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We establish an invariance principle for a one-dimensional random walk
in a dynamic random environment given by a speed-change exclusion pro-
cess. The jump probabilities of the walk depend on the configuration of the
exclusion in a finite box around the walker. The environment starts from equi-
librium. After a suitable space-time rescaling, the random walk converges to
a sum of two independent processes: a Brownian motion and a Gaussian pro-
cess with stationary increments.

1. Introduction. The present paper establishes an invariance principle for a family of
random walks in dynamic random environments (RWDRE). The model we analyse was in-
troduced in [6], where the authors proved laws of large numbers both for the random walk
and for the environment as seen by the walker. Later, in [7], they proved the corresponding
large deviations principle. Our article completes the picture by proving an invariance prin-
ciple. We define the model in Section 2, but a good picture to keep in mind for now is the
following: color the integers with the colors L and R. Use the coloring to define a continuous
time random walk on Z, that has a drift to the left on sites of the color L and a drift to the
right on sites of the color R. Now let the coloring change in a Markovian way by swapping
the colors of sites x and x + 1 at some positive rate rx,x+1, possibly dependent on the colors
of x − 1 and x + 2. This gives rise to a continuous time RWDRE. We show that when space,
time and swapping rates are scaled in a certain way the trajectory of the walk converges to the
sum of a Brownian motion and a Gaussian process of stationary increments, independent of
the Brownian motion. For certain choices of the parameters, the limiting Gaussian process is
a fractional Brownian motion of Hurst parameter 3

4 . Moreover, the same scaling limit holds
if the drift of the walk at x is allowed to depend not only on the color of x but also on the
colors of x − k, . . . , x + k for some fixed k. The variance of the limiting Brownian motion
and the covariances of the limiting Gaussian process can be computed explicitly.

Our article fits into two niches in the literature: random walks on dynamic random environ-
ments (RWDRE) and scaling limits of interacting particle systems. The symmetric exclusion
in [5] was introduced as an example of dynamic random environment with slowly decay-
ing time correlations. This followed a series of works dealing with random walks on “fast
mixing” environments, which are models where, in some sense, the environment refreshes
itself after a finite (but maybe random) number of jumps of the walk. In this setting, one
expects the walk to behave as if the environment were deterministic. That is, a law of large
numbers holds, fluctuations around the limit are Gaussian and large deviation probabilities
decay exponentially fast. See [1] for an overview. Fast mixing environments are the opposite,
in a sense, to static environments, where the (random) transition kernel for the walk at each
site is the same at all times. In the static scenario, the walk can get trapped for a long time
in small regions, leading to scaling limits different from those of the fast-mixing case. For
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instance, it can present subdiffusive behavior and polynomial decay of the large deviation
probabilities, see [36]. In the fast mixing scenario, the traps dissolve before the walk can
get stuck for too long. What happens then in the intermediate situation, where the environ-
ment is dynamic but not too fast? This question motivated the study of symmetric exclusion
as a random environment, as well as of other conservative interacting particle systems, see
[8, 10, 12, 21, 23]. The goal of these works is to prove laws of large numbers, central limit
theorems and large deviation principles, and most results hold only in a subset of the space
of parameters. Simulations reported in [8] indicate that trapping may happen when the dy-
namic random environment is the one-dimensional exclusion processes, indicating that the
random walk should have anomalous scaling on some region of parameters. We also mention
the recent works [4] and [3], analysing a new family of random environments interpolating
between static and fast mixing.

The model introduced in [6] plays with the idea of slow mixing in a different way. Let n

be a scaling parameter, that will be sent to ∞. When the environment is given by the sym-
metric exclusion process, it is reasonable to introduce a diffusive space-time scaling x �→ x

n
,

t �→ tn2. Under this scaling, the evolution of the exclusion process satisfies a law of large
numbers (the so-called hydrodynamic limit) and a central limit theorem. In [6], the jump rate
of the random walk is slowed down by a factor λ

n
, where λ > 0. Then, at least heuristically,

between two jumps of the random walker the environment achieves local equilibrium in a
region of size

√
n around the walker, which is exactly the size at which fluctuations appear.

Therefore, the walker should see a randomly evolving equilibrium of the environment pro-
cess. This heuristics can be made rigorous by means of the formalism of hydrodynamic limits
of interacting particle systems, which yields laws of large numbers [6] and large deviation
principles [7].

Here we show a central limit theorem for the random walk under the scaling introduced
in [6], assuming the dynamic random environment is stationary in time. The scaling limit is
then a mixture of two independent Gaussian processes: a Brownian motion and the process
with stationary increments introduced in [19] as the scaling limit of the occupation time of
the origin in the weakly asymmetric exclusion process. The role of the weak asymmetry in
[19] is played here by the asymptotic speed of the random walk. When the asymptotic speed
is zero, this Gaussian process is a fractional Brownian motion of Hurst exponent H = 3/4.
An earlier example of non-Brownian scaling limits of additive functionals is the work [33].

From the hydrodynamic limits side, we compute the scaling limit of an additive functional
of an interacting particle system without explicit knowledge of the invariant measures. On
our way to obtain this result, we prove an estimate on the relative entropy between the en-
vironment process at time t and a product measure, using a modification of Yau’s Relative
Entropy method, introduced in [35]. This method is nowadays a standard tool for proving
hydrodynamic limits. However, the current state of the art only yields a bound of order o(tn).
This bound is enough to derive a law of large numbers and also a large deviations principle,
but it is far from what is required in order to prove a central limit theorem. Our main technical
innovation is the derivation of a bound of order O(t), obtained with a different implementa-
tion of the Relative Entropy method, which is of independent interest. With this bound on the
entropy we are able to prove a replacement lemma without spatial averaging, as in [25].

The problem we address can also be seen as a variation on the problem of the tagged par-
ticle. The seminal article on this problem is [28], where a method for establishing scaling
limits of tagged particles was introduced. It looks at the environment as seen from the parti-
cle, ξt (x) := ηt (x + xt ) (ηt is the particle system and xt is the tagged particle) and writes xt

as a martingale plus an additive functional. The martingale part can be handled by the Mar-
tingale Functional Central Limit Theorem (MFCLT), see Theorem 2.7. The problem reduces,
therefore, to the study of the scaling limit of the additive functional. The work [28] gives
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sufficient conditions to approximate this additive functional by a martingale, thus establish-
ing Brownian motion as the scaling limit of the tagged particle. We point the reader to [29]
for a comprehensive exposition of the martingale approximation method and to [2] for an
application in RWRE. In our model, the additive functional does not converge to Brownian
motion, but to a singular functional of the density fluctuation field associated to the environ-
ment process. This functional turns out to be identical to the scaling limit of the occupation
time of the origin of a stationary, weakly asymmetric exclusion process. The problem of the
asymptotic behavior of the occupation time was already considered in the 60s [31] in the case
of independent particles and generalized to the case of interaction by branching [22] and of
the exclusion process, [33] and [19]. We follow the approach of [19], adapted to deal with
the lack of knowledge of the invariant measure of the environment as seen by the walker.

2. Notation and results.

2.1. A warm-up example. Let (ηt )t≥0 be the simple symmetric exclusion process (SSEP)
on Z, namely the Markov process that takes values in {0,1}Z and is generated by the operator

Lexf (η) = ∑
x∈Z

[
f
(
ηx,x+1)− f (η)

]
,

where f : {0,1}Z is a local function (i.e., f (η) depends on finitely many η(x)) and ηx,x+1

is obtained from η by interchanging the values of η(x) and η(x + 1). Let ρ ∈ (0,1) and let
νρ denote the Bernoulli product measure in {0,1}Z, that is, the η(x) are i.i.d. and their mean
is ρ. We assume that η0 has law νρ . In that case, the law of ηt is νρ for any t ≥ 0.

The process (ηt )t≥0 will be a dynamic random environment for the random walk that is
defined as follows. Let n ∈ N be a scaling parameter and let ηn

t = ηtn2 . Let p,q ≥ 0 be such
that p + q = 1 and let λ > 0. Given a realization of the rescaled exclusion process (ηn

t )t≥0,
let (xn

t )t≥0 be the time-inhomogeneous chain with the following dynamics: the chain waits
an exponential time of rate λn, at the end of which it jumps to one of its two neighbors. To
make its choice, it looks at the value ηn

t (x) of the SSEP at its current location x. If ηn
t (x) = 1,

the chain jumps to the right with probability p and to the left with probability q . If ηn
t (x) = 0,

the probabilities are reversed: the chain jumps to the right with probability q and to the left
with probability p.

In [6], it was proved

lim
n→∞

xn
t

n
= v(ρ)t

in probability, where v(ρ) = λ(p − q)(2ρ − 1), that is, the random walk (xn
t )t≥0 satisfies a

law of large numbers. The corresponding large deviations principle was proved in [5]. Our
goal is to prove the corresponding central limit theorem:

lim
n→∞

xn
t − v(ρ)tn√

n
= √

λBt + 2λ(p − q)Zt =: Xt

in distribution, where (Bt )t≥0 is a standard Brownian motion and (Zt )t≥0 is a Gaussian pro-
cess with stationary increments, independent of (Bt )t≥0.

The variance of the process (Zt )t≥0 can be explicitly computed and it is equal to

ρ(1 − ρ)

√
2

π

∫ t

0

(t − s)e− v(ρ)2

2 s

√
s

ds.

