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NONLINEAR LARGE DEVIATION BOUNDS WITH APPLICATIONS
TO WIGNER MATRICES AND SPARSE ERDŐS–RÉNYI GRAPHS
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We prove general nonlinear large deviation estimates similar to
Chatterjee–Dembo’s original bounds, except that we do not require any sec-
ond order smoothness. Our approach relies on convex analysis arguments and
is valid for a broad class of distributions. Our results are then applied in three
different setups. Our first application consists in the mean-field approxima-
tion of the partition function of the Ising model under an optimal assumption
on the spectra of the adjacency matrices of the sequence of graphs. Next, we
apply our general large deviation bound to investigate the large deviation of
the traces of powers of Wigner matrices with sub-Gaussian entries and the
upper tail of cycles counts in sparse Erdős–Rényi graphs down to the sparsity
threshold n−1/2.

1. Introduction. We will be concerned with the following large deviation question:
given a random vector X in R

n and a smooth function f : Rn → R, when is shifting the
mean of X the optimal large deviation strategy for the random variable f (X)?

In a seminal paper [12], Chatterjee and Dembo provided a sufficient criterion and showed
in the case where X is uniformly sampled on the discrete hypercube that, as soon as f has
a gradient of low complexity, in the sense that it can be encoded by a small number of bits
compared to the dimension, then the large deviations of f (X) are only due to changes of
the mean of X. Their framework encompasses a large class of large deviation problems as
the mean-field approximation of the partition function of the Ising model (see [6]), the large
deviation of subgraph counts in Erdős–Rényi graphs—which were until then tackled using
the graphon formalism in [13]—and arithmetic progressions. Later, Yan generalized in [37]
their nonlinear large deviation estimate to any compactly supported distribution.

As a consequence of powerful structure theorems for probability measures on the discrete
hypercube, Eldan obtained in [20] nonlinear large deviation bounds, which do not require any
second order smoothness on the given function and where the complexity of the gradient is
assessed in terms of the Gaussian mean-width of its image. Using these, he partially recovered
a known result of Basak and Mukherjee [6] on the mean-field approximation of the partition
function of the Ising model and improved the threshold of sparsity for the large deviation
upper tail of triangle counts.

We will improve the error terms in the nonasymptotic bounds of [12] and, in particular,
remove the smoothness terms. The motivation behind these improvements is that it allows for
obtaining weaker dimension dependence. In particular, this entails that one can consider large
deviation speeds much smaller than the dimension. In turn, this allows us to reach the critical
sparsity level, as identified in [33] and [8], in the large deviation bounds of cycle counts in
sparse Erdős–Rényi graphs.

We will develop nonlinear large deviations estimates for general distributions and propose
several applications. As a first example we will apply our results to the mean-field approxi-
mation of the partition function of the Ising model on a sequence of graphs, whose spectra

Received October 2018; revised December 2019.
MSC2020 subject classifications. 60F10, 60B20, 05C80, 52A40.
Key words and phrases. Large deviations, convex analysis, mean-field approximation, Wigner matrices,
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satisfy certain assumptions which include star graphs, thus strengthening the previous result
of Basak and Mukherjee [6].

Next, we will use our nonlinear large deviation estimate to investigate the large deviation of
traces of Wigner matrices with sub-Gaussian entries. Using a truncation argument to reduce
the complexity of our function at hand, we show general upper and lower bounds. We will
also prove the universality of the rate function for a class of Wigner matrices with sharp sub-
Gaussian tails. This complements the results of Guionnet and Husson [21], who introduced
this class and showed such universality for the large deviation of the largest eigenvalue.

Finally, we estimate the upper tail of the large deviations of cycle counts in sparse Erdős–
Rényi graphs, down to the sparsity threshold n−1/2, up to logarithmic corrections, improving
in the case of triangles the recent result of Cook and Dembo [15].

1.1. Main results. We begin with introducing some definitions. Let μ be a probability
measure on R

n whose support is not included in a hyperplane. Let �μ be the logarithmic
Laplace transform of μ, that is,

∀λ ∈R
n, �μ(λ) = log

∫
e〈λ,x〉 dμ(x).

It is known that �μ is a strictly convex function which is C∞ on the interior of its domain
denoted by D�μ . We define �∗

μ, the Legendre transform of �μ, by

∀x ∈R
n, �∗

μ(x) = sup
λ∈Rn

{〈λ,x〉 − �μ(λ)
}
.

Following [34], Section 26, we say that a convex function � :Rn →R∪ {+∞} is essentially
smooth if the interior of its domain int(D�) is nonempty, � is differentiable on int(D�) and
steep, that is, for any λk ∈ int(D�), converging to a point on the boundary of D�,

lim
k→+∞

∥∥∇�(λk)
∥∥=+∞.

The interest of this concept of essential smoothness lies in the fact that the Legendre trans-
formation leaves invariant the class of strictly convex functions on R

n which are essentially
smooth. More precisely, assuming that �μ is essentially smooth, then by [34], Theorem 26.5,
we know that �∗

μ is also an essentially smooth function, the map ∇�μ is one-to-one onto
int(D�∗

μ
), the interior of the domain of �∗

μ and the maps ∇�μ and ∇�∗
μ are inverse maps

from one another.
For any λ ∈ int(D�μ), one can define the measure

(1) μy = e〈λ,x〉−�μ(λ) dμ(x),

where y = ∇�μ(λ). Observe that differentiating �μ, one obtains the barycenter of μy , that
is,

(2) y =∇�μ(λ) =
∫

x dμy(x).

Thus, the family of measures μy represents the collection of tilts of μ, indexed by their
barycenters.

Our first result is the following nonasymptotic version of Varadhan’s lemma (see [18],
Theorem 4.3.1). This will be instrumental in our treatment of the mean-field behavior of the
Ising model; see Section 1.2.1.

THEOREM 1.1. Assume μ is compactly supported. Denote by K the convex hull of its
support, and by D its diameter. Let f :Rn →R be a continuously differentiable function. Let
δ > 0 and Dδ be a δ/D-net of the convex hull of ∇f (K) for the �2-norm. Then,

log
∫

ef dμ ≤ sup
y∈Rn

{
f (y) −�∗

μ(y)
}+ log |Dδ| + δ.
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Our approximation of the partition function is similar to the one of Chatterjee–Dembo (see
[12], Theorem 1.6), except that we do not have any other error terms but the one coming from
the cardinality of the net Dδ . Unlike Eldan’s result (see [20], Corollary 2), which involves
the Gaussian mean width of the set of gradients, we are assessing the complexity of the
gradient in terms of covering numbers. Using Sudakov inequality (see [32], Theorem 3.18),
it is possible to compare [20], Corollary 2, with Theorem 1.1. More precisely, we have the
following result as a corollary of Theorem 1.1.

COROLLARY 1.2. Assume μ is compactly supported. Denote by K the convex hull of its
support, assume that the diameter of K is

√
n. Let f : Rn → R be a continuously differen-

tiable function and let V =∇f (K). There exists a numerical constant κ > 0 such that

log
∫

ef dμ ≤ sup
y∈Rn

{
f (y) −�∗

μ(y)
}+ κn

1
3 g(V )

2
3 ,

where g(V ) is the Gaussian mean-width of V , defined as

g(V ) = E sup
ζ∈V

〈ζ,�〉,

with � being a standard Gaussian random variable in R
n.

PROOF. From Theorem 1.1 we have, for any δ > 0,

log
∫

ef dμ ≤ sup
y∈Rn

{
f (y)−�∗

μ(y)
}+ logN

(
co(V ), (δ/

√
n)B�2

)+ δ,

where co(V ) denotes the convex hull of V and N(co(V ), (δ/
√

n)B�2) the covering number
of co(V ) by (δ/

√
n)B�2 . By Sudakov inequality (see [32], Theorem 3.18), we know that there

exists a numerical constant c > 0 such that

logN
(
co(V ), (δ/

√
n)B�2

)≤ c
ng(co(V ))2

δ2 .

But as the supremum of a convex function on a set is equal to the supremum on its convex
hull, we have g(co(V )) = g(V ). Thus,

log
∫

ef dμ ≤ sup
y∈Rn

{
f (y)−�∗

μ(y)
}+ c

ng(V )2

δ2 + δ.

Optimizing in δ > 0, we obtain that there exists a numerical constant κ > 0 such that

log
∫

ef dμ ≤ sup
y∈Rn

{
f (y) −�∗

μ(y)
}+ κn

1
3 g(V )

2
3 . �

As for the lower bound, it is a classical fact to note that, as a consequence of Jensen’s
inequality, one always has the following lower bound by just changing the barycenter of the
underlying reference measure.

LEMMA 1.3. Let f :Rn →R be a nonnegative measurable function. Then,

log
∫

ef dμ ≥ sup
{∫

f dμy −�∗
μ(y), y ∈ ∇�μ

(
int(D�μ)

)}
,

where μy is defined in (1).
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REMARK 1.1. Note the gap between the lower bound of Lemma 1.3 and the main term
sup{f −�∗

μ} in the upper bound of Proposition 1.1.
When μ is the uniform measure on the discrete hypercube, one can consider, given a

function f : {0,1}n →R, its natural harmonic extension, and the just mentioned gap resolves
itself. One can view this fact as at the heart of Eldan’s approach [20]. For further discussion
on the general case, we refer the reader to Remark 2.2.

We will now state our nonlinear large deviations upper bound. We recall from [18], Sec-
tion 1.2, that a sequence of random variables (Zn)n∈N taking value in some topological space
X equipped with the Borel σ -field B, satisfies a large deviations principle (LDP) with speed
υn, and rate function I :X →[0,+∞], if I is lower semicontinuous, υn increases to infinity,
and for all B ∈ B,

− inf
int(B)

I ≤ lim inf
n→+∞

1

υn

logP(Zn ∈ B)

≤ lim sup
n→+∞

1

υn

logP(Zn ∈ B) ≤− inf
cl(B)

I,

(3)

where int(B) denotes the interior of B and cl(B) the closure of B . We recall that I is lower
semicontinuous if its t-level sets {x ∈X : I (x) ≤ t} are closed, for any t ∈ [0,+∞). Further-
more, if all the level sets are compact, then I is said to be a good rate function.

By [18], (1.2.7), for good rate functions I , the large deviations upper bound, that is the
right-most inequality in (3), is equivalent to the statement that for any r > 0 and δ > 0,

lim sup
n→+∞

1

vn

logP
(
Zn /∈ Vδ

({I ≤ r}))≤−r,

where for any subset A ⊂R, Vδ(A) denotes the open δ-neighborhood of A, that is,

Vδ(A) =
{
x ∈R : inf

y∈A
|x − y| < δ

}
.

With that in mind, the following proposition is our general large deviation upper bound.

THEOREM 1.4. Let X be a random vector in R
n with law μ such that �μ is essentially

smooth. Let f :Rn →R be a measurable function. Define,

∀t ∈R, I (t) = inf
{
�∗

μ(y) : f (y) = t, y ∈R
n}.

Let r > 0. Assume there exists κ ≥ r such that denoting by K = {�∗
μ ≤ κ},

(4) P(X /∈ K) ≤ e−r .

Let W ⊂R
n be a compact convex set such that,

(5) ∀x, y ∈ K, f (x) − f (y) ≤ sup
λ∈W

〈λ,x − y〉.

Denote by D the diameter of K . Let δ > 0 and let Dδ/2 be a δ/2D-net of W for the �2-norm.
Then,

logP
(
f (X) /∈ Vδ

({I ≤ r}))≤−r + log |Dδ/2| + log
((

κLD

δ

)
∨ 1

)
+ 2,

where L = supλ∈V ‖λ‖�2 .
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REMARK 1.2. The wording of Theorem 1.4 is intended to include nonsmooth functions
which we will encounter in the applications. It is particularly relevant for functions f which
are linear combinations of nonsmooth convex functions, for which we can take W to be
Minkowski sums of sets of subdifferentials of the convex functions involved in the decompo-
sition.

REMARK 1.3. The tightness assumption (4) in the Proposition 1.4 is automatically sat-
isfied for product measures. Indeed, we know from [18], Lemma 5.1.14, that if μ is a proba-
bility measure on R, then for any α ∈ (0,1),

Eeα�∗
μ(X1) ≤ 2

1 − α
.

Taking α = 1/2, we deduce that for κ = 12(r ∧ n), Chernoff’s inequality gives

P
(
�∗

μn(X) > κ
)≤ e−r .

As a consequence of Theorem 1.4, we obtain a nonlinear large deviations estimate for the
upper tail of a function with a low-complexity gradient.

COROLLARY 1.5. Let X be a random vector in R
n with law μ such that �μ is essentially

smooth. Let f :Rn →R be a measurable function. Define,

∀t ∈R, φ(t) = inf
{
�∗

μ(y) : f (y) ≥ t, y ∈R
n}.

Let t, δ > 0 and assume that φ is increasing on [t − δ,+∞). Let κ ≥ φ(t − δ) such that
denoting by K = {�∗

μ ≤ κ},
(6) P(X /∈ K) ≤ e−φ(t−δ).

Let W ⊂R
n be a compact convex set such that,

∀x, y ∈ K, f (x) − f (y) ≤ sup
λ∈W

〈λ,x − y〉.

Denote by D the diameter of K and let Dδ/2 be a δ/2D-net of W for the �2-norm. Then,

logP
(
f (X) ≥ t

)≤−φ(t − δ)+ log |Dδ/2| + log
((

κLD

δ

)
∨ 1

)
+ 2,

where L = supλ∈V ‖λ‖�2 .

PROOF. We claim that our assumption on the strict monotonicty of φ yields that

(7)
{
I ≤ φ(t − δ)

}⊂ (−∞, t − δ].
Indeed, for any z ∈ R, if I (z) ≤ φ(t − δ), then in particular φ(z) ≤ φ(t − δ). Since φ is
increasing on [t − δ,+∞), we have z ≤ t − δ, which shows (7). Therefore, if x ∈R

n is such
that f (x) ≥ t then f (x) /∈ Vδ({I ≤ φ(t − δ)}). Thus, we have

P
(
f (X) ≥ t

)≤ P
(
f (X) /∈ Vδ

({
I ≤ φ(t − δ)

}))
,

which, by Theorem 1.4, ends the proof. �

Turning our attention to the lower bound, one can always get a large deviations lower
bound by finding a tilting of the underlying measure μ which transforms a large deviations
event for μ into a typical event for μh. (This idea is prevalent in the large deviations literature,
and is also the basis for the proof of Lemma 1.3.) The following lower bound, which builds
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on [19], page 64, quantifies this idea. First, note that differentiating twice �μ, one obtains
the covariance of the measure μy , that is,

∀η ∈R
n, Varμy 〈η,X〉 = 〈

η,∇2�μ(λ).η
〉
,

where y =∇�μ(λ). With this notation, one obtains the following lemma.

LEMMA 1.6. Let V ⊂R
n be a measurable subset, and λ ∈ int(D�μ). Then,

μ(V ) ≥ e−�∗
μ(y)μy(V ) exp

(
− 1

μy(V )1/2

〈
λ,∇2�μ(λ).λ

〉1/2
)
,

where y =∇�μ(λ), and μy is defined in (1).

