIARY RESULTS ON THE ENERGIES

We gather in this appendix some results that are similar to [44, 55]. The notation is as in
Section 2.

B.1. Monotonicity results. We need the following result, adapted from [44, 55], which
expresses a monotonicity with respect to the truncation parameter.

LEMMA B.1. Let u solve

(B.1) −
u = cd

(
N∑

i=1

δxi
− μ

)
in U,

and let u�α, u�η be as in (2.15). Assume αi ≤ ηi for each i. Letting IN denote {i, αi �= ηi},
assume that, for each i ∈ IN , we have B(xi, ηi) ⊆ U (or ∂u

∂ν
= 0 on ∂U ∩ B(xi, ηi) and U is

convex). Then,

ˆ
U

|∇u�η|2 − cd

N∑
i=1

g(ηi) − 2cd

N∑
i=1

ˆ
U

fηi
(x − xi) dμ

−
(ˆ

U

|∇u�α|2 − cd

N∑
i=1

g(αi) − 2cd

N∑
i=1

ˆ
U

fαi
(x − xi) dμ

)
≤ 0,

(B.2)

with equality if the B(xi, ηi)’s are disjoint from all the other B(xj , ηj )’s for each i ∈ IN .
Moreover, if ηi ≥ r̃i for each i and ηi = r̃i = 1

4 if dist(xi, ∂� \ ∂U) ≤ 1
2 , we have∑

i,xi ,xj∈�,i �=j,

dist(xi ,∂�\∂U)≥1,dist(xj ,∂�\∂U)≥1

(
g(xi − xj ) − g(ηi)

)
+

≤ F�(XN,U) − 1

2cd

(ˆ
�

|∇u�η|2 − cd

∑
i,xi∈�

g(ηi) − 2cd

∑
i,xi∈�

ˆ
U

fηi
(x − xi) dμ

)
.

(B.3)

PROOF. For any α ≤ η, let us denote fα,η for fα − fη and note that fα,η vanishes outside
B(0, η) and

g(η) − g(α) ≤ fα,η ≤ 0

while, in view of (2.13),

(B.4) −
fα,η = cd
(
δ
(η)
0 − δ

(α)
0

)
.

Using the fact that from (2.15) we have

u�η(x) − u�α(x) = ∑
i∈IN

fαi,ηi
(x − xi),

we may compute

T :=
ˆ

U

|∇u�η|2 −
ˆ

U

|∇u�α|2 = 2
ˆ

U

(∇u�η − ∇u�α) · ∇u�α +
ˆ

U

|∇u�η − ∇u�α|2

= 2
∑
i∈IN

ˆ
U

∇fαi,ηi
(x − xi) · ∇u�α + ∑

i,j∈IN

ˆ
U

∇fαi,ηi
(x − xi) · ∇fαj ,ηj

(x − xj ).
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If B(xi, ηi) ⊆ U , the function fαi,ηi
(x − xi) vanishes on ∂U , and we can integrate by parts

without getting any boundary contribution. If not but we instead assume ∂u
∂ν

= 0 and U con-
vex, then, in view of (2.15) and the definition of fα,η, the boundary term contributions are

∑
i∈IN

ˆ
∂U

fαi,ηi
(x − xi)

∑
j∈IN

(
−∂fαj

∂ν
(x − xj ) − ∂fηj

∂ν
(x − xj )

)
.

Since fα is always radial nonincreasing, since we consider U , which is convex, the outer
normal derivatives involved are always nonpositive and since fα,η ≤ 0, these boundary con-
tributions are ≤ 0.

With the help of (B.1) and (B.4), we thus obtain in all cases

T ≤ 2cd

∑
i∈IN

ˆ
U

fαi,ηi
(x − xi)

(
N∑

j=1

δ
(αj )
xj − dμ

)

+ cd

∑
i,j∈IN

ˆ
U

fαi,ηi
(x − xi)

(
δ
(ηj )
xj − δ

(αj )
xj

)

= cd

∑
i∈IN

ˆ
U

fαi,ηi
(x − xi)

(
N∑

j=1

δ
(αj )
xj + δ

(ηj )
xj

)

− 2cd

∑
i∈IN

ˆ
fαi,ηi

(x − xi) dμ

=
N∑

j=1

∑
i∈IN ,i �=j

cd

ˆ
Rd

fαi,ηi
(x − xi) d

(
δ
(αj )
xj + δ

(ηj )
xj

)
+ cd

∑
i∈IN

ˆ
Rd

fαi,ηi
(x − xi) d

(
δ(αi)
xi

+ δ(ηi)
xi

)− 2cd

∑
i∈IN

ˆ
U

fαi,ηi
(x − xi) dμ.