Recently, in [20], the authors proved a central limit theorem for the unscaled random walk
in dynamic random environment, which in our setting corresponds to a random walk jumping
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at rate λn2 instead of λn. Notice that this also corresponds to taking n = 1. Let us write xt

instead of x1
t . In our setting, [20] shows that there exists a nondecreasing function ṽ(ρ) such

that

lim
n→∞

xnt

n
= ṽ(ρ)t

for any t �= 0 and any ρ ∈ (0,1) with the exception of at most two densities. They also prove
that whenever ṽ(ρ) �= 0, the corresponding central limit theorem holds with a Brownian limit.
It is believed that when ṽ(ρ) = 0, the limit is not Brownian. The following heuristics provides
support for this claim, and also gives a conjectured limit for the fluctuations of the random
walk in that case.

As we pointed out above, removing the slow scale of the random walk is the same as
taking a jump rate λ that grows with n. Therefore, it makes sense to study the behaviour of
the process (Xt)t≥0 as λ → ∞. The process (Xt)t≥0 is Gaussian, so it is enough to look at its
variance. Although we expect v(ρ) to be different from ṽ(ρ), it is reasonable to expect that
they are nonzero in the same density region. Notice that

∫ t

0

(t − s)e− v(ρ)2

2 s

√
s

ds = 1

v(ρ)

∫ v(ρ)2t

0

(t − u/v(ρ)2)e− 1
2 u

√
u

du.

Since the integral

∫ ∞
0

e− 1
2 u

√
u

du

is finite, we see that there exists a positive, finite constant σ(ρ) such that

lim
v(ρ)→∞v(ρ)E

[
Z2

t

] = σ(ρ)t.

Since v(ρ) is proportional to λ, 2
√

λ(p − q)Zt converges to a Brownian motion as λ →
∞, and therefore the limit of Xt/

√
λ is Brownian, which is coherent with the central limit

theorem proved in [20].
If v(ρ) = 0, which is the case for ρ = 1/2, then the term 2λ(p − q)Zt is dominant over√
λBt and we have that

lim
λ→∞

Xt

λ
= 2(p − q)Zt .

Moreover,

E
[
Z2

t

] = 1

3

√
2

π
t3/2,

so the process (Zt )t≥0 is a fractional Brownian motion of Hurst exponent 3/4. We formulate
the following conjecture.

CONJECTURE 2.1. At ρ = 1/2,

lim
n→∞

xtn

n3/4 = Zt,

where (Zt )t≥0 is a fractional Brownian motion of Hurst index 3/4.
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2.2. General setting. Let us first describe the dynamic environment. Let 	 = {0,1}Z.
For x ∈ Z let τx : 	 → 	 denote the canonical shift: τxη(y) = η(x + y) for any η ∈ 	

and any y ∈ Z. We say that a function f : 	 → R has support contained in a set A ⊆ Z if
f (η) = f (ξ) whenever η(x) = ξ(x) for every x ∈ A. We say that f is a local function if its
support is contained in some finite set.

ASSUMPTION 2.2. Let c : 	 → [0,∞) satisfy:

(i) Finite range: c(·) is a local function;
(ii) Ellipticity: There exists ε0 > 0 such that c(η) ≥ ε0 for any η ∈ 	;

(iii) Reversibility: c(η) = c(ξ) whenever η(x) = ξ(x) for all x �= 0,1, that is, the support
of c(·) is contained in Z \ {0,1}.

Let cx : 	 → R be defined as cx(η) = c(τxη) for any η ∈ 	. For a local function f : 	 →
R, define Lbf : 	 → 	 as

Lbf (η) = ∑
x∈Z

cx(η)
[
f
(
ηx,x+1)− f (η)

]
,

where ηx,x+1 is defined as

ηx,x+1(z) =

⎧⎪⎪⎨⎪⎪⎩
η(x + 1), z = x,

η(x), z = x + 1,

η(z), z �= x, x + 1.

Since f is local, only a finite number of terms in the sum defining Lbf are nonzero.
The lattice gas with interaction rate c(·) is the Markov process (ηt )t≥0 defined in 	 and

generated by the operator Lb. Notice that the SSEP corresponds to the choice c ≡ 1.
For ρ ∈ [0,1], let νρ be the Bernoulli product measure in 	 with density ρ: for any

x1, . . . , x� ∈ Z,

νρ

{
η(x1) = · · · = η(x�) = 1

} = ρ�.

Thanks to the reversibility condition iii), these measures are invariant under the evolution of
(ηt )t≥0. From now on, we fix ρ ∈ (0,1) and we assume that η0 (and therefore ηt for any
t ≥ 0) has law νρ .

Now let us describe how our random walk moves. Let R ⊆ Z \ {0} be a finite set. For
each z ∈ R, let rz : 	 → [0,∞) be a local function. Let n ∈ N be a scaling parameter and let
(ηn

t )t≥0 be the lattice gas defined above, speeded up by n2, that is, ηn
t = ηtn2 . We denote by

Pn the law of (ηn
t )t≥0 and by En the expectation with respect to Pn. For x ∈ Z and z ∈ R,

define rz(·, x) : 	 → [0,∞) as rz(η, x) = rz(τxη).
We define the process (xn

t )t≥0 as the random walk that jumps from x to x + z with in-
stantaneous rate nrz(η

n
t , x). If we do not keep track of the environment (ηn

t )t≥0, the process
(xn

t )t≥0 is not a Markov process. However, the couple ((ηn
t , xn

t ))t≥0 turns out to be a Markov
process, generated by the operator

Lnf (η, x) = n2
∑
y∈Z

cy(η)
[
f
(
ηy,y+1, x

)− f (η, x)
]

+ n
∑
z∈R

rz(η, x)
[
f (η, x + z) − f (η, x)

]
.

We are now able to state the law of large numbers and the central limit theorem for (xn
t )t≥0.

Define

(2.1) v(ρ) =
∫ ∑

z∈R
zrz dνρ.
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Fix a finite time horizon T > 0 and denote by D([0, T ],R) the space of càdlàg, real-valued
trajectories. The following result was proved in [6] in the case c ≡ 1.

PROPOSITION 2.3. Let v(ρ) be as in (2.1). Then, for any T > 0,

lim
n→∞

xn
t

n
= v(ρ)t

in law with respect to the J1-Skorohod topology of D([0, T ],R).

Here we prove the corresponding central limit theorem.

THEOREM 2.4. Under Assumption 2.10, for any T > 0,

lim
n→∞

xn
t − v(ρ)tn√

n
= σBt + v′(ρ)Zt ,

in law with respect to the J1-Skorohod topology of D([0, T ],R). In the above display,

(2.2) σ 2 =
∫ ∑

z∈R
z2rz dνρ,

(Bt )t≥0 is a standard Brownian motion and (Zt )t≥0 is a Gaussian process of stationary in-
crements, independent of (Bt )t≥0, with variance as given in (5.2).

REMARK 2.5. The parameters D(ρ) and χ(ρ) that appear in (5.2) are functions of
(ηn

t )t≥0 alone.

REMARK 2.6. The so-called gradient condition, stated in Assumption 2.10 is only
needed to prove that the processes (Bt )t≥0 and (Zt )t≥0 are independent.

2.3. The environment process. A classical idea in the context of random walks in random
environments is to consider the environment as seen by the random walk. Here we follow the
approach of [28]. The process (ξn

t )t≥0 with values in 	, defined as

ξn
t (x) = ηn

t

(
x + xn

t

)
for any x ∈ Z and any t ≥ 0

is a Markov process generated by the operator Ln = n2Lb + nLrw , where

Lrwf (ξ) = ∑
z∈R

rz(ξ)
(
f (τzξ) − f (ξ)

)
.

The process (xn
t )t≥0 can be recovered from (ξn

t )t≥0 as follows: for each z ∈ R, let N
z,n
t

be the number of shifts in direction z the process (ξn
t )t≥0 has performed up to time t . On one

hand,

xn
t = ∑

z∈R
zN

z,n
t ,

and on the other hand, (N
z,n
t )t≥0 is a (time-inhomogeneous) Poisson process of rate

(n rz(ξ
n
t ))t≥0. Therefore,

M
z,n
t := 1√

n
N

z,n
t − √

n

∫ t

0
rz
(
ξn
s

)
ds

is a martingale with respect to the filtration Ft = σ {ξn
s : s ≤ t}. Its predictable quadratic

variation is given by 〈
M

z,n
t

〉 = ∫ t

0
rz
(
ξn
s

)
ds.
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Moreover, since the jumps of these Poisson processes are disjoint, these martingales are mu-
tually orthogonal.

Adding the martingales (M
n,z
t )t≥0, we can write the position of the random walk as a sum

of a martingale and an integral term, namely

(2.3)
xn
t − v(ρ)nt√

n
= Mn

t + An
t ,

where Mn
t := ∑

z∈R zM
n,z
t and

(2.4) An
t = √

n

∫ t

0

(
ω
(
ξn
s

)− v(ρ)
)
ds with ω(ξ) := ∑

z∈R
z rz(ξ).

Besides, 〈
Mn

t

〉 = ∫ t

0

∑
z∈R

z2rz
(
ξn
s

)
ds.