PROOF. Let λ ∈ int(D�μ) and y =∇�μ(λ). Changing the measure μ into μy , we have

μ(V ) =
∫
V

e−(〈λ,x〉−�μ(λ)) dμy(x) = e−�∗
μ(y)

∫
V

e−〈λ,x−y〉 dμy(x),

where we used the fact that �∗
μ(y) = 〈λ,y〉 − �μ(λ). By Jensen’s inequality we deduce,

μ(V ) ≥ e−�∗
μ(y)μh(V ) exp

(
− 1

μy(V )

∫
V
〈λ,x − y〉dμy(x)

)
.

Using the Cauchy–Schwarz inequality, we get,∫
V
〈λ,x − y〉dμy(x) ≤ μy(V )1/2

(∫
〈λ,x − y〉2 dμy(x)

)1/2

which yields the claim. �

1.2. Applications. In this section we provide several examples in which the gap between
the upper bounds (Propositions 1.1 and 1.4) and lower bounds (Lemmas 1.3 and 1.6) is neg-
ligible in the large deviation scale.

1.2.1. Mean-field approximation in the Ising model. Our first example of application is
the accuracy of the mean-field prediction in the Ising model with large degree. This topic
is discussed in [6], [20], Section 1.3, [23, 24], and we will improve on some of the results
therein.

In particular, we show that the mean-field approximation of the Ising model holds true as
soon as the empirical distributions of the eigenvalues of the interaction matrices converge
weakly to a Dirac at 0, and the second moments are uniformly bounded.

Let Hn denote the set of Hermitian matrices of size n. For any A ∈Hn, we denote by μA

the empirical distribution of its eigenvalues, defined by

μA = 1

n

n∑
i=1

δλi
,

where λ1, . . . , λn are the eigenvalues of A.

PROPOSITION 1.7. Let An be a sequence of Hermitian matrices such that, for any i ∈
{1, . . . , n}, (An)i,i = 0. Assume that the empirical distribution of eigenvalues μAn converges
weakly to a Dirac at 0 and that lim supn n−1trA2

n < +∞. Let μ be the uniform probability
measure on {−1,1}n. Then,

log
∫

e〈σ,Anσ 〉 dμ(σ) = sup
x∈[−1,1]n

{〈x,Anx〉 − �∗
μ(x)

}+ o(n).



2410 F. AUGERI

PROOF. Note that the lower bound,

log
∫

e〈σ,Anσ 〉 dμ(σ) ≥ sup
x∈[−1,1]n

{〈x,Anx〉 − �∗
μ(x)

}
,

follows directly Lemma 1.3. Let

∀x ∈R
n, f (x) = 〈x,Anx〉.

The following lemma taken from [6], Lemma 3.4, Remark 4.1, computes the complexity of
the gradient of f under the mean-field assumption we made.

LEMMA 1.8 ([6], Lemma 3.4, Remark 4.1). Under the assumption of Proposition 1.7,
for any δ > 0 there exists a δ

√
n-net Eδ

√
n for the �2-norm of the set An([−1,1]n) such that

log |Eδ
√

n| = o(n).

As ∇f (x) = 2Anx for any x ∈ [−1,1]n, applying Proposition 1.1 and using the above
lemma, we deduce that, for any δ > 0,

(8) log
∫

e〈σ,Anσ 〉 dμ(σ) ≤ sup
x∈[−1,1]n

{〈x,Anx〉 − �∗
μ(x)

}+ log |Eδ
√

n| + 4δn

which gives the claim. �

REMARK 1.4. Instead of using Lemma 1.8 to bound the error term in (8), one can use
alternatively Corollary 1.2, which gives

log
∫

e〈σ,Anσ 〉 dμ(σ) ≤ sup
x∈[−1,1]n

{〈x,Anx〉 − �∗
μ(x)

}+ κn
1
3

(
E sup

x∈[−1,1]n
〈Anx,�〉

) 2
3
,

where κ > 0 and � is a standard Gaussian vector in R
n. But, using twice the Cauchy–Schwarz

inequality and the fact that E‖An�‖2 = ‖An‖2, one obtains

E sup
x∈[−1,1]n

〈Anx,�〉 ≤√
n‖An‖2,

where ‖‖2 denotes the Hilbert–Schmidt norm. Thus,

log
∫

e〈σ,Anσ 〉 dμ(σ) ≤ sup
x∈[−1,1]n

{〈x,Anx〉 − �∗
μ(x)

}+ κ
(‖An‖2n

) 2
3 ,

thus giving another proof of the result of Jain, Koehler and Risteski [24].

1.2.2. Traces of powers of Wigner matrices. In this section we discuss the large devia-
tions of the normalized traces of powers of Wigner matrices with sub-Gaussian entries. Un-
der technical assumptions we show that we can find large deviation upper and lower bounds,
which match in the case where the entries have sharp sub-Gaussian tails and have the same
covariance structure as the GOE or the GUE. In the latter case the large deviations are univer-
sal, that is, the resulting rate function is the same for all such Wigner matrices and coincides
with the Gaussian case. This universality phenomenon was first discovered by Guionnet and
Husson in [21] in the context of the large deviations of the largest eigenvalue of Wigner
matrices.

To state our result, we need to introduce some notation. Denote by H(β)
n the set of Her-

mitian matrices when β = 2, and symmetric matrices when β = 1, of size n, which we will
shorthand as Hn whenever there is no ambiguity. Say that X is a Wigner matrix if X is a
random Hermitian matrix with independent coefficients (up to the symmetry) such that both
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(Xi,i)1≤i≤n and (Xi,j )i<j are identically distributed, EX = 0, (�X1,2,�X1,2) are indepen-
dent and E|X1,2|2 = 1. By Wigner’s theorem (see [1], Theorem 2.1.1, Exercise 2.1.16, [5],
Theorem 2.5), we know that

μX/
√

n �
n→∞ μsc

in probability, where � denotes the weak convergence and μsc is the semicircular law defined
by

μsc = 1

2π

√
4 − x21|x|≤2 dx.

If we assume moreover that, for any d ∈N,

max
(
E|X1,1|d,E|X1,2|d)< +∞,

then we have by [1], Lemmas 2.1.6, 2.1.7, the convergence of the moments of μX/
√

n toward
the ones of the semicircular law, that is, for any d ∈N,

1

n
tr(X/

√
n)d −→

n→+∞ μsc
(
xd)

in probability, where μsc(x
d) = ∫

xd dμsc(x). It is known that

μsc
(
xd)=

{
Cd/2 if d is even,

0 if d is odd,

where in the case d is even, Cd/2 = 1
d/2+1

( d
d/2

)
is the (d

2 )th Catalan number. The question we
investigate is the one of the large deviations of the these traces around the moments of the
semicircular law.

We will actually prove a large deviation result under a more restrictive assumption than
just the one of having sub-Gaussian entries, as we will need to use further concentration
arguments in addition to the result of Theorem 1.4. To this end, we introduce a class of
random Hermitian matrices satisfying a certain convex concentration property.

DEFINITION 1.9. We say that a random Hermitian matrix X satisfies the convex con-
centration property if there exists c > 0 such that, if for any f :Hn →R convex 1-Lipschitz
function with respect to the Hilbert–Schmidt norm, Ef (X) exists and, for any t > 0,

P
(∣∣f (X) −Ef (X)

∣∣> t
)≤ c−1 exp

(−ct2).
REMARK 1.5. A random Hermitian matrix whose law satisfies a log-Sobolev inequality

has normal concentration by [31], Theorem 5.3. In particular, such random matrices satisfy
the above convex concentration property. Workable criteria for log-concave measures to sat-
isfy a log-Sobolev inequality include the strict uniform convexity of the potential; see [31],
Theorem 5.2. Due to the tensorization property of the log-Sobolev inequality (see [31], Corol-
lary 5.7), any Wigner matrix with entries satisfying a log-Sobolev inequality has the convex
concentration property.

Another important family of Wigner matrices satisfying this property is the one with
bounded entries, due either to Talagrand’s inequality [31], Corollary 4.10, or due to a result
by the transportation method [9], Theorem 8.6 (the latter having the advantage of directly
measuring deviations from the mean).
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In the following, we denote by � the logarithmic Laplace transform of the law of X, that
is,

∀H ∈Hn, �(H) = logEetr(XH)

and by �i,j the one of the law of each of its entries Xi,j . Finally, we denote by �∗ the
Legendre transform of �.

Using Proposition 1.4, together with a truncation argument which enables us to reduce
ourself to a function with a low complexity gradient, we obtain the following large deviation
result for traces of Wigner matrices.

THEOREM 1.10. Let d ≥ 3, and � > d be an even integer. Let X be a Wigner matrix
satisfying the convex concentration property such that �1,1 and �1,2 have their derivatives
of order 2 to � uniformly bounded. For any closed subset F of R,

lim sup
n→+∞

1

n1+ 2
d

logP
(

1

n
tr(X/

√
n)d ∈ F

)
≤− inf

F
I+,

and for any open subset O of R,

lim inf
n→+∞

1

n1+ 2
d

logP
(

1

n
tr(X/

√
n)d ∈ O

)
≥− inf

O
I−,

where, for any x ∈R,

I+(x) = sup
δ>0

lim inf
n→+∞ In,δ(x),

I−(x) = sup
δ>0

lim sup
n→+∞

In,δ(x),

and, for any n ∈N, δ > 0,

In,δ(x) = inf
{
�∗(Y )

n1+ 2
d

:
∣∣∣∣1n tr(Y/

√
n)d +μsc

(
xd)− x

∣∣∣∣< δ,Y ∈Hn

}
.

REMARK 1.6. Together with the previous Remark 1.5, we see that any Wigner matrix
with bounded entries satisfies the assumptions of Theorem 1.10.

We will now specify our result to Wigner matrices with sharp sub-Gaussian tails. Follow-
ing Guionnet and Husson [21], we say that a real or complex random variable ξ has sharp
sub-Gaussian tails if

∀z ∈C, �ξ (z) = logEe�(zξ) ≤ 1

2
〈z,�z〉,

where � is the covariance matrix of (�ξ,�ξ) and 〈·, ·〉 is the standard inner product in C.

COROLLARY 1.11. Let d ∈N, d ≥ 3. Let X be a Wigner matrix such that EX2
1,1 ≤ 2/β .

Assume that X is real symmetric if β = 1 and, if β = 2, that (�X1,2,�X1,2) are independent
each of variance 1/2. In addition to the assumptions of Theorem 1.10, assume that the entries
of X have sharp sub-Gaussian tails. The sequence ( 1

n
tr(X/

√
n)d)N∈N satisfies a LDP with

speed n1+ 2
d and good rate function Jd . If d is even, Jd is given by

∀x ∈R, Jd(x) =
⎧⎨
⎩

β

4
(x −Cd/2)

2
d if x ≥ Cd/2,

+∞ otherwise,
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where Cd/2 denotes the (d
2 )th Catalan number and, if d is odd,

∀x ∈R, Jd(x) = β

4
|x| 2

d ,

where β = 1 if X is real symmetric and β = 2 if X is complex Hermitian.

REMARK 1.7. Distributions which have sharp sub-Gaussian tails include the Rade-
macher distribution 1

2δ1 + 1
2δ−1 and uniform probability measures on intervals symmetric

around the 0; see [21], Examples 1.2. Therefore, the above LDP holds in particular for Wigner
matrices with Rademacher entries or uniformly sampled in [−√

3,
√

3].

1.2.3. Upper tail of cycle counts in sparse Erdős–Rényi graphs. Let X be the adjacency
matrix of an Erdős–Rényi graph on n vertices with parameter pn = p. More precisely, we
assume that X is a symmetric matrix such that (Xi,j )i<j are independent Bernoulli random
variables of parameter p, whereas Xi,i = 0 for any i ∈ {1, . . . , n}.

For a given finite graph H , denote by XH the number of copies of H in the Erdős–Rényi
graph. A general question is to understand the large deviation of XH of the order of its
expectation when n goes to +∞. When p is fixed, the large deviation of these subgraph
counts are now well understood, due to the work of Chatterjee and Varadhan [13] on the
large deviations of the Erdős–Rényi graph for the cut metric.

When p � 1, a first question is to estimate the order of the upper tail, that is, for u ≥ 1,

P(XH ≥ uEXH).

In the case of triangles H = K3, it was proven in a series of papers [11, 16, 28, 36], that, for
any p ≥ 1/n,

logP(XK3 ≥ uEXK3) �−min
(
n2p2 log(1/p),n3p3),

and then generalized in [17] for cliques of arbitrary size. For general graphs H the order of
the upper tail has been computed up to some log(1/p) factor, by Janson, Oleszkiewicz and
Ruciński in [26]. In particular, denoting by � is the highest degree in H , they proved in [26],
Theorems 1.2, 1.5, that

−n2p� log(1/p) � logP(XH ≥ uEXH)�−n2p�

for p ≥ n−1/�. Still, the exact order of this tail is not fully understood for small edge prob-
ability, as the order conjectured in [17] by Kahn and DeMarco was recently disproved by
Šileikis and Warnke in [35].

Working instead with homomorphism densities, that is, if H has vertex set V and edge
set E,

t (H,X) = 1

n|V |
∑

i∈{1,...,n}V

∏
(v,w)∈E

Xi(v),i(w),

Chatterjee and Dembo showed in [12] that the large deviations of t (H,X) fall into their
framework of nonlinear large deviations. The large deviation upper tail is understood by a
certain variational problem,

(9) − logP
(
t (H,X) ≥ uEt (H,X)

)∼ φn,H (u),

with

(10) φn,H (u) = inf
{
�∗

p(Y ) : t (H,Y ) ≥ uEt (H,Y ),Y ∈H0
n

}
,
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where H0
n is the set of symmetric matrices of size n with null diagonal coefficients and

�∗
p(Y ) =∑

i<j Ip(Yi,j ), where

∀x ∈ [0,1], Ip(x) = x log
x

p
+ (1 − x) log

1 − x

1 − p
,

and +∞ otherwise. The equivalent (9) was shown to hold in [12], Theorem 1.2, for p ≥
n−α(H), for some explicit constant α(H) > 0 depending on H . In the case where H = K3,
the threshold of validity of (9) found was n−1/42, up to logarithmic factor, and was pushed
later on by Eldan in [20] to n−1/18. Yet neither of these thresholds are expected to be optimal,
and in this case of triangle counts it is conjectured that (9) holds as soon as the variational
problem (10) gives the right order of the upper tail, that is, with the help of [33], np � logn.

Very recently, Cook and Dembo [15] proved that the nonlinear large deviations of t (H,X)

hold for the range n−1/(5�−4) � p � 1 and, more strongly, in the case of d-cycles counts for
n−1/2 logn � p � 1 when d ≥ 4, and n−1/3 � p � 1 when d = 3.

We will give an alternative proof of their result on cycle counts. In the following proposi-
tion we push the estimation of the upper tail for sparsity parameters satisfying n−1/2 log4 n �
p � 1, thus improving on Cook and Dembo’s result in the case d = 3.

PROPOSITION 1.12. Let p such that p = o(1) and log4 n = o(np2). Denote by vn =
n2p2 log(1/p). For any t ≥ 1,

logP
(
tr
(
Xd)≥ tndpd)≤−φn(t) + o(vn),

where

φn(t) = inf
{
�∗

p(Y ) : tr
(
Yd)≥ t (np)d, Y ∈H0

n

}
.

The proof, as for the traces of Wigner matrices, relies on a truncation argument which
enables us to lower the complexity of our function of interest and efficiently apply Proposi-
tion 1.4.