(B.5)

Since fαi,ηi
≤ 0, the first term in the right-hand side is nonpositive and is zero if the B(xi, ηi)’s

with i ∈ IN are disjoint from the other balls. For the diagonal terms we note that
ˆ

U

fαi,ηi
(x − xi)

(
δ(αi)
xi

+ δ(ηi)
xi

)= −(g(αi) − g(ηi)
)

by definition of fα,η and the fact that δ
(α)
0 is a measure of mass 1 on ∂B(0, α). Since fαi,ηi

=
fαi

− fηi
, this finishes the proof of (B.2).

We may next apply this in � to u solution of (2.22) with ηi = r̃i and αi ≤ r̃i with αi = r̃i
when dist(xi, ∂� \ ∂U) ≤ 1. With this choice and by definition of r̃i in (2.23), we are sure
that B(xi, ηi) does not intersect any B(xj , ηj ) if i ∈ IN and j �= i. We are thus in the equality
case, and, in view of the definition (2.24), we find that

F�(XN,U) = 1

2cd

(ˆ
�

|∇uα|2 − cd

∑
i,xi∈�

g(αi)

)

− ∑
i,xi∈�

ˆ
U

fαi
(x − xi) dμ(x) + ∑

i,xi∈�

h(xi).

(B.6)

We now define gη = min(g,g(η)) and note that fα,η = gη − gα . To prove (B.3), we apply
again the previous result in � to the same u with αi as above, and this time ηi ≥ r̃i with
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equality if dist(xi, ∂� \ ∂U) ≤ 1
2 . We return to the nonpositive first term in the right-hand

side of (B.5) and bound it above and below by

cd

∑
i �=j

(
gηi

(|xi − xj | + αj

)− g
(|xi − xj | − αj

))
−

≤∑
i �=j

cd

ˆ
Rd

fαi,ηi
(x − xi) dδ

(αj )
xj

≤∑
i �=j

cd

ˆ
Rd

(
gηi

(x − xi) − gαi
(x − xi)

)
dδ

(αj )
xj

≤∑
i �=j

cd

ˆ
Rd

(
g(ηi) − gαi

(|xi − xj | + αj

))
−,

where we used the fact that gα is radial decreasing. Combining the previous relations, we find

cd

∑
xi ,xj∈�,i �=j

(
gαi

(|xi − xj | + αj

)− g(ηi)
)
+

≤
(ˆ

�

|∇u�α|2 − cd

∑
i,xi∈�

g(αi) − 2cd

∑
i,xi∈�

ˆ
U

fαi
(x − xi) dμ

)

−
(ˆ

�

|∇u�η|2 − cd

∑
i,xi∈�

g(ηi) − 2cd

∑
i,xi∈�

ˆ
U

fηi
(x − xi) dμ

)
.

Letting all αi → 0 if dist(xi, ∂�\∂U) ≥ 1, we find F�(XN,U) in the right-hand side in view
of (B.6) (up to

∑
h(xi)) and cd

∑
(g(|xi − xj |) − g(ηi))+ in the left-hand side. This finishes

the proof. �

B.2. Local energy controls. We now show how the quantities based on F control the
energy and the number of points locally. We will state all the results for F� and

≈
r; of course

it implies them also for F and r̂.
The following result shows that despite the cancellation between the two possibly very

large terms
´
Rd |∇u�η|2 and cd

∑N
i=1 g(ηi), when choosing ηi = ri we may control each of

these two terms by the energy. It is adapted from [44], Lemma 2.7.

LEMMA B.2. There exist C > 0 depending only on d and ‖μ‖L∞ such that, for any
configuration XN in U and u corresponding via (2.22) and for any � ⊆ U ,

(B.7)
∑

i,xi∈�

g(
≈
ri ) ≤ 2F�(XN,U) + C#

({XN } ∩ �
)

and

(B.8)
ˆ

�

|∇u≈
ri
|2 ≤ 4cdF�(XN,U) + C#

({XN } ∩ �
)

with
≈
r as in (2.25) and computed with respect to �.

REMARK B.3. With the same proof, we can prove analogous results for HU and G.

PROOF OF LEMMA B.2. Let us proceed as in Lemma B.1 with ηi = 1
4 min(1,dist(xi,

∂U ∩ �)) and αi = r̃i . We note that the assumptions of the lemma are verified in � since the
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size of the balls intersecting ∂� is not changed and αi ≤ ηi for each i. We obtain as in (B.5)
that

T :=
ˆ

�

|∇u�η|2 − cd

∑
i,xi∈�

g(ηi) − 2cd

ˆ
�

fηi
(x − xi) dμ

−
(ˆ

�

|∇u�α|2 − cd

N∑
i=1

g(αi) − 2cd

ˆ
�

fαi
(x − xi) dμ

)

≤ cd

∑
i,j �=i

ˆ
�

fαi,ηi
(x − xi)

(∑
j

δ
(αj )
xj + δ

(ηj )
xj

)
.