The process (An
t )t≥0 is an instance of what is known in the literature as an additive functional

of the chain (ξn
t )t≥0. Theorem 2.4 is an immediate consequence of the following result.

THEOREM 2.7. Consider the decomposition (2.3) and recall the definition of σ in (2.2)
and (Zt )t≥0 in Theorem 2.4. Fix T > 0.

(i) As n → ∞, {(Mn
t )t∈[0,T ]}n∈N converges in law to (σBt )t∈[0,T ] with respect to the

J1-Skorohod topology of D([0, T ],R);
(ii) as n → ∞, {(An

t )t∈[0,T ]}n∈N converges in law to (v′(ρ)Zt)t∈[0,T ] with respect to the
J1-Skorohod topology of D([0, T ],R);

(iii) under Assumption 2.10, the processes (Bt )t∈[0,T ] and (Zt )t∈[0,T ] are independent.

The rest of the paper is devoted to the proof of Theorem 2.7. Part (i) follows from the
Martingale FCLT (Proposition 2.8). It is necessary to check that 〈Mn

t 〉 → σ 2t in probability
as n → ∞, and this can be proved by combining Theorem 3.5 in Section 3 with Theorem 1.3
of [6]. The proof of (ii) spans Sections 3, 4 and 5; the strategy is to show that An has the
same scaling limit as a certain additive functional of the lattice gas, studied in [19]. The proof
of (iii) is in Section 6; the strategy is to show that the limiting processes (Bt )t∈[0,T ] and
(Zt )t∈[0,T ] are uncorrelated and that their joint law is Gaussian.

2.4. Auxiliary results.

2.4.1. Invariance principle for martingales. To prove convergence of the sequence
{(Mn

t )t∈[0,T ]}n∈N and to prove that the limiting processes (Bt )t∈[0,T ] and (Zt )t∈[0,T ] are in-
dependent, we will use the following result.

PROPOSITION 2.8 (Martingale FCLT). Let {(Mn
t )t∈[0,T ]}n∈N be a sequence of square-

integrable martingales. Assume that:

(i) the sequence of predictable quadratic variation processes {〈Mn
t 〉t∈[0,T ]}n∈N con-

verges in law to an increasing, deterministic function H : [0, T ] →R;
(ii) the size of the largest jump of (Mn

t )t∈[0,T ] converges in probability to 0.

Then the sequence {(Mn
t )t∈[0,T ]}n∈N converges in law to a continuous martingale of

quadratic variation H . In addition, let {(N n
t )t∈[0,T ]}n∈N be another sequence of square-

integrable martingales satisfying (i), (ii), possibly for a different function H . If
{(Mn

t )t∈[0,T ]}n∈N is orthogonal to {(N n
t )t∈[0,T ]}n∈N for each n, then the limiting martin-

gales are independent.
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A proof of this result for the case H(t) = σ t can be found in [16], Theorem 1.4, or in [34],
Theorem 2.1. The proof for general H(t) can be found in Chapter VIII.3.a of [24].

2.4.2. Density fluctuation field. This section presents some results on (ηn
t )t≥0 that are

needed in the proof of Theorem 2.7.
Let S(R) be the Schwarz space of test functions in R. Let φ : 	 → R be a local function.

Denote φ̄(ρ) := ∫
φ dνρ . For f ∈ S(R), n ∈N and t ≥ 0, let

(2.5) Xn
t (f ;φ) := 1√

n

∑
x∈Z

(
φ(τxη) − φ̄(ρ)

)
f

(
x

n

)
.

This defines a process (Xn
t (·;φ))t≥0 with values in the space S ′(R) of tempered distributions.

We will use the shorthand Xn
t (f ) := Xn

t (f ;η0). The process (Xn
t )t≥0 defined in this way is

known as the density fluctuation field associated to the particle system (ηn
t )t≥0.

Since the topology of the space of tempered distributions is not very strong, it is sometimes
more convenient to consider the Sobolev spaces H�(R) instead of S ′(R). Those are defined
as the closure of S(R) with respect to the norms

‖f ‖H�(R) =
(∫

f (x)
(−� + x2)�f (x) dx

)1/2
.

One can check that (Xn
t )t≥0 is a well-defined process in H−2(R) (see, for example, Chap-

ter 11 of [27]). The following result was proved in [32]. Under different assumptions on the
rates c(η), it was proved in [14, 15] and [30].

PROPOSITION 2.9. Let (ηn
t )t≥0 the lattice gas with initial law νρ . There exists a constant

D(ρ) such that for any T > 0,

lim
n→∞Xn

t = Xt

in law with respect to the J1-Skorohod topology of D([0, T ],H−2(R)), where (Xt)t≥0 is the
stationary solution of

(2.6) ∂tX = D(ρ)�X +√
2D(ρ)ρ(1 − ρ)∇Ẇt .

In this equation, Ẇt denotes a standard, space-time white noise.

For the proof in Section 6 that the martingale and the additive functional in (2.3) are inde-
pendent in the limit, we need an additional assumption on the exchange rates cx(η).

ASSUMPTION 2.10 (Gradient condition). There exists a finite family of local functions
g1, . . . , gk : 	 →R and finitely supported functions q1, . . . , qk : Z →R such that∑

x∈Z
qj (x) = 0 = ∑

x∈Z
xqj (x) for all j ∈ {1, . . . , k}

and

Lbη0 =
k∑

j=1

∑
x∈Z

qj (x)gj (τxη).

As examples of rates that satisfy Assumptions 2.2 and 2.10, one can consider c(η) = 1
(simple symmetric exclusion) or c(η) = 1 + η−1 + η2. Our assumption follows [30]. It is
slightly different from the gradient condition as stated in [27], page 61, and in [18]. We only
need it for the following lemma.
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LEMMA 2.11. Let T > 0 and let H : [0, T ] → S(R) be a smooth function. Denote
Hs(u) := H(s,u). Then, for any t ∈ [0, T ],∫ t

0

(
∂s + n2Lb

)
Xn

s (Hs) ds −
∫ t

0
Xn

s

((
∂s + D(ρ)�

)
Hs

)
ds −→ 0

in probability, as n → ∞.

We defer the proof to the end of Section 3, because it uses Corollary 3.6 as an input.

3. Replacement lemma and entropy bound. In this section, we will establish two es-
timates that are fundamental to the proof of Theorem 2.7. First, we obtain a sharp bound on
the entropy production for the environment process. Then, we prove the so-called replace-
ment lemma, that allows to write At as a function of the density of particles plus an error that
vanishes in the limit.

3.1. Entropy bound. Let us recall that the processes (ηn
t )t≥0 and (ξn

t )t≥0 start from the
Bernoulli product law νρ . We recall that νρ is invariant under the evolution of (ηn

t )t≥0 and
stress that it is not invariant under (ξn

t )t≥0, unless very delicate cancellations occur. In fact,
invariance of νρ under (ξn

t )t≥0 is equivalent to ψ = 0, where ψ is defined in (3.5). Let μn
t be

the law of ξn
t and define

Hn(t) := H
(
μn

t |νρ

)
,

where

H(μ|ν) :=
∫

f logf dν, f = dμ

dν

is the relative entropy (or Kullback–Leibler divergence) of μ with respect to ν. The main
result of this section is the following bound.

THEOREM 3.1 (Entropy bound). There exists C depending only on ρ, {rz; z ∈ R} and ε0

such that H ′
n(t) ≤ C for any t ≥ 0. In particular, Hn(t) ≤ Ct for any t ≥ 0.

REMARK 3.2. In [6], it is proved that H ′
n(t) ≤ Cn. As observed in [9], a bound of this

type is enough (aside from the usual model-dependent technical points) to adapt Varadhan’s
approach to obtain hydrodynamic limits and the associated large deviations principle. In [5,
6], this strategy was successfully applied for the process (ξn

t )t≥0. Actually, the bound H ′
n(t) ≤

Cn is not hard to prove (see Lemma 2.2 in [6], Lemma 3.2 in [9] or Lemma 6.1 in [17]).
A bound of the form

lim
n→∞

Hn(t)

n
= 0

is more difficult to obtain, and it is the main point of the so-called Yau’s relative entropy
method in hydrodynamic limits, see [35] and Chapter 6 of [27]. An adaptation of Yau’s
method to the model considered in this article only gives a bound of the form

lim
n→∞ sup

0≤s≤t

H ′
n(t)

n
= 0,

which is very far from Theorem 3.1.
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PROOF. Let ft be the Radon–Nykodim derivative of μn
t with respect to νρ (we are not

indexing in n in order to not overcharge the notation). By Theorem A.9.2 in [27], we have
that

(3.1) H ′
n(t) ≤ 2〈√ft ,Ln

√
ft 〉.

In the last equation and throughout the rest of the article, 〈·, ·〉 denotes the inner product in
L2(νρ).

Recall that Ln = n2Lb + nLrw . Since νρ is invariant under Lb, we have that 〈√ft ,

Lb

√
ft 〉 ≤ 0. Even more, νρ is reversible for Lb. From reversibility, one can show that

(3.2) 〈√ft ,Lb

√
ft 〉 = −1

2

∑
x∈Z

∫
cx(ξ)

(√
ft

(
ξx,x+1

)−
√

ft (ξ)
)2

dνρ.

