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In this paper, we study random walks on dynamical random environ-
ments in 1 + 1 dimensions. Assuming that the environment is invariant under
space-time shifts and fulfills a mild mixing hypothesis, we establish a law of
large numbers and a concentration inequality around the asymptotic speed.
The mixing hypothesis imposes a polynomial decay rate of covariances on
the environment with sufficiently high exponent but does not impose uniform
mixing. Examples of environments for which our methods apply include the
contact process and Markovian environments with a positive spectral gap,
such as the East model. For the East model, we also obtain that the distin-
guished zero satisfies a law of large numbers with strictly positive speed.

1. Introduction. The research on random walks in random media finds its motivation in
various questions, ranging from ecology, chemistry, particle physics and pure mathematics.

Within probability, the study of such processes started with the very interesting case of a
random walk on a one-dimensional static media, which has already been thoroughly studied;
see, for instance, [29, 35, 36]. Understanding the higher dimensional cases remains a great
challenge despite of important progress obtained in that direction as well. We refer to [22,
37] for surveys on the subject.

Besides the case of static media, substantial effort has been dedicated to the investigation
of random walks on dynamical random environments. The main results in this field depend a
great deal on the specific dynamics under consideration as we discuss below.

There are several works concerned with quenched invariance principles for random walks
on environments that change independently at each time step; see, for instance, [15]. Another
important class of examples considered in the literature is the so-called strong-mixing envi-
ronments; see [4, 17, 18]. For random walks defined on this type of environment and under
certain conditions such as the cone-mixing property, it is possible to extract an approximate
renewal structure yielding a Law of Large Numbers (LLNs) and, in some cases, a Central
Limit Theorem (CLT). It is worth noticing that these conditions are usually quite restrictive,
meaning that they require that the environment mixes either very fast or uniformly on the ini-
tial configuration. For this reason, the techniques developed for the study of these processes
do not seem to apply easily for most of the examples of random environments that we present
in this paper.

Another technique in the field consists in analyzing the random environment as viewed
from the walker; see [8, 34]. This technique provides proofs of law of large numbers and
central limit theorems under somehow weaker mixing conditions like polynomial mixing
rate. The approach in [34] requires that the mixing be essentially uniform over the initial
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configuration. The results in [8] allow for applications to environments with nonuniform
mixing but some uniformity over the past of the trajectory has to be imposed.

Cases in which the random environment is not assumed to mix uniformly have also been
studied. In [33], a zero-one law for recurrence/transience was proved for general ergodic
environments in one dimension with an ellipticity assumption. Also in one dimension, [21]
proved invariance principle for random walks in dynamic random conductances under very
general mixing conditions. This result relies a lot on the fact that the model is reversible,
a feature typically not shared by random walks in random environments. Genuine random
walks in dynamic random environments have been studied in [30] and [3], under stronger
mixing assumptions, namely environments presenting a positive spectral gap. However, these
studies are perturbative in the sense that the environment seen from the random walker needs
to be close to a process which has the same invariant measure as the environment itself. This
includes cases of weak interaction between the walker and the environment, a setting which
had been previously studied in various contexts.

Another example of environment that present nonuniform mixing is the contact process.
LLNs and CLTs were proved for random walks on this environment in [7, 19, 32]. Again, in
these papers, the techniques used seem to be reasonably dependent on the specific environ-
ment under consideration.

A challenging type of environments is given by the conservative particle systems since
conservation of particles implies poor mixing rates, which complicates the application of
standard methods commonly used in the strong mixing case. Examples of these environments
include the exclusion process [5, 27] and Poissonian fields of random walks [13, 14, 20,
26]. For random walkers on these environments, LLNs and CLTs can be achieved under
the hypothesis of strong drift or for some perturbative regimes. Using similar methods, the
evolution of the front of an infection process on a similar environment can be studied [6]. In
each of the papers cited in the present paragraph, the proofs fit very specifically to the model
in question, and do not seem to be easily adapted to other environments.

In the present paper, we develop a robust framework that can be applied in a rather simple
manner to prove a LLNs for a broad class of random walks on one-dimensional dynamical
random environments. Roughly speaking, one just has to check that the environment satisfies
a simple space-time mixing inequality in order to be able to apply our results. As examples
of the applicability of our techniques, in Section 8, the validity of this condition is verified in
a simple way for several important environments.

We consider random walks evolving on dynamical random environments in dimension one
(sometimes called 1 + 1 to account for the time dimension as well). We will assume that the
environment is invariant with respect to space-time shifts, and moreover, that it satisfies the
following mixing property:

(1.1)

for any pair of space-time boxes B1 and B2, with side length 5r and
mutual distance at least r and any pair of events A1 and A2 that only
depend on the random environment inside B1 and B2, respectively,
we have Cov(A1,A2) ≤ cr−α.

See Assumption 1 and Definition 2.3 below for the precise statements of our assumptions.
Above, Cov stands for the covariance with respect to the law of the environment and c and
α are just positive constants. Note that this condition implies ergodicity of the process under
time shifts, however, it does not imply uniformity of the mixing. As it will become clear
below, our methods will work as soon as the exponent α appearing in (1.1) is sufficiently
large (α > 8 is enough for proving a LLN).

Suppose that on top of a translation invariant environment satisfying (1.1) we start a
continuous-time, nearest-neighbor random walk whose jumps depend locally on the state of
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the environment immediately before their occurrence. For now, let us assume that the jumping
times of the random walk are given by a Poisson process with unitary rate, which is indepen-
dent of the underlying environment, although this condition will be relaxed in Section 2.2.
Our main result, Theorem 2.4, states that there exists v ∈ [−1,1] such that

(1.2) lim
t→∞

Xt

t
= v almost surely.

Moreover, we obtain some concentration bounds for Xt/t around v, see (2.19).
Another interesting result we present in this paper concerns random walks that can only

move to one side on the set of the integers. In this situation, we show that under the condition
(1.1) with α > 8.5,

(1.3)
if the random walker can only jump to the right and has a positive
probability of jumping within one time unit then v is strictly positive.

See Theorem 2.5 for a more detailed statement.
Besides being nonperturbative, our methods mainly require that the environment satisfy a

mixing hypothesis which is not as restrictive as the usual strong mixing or uniform mixing
conditions previously considered, for example, the cone-mixing condition [4]. To exemplify
the generality of our methods, in Section 8 we provide several examples of processes that
fall into our hypotheses. These include the contact process and particle systems with positive
spectral gap, such as independent spin-flip dynamics, the East model [28] and the FA-1f
model [24]. We also present an application for random walkers evolving on a set of renewal
chains, as introduced in [26].

For some of the models above, LLNs and sometimes CLTs have been proved before in the
literature by several different methods combining renormalization, regeneration times and
analysis of the random environment as seem from the random walk. However, as far as we
are aware, the results for the East model and the FA-1f model are new. An interesting novel
result which is a consequence of (1.3) is that the distinguished zero of the East model satisfies
a Law of Large Numbers with strictly positive speed, see Section 8.3.

REMARK 1. We believe that the techniques presented in this article should be naturally
adapted to the discrete time framework. However, the hypothesis that two random walk trajec-
tories starting at different points in space cannot cross each other is vital in our argumentation;
see (2.9).

REMARK 2. A common assumption in the literature on random walks in random envi-
ronment is that of ellipticity, which is crucial if one wants to use absolute continuity of the
environment seen from the walker. We make no such assumption here, since our approach
does note require understanding the environment seen from the walker.