Assume first that xi is such that dist(xi, ∂U ∩�) ≥ 1 and
≈
ri < 1/20. Then, dist(xi, ∂�\∂U) ≥

1 and
≈
ri = r̃i = ri = 1

4 minj �=i |xi − xj |, in view of the definitions of
≈
ri and r̃i . Using that

fαi,ηi
≤ 0, we may bound
ˆ

fαi,ηi
(x − xi)

∑
j �=i

(
δ
(αj )
xj + δ

(ηj )
xj

)≤
ˆ

fαi,ηi
(x − xi)

∑
j,xj nearest neighbor to xi

δ
(αj )
xj .

We then note that fαi,ηi
(x − xi) = gηi

(x − xi) − gαi
(x − xi) ≤ g(ηi) − gri (x − xi) (with the

notation as in the previous proof) using the definition of αi . For xj nearest neighbor to xi ,
we have |xi − xj | = 4ri < 1/5, hence also dist(xj , ∂� \ ∂U) ≥ 1

2 by the triangle inequality
which implies, by definition of r̃j , that r̃j ≤ 1

4 mink �=j |xk − xj | ≤ ri < 1/20. The support of

δ
(αj )
xj = δ

(̃rj )
xj is thus contained in B(xi,5ri ), where gri (x − xi) ≥ g(5ri ) by monotonicity of g.

We thus find that the right-hand side is bounded above in this case by

g(ηi) − g(5ri ) = g(ηi) − g(5
≈
ri ).

On the other hand, if
≈
ri ≥ 1/20, then 5

≈
ri ≥ ηi and the same bound is true as well since

the left-hand side is nonpositive. If dist(xi, ∂U ∩ �) ≤ 1 and
≈
ri = ri ≤ 1/20, then the same

reasoning as above applies. If on the contrary dist(xi, ∂U ∩ �) ≤ 1 and
≈
ri < ri , then

≈
ri =

1
4 dist(xi, ∂U ∩ �) = ηi and g(ηi) − g(5

≈
ri ) ≥ 0, so the result holds as well.

Summing over i, we have thus obtained that

T ≤ cd

∑
i,xi∈�

(
g(ηi) − g(5

≈
ri )
)
.

On the other hand, by definition of T and choice of αi and ηi , we may also write

T ≥ −
ˆ

�

|∇ũri |2 + cd

∑
i,xi∈�

g(̃ri ) + 2cd

∑
i,xi∈�

ˆ
�

f̃ri (x − xi) dμ

− 2cd

∑
i,xi∈�

ˆ
�

fηi
(x − xi) dμ − cd

∑
i,xi∈�

g(ηi)

≥ −2cd

(
F�(XN,U) − ∑

i,xi∈�

h(xi)

)
− cd

∑
i,xi∈�

g(ηi).

Combining the two relations, we deduce

F�(XN,U) − ∑
i,xi∈�

h(xi) ≥ − ∑
i,xi∈�

g(ηi) + 1

2

∑
i,xi∈�

g(5
≈
ri ).
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By definition of h (2.20) and choice of ηi , we have
∑

i,xi∈� h(xi)− g(ηi) ≥ −C#({XN }∩�),
and we deduce ∑

i,xi∈�

g(
≈
ri ) ≤ 2F�(XN,U) + C#

({XN } ∩ �
)

which proves (B.7). In addition, applying (B.3) (with simply zero left-hand side) with ηi =≈
ri ,

we have

F�(XN,U) ≥ 1

2cd

(ˆ
�

|∇u≈
ri
|2 − cd

∑
i,xi∈�

g(
≈
ri ) − 2cd

∑
i,xi∈�

ˆ
�

f≈
ri
(x − xi) dμ

)
,

hence (B.8) follows after rearranging terms and using (6.18). �

We turn to showing how the energy controls the fluctuations. The next lemma is adapted
from previous results, such as [57]. The first result (B.10) allows usto treat the case of an
excess of points and control it using only the energy outside the set, while (B.9) allows to
treat the case of a deficit of points and control it using only the energy inside the set. The last
two results provide improvements when considering balls and using the energy in a larger
set.

LEMMA B.4 (Control of charge discrepancies). Let XN be a configuration in U , let u be
associated via (2.22), and let � be a set of finite perimeter included in U . We have

(B.9)

∣∣∣∣∣min

(ˆ
�

N∑
i=1

δxi
−
ˆ

�

dμ,0

)∣∣∣∣∣≤ C‖μ‖L∞|∂�|+C|∂�| 1
2 ‖∇u≈

r
‖L2({x∈�,dist(x,∂�)≤1}),

with
≈
r computed with respect to any set containing �, and if in addition � is at distance ≥ 1

from ∂U ,

(B.10) max

(ˆ
�

N∑
i=1

δxi
−
ˆ

�

dμ,0

)
≤ C‖μ‖L∞|∂�|+C|∂�| 1

2 ‖∇u≈
r
‖L2({x /∈�,dist(x,∂�)≤1}),

where C depends only on d.
Let BR ⊆ U be a ball of sidelength R > 2, and let

D =
ˆ

BR

N∑
i=1

δxi
−
ˆ

BR

dμ.