Let us introduce the Dirichlet form D(·), defined as

(3.3) D(h) = 1

2

∑
x∈Z

∫ (
h
(
ξx,x+1)− h(ξ)

)2
dνρ

for any h : 	 →R. Thanks to the ellipticity condition cx ≥ ε0, we have tat

〈√ft ,Lb

√
ft 〉 ≤ −ε0D(

√
ft ).

Using (3.2), we see that

H ′
n(t) ≤ −ε0 n2 D(

√
ft ) + 2n

〈√
ft ,L

rw
√

ft

〉
.

Therefore, if we are able to control 〈√ft ,L
rw

√
ft 〉 in terms of the Dirichlet form of

√
ft , the

theorem will be proved. The following lemma provides the required bound, which is going
to be used several times in the rest of the article.

LEMMA 3.3. For any f ≥ 0 such that
∫

f dνρ = 1, the following inequality holds:

(3.4) 〈√f ,Ln

√
f 〉 ≤ −ε0 n2D(

√
f ) + 〈ψ,nf 〉,

where

(3.5) ψ(ξ) := 1

2

∑
z∈R

(
rz(τ−zξ) − rz(ξ)

)
.

In addition, for all β > 0,

(3.6) 〈ψ,nf 〉 ≤ βD(
√

f ) + Cn2

β
,

where C > 0 does not depend on n.

Before we prove Lemma 3.3, let us show how it implies a bound on H ′
n(t) that is uniform

in n. Putting together (3.1), (3.4) and (3.6), we get

H ′
n(t) ≤ −ε0n

2D(
√

ft ) + βD(
√

ft ) + Cn2

β
,

for any positive β . The choice β = ε0n
2 yields H ′

n(t) ≤ C
ε0

, which is the inequality we were
aiming at. �

PROOF OF LEMMA 3.3. Combining (3.2) with the ellipticity assumption, we get

2〈√f ,Ln

√
f 〉 ≤ −ε0n

2D(
√

f ) + 2n
〈√

f ,Lrw
√

f
〉
.
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Using the identity
√

a(
√

b − √
a) = −1

2(
√

b − √
a)2 + 1

2(b − a), we get

〈√
f ,Lrw

√
f
〉 = ∑

z∈R

∫
rz(ξ)

√
f (ξ)

(√
f (τzξ) −

√
f (ξ)

)
dνρ

= −1

2

∑
z∈R

∫
rz(ξ)

(√
f (τzξ) −

√
f (ξ)

)2
dνρ

+ 1

2

∑
z∈R

∫
rz(ξ)

(
f (τzξ) − f (ξ)

)
dνρ.

Neglecting the first term and performing the change of variables ξ �→ τzξ , we conclude that

〈√
f ,Lrw

√
f
〉 ≤ 1

2

∑
z∈R

〈f, rz ◦ τ−z − rz〉,

and this finishes the proof of (3.4).
It remains to prove (3.6). The strategy is to split the integrand ψ(ξ) into several terms of

the form h(ξx,x+1)−h(ξ), for appropriate local functions h. To each of these terms, we then
apply Lemma A.1. Let us start with the function r ◦ τ1 − r , where r is local. To simplify
the notation, assume that r has support in {0, . . . , k} and denote by ∇x,x+1h the function
ξ �→ h(ξx,x+1) − h(ξ). Then r(τ1ξ) = r(∇k,k+1 · · ·∇0,1ξ). Therefore,

r(τ1ξ) − r(ξ) = r
(∇0,1ξ

)− r(ξ) +
k∑

y=1

r
(∇y,y+1 · · ·∇0,1ξ

)− r
(∇y−1,y · · ·∇0,1ξ

)
.

Applying Lemma A.1, we get, for any β > 0,

〈nf, r ◦ τ1 − r〉 ≤ βD(
√

f ) + n2

β
‖r‖2∞k.

Using a telescoping argument, we can obtain a similar bound for 〈nf, r ◦ τz − r〉. Adding
over z ∈ R we finish the proof. Notice that the constant C in the statement depends on the
dynamics of the random walk alone: it is a function of the size of R, the sizes of the supports
of the rates rz and the numbers ‖rz‖∞. �

REMARK 3.4. If the random walk moves at a rate smaller than n, our proof breaks down
in the inequality 〈√

f ,−Lrw
√

f
〉 ≤ n〈√f ,Lb

√
f 〉 + O(1)

in Lemma 3.3. The constant n is the best that we could manage (the precise point in the proof
where we use it is (3.5))). Without this inequality, we are not able to show H(ξn

t |νρ) = O(1).
We could still get H(ξn

t |νρ) = o(n), though, and use this to get a law of large numbers when

the walk moves at rate much smaller than n
2
3 .

3.2. Replacement lemma. Let ϕ : R → R+ be a smooth function with compact support
in (0,1) and such that

∫
R

ϕ(u)du = 1. Let ϕε(u) := ε−1ϕ(u/ε).
In this section, we will prove that the additive functional An

t is asymptotically equivalent
to a function of the density of particles around the origin. More precisely, we will prove that

lim sup
ε→0

lim sup
n→∞

Pn

(∣∣∣∣√n

∫ t

0

(
ω
(
ξn
s

)− v(ρ) − v′(ρ)
(
ξn
s � ϕε

)
(0)

)
ds

∣∣∣∣ > δ

)
= 0,
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where we use the notation

(3.7) (ξ � ϕε)(x) := 1

n

∑
y∈Z

ϕε

(
y

n

)(
ξ(x + y) − ρ

)
.

In this theorem, the particular form of the function ω does not play a fundamental role. In
fact, this result is a particular instance of what is known in the literature as the replacement
lemma, which roughly states that any local function of ξn

t is asymptotically equivalent to
a function of the density of particles. We take averages using a smooth function instead of
the usual arithmetic mean for technical reasons having to do with the topology of Skorohod
space. This issue shows up in Section 5, where we characterize the limiting trajectories of the
random walk.

THEOREM 3.5 (Replacement lemma). Let φ : 	 →R be a local function. For λ ∈ [0,1],
define φ̄(λ) = ∫

φ dνλ. Then, for any δ > 0 and any t ≥ 0,

lim sup
ε→0

lim sup
n→∞

Pn

(∣∣∣∣√n

∫ t

0

(
φ
(
ξn
s

)− φ̄(ρ) − φ̄′(ρ)
(
ξn
s � ϕε

)
(0)

)
ds

∣∣∣∣ > δ

)
= 0.

The same statement holds when ξn
s is replaced by ηn

s .

COROLLARY 3.6. Fix t ∈ [0, T ]. Let H : [0, T ] → S(R) be a smooth function and φ :
	 →R be a local function. Then

lim
n→∞

∫ t

0

(
Xn

s (Hs;φ) − φ̄′(ρ)Xn
s (Hs)

)
ds −→ 0

in probability.

PROOF. First, we observe that for any random variable X,

P
(|X| > δ

) ≤ P(X > δ) + P(−X > δ).

Considering φ and −φ, it is enough to prove that

(3.8) lim sup
ε→0

lim sup
n→∞

Pn

(√
n

∫ t

0

(
φ
(
ξn
s

)− φ̄(ρ) − φ̄′(ρ)
(
ξn
s � ϕε

)
(0)

)
ds > δ

)
= 0.

Let V : 	 → R be a bounded function. Combining Theorem A1.7.2 and equation A3.1.1 of
[27], we have the following:

logEn

[
e
∫ t

0 V (ξn
s ) ds] ≤ t sup

f

{〈V,f 〉 + 〈√f ,Ln

√
f 〉},

where the supremum is over all densities f with respect to νρ . Combining this proposition
with (3.4), we get the following estimate:

(3.9) logEn

[
e
∫ t

0 V (ξn
s ) ds] ≤ t sup

f

{〈V + nψ,f 〉 − ε0n
2D(

√
f )

}
.

We are going to need this inequality later on in order to prove tightness. Here, we proceed by
substituting (3.6), getting

logEn

[
e
∫ t

0 V (ξn
s ) ds] ≤ t sup

f

{
〈V,f 〉 + (β − ε0)n

2D(
√

f ) + C

β

}
,

for any β > 0. The constant C does not depend on n or β .
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Now we can go back to (3.8): for any bounded function V and any positive γ and β ,

(3.10)

logPn

(∫ t

0
V
(
ξn
s

)
ds > δ

)
≤ −γ δ + logEn

[
eγ

∫ t
0 V (ξn

s ) ds]
≤ −γ δ + t sup

f

{
〈γV,f 〉 + (β − ε0)n

2D(
√

f ) + C

β

}
,

where the supremum is taken over all f ≥ 0 such that
∫

f dνρ = 1 and where C > 0 does not
depend on n. The expression above becomes easier to understand if one keeps in mind that
the term −ε0D(

√
f ) comes from the reversible dynamics and the term with β comes from

the random walk dynamics.
Now the proof of (3.8) consists in writing the integrand as a sum of terms of the form V (ξ)

for which good bounds of 〈V,f 〉 in terms of D(
√

f ) are available. As we have seen in the
proof of the entropy bound, such terms are of the form h(ξx,x+1) − h(ξ) for bounded local
functions h.

Let R ⊂ Z be the support of φ. The first thing to notice is that every mean-zero local
function φ can be written as a linear combination of the simpler variables {ξ(A) : A ⊂ R},
where

ξ(A) := ∏
x∈A

(
ξ(x) − ρ

)
.