In [8], Theorem 1.5, (or [33], Theorem 1.1, for the case d = 3), the variational problem
was solved asymptotically. They showed that, for np � 1,

(11)
φn(t)

vn

−→
n→+∞ �(t),

where � is given by

(12) �(t) =

⎧⎪⎪⎨
⎪⎪⎩

min
(
θt ,

1

2
(t − 1)

2
d

)
if p � n−1/2,

1

2
(t − 1)

2
d if n−1 � p � n−1/2,

with θt the unique solution of the equation PCd
(θt ) = t where PCd

is the independence poly-
nomial of the d-cycle. The optimizers correspond on one hand to planting a clique of order
np(t −1)1/d , which gives the 1

2(t −1)2/d term, and on the other hand to planting an anticlique
of order np2θt which corresponds to the other θt term.

With this knowledge of the optimizers, one can obtain the complementary lower bound so
that, together with Proposition 1.12, we get, for any t ≥ 1,

lim
n→+∞

1

vn

logP
(
tr
(
Xd)≥ tndpd)=−�(t)

for any n−1/2 log4 n � p � 1. The edge probability n−1/2 appears to be critical for cycles
in different ways. Note that, below this threshold, the anticlique construction is no longer
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available. Moreover, for this parameter the order at the exponential scale of the upper tail ap-
proaches n. From the point of view of the truncation method we are using, the speed n arises
as being impassable (without further dimension reduction): the complexity of the gradient of
a truncated trace is at least the one of the (n − 1)-dimensional sphere, as it corresponds to
pick the top eigenvector.

Furthermore, the threshold n−1/2 is also critical in the sense that one observes a change
of speed in the large deviation lower tail of cycles counts. Indeed, we know by the work
of Janson, Łuczak and Rucińsk [25] and Janson and Warnke [27] that in the regime where
p = o(1), for any finite graph H and any 0 < u ≤ 1,

logP(XH ≤ uEXH) �−(1 − u)2�H,

where �H = min{EXJ : J subgraph of H }. Thus, the speed of the lower tail is driven by the
“least expected” subgraph of H . For example, for H = K3, this implies that

logP
(
XH ≤ (1 − u)EXH

)�−u2 min
(
n3p3, n2p

)
.

Thus, a change of speed happens at n−1/2 and, similarly, for cycles of greater lengths.
In [15], Theorem 1.2, the authors provided sharp lower-tail estimates of homomorphisms

densities of d-cycles for sparsity parameters p � n−c (up to logarithmic corrections), with
c = d−2

2(d−1)
. We mention also that an entropic perspective on the estimation of the lower

tail of triangle counts has been announced by Kozma and Samotij [29] all the way down to
p � n−1/2.

2. Nonlinear large deviation upper bounds. We give here a proof of Theorems 1.1
and 1.4.

PROOF OF PROPOSITION 1.1. Let x, y ∈ K . We have, by the mean-value theorem,

f (x) = f (x) − f (y)+�∗
μ(y) + f (y)− �∗

μ(y)

≤ sup
t∈K

〈∇f (t), x − y
〉+�∗

μ(y) + sup
z∈Rn

{
f (z) −�∗

μ(z)
}
.

Denote by W the convex hull of ∇f (K) and hW its support function, that is, hW(y) =
supλ∈W 〈λ,y〉 for any y ∈R

n. With this notation we get

f (x) ≤ hW(x − y)+�∗
μ(y) + sup

z∈Rn

{
f (z)− �∗

μ(z)
}
.

Optimizing in y, we deduce that

f (x) ≤ inf
y∈K

{
hW(x − y)+�∗

μ(y)
}+ sup

z∈Rn

{
f (z)− �∗

μ(z)
}
.

Using the minimax theorem (see [14], Theorem 4.36), we have

inf
y∈K

{
hW(x − y)+ �∗

μ(y)
}= sup

λ∈W

inf
y∈K

{〈λ,x − y〉 + �∗
μ(y)

}
= sup

λ∈W

{〈λ,x〉 − �μ(λ)
}
,

where we used the fact that �∗
μ(y) =+∞, if y /∈ K by the Hahn–Banach theorem, and that

�μ is the Legendre transform of �∗
μ by [14], Theorem 4.21. Therefore,

f (x) ≤ sup
λ∈W

{〈λ,x〉 − �μ(λ)
}+ sup

z∈Rn

{
f (z)−�∗

μ(z)
}
.
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Thus,

(13) log
∫

ef dμ ≤ log
∫

esupλ∈W {〈λ,x〉−�μ(λ)} dμ(x) + sup
z∈Rn

{
f (z) −�∗

μ(z)
}
.

Note that ∇�μ(Rn) ⊂ K since any point in ∇�μ(Rn) is a barycenter of a probability mea-
sure supported on K by (2). Therefore, for any x ∈ K , the function λ �→ 〈λ,x〉 − �μ(λ) is
D-Lipschitz with respect to the �2-norm. Let now δ > 0, and let Dδ be a δ/D-net of V . Then,

log
∫

esupλ∈W {〈λ,x〉−�μ(λ)} dμ(x) ≤ δ + log
∫

e
supλ∈Dδ

{〈λ,x〉−�μ(λ)}
dμ(x).

Using a union bound, we get

log
∫

e
supλ∈Dδ

{〈λ,x〉−�μ(λ)}
dμ(x) ≤ log |Dδ|

which yields the claim. �

REMARK 2.1. In the case suppμ ⊂ [0,1]n, one can get a potentially better bound by
using not a net for the �2-norm but for the �1-norm instead. Indeed, for any i ∈ {1, . . . , n} and
λ ∈R

n,

∂i�(λ) =
∫
〈x, ei〉dμy(x),

with y = ∇�(λ) and μy is defined in (1). Therefore, if suppμ ⊂ [0,1]n, ∂i�(λ) ∈ [0,1].
Thus, for fixed x ∈ suppμ, the function λ �→ 〈λ,x〉−�μ(λ) is 1-Lipschitz w.r.t the �1-norm.
In the last step (13) of the proof of Proposition 1.1, if one takes δ > 0 and Fδ to be a δ-net
for the �1-norm, one obtains

log
∫

esupλ∈V {〈λ,x〉−�μ(λ)} dμ(x) ≤ δ + log |Fδ|.
This yields an error term in the approximation of the partition function getting closer to
the one recently found in [4], Proposition 5.1, as a consequence of a structural result on
probability measures on product spaces.

REMARK 2.2. As observed in Remark 1.1, we see that the above proof of Proposi-
tion 1.1 yields an approximation of the partition function which seems a bit off from the
one Lemma 1.3 proposes.

In general, it is expected that, when f has a gradient of low complexity, this gap becomes
negligible, that is, for any y in an appropriate level set of �∗

μ,∫
f dμy � f (y),

where μy is defined in (1). Indeed, if μ is the n-fold product measure νn, with ν compactly
supported, for example, we note that, by the mean-value theorem, we have∣∣∣∣

∫
f dμy − f (y)

∣∣∣∣≤
∫

sup
t∈K

∣∣〈∇f (t), x − y
〉∣∣dμy(x),

where K denotes the convex hull of the support of μ. But as μy has barycenter y and is also
a product measure with marginals having the same support as the one of ν, we can deduce,
by the majorization theorem (see [32], Theorem 12.16),∣∣∣∣

∫
f dμy − f (y)

∣∣∣∣≤ c

∫
sup
t∈K

〈∇f (t), x
〉
dγ n(x),

where c is a positive constant depending on the diameter of the support of ν and γ n is the
standard Gaussian measure on R

n.
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We now turn our attention to the proof of Theorem 1.4. As the “rate function” we are
aiming for is not a priori convex, we cannot restrict ourselves to estimate the logarithmic
Laplace transform of f (X) and use the previous Theorem 1.1. We will actually refrain our-
selves from using Chebytchev’s inequality and prefer to work directly on the probability of
deviations, in contrast with the path followed by Chatterjee and Dembo in [12], Section 4,
proof of Theorem 1.1.

PROOF OF THEOREM 1.4. To ease the notation, we write �, �∗ as shorthands for �μ

and �∗
μ, respectively. The key element of this upper bound is a deterministic result which

translates the event where f (X) /∈ Vδ({I ≤ r}) into a large deviation event for the process(〈θλ,X〉 − �(θλ)
)
θ>0,λ∈W .

The bound of Theorem 1.4 is then obtained by using a net argument and a union bound to
control the deviations of the above process.

Fix κ ≥ r > 0. Denote by K = {�∗ ≤ κ}. In a first step we translate in a more geometric
language the event where X ∈ K and f (X) /∈ Vδ({I ≤ r}) which is the object of the following
lemma.

LEMMA 2.1. Let x ∈ K . If f (x) /∈ Vδ({I ≤ r}), then

inf
z∈δW ◦ �∗(x − z) ≥ r,

where W ◦ is the polar set of W , that is, denoting by hW(z) = supλ∈W 〈λ, z〉 for z ∈ R
n the

support function of W ,

W ◦ = {
z ∈R

n, hW(z) ≤ 1
}
.

Observe that, since Theorem 1.4 is only relevant when W is a small set in terms of com-
plexity, its polar δW ◦ can be thought as a large or typical set. The above lemma quantifies
the fact that, when f (x) /∈ Vδ({I ≤ r}), x is far away from δW ◦ with respect to the cost
function �∗.

PROOF. Let x ∈ K . By definition of I , for any y ∈ R
n such that �∗(y) ≤ r , we have

I (f (y)) ≤ r . Therefore, if f (x) /∈ Vδ({I ≤ r}), then

inf
�∗(y)≤r

∣∣f (x) − f (y)
∣∣≥ δ.

Since κ ≥ r , we deduce from the assumption (5) that, for any y ∈R
n such that �∗(y) ≤ r ,∣∣f (x) − f (y)

∣∣≤ sup
λ∈W

〈λ,x − y〉.
Therefore, we have

(14) inf
�∗(y)≤r

sup
λ∈W

〈λ,x − y〉 ≥ δ.

Let z ∈ δW ◦, and assume that �∗(x − z) < r . By continuity of hW and the continuity of �∗
on its domain, we can assume hW(z) < δ. Using the above inequality (14) for y = x − z, we
get that hW(x − y) = hW(z) ≥ δ which yields a contradiction. Therefore,

inf
z∈δW ◦ �∗(x − z) ≥ r. �

As one can observe, Lemma 2.1 involves a convex optimization problem. A specific fea-
ture of such an optimization problem is that it admits a dual concave optimization problem
which is linked through its multipliers to the initial problem. Using this duality, we obtain the
following lemma.
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LEMMA 2.2. Let x ∈ K and θ0 = κ/δ. Then,

inf
z∈δW ◦ �∗(x − z) ≤ sup

0≤θ≤θ0
λ∈Wθ

{〈θλ, x〉 −�(θλ)− θδ
}
,

where, for any θ > 0,

(15) Wθ = {
λ ∈ W : θλ ∈ int(D�),∇�(θλ) ∈ K

}
.

PROOF. Since �∗(x) ≤ κ and 0 ∈ δW ◦, we obtain by taking z = 0 that

(16) inf
z∈δW ◦ �∗(x − z) ≤ κ < +∞.

As δW ◦ is a closed set and �∗ has compact level sets by [18], Lemma 2.2.31, the infimum is
achieved at some z∗ ∈ δW ◦.

Since �∗ and hW are both convex functions, we deduce by Kuhn–Tucker Theorem (see
[14], Theorem 9.4) that there exists (η, θ) �= (0,0) with η ∈ {0,1} and θ ≥ 0, such that
θ(hW(z∗)− δ) = 0 and

(17) η�∗(x − z∗) = inf
{
η�∗(x − z) + θ

(
hW(z) − δ

) : z ∈R
n}.

Evaluating the function on the right-hand side at z = 0, we obtain that η�∗(x − z∗) ≤ −θδ.
Therefore, the nontriviality condition (η, θ) �= (0,0) implies that η = 1. By (16) we know
that x − z∗ ∈D∗

�. We claim that further,

FACT 2.1. x − z∗ lies in the interior of D�∗ .

The intuition behind this fact is that the gradient of �∗ blows up around the frontier of
its domain whereas the “penalization function” hW remains Lipschitz, so that it can only be
beneficial for the minimum to lie in the interior of D�∗ . We now make this idea rigorous and
prove formally Fact 2.1.

PROOF. Note first that the barycenter of μ, which we denote by m, is in the interior of
D�∗ . Indeed, by Jensen’s inequality

(18) ∀λ ∈R
n, �(λ) ≥ 〈λ,m〉.

Therefore, �∗(m) ≤ 0. Since �∗ ≥ 0, we deduce that �∗(m) = 0 and, in consequence,
0 ∈ ∂�∗(m). As � is strictly convex and essentially smooth, �∗ is also strictly convex and
essentially smooth by [34], Theorem 26.5. In particular, �∗ is differentiable on int(D�∗) and
steep, so that any point with a nonempty subdifferential should lie in int(D�∗). Therefore,
m ∈ int(D�∗).

To prove that x − z∗ ∈ int(D�), we argue by contradiction. We will show that, if x − z∗
lies on the frontier of D�∗ , denoted by fr(D�∗), then, using the fact that �∗ is steep, we can
find a barycenter of m and x − z∗ at which the cost function in the optimization problem
(17) is smaller than at x − z∗, thus violating the optimality of x − z∗. Assume now that
x−z∗ ∈ fr(D�∗). Then, by [34], Theorem 6.1, we deduce that for any t ∈ (0,1], x−z∗− tu ∈
int(D�∗), where u = x − z∗ −m, as we are taking a barycenter between an interior point and
a frontier point of a convex set. Define

(19) ∀z ∈R
n, F (z) = �∗(x − z)+ θhW(z).

For any t > 0, there exists ζt ∈ W such that hW(z∗) − hW(z∗ + tu) ≥ −t〈ζt , u〉. Using the
convexity of �∗, we get

F(z∗) ≥ F(z∗ + tu) + 〈∇�∗(vt )− θζt , tu
〉
,
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where vt = x − z∗ − tu. Besides, �∗ is strictly convex and, therefore, achieves its unique
minimum at m where �∗(m) = 0. Thus, for any t < 1, �∗(vt ) > 0. Since vt = m+ (1 − t)u,
we deduce by convexity of �∗ that 〈∇�∗(vt ), u〉 > 0 for any t < 1. But W is a bounded set;
therefore, ζt remains bounded as t ∈ (0,1]. Since �∗ is steep, we deduce that, for t close
enough to 0, 〈∇�∗(vt )− θζt , u

〉
> 0

which gives the desired contradiction. �

Since z∗ is a global minimum of the function F defined in (19), we have 0 ∈ ∂F (z∗). From
Fact 2.1 we know that x − z∗ is an interior point of D�∗ . As �∗ is differentiable on int(D�∗),
we have 0 ∈ {−∇�∗(x − z∗)} + θ∂hW(z∗) by [14], Theorem 4.10. By Danskin’s formula
(see [14], Theorem 10.22), the subdifferential of the support function hW is

∂hW(z) = {
λ∗ ∈ W : hW(z) = 〈λ∗, z〉}.

Thus, there is a λ ∈ W satisfying δ = 〈λ, z∗〉 such that

(20) ∇�∗(x − z∗) = θλ.

Therefore,

�∗(x − z∗) = 〈θλ, x − z∗〉 − �(θλ) = 〈θλ, x〉 − �(θλ)− θδ.