If D ≤ 0, then

(B.11)
D2

Rd−2

∣∣∣∣min
(

1,
D

‖μ‖L∞(BR)Rd

)∣∣∣∣≤ C

ˆ
BR

|∇u≈
r
|2,

and if D ≥ 0 and B2R ⊆ U ,

(B.12)
D2

Rd−2 min
(

1,
D

‖μ‖L∞(B2R)Rd

)
≤ C

ˆ
B2R

|∇u≈
r
|2

where C depends only on d.

PROOF. Let χ be a smooth nonnegative function equal to 1 at distance ≤ 1
2 from � and

vanishing at distance ≥ 1 from � outside that set. Let ξ be a smooth nonnegative function
equal to 1 for points in � at distance ≥ 1 from ∂� and vanishing outside �. Their gradient
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can be bounded by C, and ‖∇χ‖L2 and ‖∇ξ‖L2 can be bounded by C|∂�| 1
2 . Since

≈
ri ≤ 1

4 for
each i, we have

(B.13)
ˆ

ξ

N∑
i=1

δ(
≈
ri )

xi
≤
ˆ

�

N∑
i=1

δxi
≤
ˆ

χ

N∑
i=1

δ(
≈
ri )

xi
.

Using (2.22), integrating by parts and using the fact that ∂νu≈
r
= 0 on ∂U and the Cauchy–

Schwarz inequality, we find∣∣∣∣∣
ˆ

�

χ d

(
N∑

i=1

δ(
≈
ri )

xi
− μ

)∣∣∣∣∣≤ 1

cd
‖∇χ‖L2‖∇u≈

r
‖L2(supp∇χ) ≤ C|∂�| 1

2 ‖∇u≈
r
‖L2(supp∇χ)

and the same for ξ . Meanwhile,∣∣∣∣ˆ
Rd

(1� − χ)dμ

∣∣∣∣≤ C|∂�|‖μ‖L∞

and the same for ξ . Let us now first assume that
´
�

∑N
i=1 δxi

− ´
�

dμ ≥ 0. Then, in view
of (B.13) and the above, we have

0 ≤
ˆ

�

N∑
i=1

δxi
−
ˆ

�

dμ ≤
ˆ

�

χ

(
N∑

i=1

δ(
≈
ri )

xi
− dμ

)
+ O

(|∂�|‖μ‖L∞
)

≤ C|∂�| 1
2 ‖∇u≈

r
‖L2(supp∇χ) + C|∂�|‖μ‖L∞ .

In all cases, the result (B.10) follows. The proof of (B.9) is similar.
Let us now turn to (B.11) and (B.12), following [57], Lemma 4.6. We first consider the

case that D > 0 and note that if

(B.14) R + η ≤ t ≤ T := min
(

2R,

(
(R + η)d + D

C‖μ‖L∞(B2R)

) 1
d
)

with C well chosen, we have

−
ˆ

∂Bt

∂u≈
r

∂ν
= −

ˆ
Bt


u≈
r
= cd

ˆ
Bt

(
N∑

i=1

δ(
≈
ri )

xi
− dμ

)

≥ cd

(
D −

ˆ
Bt\BR

dμ

)
≥ cdD − C‖μ‖L∞

(
td − Rd)≥ cd

2
D,

if we choose the same C in (B.14), depending only on d. By the Cauchy–Schwarz inequality,
the previous estimate and explicit integration, there holds

ˆ
B2R

|∇u≈
r
|2 ≥

ˆ T

R+η

1

|∂Bt |
(ˆ

∂Bt

∂u≈
r

∂ν

)2
dt

≥ CD2
ˆ T

R+η

t−(d−1) dt = CD2(g(R + η) − g(T )
)

with C depending only on d. Inserting the definition of T and rearranging terms, one easily
checks that we obtain (B.12). There remains to treat the case where D ≤ 0. This time, we let

T ≤ t ≤ R − η, T :=
(
(R − η)d − D

C‖μ‖L∞(BR)

) 1
d ;
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if C is well chosen, we have

−
ˆ

∂Bt

∂u≈
r

∂ν
= −

ˆ
Bt


u≈
r
= cd

ˆ
Bt

(
N∑

i=1

δ(
≈
ri )

xi
− dμ

)

≤ cd

(
D +

ˆ
BR\Br

dμ

)
≤ cd

2
D,

and the rest of the proof is analogous, integrating from T to R − η. �

The next lemma is similar to [44], Prop. 2.5.