It is enough, then, to prove inequality (3.8) when φ(ξ) is of the form φ(ξ) = ξ(A) for
some finite set A.

We start with the simplest case, in which the local function is φ(ξ) = ξ0 −ρ. The statement
reads

(3.11) lim
ε→0

lim
n→∞P

(√
n

∣∣∣∣∫ t

0

(
ξn
s (0) − ρ − (

ξn
s � ϕε

)
(0)

)
ds

∣∣∣∣ > δ

)
= 0.

Since time will not play any role in the computations that follow, we will omit it from the
notation for a while. Denote ξx := ξ(x) and ξ0 := ξ0 − ρ. Recall that 〈·, ·〉 denotes the inner
product in L2(νρ) and that D(

√
f ) denotes the Dirichlet form of symmetric exclusion, as

defined in (3.3).
In view of (3.10), we need to estimate the integral 〈ξ0 − (ξ �ϕε)(0), f 〉 in terms of D(

√
f ).

We are going to prove that, for any νρ -density f , the following inequality holds:

(3.12) γ n
1
2
〈
ξ0 − (ξ � ϕε)(0), f

〉 ≤ αn2D(
√

f ) + εγ 2 C′

α
+ on(1),

where α > 0 is arbitrary and C′ does not depend on n.
We would like to write the difference inside the inner product in (3.12) as a linear combi-

nation of the functions ξ �→ ξx − ξx+1, in order to apply Lemma A.1. For that, we need the
coefficients of the ξx − ρ to sum up to 1. Define

mn(ε) := 1

n

∑
x∈Z

ϕε

(
x

n

)
and write the telescoping sum

(3.13)

γ n
1
2

〈
ξ0 − 1

n

∑
x∈Z

ϕε

(
x

n

)
ξx, f

〉

= γ n
1
2
(
1 − mn(ε)

)〈ξ0, f 〉 + ∑
x∈Z

∞∑
y=x+1

ϕε

(
y

n

)
γ n− 1

2 〈ξx − ξx+1, f 〉.
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Since mn is a Riemman sum for
∫ ε

0 ϕε(u) du = 1, the first term is of order n− 1
2 . As for the

second term, notice that, since ϕε has support contained in (0, ε), only finitely many terms of
the sum over x are not null, namely those with 0 < x < εn.

Let α > 0. Applying Lemma A.1, we can bound the second term of (3.13) by

(3.14) αn2D(
√

f ) + 2γ 2

αn

εn∑
x=0

(
1

n

εn∑
y=x+1

ϕε

(
y

n

))2

.

Using ‖ϕε‖∞ ≤ ε−1‖ϕ‖∞, we get the inequality

(3.15)
εn∑

x=0

(
1

n

εn∑
y=x+1

ϕε

(
y

n

))2

≤ ‖ϕ‖2∞εn.

Therefore, the number (3.14) is smaller than

αn2D(
√

f ) + 2γ 2

α
‖ϕ‖2∞ε,

and this finishes the proof of (3.12). Plugging this inequality into (3.10), with the choices

α = β = ε0
2 and V (ξ) = γ n

1
2 [ξ0 − (ξ � ϕε)(0)], we get the replacement lemma when the

local function is φ(ξ) = ξ0 −ρ. In an analogous manner, one can prove the lemma for φ(ξ) =
ξx − ρ for any x ∈R.

Next, we show that the higher order monomials vanish. More precisely, we show that if
A ⊂ Z is a finite set and |A| ≥ 2 then

(3.16) lim sup
ε→0

lim sup
n→∞

P

(∣∣∣∣√n

∫ t

0
ξn
s (A)ds

∣∣∣∣ > δ

)
= 0.

Write the set A in the form A = {x0} ∪ A′ ∪ {y0}, where we assume that x0 < y0 and
A′ ⊂ {x0 + 1, . . . , y0 − 1}. Denote by (ξ � ϕ̃ε)(x0) the weighted average of the centered con-
figuration ξ in a box to the left of x0:

(ξ � ϕ̃ε)(x0) = 1

n

∑
y∈Z

(
ξ(x0 − y) − ρ

)
ϕε

(
y

n

)
= 1

n

∑
y∈Z

ϕε

(
y

n

)
ξx0−y.

To prove assertion (3.16), we prove that each of the probabilities below converges to zero
as first n → ∞ then ε → 0.

P

(∣∣∣∣√n

∫ t

0
ξn
s (x0)ξ

n
s

(
A′)(ξ̄ n

s (y0) − (
ξn
s � ϕε

)
(y0)

)
ds

∣∣∣∣ > δ

)
,

P

(∣∣∣∣√n

∫ t

0

(
ξ̄ n
s (x0) − (

ξn
s � ϕ̃ε

)
(x0)

)
ξn
s

(
A′)(ξn

s � ϕε

)
(y0) ds

∣∣∣∣ > δ

)
,

P

(∣∣∣∣√n

∫ t

0

(
ξn
s � ϕ̃ε

)
(x0)ξ

n
s

(
A′)(ξn

s � ϕε

)
(y0) ds

∣∣∣∣ > δ

)
.

To bound the first probability, we mimic the proof of (3.11). That is, first we use (3.10) to
reduce the proof to a variational problem, then we write the difference ξ̄ n

s (y0)− (ξn
s � ϕε)(y0)

as a telescoping sum as in (3.13) and apply Lemma A.1 to each term of the sum, with the
roles of g and h in that lemma being played by ξ̄x and ξ̄ (x0)ξ(A′) respectively. The proof can
be replicated to bound the second inequality, this time with the roles of g and h being played
by ξx and ξn

s (A′)(ξn
s � ϕε)(y0), respectively. In both cases, one can use the bounds ‖h‖∞ ≤ 1

and (3.15).
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It remains to deal with the last probability. For that, recall that μn
s denotes the law of ξn

s ,
the environment as seen from the random walk at time s. We claim that there exists a large
D = D(t) such that, for all s ≤ t ,

lim
n→∞En

[∣∣√n
(
ξn
s � ϕ̃ε

)
(x0)ξ

n
s

(
A′)(ξn

s � ϕε

)
(y0)

∣∣] = 0.

To prove that, we apply the bounds ab ≤ a2

2 + b2

2 and |ξ(A′)| ≤ 1 and get

Eμn
s

[∣∣√n(ξ � ϕ̃ε)(x0)ξ
(
A′)(ξ � ϕε)(y0)

∣∣] ≤ 1

2
Eμn

s

[√
n(ξ � ϕ̃ε)

2(x0)
]

+ 1

2
Eμn

s

[√
n(ξ � ϕε)

2(y0)
]
.

Now we use relative entropy to replace the μn
s expectation by a νρ expectation, using the

following argument: for any α > 0, it holds

(3.17) Eμn
s

[√
n(ξ � ϕε)

2(y0)
] ≤ H(μn

s |νρ)

α
+ 1

α
logEνρ

[
eα

√
n(ξ�ϕε)

2(y0)
]
.

Under the product measure νρ , the random variable (ξ � ϕε)(y0) is a linear combination

of i.i.d., bounded random variables, see (3.7). The variance of this sum is at most ‖ϕ‖2∞
εn

=:
σ 2. By Lemma B.2, the logarithm is bounded by 8α

√
nσ 2 whenever 4α

√
nσ 2 < 1, that is,

whenever α ≤ ε
√

n

4‖ϕ‖2∞
. Going back to (3.17), we can choose such an α of order

√
n. Combining

the resulting inequality with the fact that the entropy is of order 1, we conclude that

lim
n→∞Eμn

s

[√
n(ξ � ϕε)

2(y0)
] = 0.

An analogous argument shows that

lim
n→∞Eμn

s

[√
n(ξ � ϕ̃ε)

2(x0)
] = 0,

and this finishes the proof of (3.16). �

PROOF OF LEMMA 2.11. It is only here that we need Assumption 2.10. It allows us to
make a summation by parts on LbX

n
s (Hs) and write

n2LbX
n
s (Hs) = 1√

n

k∑
j=1

(
1

2

∑
y∈Z

y2qj (y)

)∑
x∈Z

gj

(
τxη

n
s

)
�Hs

(
x

N

)
gj

(
τxηn

s

)
+ O

(
1√
n

)
.

The statement follows from Corollary 3.6, with

D(ρ) :=
k∑

j=1

∑
y∈Z

y2qj (y)ḡ′
j (ρ).

�

4. Tightness. In this section, we prove that the sequence of additive functionals{
An

t : t ∈ [0, T ]}n∈N,

defined in (2.4), is tight in C([0, T ],R). Since An
0 = 0 for all n ∈ N, we only need to prove

equicontinuity.
The proof is an application of the Kolmogorov–Centov criterion, see Problem 2.4.11 in

[26]:
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PROPOSITION 4.1. Assume that the sequence of stochastic processes {Xn
t :

t ∈ [0, T ]}n∈N satisfies

E
[∣∣Xn

t − Xn
s

∣∣λ] ≤ C|t − s|1+λ′

for some positive constants λ, λ′ and C and for all s, t ∈ [0, T ]. Then it also satisfies

lim
δ→0

lim
n→∞ P

(
sup

|t−s|≤δ
s,t∈[0,T ]

∣∣Xn
t − Xn

s

∣∣ > ε
)

= 0 for all ε > 0.