Note that θ and λ depends on x in an implicit way. However, we will show that θ and λ can
be restricted to certain subsets uniformly in x such that �∗(x) ≤ κ . More precisely, we will
prove that θ ≤ κ/δ and λ ∈ Wθ , with Wθ defined in (15), thus ending the proof of Lemma 2.2.
We start with the bound on θ . Using the convexity of �∗, we have

�∗(x) −�∗(x − z∗) ≥ 〈∇�∗(x − z∗), z∗
〉
.

Using that 〈λ, z∗〉 = δ and that �∗ is nonnegative, we get �∗(x) ≥ θδ. Since �∗(x) ≤ κ , we
obtain that θ ≤ κ/δ. To prove that λ ∈ Wθ , we use the fact that ∇� and ∇�∗ are inverse maps
and (16) to deduce that

�∗(∇�(θλ)
)= �∗(x − z∗) ≤ �∗(x) ≤ κ

which finally ends the proof. �

Combining Lemmas 2.1 and 2.2, we obtain that if x ∈ K and f (x) /∈ Vδ({I ≤ r}), then

(21) sup
0≤θ≤θ0

λ∈Wθ

{〈θλ, x〉 − �(θλ)− θδ
}≥ r,

where Wθ is defined in (15) for any θ > 0. In order to be allowed to take the probability of
this event, we check the measurability of the supremum appearing in the above inequality.

FACT 2.2. The function x ∈R
n �→ sup0≤θ≤θ0

λ∈Wθ

{〈θλ, x〉 − �(θλ)− θδ} is measurable.

PROOF. Since (θ, λ) �→ 〈θλ, x〉 − �(θλ) − θδ is a continuous function, it suffices to
prove that the subset,

A := ⋃
θ≤θ0

{θ} × Wθ,
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is separable in the sense that it contains a dense subset. Observe that A is a bounded set since
Wθ ⊂ W for any θ ≥ 0 and W is bounded by assumption. Therefore, its closure, cl(A), is
compact. This entails that A is precompact and, in consequence, that it is separable. �

Define now the measure

PK = P
(· ∩ {X ∈ K}).

From (21) we have the upper bound

(22) PK

(
f (X) /∈ Vδ

({I ≤ r}))≤ PK

(
sup

0≤θ≤θ0
λ∈Wθ

{〈θλ,X〉 − �(θλ)− θδ
}≥ r

)
.

In a last step we control the deviations of the supremum of the process appearing in the
right-hand side of (22) using a net argument and performing a union bound.

LEMMA 2.3. Let D denote the diameter of K . Let Dδ/2 be a δ/2D-net for the �2-norm
of W . Then,

logPK

(
sup

0≤θ≤θ0
λ∈Wθ

{〈θλ,X〉 − �(θλ)− θδ
}≥ r

)
≤−r + log |Dδ/2| + log

((
κLD

δ

)
∨ 1

)
+ 1,

where θ0 = κ/δ, L = supλ∈W ‖λ‖�2 and for any θ ≥ 0,

Wθ = {
λ ∈ W : θλ ∈ int(D�),∇�(θλ) ∈ K

}
.

PROOF. We start by a net argument on θ . For x ∈ K fixed, define the function

G : θ ∈R+ �→ sup
λ∈Wθ

{〈θλ, x〉 − �(θλ)− θδ
}
.

We claim that, for any θ ′ ≤ θ ,

(23) G
(
θ ′)−G(θ) ≤ (

θ − θ ′)LD.

We observe first the following fact on the monotonicity of the sets Wθ .

FACT 2.3. The family (Wθ)θ≥0 is nonincreasing for the inclusion.

PROOF. Let θ ≥ 0 and λ ∈ Wθ . Since K = {�∗ ≤ κ}, it means that θλ ∈ int(D�∗) and
�∗(∇�(θλ)) ≤ κ . We know by (18) that m ∈ ∂�(0). Since � is essentially smooth and �

has a nonempty subdifferential at 0, the point 0 must lie in the interior of D�. Since, by [34],
Theorem 6.2, int(D�) is a convex set, we deduce that for any 0 ≤ θ ′ ≤ θ , θ ′λ ∈ int(D�). In
addition, for any θ ′ ≤ θ we can compute

∂

∂θ ′�
∗(∇�

(
θ ′λ

))= 〈∇�∗(∇�
(
θ ′λ

))
,∇2�

(
θ ′λ

)
.λ
〉

= θ ′〈λ,∇2�
(
θ ′λ

)
.λ
〉≥ 0,

where we used the fact that ∇� and ∇�∗ are inverse maps from one another. Thus, we can
conclude that, for any θ ′ ≤ θ , �∗(θ ′λ) ≤ �∗(θλ) ≤ κ and, therefore, λ ∈ Wθ ′ . �

We now prove (23). Let θ ′ ≤ θ . By convexity of �, we get, for any λ ∈ Wθ ,(〈θλ,X〉 −�
(
θ ′λ

))− (〈
θ ′λ,X

〉−�
(
θ ′λ

))≤ (
θ − θ ′)〈λ,∇�

(
θ ′λ

)−X
〉
.
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Since Wθ ⊂ Wθ ′ by Fact 2.3, we have ∇�(θ ′λ) ∈ K . As we denoted by D the diameter of K ,
we obtain (〈θλ,X〉 −�

(
θ ′λ

))− (〈
θ ′λ,X

〉−�
(
θ ′λ

))≤ (
θ − θ ′)LD

which holds for any θ ′ ≤ θ and λ ∈ Wθ ⊂ Wθ ′ . This yields the claim (23).
Let E be a 1/(LD)-net of the interval [0, θ0]. One can find a net E such that

(24) |E | ≤ (LDθ0) ∨ 1 =
(

κLD

δ

)
∨ 1.

For any θ ∈ [0, θ0], one can find θ ′ ∈ E such that 0 ≤ θ − θ ′ ≤ 1/LD. From (23) we deduce
that

sup
θ∈[0,θ0]

G(θ) ≤ sup
θ ′∈E

G
(
θ ′)+ 1.

Thus, using a union bound, we get

PK

(
sup

0≤θ≤θ0
λ∈Wθ

{〈θλ,X〉 −�(θλ)− θδ
}≥ r

)

≤∑
θ∈E

PK

(
sup

λ∈Wθ

{〈θλ,X〉 −�(θλ)− θδ
}≥ r − 1

)
.

(25)

Let us now fix θ ∈ E, and perform a net argument on λ ∈ Wθ . Fix x ∈ K , and define the
function H taking values in R∪ {−∞},

H : λ ∈R
n �→ 〈θλ,X〉 − �(θλ).

We claim that, for any λ,λ′ ∈ Wθ ,

(26) H(λ) −H
(
λ′)≤ θD

∥∥λ− λ′∥∥.
Indeed, by convexity of � we have, for λ,λ′ ∈ Wθ ,

H(λ) −H
(
λ′)≤ θ

〈
λ− λ′, x −∇�

(
θλ′)〉.

Since λ′ ∈ Wθ , we have ∇�(θλ′) ∈ K which yields (26).
Let F be a δ/D-net for the �2-norm of Wθ such that F ⊂ Wθ . Using (26), we obtain that

sup
λ∈Wθ

H(λ) ≤ sup
λ′∈F

H
(
λ′)+ θδ.

Therefore,

PK

(
sup

λ∈Wθ

{〈θλ,X〉 − �(θλ)
}≥ r − 1 + θδ

)
≤ PK

(
sup
λ∈F

{〈θλ,X〉 − �(θλ)
}≥ r − 1

)
.

Performing a union bound, we get

P

(
sup
λ∈F

{〈θλ,X〉 − �(θλ)
}≥ r − 1

)
≤ |F |e−r+1,

where we used the fact that, for any ξ ∈R
n and t ≥ 0,

P
(〈ξ,X〉 −�(ξ) ≥ t

)≤ e−t ,

by Chernoff’s inequality. Therefore,

(27) PK

(
sup

λ∈Wθ

{〈θλ,X〉 − �(θλ)
}≥ r − 1 + θδ

)
≤ |F |e−r+1.
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It remains now to show that we can find a δ/D-net F of Wθ such that F ⊂ Wθ and relate its
cardinal to the one of a net of W . For any A ⊂ R

n and r > 0, we denote by N(A, rB�2) and
N(A, rB�2) the following covering numbers:

N(A, rB�2) = min

{
N ∈N : ∃x1, . . . , xN ∈R

n,A ⊂
N⋃

i=1

B�2(xi, r)

}
,

N(A, rB�2) = min

{
N ∈N : ∃x1, . . . , xN ∈ A,A ⊂

N⋃
i=1

B�2(xi, r)

}
.

While it is true that the first notion of covering number N(A, rB�2) is nondecreasing in A for
the inclusion, this fact becomes wrong for N(A, rB�2). When A is convex, it is known (see
[2], Fact 4.1.4) that both covering numbers defined above coincide. Unfortunately, we cannot
prove in general that Wθ is convex. But, up to loose a factor 2 in the mesh of the net, we have
the following fact.

FACT 2.4. Let A ⊂ B ⊂R
n and r > 0. Then, N(A, rB�2) ≤ N(B, (r/2)B�2).

PROOF. For any A ⊂R
n and r > 0, let M(A, rB�2) be the separation number defined as

M(A, rB�2) = max
{
N ∈N : ∃x1, . . . , xN ∈ A,∀i �= j,‖xi − xj‖ ≥ r

}
.

Let A ⊂ B ⊂R
n. We know by [2], Fact 4.1.11, that N(A, rB�2) ≤ M(A, rB�2). Since A ⊂ B ,

M(A, rB�2) ≤ M(B, rB�2).

Using again [2], Fact 4.1.11, we have

M(B, rB�2) ≤ N
(
B, (r/2)B�2

)
which ends the proof. �

Let Dδ/2 be a δ/2D-net for the �2-norm of W . As Wθ ⊂ W , we deduce from Fact 2.4 that
there exists a δ/D-net F of Wθ for the �2-norm such that F ⊂ Wθ and |F | ≤ |Dδ/2|. From
the two union bounds (25) and (27), we obtain

logPK

(
sup

0≤θ≤θ0
λ∈Wθ

{〈θλ,X〉 − �(θλ)− θδ
}≥ r

)
≤ log |E | + log |F | − r + 1.

Since |E | ≤ (κLD/δ) ∨ 1 by (24) and |F | ≤ |Dδ/2|, we deduce that

logPK

(
sup

0≤θ≤θ0,λ∈Wθ

{〈θλ,X〉 − �(θλ)− θδ
}≥ r

)

≤−r + log |Dδ/2| + log
((

κLD

δ

)
∨ 1

)
+ 1

which ends the proof. �

To finalize the proof, we choose κ ≥ r such that P(X /∈ K) ≤ e−r . Using (22) and
Lemma 2.3, we obtain

P
(
f (X) /∈ Vδ

({I ≤ r}))≤ PK

(
f (X) /∈ Vδ

({I ≤ r}))+ e−r

≤ κLD

δ
|Dδ/2|e−r+1 + e−r

≤ 2κLD

δ
|Dδ/2|e−r+1,

which gives us the claim. �
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3. Large deviation of traces of Wigner matrices. In this section we will give a proof
of Theorem 1.10 and Corollary 1.11.

3.1. Large deviation upper bound. We start with the large deviation upper bound of The-
orem 1.10. The strategy for this upper bound will be similar to the one we adopted to inves-
tigate the large deviations of the moments of β-ensembles in [3], Section 3. It consists in
truncating the spectrum so as to reduce ourselves to study the deviations of a small frac-
tion of the eigenvalues. Once this truncation is made, we will be able to use Theorem 1.4
efficiently.

We introduce some notation we will use throughout this section. Let Y ∈ Hn. For any
k ∈ {1, . . . , n}, we denote by tr[k]Y the truncated trace

(28) tr[k]Y =
k∑

i=1

λi(Y ),

where λ1(Y ), . . . , λn(Y ) are the eigenvalues of Y in nonincreasing order. For any measurable
function f :R→R, we define f (Y ) by functional calculus as the Hermitan matrix,

f (Y ) =
n∑

i=1

f
(
λi(Y )

)
uiu

∗
i ,

where u1, . . . , un are the eigenvectors of Y associated to λ1(Y ), . . . , λn(Y ). We now define,
for d even,

(29) fk(Y ) = 1

n
tr[k](Y/

√
n)d,

whereas for d odd,

fk(Y ) = 1

n
tr[k](Y+/

√
n)d − 1

n
tr[k](Y−/

√
n)d.

The first step toward the proof of the upper bound is the following lemma which will rely on
concentration arguments.

LEMMA 3.1. Assume X is a Wigner matrix satisfying the convex concentration property.

Let k ∈ {1, . . . , n} such that n
1

d−1 = o(k) and k = o(n). For any t > 0,

lim
n→+∞

1

n1+ 2
d

logP
(∣∣∣∣1n tr(X/

√
n)d − fk(X)− μsc

(
xd)∣∣∣∣> t

)
=−∞.

3.1.1. Concentration inequalities. In order to prove Lemma 3.1, we will develop some
deviation inequalities for the number of eigenvalues falling outside an interval and for trun-
cated linear statistics of Hermitian random matrices satisfying the convex concentration prop-
erty defined in 1.9. The proof of these inequalities will follow the now classical path laid by
the work of Guionnet and Zeitouni in [22].

PROPOSITION 3.2. Let X be a random Hermitian matrix satisfying the convex concen-
tration property for some constant c > 0. Let k ∈ {1, . . . , n}, and let f : R→ R be a convex
1-Lipschitz function which achieves its infimum on R. For any t > 0,

P
(∣∣tr[k]f (X)−Etr[k]f (X)

∣∣> t
)≤ c−1 exp

(
−ct2

k

)
,

where tr[k] is the truncated trace defined in (28).
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In order to apply our convex concentration property, we need to prove that the truncated
linear statistics are convex Lipschitz functions of the entries. This is the object of the follow-
ing lemma.

LEMMA 3.3. Let f : R→ R be a convex function which achieves its infimum on R. Let
k ∈ {1, . . . , n}. The function Tf defined by

∀X ∈Hn, Tf (X) = tr[k]f (X)

is convex. Moreover, if f is 1-Lipschitz, then Tf is
√

k-Lipschitz with respect to the Hilbert–
Schmidt norm.

PROOF. The proof is a variation around the one of Klein’s lemma (see [1], Lem-
ma 4.4.12). Since f achieves its infimum, we know that there exists x0 such that 0 ∈ ∂f (x0).
Considering f̃ = f (· + x0) − f (x0), we may and will assume that x0 = 0 and f (0) = 0. We
will show the following representation of Tf as supremum of affine functions.

LEMMA 3.4. Let f :R→R be a convex function. Assume f (0) = 0 and 0 ∈ ∂f (0). Let
ζ :R→R be a function such that

∀x ∈R, ζ(x) ∈ ∂f (x), and ζ(0) = 0.

Then, for any X ∈Hn,

(30) Tf (X) = sup
rankY≤k

{
trf (Y ) + trζ(Y )(X − Y)

}
.

Moreover, if f is 1-Lipschitz, then Tf is
√

k-Lipschitz with respect to the Hilbert–Schmidt
norm.