LEMMA B.5. Let ϕ be a Lipschitz function in U with bounded support. Let � be an
open set with finite perimeter containing a 1-neighborhood of the support of ϕ in U . For any
configuration XN in U , letting u be defined as in (2.22) (resp., v as in (2.27)), we have∣∣∣∣∣

ˆ
Rd

ϕ

(
N∑

i=1

δxi
− dμ

)∣∣∣∣∣
≤ C‖∇ϕ‖L∞(�)

((|∂�| 1
2 + |�| 1

2
)‖∇u≈

r
‖L2(�) + |�|‖μ‖L∞(�)

)(B.15)

(and, resp., the same with v≈
r

in place of u≈
r
), where C depends only on d and

≈
r is computed

with respect to any set containing �.

PROOF. We may find χ a smooth cutoff function equal to 1 in a 1/2-neighborhood of the
support of ϕ and equal to 0 outside �, such that

´ |∇χ |2 ≤ C|∂�|. Integrating (2.22) against
χ , we thus get∣∣∣∣∣

ˆ
χ

(
N∑

i=1

δ(
≈
ri )

xi
− dμ

)∣∣∣∣∣≤ 1

cd
‖∇χ‖L2‖∇u≈

r
‖L2(�) ≤ C|∂�| 1

2 ‖∇u≈
r
‖L2(�),

where C depends only on d. It follows that letting #I denote the number of balls B(xi,
1
4)

intersecting �, we also have

(B.16) #I ≤
ˆ

�

dμ + C|∂�| 1
2 ‖∇u≈

r
‖L2(�).

Second, integrating (2.22) against ϕ, we have

(B.17)

∣∣∣∣∣
ˆ

U

(
N∑

i=1

δ(
≈
ri )

xi
− dμ

)
ϕ

∣∣∣∣∣= 1

cd

∣∣∣∣ˆ
U

∇u≈
r
· ∇ϕ

∣∣∣∣≤ C|�| 1
2 ‖∇ϕ‖L∞‖∇u≈

r
‖L2(�).

On the other hand, since by definition
≈
ri ≤ 1

4 for each i, we have

(B.18)

∣∣∣∣∣
ˆ

U

(
N∑

i=1

(
δxi

− δ(
≈
ri )

xi

))
ϕ

∣∣∣∣∣≤ #I‖∇ϕ‖L∞ .

Combining this with (B.17) and (B.16), we get the result. �
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APPENDIX C: PROOF OF THE SCREENING RESULT

The goal of this appendix is to prove the screening result of Proposition 4.1. This follows
from adapting and optimizing the procedure from [55, 57, 60], in particular, [55] simplified
to the Coulomb case.

Let us first informally describe thing for the outer screening. We will work with “electric
fields” E which are meant to be gradients of the potentials u of (2.22) or w of (2.30) or, more
generally, to satisfy relations of the form

(C.1) −divE = cd

(
n∑

i=1

δxi
− μ

)
.

A truncated version of E can be defined just as in (2.14): for any E satisfying a relation of
the form (C.1), we let

(C.2) Ẽr = E −
n∑

i=1

∇ f̃ri (x − xi),

where r̃i is as in (2.23).
Assume we are given a configuration X (with unspecified number of points) in a hyperrect-

angle, together with its electric field E, and assume roughly that we control well its energy
near the boundary of a hyperrectangle QT of sidelengths close to T . The goal of the screening
is to modify the configuration X and the electric field E only outside of QT −1 and to extend
them to a “screened” configuration X0 and a “screened” electric field E0 in QT +� ∈ QT +�

in such a way that ⎧⎪⎪⎨⎪⎪⎩
−divE0 = cd

( ∑
p∈X0

δp − μ

)
in QT +� ∩ U,

E0 · ν = 0 on ∂(QT +� ∩ U).

This implies, in particular, that the screened system is neutral, that is, the number of points of
X0 must be equal to μ(QT +� ∩ U). We note that in the Neumann case where � can intersect
∂U , the desired boundary condition is already satisfied for the original field on ∂U , so there
is no need to modify it near ∂U .

The screened electric field E0 may not be a gradient; however, thanks to Lemma 3.4, its
energy provides an upper bound for computing F(X0,QT +� ∩ U). The goal of the construc-
tion is to show that we can build E0 and X0 without adding too much energy to that of the
original configuration which will allow us to bound F(X0,QT +� ∩U) in terms of HU(X,�).
In order to accomplish this, we will split the region to be filled into cells where we solve
appropriate elliptic problems and estimate the energies by elliptic regularity estimates. In
order to “absorb” and screen the effect of the possibly rough data on ∂QT , we need a cer-
tain distance � which has to be large enough in terms of the energy of E; this leads to the
“screenability condition” bound on �, as previously mentioned.

C.1. Finding a good boundary. We focus on the outer screening proof; the proof of the
inner case is analogous (for details of what to do near the corners, one may refer to [53]).

Assume then that � = QR ∩ U . Since U is assumed to be a disjoint union of parallel
hyperrectangles, � is itself a hyperrectangle.