REMARK 3. Our methods do not provide a CLT for the random walk. It seems that some
new ideas will be needed in order to achieve this goal. We leave as an interesting future
question to establish limiting results for the fluctuations of the walker around its expected
position under general mixing hypotheses on the environment.

REMARK 4. One may be tempted to think that there might exist a simpler proof of the
LLN stated in our main theorem using exclusively some type of ergodicity argument. How-
ever, we would like to draw the reader’s attention to an example presented in Section 9 of
random walk naturally defined on an ergodic space-time environment that does not satisfy a
LLN.
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2. Mathematical setting and main results. Throughout the text, c and c′ will denote
positive constants whose values are allowed to change from line to line. All constants may
depend on the random environment (in particular on α) and on the evolution rules of the
random walk. Further dependence will be made explicit, for example, we write c = c(ε) to
refer to a constant that depends on ε and possibly on the law of the random environment and
the evolution rules of the random walk. Numbered constants such as c0, c1, . . . and k0, k1, . . .

stand for positive numbers whose value is fixed at their first appearance in the text.
As mentioned before, we consider nearest-neighbor continuous-time random walks that

evolve in discrete space Z. Its position at a given time is an element of the set

L := Z×R+.

The evolution of the random walk depends locally on the value taken by the dynamic envi-
ronment around its current position. That is, the distribution of each jump depends on the
environment restricted to a bounded region of the environment around the position of the
walker just before the jump. The kind of environments that we consider are described in
Section 2.1 and the jumping rules will be given in Section 2.2.

2.1. Environment. In this paper, the environment will be given by random functions
(x, t) �→ ηt (x), for x ∈ Z and t ∈ R+, where ηt (x) takes value in a countable state space
S and represents the state of site x at time t . Although our techniques apply in more general
context, for most of the examples we consider, S will be either {0,1} (such as in the case
of the contact process and the East model; see Sections 8.1 and 8.3, resp.), {−1,1} (for the
Glauber dynamics of the Ising model see Section 8.2) or the set of natural numbers N (as in
the example of the renewal environment, see Section 8.4). We denote ηt := (ηt (x))x∈Z the
value taken by the environment at time t . This is an element in the space SZ which we endow
with the product topology. We also denote η = (ηt )t∈R+ , which will be called the random
environment.

ASSUMPTION 1. We assume that the trajectories t �→ ηt belong to D(R+, SZ), the space
of all càdlàg functions from R+ to SZ. We also assume that the random environment η is
invariant with respect to translations by elements of L:

(2.1)
for every (z, s) ∈ L, the two processes

(
ηt (x)

)
(x,t)∈L and(

ηs+t (z + x)
)
(x,t)∈L have the same distribution.

Fixing z = 0 and varying s over R+ in Assumption 1 implies that η is stationary in time.
A box is defined to be any subset of R2 of the type [a, b) × [c, d). For such a box, we call

b − a and d − c its horizontal and vertical side lengths, respectively. Given two boxes Bi :=
[ai, bi) × [ci, di), i = 1,2, with c2 > d1 we define their time-distance d(B1,B2) := c2 − d1.

Let P be the law of the environment and Cov the covariance with respect to P . The main
assumption that we impose on our random environment is that it satisfies the following de-
coupling hypothesis.

DEFINITION 2.1 (Decoupling inequality). For c0, α > 0, we say that P satisfies the de-
coupling inequality Denv(c0, α) if the following holds. For every r ≥ 1, every pair of boxes
B1,B2 ⊆ R2 having both side lengths at most equal to 5r and time-distance d(B1,B2) ≥ r

and for any pair of functions f1, f2 : � → [0,1] satisfying

(2.2) fi ∈ σ
(
ηt (x),with (x, t) ∈ Bi ∩L

)
for i = 1,2,

we have

(2.3) Cov(f1, f2) ≤ c0r
−α.
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In Section 8, we will present several models that satisfy the above decoupling condition,
including the supercritical contact process (Section 8.1), some kinds of independent renewal
chains (Section 8.4) and Markov processes with positive spectral gap (Section 8.2).

2.2. Random walker. On top of the dynamic random environment η, we define a
continuous-time random walker in one-dimension whose evolution depends locally on η.
In this section, we define these evolution rules and give the main assumptions we require on
the joint law of the environment and of the random walker.

Given a starting point y = (x, s) ∈ L and t ∈ R+, we will represent by Y
y
t ∈ L the space-

time position of the walker after time t has elapsed. Let π1 and π2 denote the canonical
orthogonal projections of R2 onto the first and the second coordinates, respectively. We
write X

y
t := π1(Y

y
t ) ∈ Z for the spatial position of the random walker at time t . Notice that

π2(Y
y
t ) = π2(y) + t = s + t . We will sometimes write Y o

t (resp., Xo
t ) for the space-time

(space) position of the random walk starting at o := (0,0).
We impose that the random walk trajectories t �→ Y

y
t belong almost surely to the space

(2.4) Dn.n.

([0,∞),L
) :=

{
γ : [0,∞) → L càdlàg : ∣∣π1

(
γ (t)

) − π1
(
γ (t−)

)∣∣ ≤ 1
and π2

(
γ (t + s)

) − π2
(
γ (t)

) = s for t, s ∈ [0,∞)

}
,

where γ (t−) := lims↗t γ (s). In particular, this implies that the random walk performs only
nearest neighbor jumps almost surely. For every pair 0 < T ′ < T ′′, we define the set of
paths Dn.n.([T ′, T ′′],L) from time T ′ to T ′′ in an analogous way. When γ is an element
in Dn.n.([T ′, T ′′],L), we say that γ has length T ′′ − T ′.

Let us now define the evolution of the random walker. We start by introducing its allowed
jumping times. For each x ∈ Z, let (T x

i )∞i=1 be a random increasing collection of positive real
numbers such that almost surely

(2.5)
{
T x

i , i = 1, . . . ,∞}
and

{
T x+1

i , i = 1, . . . ,∞}
are disjoint for all x ∈ Z.

For instance, one can keep in mind the example where the (T x
i )∞i=1 are independent Poisson

processes which are also (mutually) independent from the environment η. We chose to work
in a greater generality in order to include interesting applications (see Section 8.3).

The pairs (x, T x
i )x,i will mark the space-time locations at which the random walker will

be allowed to jump. This is encoded in the following definition.

DEFINITION 2.2. Given a collection of jump times (T x
i )x,i , we say that an element γ ∈

Dn.n.([0,∞),L) is an allowed path if all of its discontinuities are located at space-time points
of the type (x, T x

i )x∈Z. More precisely,

(2.6)
if for some t ∈ [0,∞), γ (t) = (x, s), then γ (t + r) = (x, s + r)

for every r < min
i

{
T x

i − s : T x
i > s

}
.

We define allowed paths in Dn.n.([T ′′, T ′],L) analogously.

Besides the jump times T x
i , we also fix independent uniform random variables Ux

i ∈ [0,1],
also independent from all the rest, that provide the extra randomness that the random walker
may use to determine its next jump. As it will become clear below, this is done in order
to encode the whole randomness of the walker, so that conditional on η, on the T x

i ’s and
on the Ux

i ’s, for each initial position, the walker follows a deterministic allowed path in
Dn.n.([0,∞),L). For the rest of this paper, we will denote by P the joint law of η, (T x

i )x,i

and (Ux
i )x,i .
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Let us now fix a positive integer 	 and a function

(2.7) g : S{−	,...,	} × [0,1] → {−1,0,1},
which will be used to define the jumps of the random walker. Roughly speaking, when the
walker lies at site x ∈ Z and one of the arrival times T x

i comes up, the walker will jump to
site x + g(ηT x

i
(x − 	), . . . , ηT x

i
(x + 	),Ux

i ).
In a more precise way, we define the trajectory of the walker starting at y to be the random

element (Y
y
t )t∈[0,∞) on Dn.n.([0,∞),L) which is completely determined by the following

conditions:

(a) Y
y
0 = y almost surely.