Tightness is a corollary of the following statement.

THEOREM 4.2. For any λ ∈ (1,2), there exists a constant C = C(λ) such that

E

[∣∣∣∣√n

∫ t+τ

t
ω
(
ξn
s

)− v(ρ) ds

∣∣∣∣λ] ≤ Cτ 3λ/4

holds for every t, τ ∈ [0, T ] and for every n ∈ N.

The rest of this section deals with the proof of Theorem 4.2. The plan is the following: first,
we notice that ω(ξ) − v(ρ) is the sum of finitely many mean-zero (with respect to νρ ) local
functions: ω(ξ) − v(ρ) = ∑

z∈R z(rz(ξ) − ∫
rz dνρ). Every mean-zero local function can be

written as a polynomial in the variables {ξx := ξx − ρ}x∈R. The number of terms in this
polynomial does not depend on n. Therefore, it is enough to prove that, for all {x1, . . . , xk} ⊂
R,

(4.1) En

[∣∣∣∣√n

∫ t+τ

t
ξ

n
s (x1) · · · ξn

s (xk) ds

∣∣∣∣λ] ≤ C · τ 3λ/4 for all t, τ ≤ T .

As we will see, the proof of (4.1) amounts to a careful reproving of the replacement lemma.
From a technical point of view, the proofs of the replacement lemma and the entropy estimate
are very similar, hinging upon the estimation of certain time integrals of the process. The
estimate is always done in two steps: one first replaces local functions by their spatial averages
and then controls the moments of those averages with the help of concentration inequalities.

It will be more convenient to work with tail bounds instead of moments, because our tool
for estimating time integrals, the Feynman–Kac formula, gives bounds on the exponential
moments. The following lemma converts tail bounds into moment estimates.

LEMMA 4.3. Let X be a nonnegative random variable. Assume P(X > δ) ≤ A/δ2 for
any δ > 0. Then, for any λ ∈ (1,2), there exists a constant C(λ) such that E[Xλ] ≤ C(λ)Aλ/2.

PROOF. Fix ε > 0. Then

E
[
Xλ] =

∫ ∞
0

λδλ−1
P(X > δ)dδ

≤ ελ +
∫ ∞
ε

λAδλ−3 dδ

= ελ + A
λ

2 − λ
ελ−2.

Choosing ε = A1/2 we get E[Xλ] ≤ (1 + λ/(2 − λ))Aλ/2. �
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STEP 1 (Concentration). Given � ∈ N and x ∈ Z, denote

ξ
n,�
s (x) := ξ

n
s (x − 1) + · · · + ξ

n
s (x − �)

�
.

Then, for � = �n√
τ� and λ ∈ (1,2),

(4.2) En

[∣∣∣∣√n

∫ t+τ

t

(
ξ

n,�
s (x)

)2
ds

∣∣∣∣λ] ≤ C(λ)τ 3λ/4.

STEP 2 (Replacement). Let x1, . . . , xk ∈ Z with x1 < x2 < · · · < xk . Then, for � =
�n√

τ�,

En

[∣∣∣∣√n

∫ t+τ

t
ξ

n
s (x1) · · · ξn

s (xk) − (
ξ

n,�
s (x1)

)2
ds

∣∣∣∣λ] ≤ C(λ) · τ 3λ/4.

PROOF OF STEP 1. During the proof, C will denote a positive number that may change
from line to line. It depends on λ and T but not on any other parameter. Since |ξn,�

s (x)| ≤ 1,

we can prove (4.2) with |ξn,�
s (x)| in place of (ξ

n,�
s (x))2.

By the entropy inequality (B.3),

(4.3) Pn

(
n

1
2
∣∣ξn,�

s (x)
∣∣ > δ

) ≤ Hn(s) + log 2

log{1 + Pn(n
1
2 |ξn,�

0 (x)| > δ)−1}
.

Recall that ξ0 has law νρ by assumption, therefore the variables {ξ0(x)}x∈Z are independent.
From Lemma B.1 and (B.1), it follows

(4.4) Pn

(
n

1
2
∣∣ξn,�

0 (x)
∣∣ > δ

) ≤ 2e−2�δ2/n.

We have already proved in Section 3.1 that Hn(s) ≤ Cs for some universal constant C.
Combining this fact with (4.3) and (4.4), we can prove

(4.5) Pn

(
n

1
2
∣∣ξn,�

s (x)
∣∣ > δ

) ≤ Hn(s) + log 2

log{1 + 1
2e

2�
n

δ2}
≤ 2(Hn(s) + log 2)

2�
n

δ2
≤ Cn

�δ2 .

Applying Lemma 4.3 and recalling our choice � = n
√

τ ,

En

[∣∣n 1
2 ξ

n,�
s (x)

∣∣λ] ≤ C/τλ/4 for all s ≤ T .

We finish the proof with an application of Jensen’s inequality:

En

[∣∣∣∣√n

∫ t+τ

t
ξ

n,�
s (x) ds

∣∣∣∣λ] ≤ τλ · 1

τ

∫ t+τ

t
En

[∣∣n 1
2 ξ

n,�
s (x)

∣∣λ]ds

≤ Cτ 3λ/4. �

PROOF OF STEP 2. Write

ξ
n
s (x1) · · · ξn

s (xk) − (
ξ

n,�
s (x1)

)2 = (
ξ

n
s (x1) − ξ

n,�
s (x1)

)
ξ

n
s (x2) · · · ξn

s (xk)

+ ξ
n,�
s (x1)

(
ξ

n
s (x2) · · · ξn

s (xk) − ξ
n,�
s (x1)

)
.

An application of the inequalities |ξn
s (x)| ≤ 1 and |a + b|λ ≤ 2λ−1(|a|λ + |b|λ) gives

E

[∣∣∣∣√n

∫ t+τ

t
ξ

n
s (x1) · · · ξn

s (xk) − (
ξ

n,�
s (x1)

)2
ds

∣∣∣∣λ]

≤ 2λ−1
E

[∣∣∣∣√n

∫ t+τ

t

(
ξ

n
s (x1) − ξ

n,�
s (x1)

)
ξ

n
s (x2) · · · ξn

s (xk) ds

∣∣∣∣λ]

+ 2λ
E

[(√
n

∫ t+τ

t

∣∣ξn,�
s (x1)

∣∣ds

)λ]
.
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We have already proved that the second expectation is bounded by C(λ)τ 3λ/4 for some
constant C(λ). It remains to prove the same for the first expectation. From Lemma 4.3, we
see that it suffices to prove, for all δ > 0 and τ ≤ T ,

(4.6) Pn

(√
n

∣∣∣∣∫ t+τ

t

(
ξ

n
s (x1) − ξ

n,�
s (x1)

)
ξ

n
s (x2) · · · ξn

s (xk) ds

∣∣∣∣ > δ

)
≤ Cτ 3/2

δ2

for some C that does not depend on n. During the rest of the section, we use the notation

W(ξ) = ξx2
· · · ξxk

and we keep the convention the value of C can change from line to line but does not depend
on n. �

LEMMA 4.4. Recall the notation (3.5). There exists θ0 > 0 such that

(4.7) logPn

(∫ τ

0
±√

n · (ξn
s (x1) − ξ

n,�
s (x1)

)
W

(
ξn
s

)− θ0nψ
(
ξn
s

)
ds > δ

)
≤ −Cδ2

τ 3/2 .

In fact, we can take θ0 = 2τ 3/2/δε0. The same θ0 satisfies

(4.8) Pn

(∣∣∣∣∫ t+τ

t
θ0 nψ

(
ξn
s

)
ds

∣∣∣∣ > δ

)
≤ Cτ 3/2

δ2 .

Before proving the lemma, let us use it to deduce (4.6). Following the three-line computa-
tion in (4.5), we can deduce from (4.7) that

Pn

(∫ t+τ

t
±√

n · (ξn
s (x1) − ξ

n,�
s (x1)

)
W

(
ξn
s

)− θ0nψ
(
ξn
s

)
ds > δ

)
≤ −C′τ 3/2/δ2,

for a constant C′ that does not depend on n or τ . Putting this together with (4.8), we get (4.6).

PROOF OF LEMMA 4.4. Let θ > 0. To bound the probability in (4.7), we first apply the
inequality P(X > δ) ≤ e−θδ

E[eθX] and then the inequality (3.9). Thus, (4.7) is bounded by

(4.9) −θδ + τ sup
f

{±〈 (
ξx1

− ξ
�
x1

)
W(ξ), θ

√
nf

〉− ε0n
2D(

√
f ) + (1 − θθ0)〈ψ,nf 〉},

where the supremum is taken over the set of probability densities with respect to νρ , and

ξ
�
x1

= 1
�
(ξ

�
x1−1 + · · · + ξ

�
x1−�). To bound the first term, we split the difference ξx1

− ξ
�
x1

as

ξx1
− ξ

�
x1

=
�−1∑
j=0

� − j

�
(ξx1−j − ξx1−j−1)

and apply Lemma A.1 to each piece, with g = ξx1−j−1. Using the bound |W(ξ)| ≤ 1, it is
possible to prove

∣∣〈 (ξx1
− ξ�

x1

)
W(ξ), θ

√
nf

〉∣∣ ≤ ε0n
2D(

√
f ) + C

θ2�

ε0n
.