We are given a configuration Xn in QR ∩ U with �̃ ≥ � ≥ C, and u is as in (4.1)
We set E = ∇u with the notation Ẽr defined in (C.2). We also let

(C.3) M :=
ˆ

(QT +4\QT −4)∩U

|∇u≈
r
|2.
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By a pigeonhole principle there exists a T ∈ [R − 2�̃,R − �̃] such that

M :=
ˆ

(QT +4\QT −4)∩U

|∇u≈
r
|2 ≤ S(Xn)

�̃
,(C.4)

M� := max
x

ˆ
(QT +4\QT −4)∩��(x)∩U

|∇u≈
r
|2 ≤ S′(Xn),(C.5)

respectively, with QT +4 \ QT −4.
We recall that, on ∂U , we have a zero Neumann boundary condition for u, so the desired

final condition is already satisfied there.
By a mean value argument we can find � a piecewise affine boundary (with slopes in a

given set, alternating only at distances bounded above and below) of a set containing QT ∩U

and contained in QT +1 ∩ U such that

(C.6)
ˆ

�∩U

|Ẽr|2 ≤ CM, sup
x

ˆ
�∩Q(x,�)∩U

|Ẽr|2 ≤ CM�.

We note that as soon as �̃ is large enough, we only consider regions at distance ≥ 1 from
∂�, so there is no difference between r̃ and

≈
r there.

We take it to be the boundary relative to U of a set containing QT ∩ U and contained in
QT +1 ∩ U , and we then complete it by a subset �′ of ∂U in such a way that � ∪ �′ then
encloses a closed domain of U ∩ QT . We also recall that, by assumption, U is a union of
hyperrectangles and that ∂QR is parallel to the sides of U . In all cases we denote by O (like
“old”) the part of QT +1 ∩ U delimited by � ∪ �′ and by N (like “new”) the set � \ O. We
keep Xn and E unchanged in O and discard the points of Xn in N to replace them by new
ones. We note that the good boundary � may intersect some B(xi, r̃i ) balls centered at points
of Xn. These balls will need to be “completed,” that is, the contributions of δ

(̃ri )
xi 1QT \O to be

retained.

C.2. Preliminary lemmas. We start with a series of preliminary results which will be
the building blocks for the construction of E0.

LEMMA C.1 (Correcting fluxes on rectangles). Let H be a hyperrectangle of Rd with
sidelengths in [�,C�] with C depending only on d. Let g ∈ L2(∂H). Then there exists a
constant C depending only d such that the mean zero solution of

(C.7)

⎧⎪⎨⎪⎩−
h =
ˆ

∂H

g in H,

∂νh = g on ∂H

satisfies the estimate

(C.8)
ˆ

H

|∇h|2 ≤ C�

ˆ
∂H

|g|2.

PROOF. This is [57], Lemma 5.8. �

The next lemma serves to complete the smeared charges which were “cut” into two pieces
by the choice of the good boundary. The proof can be deduced from an inspection of that of
[55], Lemma 6.6.
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LEMMA C.2 (Completing charges near the boundary). Let R be a hyperrectangle in Rd

of center 0 and sidelengths in [a,Ca] with C depending only on d. Let F be a face of R. Let
Xn be a configuration of points contained in an 1/4-neighborhood of F . Let c be a constant
such that

(C.9) c|F | = cd

ˆ
R

∑
i∈XR

δ(̃ri )
xi

.

The mean-zero solution to ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−
h = cd

∑
p∈X

δ
(̃rp)
p in R,

∂νh = 0 on ∂R \ F,

∂νh = c on F

satisfies

(C.10)
ˆ
R

|∇h|2 ≤ C

(
n2a2−d +∑

i �=j

g(xi − xj ) +
n∑

i=1

g(̃ri )

)

where C depends only on d, a, b.

PROOF. We split h = u + v where⎧⎪⎨⎪⎩
−
u = cd

∑
i

δ(̃ri )
xi

− c in R,

∂νu = 0 on ∂R,

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
−
v = c

|F |
|R| in R,

∂νv = 0 on ∂R \ F,

∂νv = c on F.

The v part is explicitly computable and has energy bounded by Cc2ad ≤ C#X2a2−d. For the
u part, we observe that

u = cd

∑
i

ˆ
GR(x, y)δ(̃ri )

xi
(y),

where GR(x, y) is the Neumann Green function of the hyperrectangle with background 1, as
in Proposition A.1. Using the estimate (A.1), we have

GR(x, y) ≤ Cg(x − y),

hence we deduce the result. �

C.3. Main proof. We let I∂ be the indices corresponding to the points of Xn whose
smeared charges touch �, that is,

(C.11) I∂ = {
i ∈ [1, n] : B(xi, r̃i ) ∩ � �= ∅

}
and define

nO = #I∂ + #
({i, xi ∈ O} \ I∂

)
.
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The goal of the construction is to place an additional n − nO points in (QR ∩ U) \O, where
n = μ(QR ∩ U).