(b) (Y
y
t )t∈[0,∞) is an allowed path almost surely.

(c) “The jumps are determined by g.” That is,

(2.8) if T x
i = t and Y

y
t− = (x, t), then Y

y
t = (

x + g
(
ηt (x − 	), . . . , ηt (x + 	),Ux

i

)
, t

)
.

The fact that the walker evolves in an one-dimensional environment and that it only per-
forms nearest-neighbor jumps together with the fact that the set of allowed jumping times for
neighboring sites are disjoint almost surely implies a very important monotonicity property:

(2.9) if x ≤ x′ ∈ Z and s ∈ R+, then X
(x,s)
t ≤ X

(x′,s)
t for every t ≥ 0.

We are going to make strong use of this property for carrying on our proof. This poses an
obstacle for the task of extending our results for random walks with long-range jumps or in
higher dimensions.

We now need to extend Assumption 1 and Definition 2.1 to the joint distribution P of the
environment and the jump times T x

i .

ASSUMPTION 2. We assume that P is invariant with respect to translations by elements
of L:

(2.10)
for every (z, s) ∈ L, the two processes

((
ηt (x)

)
(x,t)∈L,

(
T x

i

)
x∈Z,i≥1

)
and((

ηs+t (z + x)
)
(x,t)∈L,

(
T z+x

i − s
)
x∈Z,i≥1 : T z+x

i >s

)
have the same

distribution.

DEFINITION 2.3. For c0, α > 0, we say that P satisfies the decoupling inequality
D(c0, α) if the following holds. For every r ≥ 1, every pair of boxes B1,B2 ⊆ R2 having
both side lengths at most equal to 5r and time-distance d(B1,B2) ≥ r and for any pair of
functions f1, f2 : � → [0,1] satisfying

(2.11) fi ∈ σ
({

ηt (x); (x, t) ∈ Bi ∩L
} ∪ {(

x,T x
i

); (x,T x
i

) ∈ Bi ∩L
})

for i = 1,2,

we have

(2.12) Cov(f1, f2) ≤ c0r
−α.

Here, Cov stands for the covariance with respect to P. We also need a priori bounds on the
speed of the random walker. For v ∈R, let

AT (v) =
{

there exists γ allowed path in Dn.n.

([0, T ],L)
such that

γ (0) ∈ [0, T ) × {0} and π1
(
γ (T ) − γ (0)

) ≥ vT

}
,(2.13)

ÃT (v) =
{

there exists γ allowed path in Dn.n.

([0, T ],L)
such that

γ (0) ∈ [0, T ) × {0} and π1
(
γ (T ) − γ (0)

) ≤ vT

}
.(2.14)
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ASSUMPTION 3. We assume that, for all v > 1,

(2.15) lim inf
T →∞ P

(
AT (v)

) = 0 and lim inf
T →∞ P

(
ÃT (−v)

) = 0.

We comment on the reason why we have chosen the lim inf in (2.15) in Remarks 9 and 13.
We also need quantitative bounds on the probability of larger deviations above the maxi-

mum speed. Define

(2.16) FT =
{ ∃ allowed path γ ∈Dn.n.

([0, T ],L)
with γ (0) = o and a time

s ∈ [0, T ] such that
[
π1

(
γ (s)

) − 	,π1
(
γ (s)

) + 	
]
� [−2T ,2T ]

}
.

ASSUMPTION 4. There exists c > 0 such that

(2.17) P(FT ) ≤ c−1e−cT .

REMARK 5. Note that Assumptions 3 and 4 should follow easily in most cases from
a simple large deviations bound. For instance, they are satisfied when the (T x

i )i≥1 are i.i.d.
Poisson point processes of intensity 1. If additionally they are independent of the environ-
ment and the environment law P satisfies Assumption 1 (resp., Denv(c0, α)), then P satisfies
Assumption 2 (resp. D(c0, α)).

The constants 1 and 2 appearing in Assumption 3 and in (2.16) play no special role: we
could also assume that there exists V,V ′ ≥ 0 such that for all v > V , (2.15) holds and As-
sumption 4 holds with 2T replaced by V ′T in the definition of FT . With very minor modifi-
cations in our arguments, a version of Theorem 2.4 would then hold with v ∈ [−V,V ].

2.3. Main theorems. Our main result is the following law of large numbers and deviation
bound for the random walker:

THEOREM 2.4. Suppose Assumptions 2, 3 and 4 are satisfied, as well as the decoupling
property D(c0, α) for some α > 8, then there exists v ∈ [−1,1] such that

(2.18) lim
t→∞

Xo
t

t
= v P-a.s.

Moreover, for every ε > 0,

(2.19) P
[∣∣∣∣Xo

t

t
− v

∣∣∣∣ ≥ ε

]
≤ t−α/4,

for every t large enough, depending on ε.

The next theorem gives some conditions under which we can assure that the speed of the
random walker is strictly positive. This can be useful in several contexts as for instance when
we study the distinguished zero of the East model in Section 8.3.

THEOREM 2.5. Suppose Assumptions 2, 3 and 4 are satisfied, as well as the decoupling
property D(c0, α) for some α > 8.5. Assume also that g(η−	, . . . , η	, u) ∈ {0,1} for every
(η−	, . . . , η	, u) ∈ S{−	,...,	} × [0,1] and that

(2.20) P
[
Xo

1 ≥ 1
]
> 0.

Then, in addition to the conclusions of Theorem 2.4, we conclude that the speed v is strictly
positive.
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In other words, the above theorem gives that, if “the random walker can only jump to the
right” and that “starting at the origin, it has a positive probability of jumping within one time
unit” then v > 0. Clearly, an equivalent result yielding strictly negative speed holds when we
only allow the random walk to jump to the left.

REMARK 6. The rate of decay in our deviation bound (2.19) is not optimal. It only
reflects particularities of our renormalization techniques.

REMARK 7. The lower bound we need to impose on α for Theorems 2.4 and 2.5 is
also not believed to be optimal. However, it is important to notice that the above result does
not hold true if we weaken too much our decoupling condition. In particular, we provide an
example in Section 9 of a space-time environment satisfying a weaker decoupling hypothesis
(in particular it is space-time ergodic) along with a natural random walker defined on it that
fails to satisfy the LLNs.

The rest of the paper is organized as follows: Sections 3 to 6 are devoted to the proof
of Theorem 2.4. In Section 7, we prove Theorem 2.5. In Section 8, we list a number of
applications of our results, and finally in Section 9, we provide a counterexample of a random
walk on an ergodic environment that does not satisfy the LLN.

3. Strategy of the proof. In this section, we give an overview of the idea behind the
proof of Theorem 2.4 and define some important objects that will be used in the reminder of
the paper.

The main of these objects consist of two limiting values for the long-term speed of the
random walker: the upper speed v+ and lower speed v−. These quantities will play a central
role in our arguments. As we are going to prove below, their values coincide and are equal to
the speed v appearing in the statement of Theorem 2.4.