Going back to (4.9), choose θ0 = θ−1. Recall that � = n
√

τ . Then (4.9) is bounded by

−θδ + Cθ2τ 3/2

ε0
. We can choose θ = δε0/2Cτ 3/2. This proves (4.7).

With this choice of θ0, inequality (4.8) will follow if we can prove

En

[∣∣∣∣∫ t+τ

t
nψ

(
ξn
s

)
ds

∣∣∣∣] ≤ C.
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The entropy inequality (B.2) gives the bound

En

[∣∣∣∣∫ t+τ

t
nψ

(
ξn
s

)
ds

∣∣∣∣] ≤ Hn(t) + logE
[
exp

∣∣∣∣∫ τ

0
nψ

(
ξn
s

)
ds

∣∣∣∣].
To bound this quantity, apply four inequalities in succession; first, the entropy bound (Theo-
rem 3.1); second, e|a| ≤ ea + e−a ; third, inequality (3.9); finally, inequality (3.6). �

5. Limit points of the additive functional. In the previous section, we proved that the
sequence of additive functionals{

An
t :=

∫ t

0

√
n
(
ω
(
ξn
s

)− v(ρ)
)
ds : t ∈ [0, T ]

}
n∈N

is tight. In this section, we identify its limit points, in Proposition 5.2. For that, we will rely
strongly on the results of [19].

By the replacement lemma 3.5, we can approximate An
t by the additive functional

v′(ρ)
√

n
∫ t

0 (ξn
s � ϕε)(0) ds. Following [19], we relate this functional to the density fluctu-

ation field of the underlying particle system. One can write

√
n

∫ t

0

(
ξn
s � ϕε

)
(0) ds =

∫ t

0
Xn

s (τ−xn
s /nϕε) ds,

where Xn is the density fluctuation field of the lattice gas, (2.5), and τbϕ(u) := ϕ(b + u). By
Theorem 2.3, the rescaled random walk (

xn
t

n
)0≤t≤T converges to the deterministic trajectory

(v(ρ)t)0≤t≤T . Because of that, we expect the integral
∫ t

0
√

n(ω(ξn
s ) − v(ρ)) ds to have the

same scaling limit as the integral v′(ρ)
∫ t

0 Xn
s (τ−v(ρ)sϕε) ds. To find the scaling limit of this

last process, we use the following result.

THEOREM 5.1. Let a ∈ R. Denote by (Xa
t )t≥0 the stationary solution of the Ornstein–

Uhlenbeck equation with drift a:

(5.1) dXa
t := D(ρ)�Xa

t dt + a∇Xa
t dt +

√
2D(ρ)χ(ρ)d∇Ẇt .

For ε ∈ (0,1), let iε(u) = ε−11(0,ε] and let {Zε
t : t ∈ [0, T ]} be the process defined by

Zε
t :=

∫ t

0
Xa

s (iε) ds.

Then the sequence of processes {Zε}ε>0 converges in the uniform topology of C([0, T ];R) to
a Gaussian process {Zt : t ∈ [0, T ]} of stationary increments and variance

(5.2) E
[
Z2

t

] = D(ρ)χ(ρ)

√
2

π

∫ t

0

(t − s)e− a2
2 s

√
s

ds.

The same statement holds if iε is replaced by a smooth function ϕε with support contained
in (0, ε).

This corresponds to Theorem 6.3 of [19]. Now we have all the definitions needed to char-
acterize the limit points of the additive functional An

t .

PROPOSITION 5.2. Let {At : t ∈ [0, T ]} be a limit point of the sequence An, defined in
(2.4). Let Zε , Z be the processes defined in Theorem 5.1, with a = v(ρ). Then A and v′(ρ)Z

have the same finite-dimensional distributions.
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LEMMA 5.3. Let X be the stationary solution of the Ornstein–Uhlenbeck equation (2.6)
and v(ρ) be as in (2.1). Denote τxf (u) := f (x + u). Then the process {Xa

t : t ∈ [0, T ]}
defined by

Xa
t (f ) := Xt(τv(ρ)tf )

is a solution of the Ornstein–Uhlenbeck equation with drift (5.1), with drift a = v(ρ).

PROOF. Our goal is to prove that, for any sufficiently smooth H : [0, T ] × R → R, the
process {Mt(H) : t ∈ [0, T ]} defined by

Mt(H) := Xa
t (Ht) − Xa

0(H0) −
∫ t

0
Xa

s

((
∂s + D(ρ)� + v(ρ)∇)

Hs

)
ds

is a martingale with quadratic variation{∫ t

0
2D(ρ)χ(ρ)‖∇Hs‖2

L2(R)
ds : t ∈ [0, T ]

}
.

Substituting the definition of Xa in the formula for the martingale, we find

Mt(H) = Xt(τv(ρ)tHt ) − X0(H0) −
∫ t

0
Xs

((
∂s + D(ρ)�

)
τv(ρ)sHs

)
ds.

Since X solves the Ornstein–Uhlenbeck equation without drift (2.6), the expression above
is a martingale with quadratic variation〈

Mt(H)
〉 = ∫ t

0
2D(ρ)χ(ρ)

∥∥∇(τv(ρ)sHs)
∥∥2
L2(R) ds

=
∫ t

0
2D(ρ)χ(ρ)

∥∥∇(Hs)
∥∥2
L2(R) ds,

as we wanted to show. �

Define the auxiliary process

A
n,ε
t := √

n

∫ t

0

(
ξn
s � ϕε

)
(0) ds.

LEMMA 5.4. Let ε > 0. The sequence An,ε converges weakly in C to the process Zε of
Theorem 5.1.

PROOF. Consider the mapping � : D([0, T ],H−2) × D([0, T ],R) → C([0, T ],R) de-
fined by �(X,x)(t) = ∫ t

0 Xs(τxsϕε) ds. Write An,ε = v′(ρ)�(Xn, xn

n
).

We know from Proposition 2.9 that Xn converges weakly to Y in D([0, T ],H−2) and
that X ∈ C([0, T ],H−2) almost surely and from Theorem 2.3 that xn

n
converges weakly in

D([0, T ],R) to the deterministic continuous trajectory t �→ v(ρ)t .
Besides, it is possible to prove that the mapping � is continuous at all points of

C([0, T ],H−2) × C([0, T ],R), taking advantage of the smoothness and compact support of
ϕε . If a sequence converges in D to a point of C, than it also converges in the uniform topol-
ogy. Translation is a continuous operation in H−2, at least on the set of smooth compactly
supported functions.

Therefore, the sequence �(Xn, xn

n
) converges weakly in C to the process Zε �

PROOF OF PROPOSITION 5.2. Let S ⊂ [0, T ] be a finite set, say S = {s1, . . . , sk}. For
a function x ∈ C, denote by xS the vector (xs1, . . . , xsk ) ∈ R

k and by |xS | the norm |xS | :=
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s∈S |x(s)|. Our goal is to show that AS and ZS have the same law. It follows from the

replacement lemma that

(5.3) lim sup
ε→0

lim sup
n→∞

P
(∣∣An

S − A
n,ε
S

∣∣ > δ
) = 0.

Let ε > 0. Since the sequences An and An,ε are tight in C([0, T ],R), the vector (An,An,ε)

is tight in C([0, T ],R) × C([0, T ],R). It is not true in general that tightness of a sequence
of random variables is implied by tightness of the marginals. This is a special feature of
the space C([0, T ],R) and follows from the fact that, in C([0, T ],R), tightness is equivalent
to equicontinuity, see, for instance, [11], p. 81. Let {n′} be a subsequence of n such that
An converges weakly to Ã. Since (An,An,ε) is tight, there is a subsequence {n′′} of {n′}
along which (An′′

,An′′,ε) converges weakly. The limit point is a coupling between Ã and the
process Zε of Theorem 5.1. Under this coupling,

P
(∣∣AS −Zε

S

∣∣ ≥ δ
) ≤ lim sup

n→∞
P
(∣∣An

S − A
n,ε
S

∣∣ ≥ δ
)
.

Moreover, we know from Theorem 5.1 that the sequence Zε converges weakly to Z . There-
fore, the sequence of vectors (Ã,Zε) is tight in C([0, T ],R) × C([0, T ],R), and each limit
point is a coupling between Ã and Z . Under such a coupling,

P
(|AS −ZS | ≥ δ

) ≤ lim sup
ε→0

P
(∣∣AS −Zε

S

∣∣ ≥ δ
)
.

Together with (5.3), this implies that ÃS and ZS have the same marginals. �

6. Asymptotic independence. The starting point in the study of our random walk was
the decomposition (2.3). We proved that the martingale part converges to a Brownian mo-
tion and that the additive functional converges to a Gaussian process with stationary incre-
ments. Now we prove that these limiting processes are independent, meaning that the se-
quence (Mn

t ,An
t )t∈[0,T ] of random elements of (C([0, T ],R))2 converges in law to a product

measure.
First, we tackle the problem of proving that Mt is independent of At for a fixed t ∈ [0, T ].

In view of the replacement lemma 3.5 and the Law of Large Numbers 2.3, we can try to
approximate At by

(6.1) v′(ρ)
√

n

∫ t

0

(
ηn

s � ϕε

)(
v(ρ)s

)
ds.