Next, we partition (QR ∩ U) \ O into hyperrectangles Hk (or intersections of hyperrect-
angles with (QR ∩ U) \ O) with sidelengths ∈ [�/C,C�] for some positive constant C > 0
(we note that we may always make sure in the construction of � that the shapes formed by
Hk \O are nondegenerate) in such a way that letting mk be the constant such that

(C.12) cdmk|Hk| =
ˆ

�∩∂Hk

Ẽr · ν − nk,

with ν denoting the outer unit normal to O and

nk := cd

ˆ
Hk

∑
i∈I∂

δ(̃ri )
xi

,

we have
´
HK

(μ + mk) ∈ N. This is possible if |mk| < 1
2m (recall μ ≥ m) and can be done by

constructing successive strips as in Lemma 3.2, as soon as � > C for some C > 0 depending
only on d and m.

We will give below a condition for |mk| < 1
2m. Now, define

μ̃ = μ +∑
k

1Hk
mk.

Since

nO = − 1

cd

ˆ
�

Ẽr · ν + 1

cd

∑
k

nk +
ˆ
O

dμ

and n = μ(�), in view of (C.12) we may check that

(C.13)
ˆ
N

μ̃ = n − nO.

Step 1: Defining E0.
We define E0

r̃ as a sum E1 + E2 + E3, some of these terms being zero except for Hk that
has some boundary in common with �, then denoted Fk .

The first vector field contains the contribution of the completion of the smeared charges
belonging to I∂ . We let

E1 :=∑
k

1Hk
∇h1,k,

where h1,k is the solution of

(C.14)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−
h1,k = cd

∑
i∈I∂

δ(̃ri )
xi

in Hk,

∂νh1,k = 0 on ∂Hk \ �,

∂νh1,k = −nk

|Fk| on Fk.

We note that the definition of nk makes this equation solvable.
The second vector field is defined to be E2 =∑

k 1Hk
∇h2,k with{−
h2,k = cdmk in Hk,

∂νh2,k = gk on ∂Hk,
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where we let gk = 0 if Hk has no face in common with � and, otherwise,

(C.15) gk = −Ẽr · ν + nk

|Fk|
with Ẽr · �ν taken with respect to the outer normal to O. We note that this is solvable in view
of (C.12) and the definitions of ni .

The third vector field consists in the potential generated by a sampled configuration Zn−nO
in QR ∩ U \O: we let E3 = ∇h3 where h3 solves

(C.16)

⎧⎪⎪⎨⎪⎪⎩
−
h3 = cd

(n−nO∑
j=1

δzj
− μ̃

)
in N ,

∂νh3 = 0 on ∂N .

We note that this equation is solvable since (C.13) holds. We then define in N , E0
r̃ = (E1 +

E2 + E3)1N + Ẽr1O and Yn = {Xn,B(xi, r̃i) ∩O �= ∅} ∪ {Zn−nO} Finally, we let

E0 = E0
r̃ +

n∑
i=1

∇fri (x − yi),

where the ri are the minimal distances as in (2.23) of Yn. Note that, for the points near �, these
may not correspond to the previous minimal distances for the configuration Xn or Zn−nO
which is why we use a different notation.

We note that the normal components are always constructed to be continuous across inter-
faces, so that no divergence is created there, and so E0 thus defined satisfies

(C.17)

⎧⎪⎨⎪⎩
−divE0 = cd

(∑
i∈Yn

δyi
− μ

)
in �,

E0 · ν = 0 on ∂�.

Step 2: Controlling mk . First, we control the nk . The results of Lemma B.4 allow us to
show that

(C.18) n2
k ≤ C

ˆ
Hk

|Ẽr|2 ≤ CM�,
∑
k

n2
k ≤ CM.

We note that it follows in the same way that #I∂ ≤ CM ≤ C S(Xn)

�̃
with (C.4).

To control mk we write that, in view of (C.12) and (C.6),

(C.19) |mk| ≤ C�−d
ˆ

�∩∂Hk

|Ẽr| + |nk|�−d.

Using the Cauchy–Schwarz inequality we boundˆ
�∩∂Hk

|Ẽr| ≤ �
d−1

2 M
1
2
� .

We conclude that

(C.20) |mk| ≤ C�− d
2 − 1

2 M
1
2
� + C�−dM

1
2
� ≤ C�− d

2 − 1
2 M

1
2
� .