In order to define v+ and v− precisely, let us first introduce an event whose occurrence
indicates that the random walker has moved with average speed larger than v ∈ R during a
certain interval of time. For H ∈ R+ and w ∈R2, we define

(3.1) AH,w(v) := [
there exists y ∈ (

w + [0,H) × {0}) ∩L s.t. X
y
H − π1(y) ≥ vH

]
.

See Figure 1 for an illustration of these events.
We want to study the probability of the events as in (3.1). In order to have a quantity that

does not depend on the reference point we maximize in w, that is, we define

(3.2) pH(v) := sup
w∈R2

P
(
AH,w(v)

) = sup
w∈[0,1)×{0}

P
(
AH,w(v)

)
,

where the second equality follows from stationarity and translation invariance. Note that (w+
[0,H) × {0}) ∩ L takes at most two different values for w varying in [0,1) × {0} so, in fact,

FIG. 1. An illustration of the event AH,o(v). Starting from the point y ∈ ([0,H) × {0}) ∩L, the walker attains
an average speed larger than v during the time interval [0,H ].
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the second supremum is taken over a finite set. It is just meant to take into account cases
where the reference point w may not belong to L.

We can now introduce the upper speed of the random walker as

(3.3) v+ := inf
{
v ∈ R : lim inf

H→∞ pH(v) = 0
}
.

Similarly, we define its lower speed,

(3.4) v− := sup
{
v ∈ R : lim inf

H→∞ p̃H (v) = 0
}
,

where, analogously to the quantities pH(v) previously defined, we write

(3.5) p̃H (v) := sup
w∈R2

P
(
ÃH,w(v)

) = sup
w∈[0,1)×{0}

P
(
ÃH,w(v)

)
with

(3.6) ÃH,w(v) := [
there exists y ∈ (

w + [0,H) × {0}) ∩L with X
y
H − π1(y) ≤ vH

]
.

REMARK 8. Assumption 3 implies that v+ ≤ 1 and v− ≥ −1.

REMARK 9. It may sound unclear why we use the lim inf in the definitions of v+ and v−
(see equations (3.3) and (3.4)). This was done in order to get a uniform lower bound on the
probability for the walker to attain average speed greater but close to v− over long intervals
of time as we explain in Section 5 (see Remark 13).

Roughly speaking, the definition of v+ implies that for any v > v+, the probability that
the average speed of the walker exceeds v vanishes as the amount of time elapsed increases.
The next lemma shows that, it vanishes at least polynomially fast, provided that α is large
enough.

LEMMA 3.1. Suppose Assumptions 2, 3 and 4 are satisfied, as well as the decoupling
property D(c0, α) with α > 5, then for any ε > 0 there exists a constant c1 = c1(ε) such that

(3.7)
pH(v+ + ε) ≤ c1H

−α/4 and

p̃H (v− − ε) ≤ c1H
−α/4,

for every H ∈ R+.

This shows that v+ and v− limit the rate of displacement of the random walk in the sense
that the probability that it moves faster than v+ or slower than v− decays fast.

It might be possible to conclude directly from their definitions that v+ ≥ v−, but this is
also a simple consequence of (3.7).

Indeed, assume by contradiction that v+ < v− and define ε := (v− − v+)/2 > 0 and
v̄ := (v+ + v−)/2. Equation (3.7) implies that, for some H large enough (depending on α,
v+ and v−) P(Xo

H ≥ v̄H) ≤ 1/4 and P(Xo
H ≤ v̄H) ≤ 1/4 hold simultaneously providing a

contradiction.
Having (3.7) it remains to show that v+ = v−, which will ultimately imply the desired

LLN (2.18) and concentration estimate (2.19).

LEMMA 3.2. Suppose Assumptions 2, 3 and 4 are satisfied, as well as the decoupling
property D(c0, α) with α > 8, then

(3.8) v+ = v−.
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We now provide an intuitive argument on why Lemma 3.2 should hold. The implicit def-
inition of v+ and v− assures that the random walker has a good chance of attaining speeds
close to both of these values over sufficiently long time scales. On the other hand, the prob-
ability that it runs faster than v+ + ε (and also slower than v− − ε) vanishes fast. Assume
by contradiction that v+ > v−. By the fact that the random walker cannot run faster than v+,
the moments when its speed stays close to v− should delay it sufficiently to prevent it from
attaining a speed close to v+ over long time scales. This would give rise to a contradiction
implying that v− = v+.

The above argument may suggest that a proof for Lemma 3.2 can be obtained as a straight-
forward consequence of Lemma 3.1. However, (3.7) does not rule out that, by time H , the
random walker moves faster than v+ +εH (or slower than v− −εH ) for some well-chosen εH .
We use some technical steps in order to obtain quantitative estimates on the delay in different
time scales and to turn the above intuitive argument into an actual proof. In this process, we
need to require α > 8 in contrast to α > 5 as in Lemma 3.1.

Lemma 3.1 will be proved in Section 4 and Lemma 3.2 in Section 6. Together they estab-
lish Theorem 2.4.

4. Upper and lower deviations of the speed. This section is devoted to the proof of
Lemma 3.1 via a renormalization procedure. We only prove the decay of pH(v+ + ε); that of
p̃H (v− − ε) is completely analogous as it can be seen by considering the random walker ob-
tained by replacing g by −g. Indeed, the upper speed for the new walker equals the negative
of the lower speed for the original one.

The section is divided into three main parts. In Section 4.1, we establish the sequences
of scales along which we analyze the system. Next, in Section 4.2, we prove a version of
Lemma 3.1 obtaining a power-law upper bound for pH similar to the one in (3.7) but only
for H restricted to multiples of this sequence of scales. In Section 4.3 we interpolate in order
to lift the restriction in the values of H .

4.1. Scales and boxes. We start by defining recursively the following sequence:

(4.1) L0 := 1010 and Lk+1 := lkLk for k ≥ 0,where lk := ⌊
L

1/4
k

⌋
.

These numbers will be used throughout the text in order to define the scales of time and space
in which we analyze the displacement of the random walker.

Observe that there exists a constant c2 > 0 such that

(4.2) c2L
5/4
k ≤ Lk+1 ≤ L

5/4
k for every k ≥ 0.

For a given integer-valued L ≥ 1 and a real-valued h ≥ 1, we define the box

(4.3) Bh
L := [−2hL,3hL) × [0, hL) ⊆ R2,

as well as the interval

(4.4) Ih
L := [0, hL) × {0} ⊆ R2

(see Figure 1 where H = hL). In addition, for w ∈ R2, we denote

(4.5)
Bh

L(w) := w + Bh
L and

Ih
L(w) := w + Ih

L.

REMARK 10. Since the definitions of Bh
L and Ih

L depend only on the product hL, it may
not be clear yet why we consider the double index. It will in fact be very useful for us to
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use renormalization techniques in two steps, varying one parameter after the other. One can
think of h as a zooming parameter that, when increased, maps the discrete lattice into the
continuous space. Differently, L (which will be chosen as Lk later) can be thought of as the
macroscopic size of a box.

REMARK 11. It is important to notice that Bh
L(w) is a continuous box, meaning that it is

defined as a subset of R2 rather than only of L. This choice will be useful and simplify the
notation later when we will need to consider translations of these boxes by vectors of type
(vt, t) (for a given speed v ∈R) which are not necessarily elements of L.