PROOF. First, we know by [34], Theorem 23.4, that, for every x ∈ R, ∂f (x) �=∅ which
justifies the existence of ζ . Let λ1, . . . , λn be the eigenvalues of X such that f (λ1) ≥ · · · ≥
f (λn). Let u1, . . . , un be the associated eigenvectors. Note that, because we assumed f (0) =
0, then if we take Y =∑k

i=1 λiuiu
∗
i , we get the equality

Tf (X) = trf (Y ) + trζ(Y )(X − Y),

using the orthogonality of the eigenvectors. Therefore, only the inequality is left to prove.
Let Y ∈Hn with rank less that k, and denote by e1, . . . , en an orthonormal basis of eigenvec-
tors such that ek+1, . . . , en are in the kernel and by μ1, . . . ,μk the eigenvalues associated to
e1, . . . , ek . From the convexity of f , we have, for any j ∈ {1, . . . , n}, i ∈ {1, . . . , k},

f (λj ) ≥ f (μi)+ ζ(μi)(λj − μi).

Multiplying the above inequality by |〈uj , ei〉|2 and summing over j ∈ {1, . . . , n}, we get

(31)
n∑

j=1

∣∣〈uj , ei〉
∣∣2f (λj ) ≥ f (μi)+

n∑
j=1

∣∣〈uj , ei〉
∣∣2ζ(μi)(λj −μi).

Writing the trace of f ′(Y )(X − Y) in the basis of the ei ’s, we have

trζ(Y )(X − Y) =
n∑

i=1

〈
ei, ζ(Y )(X − Y)ei

〉

=
n∑

i=1

〈
ζ(Y )ei, (X − Y)ei

〉

=
k∑

i=1

〈
ζ(Y )ei, (X − Y)ei

〉
,
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where we used the fact that ζ(0) = 0. Finally, using the spectral decomposition of X, we get

trζ(Y )(X − Y) =
k∑

i=1

n∑
j=1

∣∣〈uj , ei〉
∣∣2ζ(μi)(λj −μi).

Summing (31) now over i ∈ {1, . . . , k}, we deduce, writing αj =∑k
i=1 |〈uj , ei〉|2, that

n∑
j=1

αjf (λj ) ≥ trf (Y ) + trζ(Y )(X − Y).

Observe that αj ∈ [0,1] and
∑

j αj = k. The maximum,

max
{∑

j

αjf (λj ) : αj ∈ [0,1],∑
j

αj = k

}
,

is achieved at the vector α = 1J where J is the set of indices j corresponding to the k

highest values of f (λj ). This shows that the representation (30) holds and that Tf is a convex
function.

Assume further that f is 1-Lipschitz. This entails that |ζ(x)| ≤ 1 for any x ∈ R. Conse-
quently, ‖ζ(Y )‖2 ≤√

k for any Y ∈Hn with rank(Y ) ≤ k. We conclude from the representa-
tion (30) that Tf is

√
k-Lipschitz w.r.t the Hilbert–Schmidt norm. �

As a consequence of Proposition 3.2, we get the following deviation estimate on the num-
ber of eigenvalues present outside the bulk.

PROPOSITION 3.5. Let X be a random Hermitian matrix satisfying the convex concen-
tration property with constant c > 0. Denote by λ1(X) its top eigenvalue and ‖X‖ its operator
norm. For any M ≥ 4E(λ1(X))+ and 1 ≤ k ≤ n,

P
(
N [M,+∞) ≥ k

)≤ c−1 exp
(
−cM2k

16

)
,

where for any I ⊂R, N (I ) denotes the number of eigenvalues of X in I . As a consequence,
for any M ≥ 4E‖X‖ and 1 ≤ k ≤ n,

P
(
N
(
(−M,M)c

)≥ k
)≤ 2c−1 exp

(
−cM2k

32

)
.

PROOF. Let f (x) = 2
M

(x − M/2)+ for any x ∈R. Since f (x) ≥ 1 for x ≥ M , we have,
denoting by λ1(X), . . . , λn(X), the eigenvalues of X in nonincreasing order,

P
(
N [M,+∞) ≥ k

)≤ P

(
k∑

i=1

f
(
λi(X)

)≥ k

)
.

But

E

(
k∑

i=1

f
(
λi(X)

))≤ 2

M
kE
(
λ1(X)

)
+ ≤ k

2

for M ≥ 4E(λ1(X))+. Thus,

P
(
N [M,+∞) ≥ k

)≤ P

(
k∑

i=1

f
(
λi(X)

)−E

k∑
i=1

f
(
λi(X)

)≥ k/2

)
.
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Applying Proposition 3.2, we deduce that

(32) P
(
N [M,+∞) ≥ k

)≤ c−1e−
ckM2

16

which gives the first claim.
Since by definition  k/2! − 1 < k/2, we have using a union bound,

P
(
N
(
(−M,M)c

)≥ k
)≤ P

(
N (−∞,−M] ≥ �

)+ P
(
N [M,+∞) ≥ �

)
,

where � =  k/2!. For any M ≥ 4E‖X‖, we obtain by applying inequality (32) to X and −X

alternatively,

P
(
N
(
(−M,M)c

)≥ k
)≤ 2c−1e−

ckM2
32

which gives the second claim. �

3.1.2. An exponential equivalent. In this section, we apply the concentration inequal-
ities we obtained in the previous section to give a proof of the exponential equivalent of
Lemma 3.1.

PROOF OF LEMMA 3.1. Let k such that n
1

d−1 = o(k) and k = o(n). We will prove the
claim only in the case where d is even, the case where d is odd being almost the same. Let
M > 0, and define the truncated power function, by fM(x) = xd for |x| ≤ M , and for |x| > M

by,

fM(x) = dMd−1(|x| −M
)+Md.

Let λ∗
1, . . . , λ

∗
n be the eigenvalues of X/

√
n in decreasing absolute values. We can write,

n∑
i=k+1

fM

(
λ∗

i

)= trfM(X/
√

n) − tr[k]fM(X/
√

n).

As fM(·/√n) is dMd−1/
√

n-Lipschitz, applying Proposition 3.2 alternatively to
trfM(X/

√
n) and tr[k]fM(X/

√
n), and performing a union bound, we deduce that for any

t > 0,

(33) P

(∣∣∣∣∣
n∑

i=k+1

fM

(
λ∗

i

)−E

n∑
i=k+1

fM

(
λ∗

i

)∣∣∣∣∣> tn

)
≤ 2c−1 exp

(
− cn2t2

4d2M2(d−1)

)
,

where we used the fact that k ≤ n. On one hand,∣∣∣∣∣E
n∑

i=k+1

λ∗
i
d −E

n∑
i=k+1

fM

(
λ∗

i

)∣∣∣∣∣≤ E

n∑
i=1

∣∣λ∗
i

∣∣d1|λ∗
i |≥M

≤ 1

M
Etr|X/

√
n|d+1.

Using twice the Cauchy–Schwarz inequality, we get

1

n
Etr|X/

√
n|d+1 ≤ E

(
1

n
tr(X/

√
n)2(d+1)

) 1
2 ≤

(
E

1

n
tr(X/

√
n)2(d+1)

) 1
2 = O(1),

where we used in the last equality [1], Lemma 2.1.6. Therefore,∣∣∣∣∣E
n∑

i=k+1

λ∗
i
d −E

n∑
i=k+1

fM

(
λ∗

i

)∣∣∣∣∣= O

(
n

M

)
.
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On the other hand, ∣∣∣∣∣E
n∑

i=k+1

λ∗
i
d −Etr(X/

√
n)d

∣∣∣∣∣≤ kE‖X/
√

n‖d = O(k),

as E‖X/
√

n‖d = O(1) by [1], Exercice 2.1.27. Therefore, if k = o(n) and M goes to infinity
with n, then as E 1

n
tr(X/

√
n)d converges to μsc(x

d), we have

(34)

∣∣∣∣∣μsc
(
xd)−E

(
1

n

n∑
i=k+1

fM

(
λ∗

i

))∣∣∣∣∣ −→
n→+∞ 0.

Fix t > 0. Now, let M go to infinity with n such that n1+2/d = o(n2/M2(d−1)), that is,
M2 = o(na) with a = (d − 2)/(d(d − 1)). The above inequality (33) and the convergence
(34) give

(35) lim
n→+∞

1

n1+ 2
d

logP

(∣∣∣∣∣1n
n∑

i=k+1

fM

(
λ∗

i

)−μsc
(
xd)∣∣∣∣∣> t

)
=−∞.

But since E‖X‖ = O(
√

n) by [1], Exercice 2.1.29, we deduce from Proposition 3.5 that in
order to have that

(36) lim
n→+∞

1

n1+ 2
d

logP
(
N
([−R

√
n,R

√
n]c)≥ k

)=−∞,

it is sufficient to take R going to +∞ with n such that n2/d = o(kR2). We assumed that

n
1

d−1 = o(k) which is equivalent to say that

n
2
d = o

(
kna).

Therefore, we can find M going to infinity which satisfies both conditions,

M2 = o
(
na) and n

2
d = o

(
kM2).

With this choice of M , both estimates (35) and (36) with R = M hold. But then

P

(∣∣∣∣∣
n∑

i=k+1

λ∗
i
d −

n∑
i=k+1

fM

(
λ∗

i

)∣∣∣∣∣> tn

)
≤ P

(
N
([−M

√
n,M

√
n]c)≥ k

)
.

Therefore,

lim sup
n→+∞

1

n1+ 2
d

logP

(∣∣∣∣∣
n∑

i=k+1

λ∗
i
d −

n∑
i=k+1

fM

(
λ∗

i

)∣∣∣∣∣> tn

)
=−∞

which together with (35) give the claim. �

3.1.3. Proof of the large deviation upper bound. From Lemma 3.1 we see that it suffices

to understand the large deviations of a truncated trace fk(X) defined in (29), with n
1

d−1 = o(k)

and k = o(n). The point is that this truncation lowers significantly the complexity. Indeed,
we will be able to encode by O(nk logn) bits the “gradient” of the truncated trace tr[k](Xd).

Thus, Proposition 1.4 will give us a relevant upper bound, with respect to the speed n1+ 2
d , as

soon as we can take k logn = o(n
2
d ). But for d ≥ 3, we see that

1

d − 1
<

2

d
.

Therefore, we can and will take k which satisfies both conditions n
1

d−1 = o(k) and k logn =
o(n

2
d ).
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Property of the rate function I+. We begin with proving that the rate function I+ defined in
Theorem 1.10 is a good rate function. It will follow from the next lemma:

LEMMA 3.6. Let cn : Rn → R+ and Fn : Rn → R be families of functions indexed by
n ∈N such that, for any r > 0, the subset⋃

n∈N
Fn

({cn ≤ r})
is bounded. Then, the functions defined as

∀x ∈R, I (n)(x) = sup
δ>0

inf
m≥n

Im,δ(x)

and

∀x ∈R, I+(x) = sup
δ>0

lim inf
n→+∞ In,δ(x)

with

Im,δ(x) = inf
{
cm(h) : ∣∣Fm(h) − x

∣∣< δ,h ∈R
m}

are good rate functions.

PROOF. Let τ > 0. We can write, for any x ∈R,

I (n)(x) ≤ τ ⇐⇒ ∀δ > 0, inf
m≥n

Im,δ(x) ≤ τ

⇐⇒ ∀δ > 0,∀ε > 0,∃m ≥ n, Im,δ(x) < τ + ε.

By definition of Im,δ , we get

I (n)(x) ≤ τ

⇐⇒ ∀ε > 0,∀δ > 0,∃m ≥ n,∃h ∈R
m, cm(h) < τ + ε,

∣∣Fm(h) − x
∣∣< δ.

Thus, {
I (n) ≤ τ

}= ⋂
ε>0

⋃
m≥n

Fm

({cm ≤ τ + ε}).
This yields that I (n) is a good rate function. As I+ = supn∈N I (n), we deduce that I+ is also a
good rate function. �

Let us now check that the assumptions of Lemma 3.6 are fulfilled in our setting. We first
show that X is sub-Gaussian in the sense that there exists C > 0 such that

(37) ∀Y ∈Hn, �∗(Y ) ≥ 1

2C2 tr
(
Y 2).

Applying the convex concentration property defined in 1.9 to the function f (X) = tr(XH)

with H ∈Hn fixed, we obtain that, for any t > 0,

P
(∣∣tr(XH)

∣∣> t
)≤ c−1e

− ct2

tr(H2) .

We deduce that �(H) ≤ C2

2 tr(H 2) which gives (37). But using the fact that x ∈ R+ �→ x2/d

is subadditive, we have for any Y ∈Hn, |tr(Y d)| ≤ tr(|Y |d) ≤ (tr(Y 2))d/2 so that, whenever

�∗(Y ) ≤ rn1+ 2
d

for some r > 0, then we have | 1
n

tr(Y/
√

n)d | ≤ (2C2r)
d
2 . This shows that we can apply

Lemma 3.6 with cn(Y ) = n−(1+ 2
d
)�∗(Y ) and Fn(Y ) = μsc(x

d) + 1
n

tr(Y/
√

n)d and conclude
that I+ is a good rate function.
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Upper bound. We can now proceed with the proof of the upper bound. By [18], The-
orem 4.2.13, it is sufficient to prove the large deviations upper bound for the sequence
(fk(X))n∈N, as (μsc(x

d) + fk(X))n∈N is exponentially equivalent to ( 1
n

tr(X/
√

n)d)n∈N by
Lemma 3.1. We will first make sure that the rate function we are going to obtain by applying
Theorem 1.4 is the same as the one we are aiming for, that is,

LEMMA 3.7. Assume that k goes to +∞ with n. For any n ∈N, δ > 0, set

∀x ∈R, Jn,δ(x) = inf
{

1

n1+ 2
d

�∗(Y ) : ∣∣fk(Y ) − x
∣∣< δ,Y ∈Hn

}
,

and let

J+ = sup
δ>0

lim inf
n→+∞Jn,δ,

where fk is defined in (29). For any x ∈R,

I+
(
x +μsc

(
xd))= sup

δ>0
lim inf
n→+∞Jn,δ(x),

where I+ is defined as

∀x ∈R, I+(x) = sup
δ>0

lim inf
n→+∞ In,δ(x),

and for any n ∈N, δ > 0,

In,δ(x) = inf
{
�∗(Y )

n1+ 2
d

:
∣∣∣∣1n tr(Y/

√
n)d −μsc

(
xd)− x

∣∣∣∣< δ,Y ∈Hn

}
.

PROOF. We will prove that I+(· + μsc(x
d)) and J+ have the same level sets. We will

first observe that if Y ∈Hm is a nonnegative matrix such that tr(Y 2) = O(m1+ 2
d ), then

(38) tr
(
Yd)− tr[k]

(
Yd)= o

(
m1+ d

2
)
.

Let λ1 ≥ · · · ≥ λm ≥ 0 be the eigenvalues of Y . From the fact that tr(Y 2) = O(m1+ 2
d ), we

deduce that, for any 1 ≤ � ≤ m,

λ� ≤ �−
1
2 O

(
m

1
2+ 1

d
)
.

Thus,

tr
(
Yd)− tr[k]

(
Yd)=∑

�>k

λd
� = O

(
m1+ d

2 k1− d
2
)

which gives (38). Now, let τ > 0 and x such that J+(x) ≤ τ . Let δ > 0. For any n ∈ N, we
have

inf
m≥n

Jm,δ(x) ≤ τ.

Therefore,

inf
m≥n

Jm,δ(x) = inf
m≥n

inf
Y∈Hm

{
�∗(Y )

m1+ 2
d

: ∣∣fk(Y ) − x
∣∣< δ,�∗(Y ) ≤ 2τm1+ 2

d

}
.