The functional (6.1) depends only on the environment. We will construct a martingale
(Nn

s,t )s≤t such that Nn
t,t approximates the integral in (6.1). This martingale will be a function

of the lattice gas process only, so it will never jump at the same time as the walker. Since Mn

jumps only when the walker jumps, the martingales (Mn
s )s≤t and (Nn

s,t )s≤t will be orthogo-
nal. We will prove that the quadratic variation (〈Nn

s,t 〉)s≤t converges to an increasing function
of s, and apply the Martingale FCLT to conclude that {(Mn

s ,Nn
s,t ) : s ≤ t}n∈N converges to

a pair of independent continuous martingales M and N . In particular, Mt is independent of
Nt,t = At .

LEMMA 6.1. Let (M,A) be a limit point of the sequence (Mn,An) and t ∈ [0, T ]. Then
Mt is independent of At .

PROOF. Let ε > 0 and t ∈ [0, T ]. Let Hε,t : [0, t] ×R →R be the solution of

(6.2)

{
∂sH

ε,t (s, u) + D(ρ)∂uuH
ε,t (s, u)ϕε

(
v(ρ)s + u

)
for all s ∈ [0, t], u ∈ R,

Hε,t (t, u)0 for all u ∈ R.
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Define, for s ∈ [0, t],
Nn

s,t := −Xn
s

(
Hε,t

s

)+
∫ s

0

(
∂r + n2Lb

)
Xn

r

(
Hε,t

r

)
dr,

so that (Nn
s,t )s∈[0,t] is a martingale with respect to the filtration Ft = σ {ξn

s : s ≤ t} and
〈Nn

s,t ,M
n
s 〉 = 0 for all s ∈ [0, t], because (Mn

s )s∈[0,t] and (Nn
s,t )s∈[0,t] never jump simulta-

neously. We prove in Lemma C.1 that 〈Nn
s,t 〉 converges in probability, as n → ∞, to a non-

decreasing continuous function of s. It follows from the Martingale FCLT, Proposition 2.8,
that (Mn

s ,Nn
s,t )s∈[0,t] converges in law to a R

2-valued continuous Gaussian process with in-
dependent marginals.

To conclude the lemma, we need to show that v′(ρ)Nn
t,t − An

t → 0 in probability, as n →
∞. We can prove this by combining Lemma 2.11, Proposition 2.3 and Theorem 3.5. �

THEOREM 6.2. Let (M,A) be a limit point of the sequence (Mn,An). Let 0 ≤ t1 < · · · <
tk ≤ T . Then (Mt1, . . . ,Mtk ) and (At1, . . . ,Atk ) are independent.

PROOF. To simplify the notation, we will prove the theorem only for k = 2. It is sufficient
to prove that (Mt1,Mt2) is independent of b1At1 + b2At2 for any choice of real numbers b1
and b2, as one can check by computing the characteristic functions. Fix ε > 0 and define
functions Hε,t1 and Hε,t2 by (6.2). Extend the definition of H

ε,t1
s to s ∈ [0, t2] by declaring

H
ε,t1
s = H

ε,t1
t1

if s ∈ [t1, t2]. Define, for s ∈ [0, t2],
Nn

s := −Xn
s

(
b1H

ε,t1
s + b2H

ε,t2
s

)+
∫ s

0

(
∂r + n2Lb

)
Xn

r

(
b1H

ε,t1
r + b2H

ε,t2
r

)
) dr.

Then (Nn
s )s∈[0,t2] is a martingale with respect to the filtration Ft = σ {ξn

s : s ≤ t} and Nn
t2

=∫ t
0 (∂r + n2Lb)X

n
r (b1H

ε,t1
r + b2H

ε,t2
r )) dr . We prove in Lemma C.1 that 〈Nn

s 〉 converges in
probability, as n → ∞, to an increasing function of s. By Proposition 2.8, (Mn

s ,Nn
s )s∈[0,t2]

converges in law to a R
2-valued continuous Gaussian process with independent marginals.

To conclude the proof of the theorem, we need to show that v′(ρ)Nn
t2

− [b1A
n
t1

− b2A
n
t2
] → 0

in probability, as n → ∞. We can prove this by combining Lemma 2.11, Proposition 2.3 and
Theorem 3.5. �

APPENDIX A: A VARIATIONAL INEQUALITY

In this section, we prove variational inequalities relating the Dirichlet form D(
√

f ) with
various integrals of interest. We start with some definitions. Recall the definition of the
Dirichlet form:

D(
√

f ) = ∑
x∈Z

∫ (√
f x,x+1 −√

f
)2

dνρ.

We have the following result.

LEMMA A.1. Let f be a density with respect to νρ , that is, f ≥ 0 and
∫

f dνρ = 1.
Fix x ∈ Z and β > 0. Let g be a local function and let h be a bounded function such that
h(ηx,x+1) = h(η) for all η ∈ 	. Then〈

f h,gx,x+1 − g
〉 ≤ βDx,x+1(

√
f ) + 1

β

〈
g2 + (

gx,x+1)2
, f h2〉.

PROOF. Since νρ is invariant with respect to the change of variables ξ �→ ξx,x+1, we
have 〈

f,gx,x+1 − g
〉 = 1

2

〈
f − f x,x+1, gx,x+1 − g

〉
.
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Write A = 1
2h(gx,x+1 − g), B = f and C = f x,x+1. We have that

B − C = (
√

B − √
C)(

√
B + √

C),

and using the weighted Cauchy–Schwarz inequality we get

A(B − C) ≤ β(
√

B − √
C)2 + A2(

√
B + √

C)2

4β
.

Notice that (
√

B + √
C)2 ≤ 2(B + C), whence

(A.1) A(B − C) ≤ β(
√

B − √
C)2 + A2(B + C)

2β
.

Recall the definitions of A, B and C. We have that A2 ≤ h2(g2 + (gx,x+1)2). Integrating
(A.1) with respect to νρ we obtain the lemma. �

APPENDIX B: INEQUALITIES INVOLVING SUBGAUSSIAN RANDOM VARIABLES
AND RELATIVE ENTROPY

Both lemmas below are proved in [13], Section 2.3.

LEMMA B.1 (Hoeffding’s Inequality). Let X be a mean-zero random variable taking
values in the interval [a, b]. Then

E
[
eθX] ≤ e

θ2(b−a)2
8 .

LEMMA B.2 (Subgaussianity). Let X be a random variable. If

E
[
eθX] ≤ e

θ2σ2
2 for all θ > 0

then

(B.1) Pn(X > δ) ≤ e
− δ2

2σ2

and

logE
[
ecX2] ≤ 8cσ 2 for all 0 < c <

(
4σ 2)−1

.

Recall the definition of relative entropy between two probability measures μ and ν on the
same space:

H(μ|ν) =
⎧⎨⎩
∫

f logf dν if dμ = f dν,

+∞ if μdoes not have a density w.r.t. ν.

Then the following inequalities hold (proofs in [27], A.1.8):

(B.2)
∫

g dμ ≤ H(μ|ν)

γ
+ 1

γ
log

∫
eγg dν for all positive γ

and

(B.3) μ(A) ≤ H(μ|ν) + log 2

log(1 + 1
ν(A)

)
for all sets A such that ν(A) > 0.
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APPENDIX C: CONVERGENCE OF THE QUADRATIC VARIATIONS

LEMMA C.1. Let G : [0, T ] → S(R) be a smooth function. Define the martingale

Mn
t (G) := Xn

t −
∫ t

0

(
∂s + n2Lb

)
Xn

s (Gs) ds.

Then 〈Mn
t 〉 converges in probability, as n → ∞, to a continuous nondecreasing function of t .

PROOF. One can compute the quadratic variation and find that〈
Mn

t (G)
〉 = ∫ t

0

∑
x∈Z

n

[
Gr

(
x + 1

n

)
− Gr

(
x

n

)]2
rx
(
ηn

r

)[
ηn

r (x + 1) − ηn
r (x)

]2
dr

+
∫ t

0

∑
x∈Z

n

[
Gr

(
x

n

)
− Gr

(
x − 1

n

)]2
rx−1

(
ηn

r

)[
ηn

r (x) − ηn
r (x − 1)

]2
dr.

We will prove that 〈Mn
t (G)〉 converges in probability to

2r0(ρ)ρ(1 − ρ)

∫ t

0

∫
R

∣∣∂uGs(u)
∣∣2 duds.

While there is an elementary proof that limn→∞ Var〈Mn
t (G)〉 = 0, Corollary 3.6 gives a

shorter proof.
Let φ(η) = r0(η

n
r )[ηn

r (1) − ηn
r (0)]2 + r1(η

n
r )[ηn

r (0) − ηn
r (−1)]2. Notice that φ̄(ρ) =

2r0(ρ)ρ(1 − ρ). Then, by a Taylor expansion of Gr ,〈
Mn

t (G)
〉− ∫ t

0

1

n

∑
x∈Z

(
∂uGr

(
x

n

))2
φ̄(ρ) dr − 1√

n

∫ t

0
Xn((∂uGr)

2;φ) → 0

in probability, as n → ∞. The last term converges in probability to zero, as n → ∞, by
Corollary 3.6 and Proposition 2.9. �
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