In order to index the boxes and intervals defined above in a more concise manner, we
introduce the set of indices

(4.6) Mh
k := {h} × {k} ×R2,

so that, for m = (h, k,w) ∈ Mh
k and v ∈ R, we can write

(4.7) Bm := Bh
Lk

(w), Im := Ih
Lk

(w) and Am(v) := AhLk,w(v).

For some of our purposes, we need to assure that for m ∈ Mh
k , after starting at a point in

Im ∩L, the random walker, remains inside Bm up to time hLk (as well as the sites it needs to
inspect to decide its jumps). This explains why we defined Bm having its width bigger than
its height. For each m = (h, k,w) ∈ Mh

k , we define

(4.8) Fm :=
[

for every allowed path γ starting at Im ∩L with length hLk ,{
γ
(
π2(w) + t

) : t ∈ [0, hLk]} + [−	, 	] × {0} ⊆ Bm

]
.

From Assumption 4, we deduce easily that there exists c3 > 0 such that

(4.9) P
(
F c

m

) ≤ c−1
3 exp{−c3hLk}.

4.2. The decay of pH(v) along a particular sequence. In this section, we prove the fol-
lowing.

LEMMA 4.1. Under the hypotheses of Lemma 3.1, for all v > v+ there exists c4 =
c4(v) ≥ 1 and k0 = k0(v) ≥ 1 such that for every k ≥ k0

(4.10) pc4Lk
(v) ≤ L

−α/2
k .

Inequality (4.10) only concerns the decay of pH(v) for H taking values along a specific
sequence of multiples of the Lk’s (that depends on v). We will prove it using a recursive
inequality involving quantities that are close to phLk

and phLk+1 (Lemma 4.3, (4.21)). In
turn, this recursive inequality follows from an intermediate result (Lemma 4.2), which relates
the occurrence of an event of the type AhLk+1,w with the occurrence of two events of the type
AhLk,w

′ supported on boxes that are well separated in time. As we have already mentioned,
we will show in Section 4.3 how Lemma 3.1 follows from the previous lemma via a simple
interpolation procedure.

Let us start by introducing some few extra definitions. Given v > v+, fix an integer k1 =
k1(v) large enough so that

(4.11)
∑
k≥k1

8

lk
<

v − v+
2
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FIG. 2. The sequence of velocities vk as defined in (4.12).

(recall the definition of lk below (4.1)). Now set

(4.12) vk1 := v + v+
2

and vk+1 := vk + 8

lk
for every k ≥ k1.

Note that v∞ := limk→∞ vk < vk1 + (v − v+)/2 = v. In particular, vk ∈ (v+, v) for every
k ≥ k1 (see Figure 2).

Given m ∈ Mh
k+1 in the form (h, k + 1, (z, t)), there exists a set Cm ⊆ Mh

k satisfying

|Cm| = 5l2
k and(4.13) ⋃

m′∈Cm

Im′ = Bm ∩ (
R× (t + hLkZ)

)
.(4.14)

We are now ready to state a result that relates the occurrence of the events of the type
AhLk,w in two consecutive scales. Recall that d(B1,B2) stands for the time-distance between
a pair of boxes as defined above Definition 2.3.

LEMMA 4.2. Let k ≥ k1. Given m ∈ Mh
k+1, on the event Am(vk+1)∩ (

⋂
m′∈Cm

Fm′), there
exist two indices m1,m2 ∈ Cm such that

(4.15) Ami
(vk) occurs for i = 1,2 and d(Bm1,Bm2) ≥ hLk.

PROOF. First, notice that
⋂

m′∈Cm
Fm′ ⊂ Fm. Without loss of generality, we assume that

m is of the form (h, k + 1, (z,0)). It is enough to show that

(4.16)
there exist m1,m2,m3 ∈ Cm such that Ami

(vk) occurs for each
i = 1,2,3 and

(
π2(Bmi

)
)
i=1,2,3 are disjoint.

Let us assume that (4.16) does not hold, so that

(4.17)
for all but at most two indices j ∈ {0, . . . , lk − 1}, (Am′(vk)

)c occurs
for every box Bm′ with m′ ∈ Cm of type m′ = (

h, k, (x, jhLk)
)
.

For all y ∈ Im, we can write

(4.18) X
y
hLk+1

− π1(y) =
lk−1∑
j=0

X
Y

y
jhLk

hLk
− X

y
jhLk

.

Note that, by (4.14) and the assumption that Fm occurs, the points Y
y
jhLk

, j = 0, . . . , lk − 1,
must belong to some Im′ with m′ ∈ Cm. When Am′ does not occur, we can bound the corre-
sponding difference in the right-hand side by vkhLk . Otherwise, we can use the occurrence
of Fm′ to bound this difference by 3hLk . Thus,

X
y
hLk+1

− π1(y)
(4.17)≤ (lk − 2)vkhLk + 2 · 3hLk

= vkhLk+1 +
(

6 − 2vk

lk

)
hLk+1(4.19)

vk>−1
<

(
vk + 8

lk

)
hLk+1

(4.12)= vk+1hLk+1

which implies that Am does not occur. �
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REMARK 12. As shown in (4.19) the reason why we consider different speeds for each
scale is to guarantee that: “if the walker moves faster then vk+1 inside a box at scale Lk+1
then it will move faster then vk inside well-separated boxes at scale k.” This would not be
necessarily true if we considered the same fixed speed for every scale.

The previous step allows us to obtain an inductive inequality for the quantities phLk
(vk).

LEMMA 4.3. Suppose Assumptions 2, 3 and 4 are satisfied, as well as the decoupling
property D(c0, α) with α > 5. There exists c5 > 0 such that, given v > v+,

(4.20)
if for some h ≥ 1 and k ≥ k1 ∨ c5 we have phLk

(vk) ≤ L
−α/2
k then

phLk+1(vk+1) ≤ L
−α/2
k+1 .

Note that the constant c5 is uniform in h ≥ 1.

PROOF. Fix m = (h, k + 1,w) ∈ Mh
k+1 and let (m1,m2)m denote the set of all pairs of

indices m1, m2 in Cm whose corresponding boxes Bm1 and Bm2 are separated by a time-
distance at least equal to hLk . We perform the following sequence of inequalities, whose
steps are justified below:

(4.21)

P
(
Am(vk+1)

) ≤ P
[
Am(vk+1) ∩

( ⋂
m′∈Cm

Fm′
)]

+ P
[ ⋃
m′∈Cm

F c
m′

]

≤ 25l4
k sup

(m1,m2)m

P
[
Am1(vk) ∩ Am2(vk)

] + 5l2
k sup

m′∈Cm

P
[
F c

m′
]

≤ 25l4
k

(
phLk

(vk)
2 + c0(hLk)

−α) + 5l2
k c

−1
3 e−c3hLk

≤ 25l4
k

(
phLk

(vk)
2 + c(hLk)

−α).
To obtain the second inequality, we used (4.13) and Lemma 4.2 (recall the notation (m1,m2)m
introduced above). For the third inequality, we employed the hypothesis that D(c0, α) is
satisfied in order to decouple Am1 and Am2 which is possible since they are supported in
boxes that are well separated vertically. We also used (4.9).

Now, taking the supremum over all m ∈ Mh
k+1 in the LHS of (4.21) and dividing by L

−α/2
k+1

we get

(4.22)

phLk+1(vk+1)

L
−α/2
k+1

≤ 25L
α/2
k+1l

4
k

(
phLk

(vk)
2 + c(hLk)

−α)
≤ 25L

5α/8+1
k

(
L−α

k + cL−α
k

) ≤ cL
1−3α/8
k

α>5≤ cL
−7/8
k ,

where we used (4.2), (4.20) and h ≥ 1 in the second inequality. The right-hand side is
bounded by 1 as soon as k ≥ c5 for a sufficiently large c5 depending on c0, c3. �

We are now ready to conclude the proof of Lemma 4.1.