For any m ∈N and Y ∈Hn such that �∗(Y ) ≤ 2τm1+ 2
d , we know by (37) that

tr
(
Y 2)≤ 4C2τm1+ 2

d .
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Applying the observation (38) to Y+ and Y− alternatively, we deduce that tr(Y d) − fk(Y ) =
o(m1+ d

2 ). Therefore, for n large enough,

inf
m≥n

Jm,δ(x) ≥ inf
m≥n

Im,2δ(x).

Therefore,

lim inf
n→+∞ In,2δ(x) ≤ τ.

As the above inequality is true for any δ > 0, we obtain I+(x) ≤ τ . Inverting the roles of I+
and J+, we get the other inclusion. �

We come back to the proof of the upper bound of Theorem 1.10. Let F be a closed subset
of R. We want to prove that

lim sup
n→+∞

1

n1+ 2
d

logP
(
fk(X) ∈ F

)≤− inf
F

J+,

where J+ is defined in Lemma 3.7. We can assume without loss of generality that
infF J+ > 0. Let r > 0 such that infF J+ > r . Put in another way,

F ∩ {J+ ≤ r} =∅.

As J+ is a good rate function, we can find a δ > 0 such that

F ∩ V2δ

({J+ ≤ r})=∅.

Define for any n ∈N,

J (n) = sup
δ>0

inf
m≥n

Jm,δ.

Note that, as J+ = supn∈N J (n),

{J+ ≤ r} = ⋂
n∈N

{
J (n) ≤ r

}
.

Using (37) and the fact that, for any Y ∈Hn,

fk(Y ) ≤ (
tr
(
Y 2))d/2

,

we deduce by Lemma 3.6 that J (n) is a good rate function. Therefore, {J (n) ≤ r} is a nonin-
creasing sequence of compact subsets so that, for n large enough,{

J (n) ≤ r
}⊂ Vδ

({J+ ≤ r}).
Therefore,

F ∩ Vδ

({
J (n) ≤ r

})=∅.

But {J (n) ≤ r} ⊃ {J ≤ rn1+ 2
d }, where

J (x) = inf
{
�∗(Y ) : fk(Y ) = x,Y ∈Hn

}
.

Thus,

(39) P
(
fk(X) ∈ F

)≤ P
(
fk(X) /∈ Vδ

({
J ≤ rn1+ 2

d
}))

.

We are now in the position of applying Theorem 1.4. First, we check that the tightness con-
dition (4) is satisfied. By [18], Lemma 5.1.14, we know that, for any i, j ,

Ee
1
2 �∗

i,j (Xi,j ) ≤ 4(1+1i �=j ),
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using the fact that (�Xi,j ,�Xi,j ) are independent. Therefore, by Chernoff’s inequality

P
(
�∗(X) > 8n2)≤ e−4n2

4n2 ≤ e−n2

which proves that (4) is fulfilled.
Let K = {�∗ ≤ 8n2}. We will now bound the increments of fk on K . As noted before, the

level sets of �∗ are included in Hilbert–Schmidt balls, more precisely, we know from (37),

(40) K ⊂ 4CnB2,

where B2 denotes the ball of radius 1 for the Hilbert–Schmidt norm. By Lemma 3.4 we know
that if f : R → R is a convex differentiable function such that f (0) = f ′(0) = 0, then the
function

∀Y ∈Hn, Tf (Y ) = tr[k]f (Y )

admits the variational representation

∀X ∈Hn, Tf (X) = sup
Y∈Hnrank(Y )≤k

{
trf (Y ) + tr

(
f ′(Y )(X − Y)

)}
.

We deduce that, for any X,Y ∈Hn,

Tf (X) − Tf (Y ) ≤ tr
(
f ′(Z)(X − Y)

)
,

where Z =∑k
i=1 λiuiu

∗
i , with λ1 ≥ · · · ≥ λn the eigenvalues of X and u1, . . . , un the asso-

ciated eigenvectors. If we take f : x �→ xd+, x �→ xd−, or x �→ xd (in the case d is even) and
X ∈ 4CnB2, then we see that f ′(Z) is of rank k and ‖f ′(Z)‖ ≤ d‖X‖d−1 ≤ d(4C)d−1nd−1.
As by definition, fk is a combination of at most two functions Tf associated with the func-
tions x �→ xd+, x �→ xd− or x �→ xd , we get that, for any X,Y ∈ 4CB2,

(41) fk(X)− fk(Y ) ≤ sup
H∈W

trH(X − Y),

where

(42) W = {
H ∈Hn : rank(H) ≤ 2k,‖H‖ ≤ c0n

d−1},
where c0 is some positive constant depending on C.

Note that by (40), the diameter of the level set K is bounded by 8Cn, and, by (41), the
Lipschitz constant of fk on K is only polynomial in n. By Theorem 1.4 we get

logP
(
fk(X) /∈ Vδ

({
J ≤ rn1+ 2

d
}))≤−rn1+ 2

d

+ logN(8ncW, δB2) +O(logn),
(43)

where N(8ncW, δB2) denotes the covering number of 8ncW by Hilbert–Schmidt balls of
radius δ. It now remains to compute the covering numbers of W . This is the object of the
following lemma.

LEMMA 3.8. Let k ∈ {1, . . . , n}. Define the set

Mk = {
Y ∈Hn : rank(Y ) ≤ k,‖Y‖ ≤ 1

}
.

For any ε ∈ (0,1), let N(Mk, εB2) be the covering number of Mk by Hilbert–Schmidt balls
of radius ε. Then,

logN(Mk, εB2) ≤ 2nk log
(

12k

ε

)
.
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PROOF. Let Y ∈Mk and Z ∈Hn. Let us spectrally decompose Y , and write Z as

Y =
k∑

i=1

λiuiu
∗
i , Z =

k∑
i=1

μiviv
∗
i ,

where μi are real numbers, vi are unit vectors (not necessarily orthogonal to one another),
λ1, . . . , λk are the possible nonzero eigenvalues of Y and u1, . . . , uk the associated eigenvec-
tors. As the vi ’s are unit vectors,

‖Y −Z‖2 ≤
k∑

i=1

|λi − μi | +
k∑

i=1

|λi |.
∥∥uiu

∗
i − viv

∗
i

∥∥
2.

Since ‖Y‖ ≤ 1 and ‖uv∗‖2 = ‖u‖2‖v‖2 for any u, v ∈C
n, we get,

(44) ‖Y − Z‖ ≤ k max
1≤i≤k

|λi − μi | + 2k max
1≤i≤k

‖ui − vi‖2.

Let E be a ε/2k-net of [−1,1] and F a ε/4k-net of the unit sphere S
n−1. Then, the set

Dε =
{

k∑
i=1

μiviv
∗
i : μi ∈ E, ui ∈F

}
,

is an ε-net of Mk due to the inequality (44). Clearly, we can find a net E such that |E | ≤ 2k/ε.
Moreover, by [10], Lemma 1.4.2, there exists a net F such that,

|F | ≤
(

12k

ε

)n

.

From the construction of Dε we get, finally,

log |Dε| ≤ 2nk log
(

12k

ε

)
. �

Coming back to the inequality (43), we see that we have the inclusion 8CnW ⊂ nbM2k ,
for some b > 0. Thus, by Lemma 3.8

logN(8CnW,δB�2) ≤ N
(
M2k, δn

−bB�2
)= O

(
nk log

(
n

δ

))
.

As we chose k logn = o(n
2
d ), we get

lim sup
n→+∞

1

n1+ 2
d

logP
(
fk(X) /∈ Vδ

({
J ≤ rn1+ 2

d
}))≤−r,

which implies, because of (39),

lim sup
n→+∞

1

n1+ 2
d

logP
(
fk(X) ∈ F

)≤−r.

As this inequality is true for any r < infF J+, we obtain the large deviation upper bound of
Theorem 1.10.

3.2. Large deviation lower bound. In this section we will use Lemma 1.6 to prove the
large deviation lower bound for ( 1

n
tr(X/

√
n)d)n∈N. One of the difficulties in the derivation of

the lower bound is that the domain of �∗ may be different from Hn. To bypass this problem,
we will add a small Gaussian noise, as in the proof of Cramer’s theorem (see [18], Proof of
Theorem 2.2.30).
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3.2.1. Regularization by Gaussian noise. Recall that we denote by H(β)
n the set of Her-

mitian matrices, when β = 2, and symmetric matrices, when β = 1, of size n. We say that �

belongs to the Gaussian orthogonal ensemble (GOE), when β = 1, or to the Gaussian unitary
ensemble (GUE), when β = 2, if it distributed according to the law

1

Z
(β)
n

e−
β
4 trH 2

d�(β)
n (H),

where �
(β)
n is the Lebesgue measure on H(β)

n .

LEMMA 3.9. Let X be a Wigner matrix satisfying the convex concentration property 1.9.
Let � be a GOE matrix if β = 1 or a GUE matrix if β = 2. For any t > 0,

lim
ε→0

lim sup
n→+∞

1

n1+ 2
d

logP
(∣∣tr(X/

√
n)d − tr

(
(X + ε�)/

√
n
)d ∣∣> tn

)=−∞.

PROOF. For σ ∈ {−1,1} and Y ∈Hn, we write Yσ = Y+ if σ =+ and Yσ = Y− if σ =−.
With this notation it is sufficient to prove that, for σ ∈ {−1,1} and any t > 0,

lim
ε→0

lim sup
n→+∞

1

n1+ 2
d

logP
(∣∣tr(Xσ/

√
n)d − tr

(
(X + ε�)σ /

√
n
)d ∣∣> tn

)=−∞.

Fix σ ∈ {−1,1}. We will first show that for any ε ≥ 0, the sequence (n−1tr|X + ε�|d)n∈N
is exponentially tight at the scale n1+ 2

d . This will allow us to reduce ourselves to prove that
n−1/d‖(X+ε�)σ /

√
n‖d is an exponentially good approximation of n−1/d‖Xσ/

√
n‖d , where

‖‖d denotes the dth Schatten norm,

(45) ‖‖d : Y ∈Hn �→ (
tr|Y |d)1/d

.

Since ‖‖d is a convex 1-Lipschitz function with respect to the Hilbert–Schmidt norm, we
obtain by applying the convex concentration property 1.9 that, for any t > 0,

(46) P
(‖X/

√
n‖d −E‖X/

√
n‖d > tn1/d)≤ c−1e−ct2n

1+ 2
d
.

But, using the Cauchy–Schwarz inequality and Jensen’s inequality, we have

E
(
n−1/d‖X/

√
n‖d

)≤ E

(
1

n
tr(X/

√
n)2d

) 1
2d ≤

(
E

1

n
tr(X/

√
n)2d

) 1
2d

.

By Wigner’s theorem [1], Lemma 2.1.6, we get that E‖X/
√

n‖d = O(n1/d). Therefore, we

can deduce from (46) that ( 1
n

tr|X/
√

n|d)n∈N is exponentially tight at the scale n1+ 2
d . Using

further the triangle inequality for the dth Schatten norm, and the fact that � also satisfies
the convex concentration property by [31], Theorem 5.2, 4.3, we deduce that, for any ε ≥ 0,

( 1
n

tr|(X + ε�)/
√

n|d)n∈N is exponentially tight at the scale n1+ 2
d . Therefore, it suffices to

show that, for arbitrary large but fixed τ > 0 and any t > 0,

lim
ε→0

lim sup
n→+∞

1

n1+ 2
d

logPAτ

(∣∣μX/
√

n

(
xd
σ

)−μ(X+ε�)/
√

n

(
xd
σ

)∣∣> t
)=−∞,

where PAτ denotes the measure P(· ∩ Aτ ) and Aτ is the event,

Aτ = {
μX/

√
n

(|x|d)≤ τ,μ(X+ε�)/
√

n

(|x|d)≤ τ
}
.

Using the uniform continuity of x �→ |x|1/d on compact sets, we deduce that it is enough to
show, for any δ > 0,

lim
ε→0

lim sup
n→+∞

1

n1+ 2
d

logP
(∣∣(μX/

√
n

(
xd
σ

)) 1
d − (

μ(X+ε�)/
√

n

(
xd
σ

)) 1
d
∣∣> δ

)=−∞.
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But, by Minkowski’s inequality,

∣∣(μX/
√

n

(
xd
σ

)) 1
d − (

μ(X+ε�)/
√

n

(
xd
σ

)) 1
d
∣∣≤

(
1

n

n∑
i=1

∣∣(λi)σ − (μi)σ
∣∣d)

1
d

,

where λ1 ≥ · · · ≥ λn and μ1 ≥ · · · ≥ μn are the eigenvalues of, respectively, X/
√

n and
(X + ε�)/

√
n. But

n∑
i=1

∣∣(λi)σ − (μi)σ
∣∣d ≤

n∑
i=1

|λi −μi |d,

and by Lidskii’s theorem (see [7], Theorem III.4.1),

1

n

n∑
i=1

|λi − μi |d ≤ με�/
√

n

(|x|d).
Thus, it actually suffices to prove that, for any δ > 0,

lim
ε→0

lim sup
n→+∞

1

n1+ 2
d

logP
(
με�/

√
n

(|x|d)> δ
)=−∞.

But ( 1
n

tr|�/
√

n|d) is exponentially tight at the scale n1+ 2
d ; therefore, we finally get the claim.

�

3.2.2. A tilting strategy. By [18], Theorem 4.2.16, it is sufficient to prove the large devi-
ations lower bound for the sequence ( 1

n
tr((X + ε�)/

√
n)d)n∈N for any ε > 0 small enough.

We denote by �∗
ε the Legendre transform of the logarithmic Laplace transform �ε of X+ε�,

that is,

∀H ∈H(β)
n , �ε(H) = logEetr[(X+ε�)] = �(H) + ε2trH 2

β
.

Adding this small Gaussian noise yields that the domain of �∗
ε is H(β)

n . We note also for
future record that

(47) ∀Y ∈H(β)
n , �∗

ε(Y ) ≤ �∗(Y ).

Let us now proceed with the proof of the large deviation lower bound. Denote by Z = X+ε�.
Let x ∈ R such that I−(x) < +∞. This means, from the definition of I− in Theorem 1.10,
that we can find a sequence Y ∈H(β)

n such that

(48) lim
n→+∞μsc

(
xd)+ 1

n
tr(Y/

√
n)d −→

n→+∞ x, lim
n→+∞

�∗(Y )

n1+ 2
d

= I−(x).

Let δ > 0. For n large enough, we have

P

(
1

n
tr(Z/

√
n)d ∈ B(x,2δ)

)
≥ P

(
1

n
tr(Z/

√
n)d ∈ B(sn, δ)

)
,

where sn = μsc(x
d)+ 1

n
tr(Y/

√
n)d . Let E denote the event

E =
{
A ∈H(β)

n : 1

n
tr(A/

√
n)d ∈ B(sn, δ)

}
.

Using Lemma 1.6 and (47), we have

P(Z ∈ E) ≥ e−�∗(Y )
PY (Z ∈ E) exp

(
− 1

PY (Z ∈ E)1/2

〈
H,∇2�ε(H).H

〉1/2
)
,
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where H =∇�∗
ε(Y ) and, under PY , Z follows the tilted law,

etr(HZ)−�ε(H) dP(Z).