The condition |mk| < 1
2m thus is implied by

CM
1
2
� �

−d−1
2 <

1

2
m.
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This is the screenability condition (4.4). As an alternate we can also bound∣∣∣∣ˆ
N

μ − μ̃

∣∣∣∣≤ C
∑
k

|mk|�d ≤ C�
d
2 − 1

2 M
1
2 + CM ≤ C�d−1 + C

S(Xn)

�̃

in view of (C.6) and (C.4), thus completing the proof of (4.5). In the same way, using Cauchy–
Schwarz, we may also write that

m2
k ≤ C�−2d

ˆ
�∩∂Hk

|Ẽr|2�d−1 + Cn2
k�

−2d,

and thus ˆ
N

(μ − μ̃)2 ≤ C
∑
k

m2
k�

d ≤ C�−1
ˆ

�

|Ẽr|2 + M�−d ≤ C
S(Xn)

�̃�

in view of (C.4) and (C.6), thus proving (4.6).
Step 3: Estimating the energy of E0. To estimate the energy of E0, we need to evaluate´

�
|E0

r |2. First, for E1 we use Lemma C.2 and combine it with (B.3) applied with ηi = 1
4 to

bound
∑

p �=q g(p − q) by the energy in a slightly larger set, thus we are led toˆ
N

∣∣(E1)̃r
∣∣2 ≤ C

(∑
k

n2
k + CM

)
≤ CM,

where we have used (C.3), (C.18) and the geometric properties of Hk .
For E2 we use Lemma C.1 to getˆ

Hk

|E2|2 ≤ C�

(ˆ
∂Hk∩�

|Ẽr|2 + Cn2
k

)
.

Summing over k and using (C.6), we obtain∑
k

ˆ
Hk

|E2|2 ≤ C�M.

For E3 we use that, by definition of F,

(C.21)
ˆ

�\O
|∇h3,̂r|2 ≤ 2cd

(
F(Zn−nO , μ̃,N ) −

n−nO∑
j=1

h(zj )

)
+ cd

n−nO∑
j=1

g(̂rj ) + C(n − nO)

since
´
Rd |fη| ≤ C for each η (see (6.18)). Since E = Ẽr = ∇ũr in O, we deduce that

ˆ
�

∣∣E0
r̃

∣∣2 ≤
ˆ
O

|∇ũr|2 + C�M + C

(
2cd

(
F(Zn−nO , μ̃,N ) −

n−nO∑
j=1

h(zj )

)
+ cd

n−nO∑
j=1

g(̃rj )

)

+ C(n − nO).

To estimate F(Yn,μ,�), we use Lemma 3.4, the definition of F and (B.3), which tells us that
to go from r̃ (with possibly intersecting balls) to r, we just need to add the “new interactions”∑

(i,j)∈J g(xi − zj ). This yields

F(Yn,�) ≤ 1

2cd

ˆ
O

|∇ũr|2 − 1

2

n∑
i=1

g(̂ri ) −
n∑

i=1

ˆ
�

f̂ri (y − yi) dμ(y) + C
∑

(i,j)∈J

g(xi − zj )

+
n−nO∑
j=1

h(zj ) + C�M + C

(
F(Zn−nO , μ̃,N ) −

n−nO∑
j=1

h(zj )

)

+ C

n−nO∑
j=1

g(̂rj ) + C(n − nO).
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Since, on the other hand,

HU(Xn,�) = 1

2cd

(ˆ
�

|∇ũr|2 − cd

n∑
i=1

g(̃ri )

)
−

n∑
i=1

ˆ
�

f̃ri (x − xi) dμ(x),

it follows that

F(Yn,μ,�) − HU(Xn,�)

≤ − 1

2cd

ˆ
�\O

|∇ũr|2 + 1

2

∑
{i∈{1,...,n}:xi /∈O}

g(̃ri ) + C

n−nO∑
j=1

g(̂rj ) + C�M

+ CF(Zn−nO , μ̃,N ) + C
∑

(i,j)∈J

g(xi − zj ) + C(n − nO) + C(n − nO).

(C.22)

On the other hand, since O contains QT −4 ∩ �, we have

1

2cd

(
cd

∑
{i∈{1,...,n}:xi /∈O}

g(̃ri ) −
ˆ

�\O
|∇ũr|2

)

≤ 1

2cd

ˆ
(QT +4\QT −4)∩U

|∇u≈
r
|2 + 1

2cd

(
cd

∑
{i∈{1,...,n}:xi /∈O}

g(̃ri ) −
ˆ

�\QT −4

|∇ũr|2
)

≤ M

2cd
+ C(n − nO),

(C.23)

where we bounded the second term in the right-hand side by using Lemma B.1 to change r̃
into 1

4 and then bounded
∑

g(1
4) for xi /∈ O by the number of points not in O. We may also

write, using (B.7) and using that r̂ =≈
r in this case,

(C.24)
n−nO∑
j=1

g(̂rj ) ≤ C
(
F(Zn−nO , μ̃,N ) + (n − nO)

)
.

Inserting (C.23) and (C.24) into (C.22) and using (C.4), we find

F(Yn,μ,�) − HU(Xn,�)

≤ C�
S(Xn)

�̃
+ CF(Zn−nO , μ̃,N ) + C

∑
(i,j)∈J

g(xi − zj ) + C
(|n − n| + |n − nO|).

Using (4.5) and μ(N ) ≤ C�̃Rd−1 allows us to bound the last term on the right side, and then
we get (4.7).
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