PROOF OF LEMMA 4.1. Assume v > v+ and fix k0 = k0(v) := k1(v) ∨ c5. Since vk0 >

v+, we have

(4.23) lim inf
h→∞ phLk0

(vk0) = 0.

Therefore, we can fix c4(v) ≥ 1 for which

(4.24) pc4Lk0
(vk0) ≤ L

−α/2
k0

.
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Now we can use Lemma 4.3 to obtain recursively

(4.25) pc4Lk
(v) ≤ pc4Lk

(vk) ≤ L
−α/2
k

for every k ≥ k0. This proves Lemma 4.1. �

4.3. Proof of Lemma 3.1. With Lemma 4.1 at hand, we just need an interpolation argu-
ment to establish Lemma 3.1. Let v = v+ + ε, v′ = (v+ + v)/2 and let c4(v

′) and k0(v
′) be as

in Lemma 4.1. Let us first assume H ∈ Z+ satisfies H > (c4Lk0)
11/10 and define k̄ as being

the integer that satisfies:

(4.26) (c4Lk̄)
11/10 ≤ H < (c4Lk̄+1)

11/10.

Above, the choice 11/10 for the exponent does not play an important role and it could be re-
placed by any number bigger than one. Also, note that k̄ ≥ k0 so that we can apply Lemma 4.1
to conclude that

(4.27) pc4Lk̄

(
v′) ≤ L

−α/2
k̄

.

Now, in order to bound pH(v), we are going to start by fixing some w ∈ [0,1) × {0} and
pave the box B1

H(w) with boxes Bm with m ∈ M
c4
k̄

. The set of indices of boxes used for such
a paving is

(4.28) M = {
m = (c4, k̄, w̄) ∈ M

c4
k̄

: w̄ ∈ c4Lk̄Z
2 and Bm ∩ B1

H(w) �=∅
}
,

which satisfies

(4.29) |M| ≤ 6
(

H

c4Lk̄

)2 (4.26)≤ 6
(

(c4Lk̄+1)
11/10

c4Lk̄

)2 (4.2)≤ c(v)L
3/4
k̄

.

An important observation at this point is that, on the event
⋂

m∈M(Am(v′))c, for any y ∈
I 1
H(w) the displacement of Xy up to time �H/c4Lk̄�c4Lk̄ can be bounded by

(4.30)
X

y
�H/c4Lk̄�c4Lk̄

− π1(y) =
�H/c4Lk̄�−1∑

j=0

X
Y

y
jc4L

k̄

c4Lk̄
− X

y
jc4Lk̄

≤ v′�H/c4Lk̄�c4Lk̄ ≤ v′H,

where we used that Am(v′) does not occur for any m ∈ M and that each point X
y
jc4Lk̄

belongs
to Im ∩L for some m ∈ M .

Note that �H/c4Lk̄�c4Lk̄ is approximately equal to H , but not exactly. Therefore, we still
need to bound the probability that the random walk has a large displacement between times
�H/c4Lk̄�c4Lk̄ and H . But, in fact, Assumption 4 shows that for any y ∈ L

P
[
X

y
H − X

y
�H/c4Lk̄�c4Lk̄

≥ (
v′ − v+

)
H

]
≤ 4HP

[∃ allowed path γ ∈Dn.n.

([
0,H − �H/c4Lk̄�c4Lk̄

]
,L

)
s.t. γ (0) = 0 and

γ
(
H − �H/c4Lk̄�c4Lk̄

) ≥ (
v′ − v+

)
H

] + c−1e−c�H/c4Lk̄�c4Lk̄

(2.17)≤ c(v)−1He−c(v)Lk̄ ,

as soon as (v′ − v+)H ≥ 2c4Lk̄ . Above, in the first inequality we used Assumption 4 to find
a union bound on the possible positions of X

y
�H/c4Lk̄�c4Lk̄

, then translation invariance of P.
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Joining the two last estimates, we get for large enough H

(4.31)

P
(
AH,w(v)

) = P
[
X

y
H − π1(y) ≥ vH for some y ∈ I 1

H(w) ∩L
]

≤ P
[
Am

(
v′) occurs for some m ∈ M

] + c−1H exp{−cLk̄}
(4.27),(4.29),(4.26)≤ cL

3/4
k̄

L
−α/2
k̄

+ c−1L
11/10
k̄+1

exp{−cLk̄}
α>5≤ cL

−7α/20
k̄

(4.26)≤ cH−α/4.

The conclusion of Lemma 3.1 now follows by taking the supremum over all w ∈ [0,1) × {0}
and then properly choosing the constant c1 in order to accommodate small values of H .

5. Threats on the upper speed. As we discussed above, we want to show that v+ =
v− arguing by contradiction: If v+ > v−, then spending a significant proportion of its time
moving with speed close to v− will prevent the random walker to attain an average speed
close to v+ over long interval of times. This contradicts the very definition of v+. The main
goal of the present section is to prove preliminary results that will be used to formalize this
argument in the next section.

Let us define

(5.1) δ := v+ − v−
4

.

Note δ ∈ (0,1/2], since we argue by contradiction and assume that v+ > v−.

5.1. Trapped points.

DEFINITION 5.1. Given H ≥ 1 and δ as in (5.1), we say that a point w ∈R2 is H -trapped
if there exists some y ∈ (w + [δH,2δH ] × {0}) ∩L such that

(5.2) X
y
H − π1(y) ≤ (v− + δ)H.

Note that this definition applies to points w ∈ R2 that do not necessarily belong to L.

The key fact behind the above definition is the following: if w is trapped, then starting from
a nearby space-time point to the right of w, the random walker will be delayed in the near
future (in the sense that its average speed will be bounded away from v+). In fact, according
to (2.9), if w is H -trapped, then for every w′ ∈ (w + [0, δH ] × {0}) ∩L, we have

(5.3) Xw′
H − π1

(
w′) ≤ X

y
H − π1(y) + 2δH ≤ (v− + 3δ)H = (v+ − δ)H,

where y is any point in (w + [δH,2δH ] × {0}) ∩L satisfying (5.2).
The implicit definition of v− guarantees that a point is trapped with uniform positive prob-

ability in the following sense:

LEMMA 5.2. There exist constants c6 > 0 and c7 > 4/δ (depending on the value of δ

given in (5.1)), such that

(5.4) inf
H≥c7

inf
w∈[0,1)×{0}P[w is H -trapped] ≥ c6.

PROOF. Since v− + δ > v−, the definition of v− implies that

(5.5) c6 := 1

2

⌈
2

δ

⌉−1
lim inf
H→∞ p̃H (v− + δ) > 0.
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In particular, there exists c7 > 4/δ such that

(5.6)
⌈

2

δ

⌉−1
inf

H≥c7
p̃H (v− + δ) ≥ c6.

Then, for each H > c7 we have

c6 ≤
⌈

2

δ

⌉−1
sup

w∈[0,1)×{0}
P

[
there exists y ∈ (

w + [0,H) × {0}) ∩L
such that X

y
H − π1(y) ≤ (v− + δ)H

]

≤ sup
w∈[0,1)×{0}

P

[
there exists y ∈ (

w + [
0, (δ/2)H

) × {0}) ∩L
such that X

y
H − π1(y) ≤ (v− + δ)H

]

≤ inf
w∈[0,1)×{0}P

[
there exists y ∈ (

w + [0, δH) × {0}) ∩L
such that X

y
H − π1(y) ≤ (v− + δ)H

]

= inf
w∈[0,1)×{0}P

[
there exists y ∈ (

w + [δH,2δH) × {0}) ∩L
such that X

y
H − π1(y) ≤ (v− + δ)H

]
.