To obtain the lower bound, we will prove on one hand,

(49)
〈
H,∇2�ε(H).H

〉= O
(
�∗(Y )

)
and, on the other hand, that

(50) PY (Z ∈ V ) −→
n→+∞ 1.

Provided these two claims hold, we get, as �∗(Y ) = O(n1+ 2
d ),

lim inf
n→+∞

1

n1+ 2
d

logP
(

1

n
tr(Z/

√
n)d ∈ B(x, δ)

)
≥−I−(x)

which gives the lower bound of Theorem 1.10.
Let us now prove (49) and (50). For the first claim note that, for any A ∈H(β)

n ,

(51) ∇2�ε(A) =∇2�(A) + 2ε2

β
Id

and, for any H ∈H(β)
n ,

tr
(
H∇2�(A).H

)= n∑
i=1

∂2�1,1(Ai,i)

∂A2
1,1

H 2
i,i +

∑
i �=j

〈
Hi,j ,∇2�1,2(Ai,j ).Hi,j

〉
,

where 〈·, ·〉 denotes the scalar product in C
2. As we assumed that the second derivatives of

�1,1 and �1,2 are bounded, we deduce that there exists r > 0 such that, for any A ∈ H(β)
n ,

∇2�ε(A) ≤ r for the matrix order. Thus, it is sufficient to prove that, for any Y ∈H(β)
n ,

(52) trH 2 = O
(
�∗(Y )

)
,

where H =∇�∗
ε(Y ). From (51) we have, in particular, ∇2�ε(A) ≥ 2ε2

β
for the matrix order.

Therefore, denoting by �ε,(i,j) the logarithmic Laplace transform of Xi,j + ε�i,j for any
i, j ∈ {1, . . . , n}, and integrating the inequalities

∀A ∈H(β)
n ,∀i < j, �′′

ε,(i,i)(Ai,i) ≥ 2ε2

β
,∇2�ε,(i,j)(Ai,j ) ≥ 2ε2

β

(where the last inequality is meant in the matrix order when β = 2), knowing that ∇�ε(0) =
0, we obtain ∥∥∇�ε(H)

∥∥
2 ≥ ε2‖H‖2.

From (37) we deduce that

�∗(∇�ε(H)
)≥ 1

2C2 tr
(∇�ε(H)

)2 ≥ ε4

2C2 trH 2

which proves the estimate (52) since, by definition, ∇�ε(H) = Y .
For the second claim (50), we observe that under PY , Z is a random Hermitian matrix

with independent entries up to the symmetry with mean ∇�ε(H) = Y . Moreover, if σ 2
i,j =

EH |Zi,j −EZi,j |2 is the variance of the (i, j)th coordinate for i < j , then∣∣1 + ε2 − σ 2
i,j

∣∣= ∣∣tr∇2�ε,(i,j)(0) − tr∇2�ε,(i,j)(Hi,j )
∣∣

= ∣∣tr∇2�i,j (0) − tr∇2�i,j (Hi,j )
∣∣,
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and

σ 2
i,i = �′′

i,i(Hi,i) + 2ε2

β
.

As we assumed the second and third derivatives of �i,j to be uniformly bounded, we deduce
that |1 + ε2 − σ 2

i,j | = O(|Hi,j |) and σ 2
i,i = O(1). Thus, using the fact

√
x + y ≤ √

x + √
y

for x, y ≥ 0, we get

(53)
∑
i,j

(√
1 + ε2 − σi,j

)2 ≤∑
i,j

∣∣1 + ε2 − σ 2
i,j

∣∣≤ O
(
n
(‖H‖2 ∨ 1

))
,

where we further used the Cauchy–Schwarz inequality. Therefore, from (52) we get∑
i,j

(√
1 + ε2 − σi,j

)2 = O
(
n
(
�∗(Y )1/2 ∨ 1

))
.

But �∗(Y ) = O(n1+ 2
d ) by (48). Thus, we finally obtain∑

i,j

(√
1 + ε2 − σi,j

)2 = O
(
n

3
2+ 1

d
)= o

(
n2).

Thus, to show the claim (50) it remains to prove the following lemma, which is where the
assumptions we made on the boundedness of the derivatives of � play further their roles.

LEMMA 3.10. Let d ≥ 3 and � even such that � > d . Let X be a random Hermitian ma-
trix such that (Xi,j )i≤j are independent. Assume that the �th moments of Xi,j are uniformly
bounded,

tr(EX)2 = O
(
n1+ 2

d
)

and
∑
i,j

(1 − σi,j )
2 = o

(
n2),

where σ 2
i,j = E|Xi,j −EXi,j |2. Then,∣∣∣∣1n tr(X/

√
n)d −μsc

(
xd)− 1

n
tr(EX/

√
n)d

∣∣∣∣ −→
n→+∞ 0

in probability.

PROOF. Let X̂ = X − EX. From [3], Lemma 2.1 (9), we know that expanding tr(X̂ +
EX)d , we obtain by bounding the mixed terms using Hölder’s inequality,∣∣trXd − trX̂d − tr(EX)d

∣∣≤ 2d max
1≤k≤d−1

‖X̂‖k
d+1‖EX‖d−k

2 ,

where ‖‖m denotes the mth Schatten norm which is defined in (45). As � > d , we have
‖X̂‖d+1 ≤ ‖X̂‖�. Using the assumption that tr(EX)2 = O(n1+ 2

d ), we get∣∣trXd − trX̂d − tr(EX)d
∣∣= O

(
max

1≤k≤d−1
‖X̂‖k

�n
( 1

2+ 1
d
)(d−k)

)
.

But, as � is even,

(54) EtrX̂� = O
(
n1+ �

2
)

by expanding the trace and using the fact that the �th moments of the entries X are uniformly
bounded. By Markov’s inequality we deduce that

P
(‖X̂‖� ≥ (logn)n

1
�
+ 1

2
) −→

n→+∞ 0.
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Therefore, ∣∣trXd − trX̂d − tr(EX)d
∣∣= O

(
(logn)d max

1≤k≤d−1
n( 1

2+ 1
�
)kn( 1

2+ 1
d
)(d−k)

)
with probability going to 1. As � > d , the maximum on the right-hand side is achieved at
k = 1, so that ∣∣trXd − trX̂d − tr(EX)d

∣∣= O
(
(logn)dn1+ d

2 n−( 1
d
− 1

�
))= o

(
n1+ d

2
)

with probability going to 1. It now remains to show that

1

n
tr(X̂/

√
n)d −→

n→+∞ μsc
(
xd)

in probability. Let � = (σi,j )i,j and Ŷ such that X̂ = � ◦ Ŷ , where ◦ denotes the Hadamard
product. From Wigner’s theorem we know that, in probability,

μ
Ŷ/

√
n

�
n→+∞ μsc,

weakly. Denote by W2 the L2-Wasserstein distance on the space P(R) of probability mea-
sures on R, which is defined by

∀μ,ν ∈ P(R), W2(μ, ν) = inf
π

∫
|x − y|2 dπ(x, y),

where the infimum runs over all couplings between μ and ν. From the assumption on the
variance profile of X, we have by Hoffman–Weilandt inequality (see [7], Theorem VI.4.1),

EW2(μX̂/
√

n
,μ

Ŷ/
√

n
) −→

n→+∞ 0.

Thus, together with the weak convergence of μ
Ŷ/

√
n

toward the semicircle law, we deduce
that W2(μX̂/

√
n
,μsc) converges to 0 in probability. But from (54), we get, by Markov’s in-

equality,

lim
τ→+∞ lim sup

n→+∞
P
(
μ

X̂/
√

n

(
x�)≥ τ

) −→
n→+∞ 0.

Therefore, we can integrate the limit and deduce that

1

n
tr(X̂/

√
n)d = μsc

(
xd)+ o(1)

in probability. �

3.3. Computation of the rate function. In this section we give a proof of Corollary 1.11.
We first prove a general upper bound on the lower bound rate function I−. This bound cor-
responds to the strategy of increasing (or decreasing) uniformly the mean of the off-diagonal
entries.

LEMMA 3.11. Assume X is a Wigner matrix such that in the case β = 2, (�X1,2,�X1,2)

are each of variance 1/2. Then,

∀x ≥ 0, lim sup
n→+∞

In(x) ≤ β

4
x

2
d ,

where

In(x) = inf
{
�∗(Y )

n1+ 2
d

: 1

n
tr(Y/

√
n)d = x,Y ∈H(β)

n

}
.
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In particular,

I−(x) ≤

⎧⎪⎪⎨
⎪⎪⎩

β

4

(
x −μsc

(
xd)) 2

d if d is even and x ≥ μsc(x
d),

β

4
|x| 2

d if d is odd and x ∈R.

PROOF. Let x ≥ 0. Let y = ( x
(n−1)d+(n−1)

)
1
d n

1
2+ 1

d , and define

Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 y y

y

y

y y 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈Hn.

Then, tr(Y d) = xn1+ d
2 , and

�∗(Y ) = n(n− 1)

2
�∗�X1,2

(y).

But y ∼ n
1
d
− 1

2 x
1
d . As �X1,2 has variance 1/β , we claim that the Taylor expansion of �∗

around 0 gives �∗�X1,2
(y) = βy2

2 + o(y2). Indeed, if we let g = �∗�X1,2
, then one can derive

from the identity (g∗)′ ◦ g′ = Id the fact that

∀λ ∈R,
(
g∗)′′(g′(λ)

)= 1

g′′(λ)
.

Since �X1,2 is centered and has variance 1/β . We have g′(0) = 0 and g′′(0) = 1/β . Thus,

(g∗)′′(0) = β and, therefore, �∗�X1,2
(y) = βy2

2 + o(y2) as y → 0. Thus,

�∗(Y ) = n(n− 1)

2

(
β

2
x

2
d n

2
d
−1 + o

(
n

2
d
−1))=

(
β

4
x

2
d + o(1)

)
n1+ 2

d

which ends the proof. �

REMARK 3.1. One can produce a second upper bound on I− which corresponds this
time to the strategy of having one very large entry on the diagonal (e.g.). It reads

∀x ≥ 0, I−
(
x + μsc

(
xd))≤ lim sup

n→+∞
�∗

1,1(x
1
d n

1
d
+ 1

2 )

n1+ 2
d

which is nontrivial if �∗
1,1 has a quadratic behavior at infinity. In particular, this bound shows

that one can have a rate function very different from the one of the GOE or GUE. Indeed, if
�1,1(λ) �+∞ B

2 λ2, then �∗
1,1(x) �+∞ 1

2B
x2, so that

∀x ≥ 0, I−
(
x +μsc

(
xd))≤ 1

2B
x

2
d .

This bound is somewhat related to the large deviations of the traces of Wigner matrices with
entries having super-Gaussian tails (see [3] for more details), where a heavy-tail phenomenon
arises, in the sense that only the large entries of the matrix are controlling the large deviation
of the trace.
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In the case where the entries of X have sharp sub-Gaussian tails, we show in the following
proposition that the upper bound on I− proved in Lemma 3.11 is also a lower bound on I+.
By Theorem 1.10 this fact immediately implies that a full LDP holds for the traces of this
class of Wigner matrices, as announced in Corollary 1.11.

PROPOSITION 3.12. Assume X is a Wigner matrix whose entries have sharp sub-
Gaussian tail. Assume further that EX2

1,1 ≤ β/2 and, in the case β = 2, that (�X1,2,�X1,2)

are each of variance 1/2. Then,

I+ = I− = Jd,

where Jd is defined in Corollary 1.11 and where, for any x ∈R,

I+(x) = sup
δ>0

lim inf
n→+∞ In,δ(x),

I−(x) = sup
δ>0

lim sup
n→+∞

In,δ(x),

and for any n ∈N, δ > 0,

In,δ(x) = inf
{
�∗(Y )

n1+ 2
d

:
∣∣∣∣1n tr(Y/

√
n)d +μsc

(
xd)− x

∣∣∣∣< δ,Y ∈Hn

}
.

PROOF. Since the entries of X have sharp sub-Gaussian tails, we deduce from our as-
sumptions on the covariance structure that, for any H ∈H(β)

n , �(H) ≤ (1/β)trH 2. Therefore,
we have, for any Y ∈H(β)

n ,

�∗(Y ) ≥ β

4
trY 2.

But |tr(Y d)| ≤ tr(|Y |d) ≤ (tr(Y 2))d/2; therefore,

�∗(Y ) ≥ β

4

∣∣tr(Yd)∣∣ 2
d .

Thus, for any x ∈R,

I+(x) ≥ inf
{
β

4
|y| 2

d : y +μsc
(
xd)= x, y ∈R

}
.

In the case d is even, we see that the function on the right-hand side is infinite if x < μ(xd)

and, otherwise, equal to (β/4)(x − μsc(x
d))2/d . If d is odd, then one obtains I+(x) ≥

(β/4)|x|2/d . In conclusion, we have the inequality I+ ≥ Jd . But, by Lemma 3.11, I− ≤ Jd ,
which completes the proof. �

4. Upper tail of cycle counts in sparse Erdős–Rényi graphs. In this section we will
give a proof of Proposition 1.12. As for the traces of Wigner matrices, the main idea is to
reduce the complexity by showing that we can replace the full trace by a truncated version,
involving only the eigenvalues at the edges of the spectrum. Then, using standard complexity
computations, we apply Proposition 1.4 to obtain the desired upper bound.

4.1. A truncation argument. We recall that, for any Y ∈ Hn, we denote by λ1(Y ), . . . ,

λn(Y ) its eigenvalues in nondecreasing order, and, for any k ∈ {1, . . . , n}, we denote by tr[k]Y
the truncated trace

tr[k]Y =
k∑

i=1

λi(Y ).
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We define gk the function,

∀Y ∈Hn, gk(Y ) =
{

tr[k]
(
Yd) if d is even,

tr[k]
(
Yd+
)− tr[k]

(
Yd−
)

if d is odd.

Building on the concentration inequalities we proved in Section 3.1.1, we will show the
following exponential equivalent.

LEMMA 4.1. Denote by vn = n2p2 log(1/p). Assume log(1/p) = o(np2). Let k ∈
{1, . . . , n} such that log4(1/p) = o(k), and in the case d = 3 such that moreover k =
o((np)3/2). For any δ > 0,

lim
n→+∞

1

vn

logP
(
tr
(
Xd)− gk(X) > δpdnd)=−∞.

PROOF. The proof will be slightly more involved than its counterpart for Wigner matri-
ces, which we proved in Lemma 3.1. We will actually need here a “slicing argument” as the
one used in the proof the large deviations of the moments of β-ensembles (see [3], Proposi-
tion 3.5). In a first step we will prove that, for any δ > 0,

(55) lim
n→+∞

1

vn

logP
(
Z −EZ > δpdnd)=−∞,

where Z = trXd − gk(X). We will only consider the case where d is odd. In order to show
(55), we see that it suffices to prove that, for σ ∈ {−,+} and for any δ > 0,

(56) lim
n→+∞

1

vn

logP

(∣∣∣∣∣
n∑

i=k+1

λd
i −E

n∑
i=k+1

λd
i

∣∣∣∣∣> δpdnd

)
=−∞,

where we use λi as a shorthand for λi(Xσ ) for any i ∈ {1, . . . , n}. Fix σ ∈ {−,+}. Let M > 0,
define fM , the truncated power function, by fM(x) = xd for x ∈ [0,M] and, for x > M ,

fM(x) = dMd−1(x −M)+Md.