In the second inequality, we have split [0,H) into intervals of length δH/2 and used a
union bound. For the third inequality, we used translation invariance and the fact that δH > 4
(since c7 > 4/δ) which implies that, for any w ∈ [0,1) × {0}, the interval w + [0, (δ/2)H) ×
{0} is contained in every interval w′ + [0, δH) × {0} with w′ ∈ [−1,0) × {0}. Translation
invariance was also used to obtain the last equality. �

REMARK 13. In relation to Remark 9, the reader should note that the lim inf appearing
in the definition of v+ and v− was chosen in order to guarantee that we get a uniform lower
bound in (5.4).

The lemma above is a good step toward the proof that the walker will not be able to attain
average speed close to v+ over long time periods. Indeed, one could think of the set of H -
trapped points as a percolation-type environment of obstacles. Every time the random walker
passes next to such an obstacle it will be delayed up to time H . Furthermore, if the probability
that a point is trapped could be made very high, then every allowed path would have to
approach these obstacles at time scales smaller than H and we would be done. However,
Lemma 5.2 only assures that this probability is positive and it could, in principle, be very
small. Therefore, the random walker could always avoid these trapped points, or it could
spend only a negligible fraction of the time next to them.

For this reason, we introduce a more elaborate way of delaying the random walker. Given
a reference space-time point, we look for the existence of at least one trap lying along a
line segment with slope v+ starting from this point (see Figure 3). If we are successful, the
reference point is called a threatened point. As one would expect, the probability that a point
is threatened becomes very high as we increase the length of the segment. The key observation
is that, if the random walk starts at a threatened point, it will most likely end up finishing to
the left of the tip of the segment (see Figure 3), that is, it will be delayed with respect to v+.
The details will be presented in the following section.

5.2. Threatened points.

DEFINITION 5.3. Given δ as in (5.1), H ≥ 1 and some integer r ≥ 1, we say that a point
w ∈ L is (H, r)-threatened if w + jH(v+,1) is H -trapped for some j = 0, . . . , r − 1.
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FIG. 3. The point �y�H is (H, r)-threatened, since �y�H + joH(v+,1) is H -trapped.

As we are going to show below, being on a threatened point will most likely impose a
delay to the walker similarly to being next to trapped points. Before proving this, we will
introduce a notation for rounding of points in L.

For y = (x, t) ∈ L and H > 4δ−1, we define

(5.7) �y�H =
(⌊

x

H̃

⌋
H̃ , t

)
where H̃ = �δH/4�,

which is the closest point to the left of y in the set H̃L where the spatial coordinates are
rescaled by �δH/4�. Note that H̃ is an integer so �y�H ∈ L. Recall that the constant c7 that
was introduced in Lemma 5.2 was chosen in such a way that c7 > 4δ−1, so that the rounding
in (5.7) can be used for any fixed H ≥ c7.

Before we continue, let us briefly explain the reason why we introduce the above rounding.
In what follows, we will need to prove that there exist many threatened points within certain
boxes. However, in order to obtain a union bound that is uniform over H , we will only look
for such points in a certain sub-lattice contained in (H̃Z) ×R. This will become more clear
in (5.35); see also Remark 15.

Recall the definition of the scale sequence (Lk), in (4.1). As promised above, the next
(deterministic) lemma states that, once the walker gets next to a threatened point, either it
runs faster than v+ for a certain time interval (in order to overshoot the nearby trap) or else it
will ultimately be delayed with respect to v+. See Figure 3 for an illustration.

LEMMA 5.4. For any positive integer r and any real number H ≥ c7, if we start the
walker at some y ∈ L such that

(5.8) �y�H is (H, r)-threatened,

then either

1. “the walker runs faster than v+ for some time interval of length H ,” that is,

(5.9) X
y
(j+1)H − X

y
jH ≥

(
v+ + δ

2r

)
H for some j = 0, . . . , r − 1,

2. or else, “it will be delayed,” that is,

(5.10) X
y
rH − π1(y) ≤

(
v+ − δ

2r

)
rH.

PROOF. Fix r ≥ 1 and H ≥ c7 as in the statement. Assume that the point �y�H is (H, r)-
threatened. Thus, for some jo ∈ {0, . . . , r − 1},
(5.11) �y�H + joH(v+,1) is H -trapped
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or, in other words, there exists a point

(5.12) y′ ∈ ((�y�H + joH(v+,1)
) + [δH,2δH ] × {0}) ∩L

such that

(5.13) X
y′
H − π1

(
y′) ≤ (v− + δ)H = (v+ − 3δ)H.

Fix such a point y′ and notice from (5.12) that,

(5.14)
3

4
δH ≤ π1

(
y′) − (

π1(y) + joHv+
) ≤ 2δH.

We now assume that (5.9) does not hold and bound the horizontal displacement of the
random walk in three steps: before time joH , between times joH and (jo + 1)H and from
time (jo + 1)H to time rH .

X
y
joH

− π1(y) ≤
jo−1∑
j=0

X
y
(j+1)H − X

y
jH

¬(5.9)≤ jo

(
v+ + δ

2r

)
H ≤ jov+H + δ

2
H

≤ jov+H + 3

4
δH.

So, by (5.14), Y
y
joH

lies to the left of y′ and, by monotonicity, (5.13) and (5.14) we have that

(5.15)

X
y
(jo+1)H ≤ X

y′
H ≤ π1

(
y′) + (v+ − 3δ)H

≤ π1(y) + jov+H + 2δH + (v+ − 3δ)H

≤ π1(y) + (jo + 1)v+H − δH.

Now applying once more the assumption that (5.9) does not hold, for j = jo, . . . , r − 1, we
can bound the overall displacement of the random walk up to time rH :

(5.16)

X
y
rH − π1(y) ≤ (

X
y
rH − X

y
(jo+1)H

) + (
X

y
(jo+1)H − π1(y)

)
≤ (r − jo − 1)

(
v+ + δ

2r

)
H + (jo + 1)v+H − δH

≤ rv+H − δ

2
H =

(
v+ − δ

2r

)
rH,

showing that (5.10) holds and thus proving the result. �

5.3. Density of threatened points. The next lemma is the main result of this section.

LEMMA 5.5 (Threatened points). Assume that P satisfies Assumptions 2, 3 and 4, as well
as D(c0, α) for some α ≥ 1 and let δ be as defined in (5.1). There exists c8 = c8(δ) > 0 such
that for every H ≥ c7

(5.17) P[(0,0) is not (H, r)-threatened] ≤ c8r
−α,

for any r ≥ 1. Note that the above bound is uniform on H ≥ c7.
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The conclusion of this lemma is useful because of the following: despite the fact that it is
conceivable that the trajectory of the random walker could avoid trapped points, the proba-
bility that a point is threatened can be made so high (by taking r large) that with very high
probability the random walker (and actually any path) cannot avoid spending a significant
proportion of its time close to threatened points (as we will prove in the next section). By
Lemma 5.4, if the random walker stands close to a threatened point, then it has to run faster
then v+ for a certain interval of time in order to avoid being delayed. However, by Lemma 3.1,
it is very unlike that it will be able to do it. Thus with high probability, a delay with respect
to v+ will occur. As we show in Section 6, the occurrence of such a delay contradicts the
definition of v+.