Note that fM is by construction convex and dMd−1-Lipschitz on R+. By [9], Theorem 8.6,
we know that X satisfies the convex concentration property, as defined in 1.9 with constants
κ = 1/2 and C = 2. Observe that we can write

n∑
i=k+1

fM(λi) = trfM(Xσ ) − tr[k]fM(Xσ ).

Applying Proposition 3.2 to the function x �→ fM(xσ ) which is convex and dMd−1-
Lipschitz, we get

(57) P

(∣∣∣∣∣
n∑

i=k+1

fM(λi) −E

n∑
i=k+1

fM(λi)

∣∣∣∣∣> δndpd

)
≤ 4 exp

(
−n2d−1p2dδ2

8d2M2(d−1)

)
.

Let αn to be a sequence going to +∞ such that

(58) α2
n = o

( √
np

(log(1/p))
1

d−1

)
,

which is possible since we assumed log(1/p) = o(np2). We set

(59) M =√
npαn.
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Rewriting (57) with this choice of M , we have

(60) P

(∣∣∣∣∣
n∑

i=k+1

fM(λi)−E

n∑
i=k+1

fM(λi)

∣∣∣∣∣> δndpd

)
≤ 4 exp

(
− ndpd+1δ2

8d2α
2(d−1)
n

)
.

But

LEMMA 4.2. Assume logn = o(np). There exists a constant C0 > 0 such that, for any
M ≥ C0

√
np and k ≥ 1, ∣∣∣∣∣E

n∑
i=k+1

(
λd

i − fM(λi)
)∣∣∣∣∣= o

(
ndpd).

PROOF. We have ∣∣∣∣∣
n∑

i=k+1

λd
i −

n∑
i=k+1

fM(λi)

∣∣∣∣∣≤
n∑

i=k+1

1λi≥Mλd
i .

Using the fact that λi ≤ n since the entries of X are bounded by 1, we deduce that

(61)

∣∣∣∣∣E
n∑

i=k+1

(
λd

i − fM(λi)
)∣∣∣∣∣≤ nd+1

P
(
max

(−λn(X),λ2(X)
)≥ M

)
.

Let u ∈ R
n be the vector (1,1, . . . ,1), and let X̂ = X − puu∗. By Weyl’s inequalities (see

[7], Theorem III.2.1), we have

max
(−λn(X),λ2(X)

)≤ ‖X̂‖.
Since logn = o(np), we know from [30], Example 4.10, that E‖X̂‖ = O(

√
np). As noted

before, X̂ has the convex concentration property with constants κ = 1/2 and C = 2. Using
the fact that the spectral radius of a Hermitian matrix is a convex and 1-Lipschitz function
with respect to the Hilbert–Schmidt norm, we deduce that there exist c0, α > 0 such that, for
any c ≥ c0

√
np,

(62) P
(‖X̂‖ ≥ c

)≤ 2e−αc2
.

As we assumed logn = o(np), this bound is exponentially small which in view of (61) ends
proof of the lemma. �

By Lemma 4.2 we deduce that, for n large enough, we have∣∣∣∣∣E
n∑

i=k+1

(
λd

i − fM(λi)
)∣∣∣∣∣≤ δndpd.

Therefore, by (60) we have, for n large enough,

P

(∣∣∣∣∣
n∑

i=k+1

fM(λi)−E

n∑
i=k+1

λd
i

∣∣∣∣∣> 2δndpd

)
≤ 4 exp

(
− δ2ndpd+1

8d2α
2(d−1)
n

)
.

Since d ≥ 3, we have d−2
d−1 ≤ 1

2 . Thus, from the choice of αn made in (58),

α2
n = o

(
n

d−2
d−1 p

(log(1/p))
1

d−1

)
,
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so that

(63) lim
n→+∞

1

vn

logP

(∣∣∣∣∣
n∑

i=k+1

fM(λi) −E

n∑
i=k+1

λd
i

∣∣∣∣∣> 2δndpd

)
=−∞.

But

(64) P

(
n∑

i=k+1

(
λd

i − fM(λi)
)
> δpdnd

)
≤ P

(
n∑

i=k+1

λd
i 1λi≥M > δndpd

)
.

Let R > 0, and denote by N [R,+∞) the number of eigenvalues of Xσ in [R,+∞). By
Weyl’s inequalities (see [7], Theorem III.2.1), we have, for any i ≥ 2,

(65) λi(X̂) ≤ λi(X) ≤ λi−1(X̂),

where X̂ = X − puu∗ with u being the all-ones vector. Therefore,

P
(
N [R,+∞) ≥ k

)≤ P
(∣∣{i : (λi(X̂)

)
σ ≥ R

}∣∣≥ k − 1
)
.

As E‖X̂‖ = O(
√

np) again by [30], Example 4.10, we deduce by Proposition 3.5 that if R is
such that

√
np = o(R), then, for any k ≥ 2,

(66) P
(
N [R,+∞) ≥ k

)≤ 2 exp
(
−R2k

32

)
.

Now, take R =√
vn/βn, with βn = o(k) and βn = o(np log(1/p)). Our choice of R satisfies√

np = o(R), and we have

lim
n→+∞

1

vn

logP
(
N [R/2,+∞) ≥ k

)=−∞.

Since we assumed that log4(1/p) = o(k), we can actually set βn to satisfy the conditions

(67) log4(1/p) = o(βn), βn = o(k) and βn = o
(
np log(1/p)

)
,

using the fact that np grows polynomially fast to +∞. Thus, in view of (63) and (64) it is
sufficient to prove that

(68) lim sup
n→+∞

1

vn

logP

(
n∑

i=k+1

λd
i 1M≤λi≤R/2 > δndpd

)
=−∞.

If R/2 < M , then there is nothing left to prove. Assuming that R/2 ≥ M , we are going to use
a “slicing argument” to fill the gap between these two levels. To this end, define an increasing
sequence Mm of levels such that M0 = M and, for any m ≥ 0,

Md
m+1 = Rd−2M2

m,

that is,

logMm =
(

2

d

)m

logM +
(

1 −
(

2

d

)m)
logR.

Let N be such that (2/d)N ≤ log 2/ logR. As logR = O(logn), it is possible to find such N

with N = O(log logn). For such N , we get MN ≥ R/2. Therefore,

P

(
n∑

i=k+1

λd
i 1M≤λi≤R/2 > δndpd

)
≤ P

(
n∑

i=k+1

λd
i 1M≤λi≤MN

> δndpd

)
.
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Using a union bound, we get

P

(
n∑

i=k+1

λd
i 1M≤λi≤MN

> δndpd

)
≤ P

(
N−1∑
m=0

Md
m+1N [Mm,+∞) > δndpd

)

≤
N−1∑
m=0

P
(
N [Mm,+∞) > δndpd/NMd

m+1
)
.

(69)

As Mm ≥ M and
√

np = o(M) by definition of M in (59), we deduce from (66) that, for any
m ≥ 0,

P
(
N [Mm,+∞) > δndpd/NMd

m+1
)≤ 2 exp

(
− δndpd

32NRd−2

)
.

But R =√
vn/βn; therefore,

P
(
N [Mm,+∞) > δndpd/NMd

m+1
)≤ 2 exp(−vncn),

with

cn = δβ
d−2

2
n

32N log
d
2 (1/p)

.

As d/(d −2) ≤ 3 since d ≥ 3 and N = O(log logn), we see that with our choice of βn, which
satisfies log4(1/p) = o(βn), we have, in particular,

N
2

d−2 log
d

d−2 (1/p) = o(βn).

Thus, cn goes to +∞. But from the union bound (69), we have

P

(
n∑

i=k+1

λd
i 1M≤λi≤MN

> δndpd

)
≤ N exp(−vncn).

Therefore,

lim
n→+∞

1

vn

logP

(
n∑

i=k+1

λd
i 1M≤λi≤MN

> δndpd

)
=−∞

which ends the proof of (56) and, thus, of the claim (55).
Now, to end the proof of Lemma 4.1, we need the following lemma which estimates the

expectation of the truncated trace involving the bulk eigenvalues.

LEMMA 4.3. Assume d ≥ 4 and np2 � 1, or d = 3, logn = o(np) and k = o((np)3/2).
Then, ∣∣E(tr(Xd)− gk(X)

)∣∣= o
(
ndpd).

PROOF. We start with the case d ≥ 4. By Weyl’s inequalities (65), we get∣∣tr(Xd)− gk(X)
∣∣≤ n‖X̂‖d .

But from (62), we know that E‖X̂‖d = O((np)
d
2 ), thus,∣∣tr(Xd)− gk(X)
∣∣= O

(
n(np)

d
2
)
.

As d ≥ 4 and np2 →+∞, we have that n
d
2 −1p

d
2 also goes to +∞ which yields the claim.
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Assume now that d = 3, logn = o(np) and k = o((np)3/2). As λ1(X) ≥ 0, we have

tr
(
X3)− (

tr[k]
(
X3+

)− tr[k]
(
X3−

))= �′∑
i=�+1

λi(X)3

for some �, �′ such that 1 ≤ � ≤ k and n− �′ ≤ k. We have∣∣∣∣∣
�′∑

i=�+1

λi(X)3 − tr(X̂)3

∣∣∣∣∣≤
∣∣∣∣∣

�′∑
i=�+1

λi(X)3 −
�′∑

i=�+1

λi(X̂)3

∣∣∣∣∣+ 2k‖X̂‖3.

By Weyl’s inequalities (65), we have, for any i ≥ 2,

λi(X̂)3 ≤ λi(X)3 ≤ λi−1(X̂)3.

Therefore,

0 ≤
�′∑

i=�+1

λi(X)3 −
�′∑

i=�+1

λi(X̂)3 ≤ 2‖X̂‖3.

Thus, ∣∣∣∣∣E
�′∑

i=�+1

λi(X)3

∣∣∣∣∣≤ ∣∣Etr(X̂)3∣∣+ 2(k + 1)E‖X̂‖3.

But, as (X̂)i,i =−p for any i ∈ {1, . . . , n} and the off-diagonal entries of X̂ are centered, we
obtain

Etr(X̂)3 =−np3 +O
(
n2p2)= o

(
n3p3).

Besides, as logn = o(np), we know from (62) that E‖X̂‖3 = O((np)
3
2 ). Thus,∣∣∣∣∣E

�′∑
i=�+1

λi(X)3

∣∣∣∣∣= O
(
k(np)

3
2
)+ o

(
n3p3)

which gives the claim. �

4.2. Proof of Proposition 1.12. From Lemma 4.1 we see that it suffices to consider the
upper tail of the truncated trace,

gk(X) =
{

tr[k]Xd if d is even,

tr[k]Xd+ − tr[k]Xd− if d is odd,

for k such that log4(1/p) = o(k) and with the additional condition that k = o((np)3/2) in
the case d = 3. As we assume that log4(n) = o(np2), we can find k which satisfies both
conditions

(70) k logn = o
(
np2 log(1/p)

)
and log4(1/p) = o(k)

(the additional condition when d = 3 being automatically fulfilled).
With this choice of k, we will see that we have reduced the complexity enough to be able to

apply Proposition 1.4. Indeed, we will see that we can encode the “gradient” of the truncated
trace tr[k]Xd by O(nk logn) bits. Thus, the choice of k made above will guarantee us that the
main error term in Proposition 1.4 is negligible with respect to the large deviation speed.

First, we will check that the rate function that Proposition 1.4 is giving us is as good as the
one we are claiming, that is,
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LEMMA 4.4. Let t ≥ 1, and define,

ψn(t) = inf
{
�∗

p(Y ) : gk(Y ) ≥ tndpd,Y ∈H0
n

}
.

Then,

ψn(t) ≥ φn

(
t −O

(
k1− d

2
))

,

where φn is defined in Proposition 1.12.

PROOF. Note that when d is even, the claim of the above lemma is trivial, so that we will
assume for now on that d is odd. Observe also that ψn(t) = O(vn) by taking C to correspond
to planting clique of size r =  (t − 1)1/dnp!, that is,

∀i < j, Ci,j =
{

1 if i ∧ j ≤ r,

p if i ∨ j > r.

Let then Y ∈H0
n be such that �∗

p(Y ) = O(vn) and gk(Y ) ≥ tndpd . Without loss of generality
we can assume that Yi,j ≥ p for any i < j . By [33], Corollary 3.5, we know that, for any
x ≥ 0,

�∗
p(p + x) ≥ x2(log(1/p) − o(1)

)
.

We deduce, denoting by U the matrix such that Ui,j = 1 for i �= j and null diagonal coeffi-
cients, that

tr(Y − pU)2 = O
(
n2p2).

In particular, trY 2 = O(n2p2). We obtain, for any i ≥ 1,

λi(Y−) = O

(
np√

i

)
.

Therefore,
n∑

i=k+1

λi(Y−)d = O
(
ndpdk1− d

2
)
.

But

gk(Y ) ≤ tr
(
Yd)+ n∑

i=k+1

λi(Y−)d

which gives the claim. �

We can now proceed with the proof of the upper bound of Proposition 1.12. Note that
� is lower semicontinuous, as one can see from its explicit expression (12). Therefore, by
Lemma 4.1 it is sufficient to show that, for any t > 1,

lim sup
n→+∞

1

vn

logP
(
gk(X) ≥ tndpd)≤−�(t),

with k such that log4(1/p) = o(k) and k = o(np2).
Fix some t > 1 and δ > 0 such that t − δ > 1. Observe that as �∗

p is strictly convex,
ψn, defined in Lemma 4.4, is strictly increasing. Therefore, we can apply Corollary 1.5. Let
H0

n([0,1]) denote the subset of H0
n which consists of matrix with entries in [0,1]. Observe

that, for any Y ∈H0
n([0,1]),

�∗
p(Y ) ≤ n2 log(1/p),
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so that the tightness assumption (4) of Proposition 1.4 is fulfilled with K = H0
n([0,1]) and

κ = n2 log(1/p). Arguing as in the proof of (41) and using the fact that ‖X‖ ≤ n for any
X ∈H0

n([0,1]), we obtain that, for any X,Y ∈H0
n([0,1]),

gk(X)− gk(Y ) ≤ sup
H∈W

trH(X − Y),

where

W = {
H ∈Hn : rank(H) ≤ 2k,‖H‖ ≤ 2dnd−1},

using the fact that for any H ∈ Hn([0,1]), ‖H‖ ≤ n. As the Lipschitz constant of gk on
Hn([0,1]) and the diameter of Hn([0,1]) are both only polynomial in n, we get, by Corol-
lary 1.5,

P
(
gk(X) ≥ tndpd)≤−ψn(t − δ) + logN

(
W,(δ/2n)B2

)+O(logn),

where N(W, (δ/2n)B2) is the covering number of W by balls of radius δ/n for the Hilbert–
Schmidt norm. By Lemma 3.8 we have

logN
(
W,(δ/2n)B2

)= O(nk logn).

As we chose k such that k logn = o(np2 log(1/p)), we get

P
(
gk(X) ≥ tndpd)≤−ψn(t − δ)+ o(vn).

Using Lemma 4.4 and the fact that φn is increasing, we obtain that, for n large enough,
ψn(t − δ) ≥ φn(t − 2δ). Therefore,

lim sup
n→+∞

1

vn

logP
(
gk(X) ≥ tndpd)≤−�(t − 2δ).

Since this is true for any δ > 0 and � is lower semicontinuous, we get the claim by taking
δ → 0.
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