The proof of the above lemma is based once again on a renormalization scheme. However,
this time, we use a much simpler scale progression than the one given by (4.1). Fixed H ≥ 1,
we define

(5.18) qk = q
(H)
k := sup

w∈[0,1)×{0}
P
[
w is not

(
H,3k)-threatened

]
.

The proof of Lemma 5.5 will follow once we establish a fast decay rate for the sequence qk

as we increase k (more precisely, we will show that qk ≤ (1/2)3−αk). However, we first need
to prove that it decays at a certain uniform rate and only then we will be able to bootstrap this
to a fast decay rate resulting in Lemma 5.5.

LEMMA 5.6. Suppose Assumptions 2, 3 and 4 are satisfied, as well as the decoupling
property D(c0, α) for some α ≥ 1 and let δ be given as in (5.1). There exists an integer
constant c9 = c9(δ) such that for every H ≥ c7 if we denote q

(H)
k = qk as in (5.18), then

(5.19) qc9+k ≤ (
(1 − c6)

1/2 ∨ (1/3)
)k

,

for any k ≥ 2.

In the above lemma, the rate of decay is not important, because it will be boosted soon in
the proof of Lemma 5.5. Note, however, that the constant c9 only depends on the parameters
of the model (including δ) thus the above bound is uniform on H ≥ c7. This uniformity will
be useful; if it was not needed, we could have simply used the ergodic theorem to obtain that
qk vanishes with k.

PROOF. To simplify notation, let 1 − c̃6 := (1 − c6)
1/2 ∨ (1/3). Thanks to Lemma 5.2,

we have c̃6 > 0. Thus we can choose an integer c9 > 0 (which does not depend on H ) for
which

(5.20) c0(1 − c̃6)
c9−1 ≤ c̃6,

where c0 is the constant appearing in the decoupling property D(c0, α).
As a simple consequence of (5.4) we have

(5.21) qc9+2 ≤ (1 − c6) ≤ (
(1 − c6)

1/2 ∨ (1/3)
)2 = (1 − c̃6)

2,

proving (5.19) for the case k = 2.
Suppose now that we have established (5.19) for some value of k ≥ 2 and let us show that

it also holds for k + 1.
Observe first that, if for some w ∈ [0,1) × {0}, the event

(5.22)
3c9+k+1−1⋂

j=0

[
w + jH(v+,1) is not H -trapped

]
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occurs, then both

(5.23)
3c9+k−1⋂

j=0

[
w + jH(v+,1) is not

H -trapped

]
and

3c9+k+1−1⋂
j=2·3c9+k

[
w + jH(v+,1) is not

H -trapped

]
occur. Notice that the two events in (5.23) are measurable with respect to the environment
together with the arrival times (T x

i ) and (Ux
i ) corresponding to space-time points contained in

suitable boxes of side-length at most 5 · 3c9+kH separated vertically by a distance of 3c9+kH

(for instance one can take the boxes B1
3c9+kH

(w) and 2 · 3c9+kH(v+,1) + B1
3c9+kH

(w)).
Thus we can use D(c0, α) to deduce that

(5.24) qc9+k+1 ≤ q2
c9+k + c0

(
3c9+kH

)−α ≤ q2
c9+k + c03−α(c9+k).

Joining this with the fact that we know the validity of (5.19) for k, we get

(5.25)

qc9+k+1

(1 − c̃6)k+1

(α≥1)≤ (1 − c̃6)
−k−1(q2

c9+k + c03−(c9+k))
≤ (1 − c̃6)

k−1 + c0(1 − c̃6)
c9−1 k≥2,(5.20)≤ 1.

This completes the proof of the lemma by induction. �

We can now prove Lemma 5.5.

PROOF OF LEMMA 5.5. We first choose an integer ċ ≥ 1 such that

(5.26) 2c03−α(ċ−1) ≤ 1

2
.

Observe also that from Lemma 5.6 there exists an integer c′(δ) ≥ c9(δ) ∨ ċ such that

(5.27) qc′+1 = q
(H)
c′+1 ≤ 1

2
3−α uniformly on H ≥ c7.

Our aim is to show by induction that

(5.28) qc′+k ≤ 1

2
3−αk for every k ≥ 1,

again, uniformly on H ≥ c7, which has already been established for k = 1.
Suppose that (5.28) has already been established for some k ≥ 1. Then, using an argument

similar to that leading to (5.24), we obtain that

(5.29)

qc′+k+1
1
23−α(k+1)

≤ 2 · 3α(k+1)

(
1

4
3−2αk + c03−α(c′+k)

)

≤ 1

2
3−α(k−1)︸ ︷︷ ︸

≤1/2

+2c03−α(c′−1)︸ ︷︷ ︸
≤1/2 by (5.26)

≤ 1.

This proves (5.28) by induction.
Now let r > 3c′

and fix k ≥ 0 such that 3c′+k ≤ r < 3c′+k+1. Thus,

(5.30)

P
[
0 is not (H, r)-threatened

]
≤ sup

w∈[0,1)×{0}
P
[
w is not

(
H,3c′+k)-threatened

]

≤ 1

2
3−αk ≤ 3α(c′+1)

2
r−α.

By properly choosing the constant c8(δ) in order to accommodate small values of r , the proof
is complete. �
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5.4. Threatened paths. We already know that a threatened point will most likely cause a
delay to the random walker and that the probability that a point is (H, r)-threatened can be
made arbitrarily high by increasing r , uniformly in H . This section is dedicated to the task
of showing that the trajectory of the random walker cannot avoid threatened points. Since we
still know very little about the actual behavior of the random walker trajectory, we instead
show that, with high probability, every allowed path spends a significant proportion of its
time on threatened points.

Recall the Definition 2.2 of allowed paths and the scale sequence Lk in (4.1). From now
on we are always going to consider (H, r)-threatened points with pairs (H, r) chosen so that
H = hLk and r = lk for some positive integer k.

We start by proving that, for large enough k, with high probability, every point in Ih
Lk

lies
close to a (hLk, lk)-threatened point. More precisely,

LEMMA 5.7. Recall the definition of c3 from (4.9). If α ≥ 8, there exists an integer k2 =
k2(δ) and a constant c10 = c10(δ) > 0 such that

Lk2 > c7,(5.31)

P

[
there exists some y ∈ Ih

Lk2+1
(w) such that

�y�hLk2
is not (hLk2, lk2)-threatened

]
≤ c10L

−(α−1)/5
k2+1(5.32)

uniformly over h ≥ 1 and w ∈ L and

(5.33) 25
(
c2

10 + c0
)
L

(23−3α)/20
k + 25c−1

3 L
(α+3)/4
k e−c3Lk ≤ 1 for every k ≥ k2.

REMARK 14. Note that (5.32) would hold for a fixed k2 if c10 was taken sufficiently
large. However, we require (5.32) and (5.33) to hold simultaneously.

PROOF. It is obvious that (5.31) holds for k2 large enough. A direct application of
Lemma 5.5 yields

(5.34) P
[
(0,0) is not (hLk, lk)-threatened

] ≤ c8l
−α
k ,

for every k such that Lk ≥ c7 > 4/δ, uniformly over h ≥ 1 (recall that c7 only depends on δ

and on the environment).
Let w ∈ L. Knowing that π1(�y�hLk

) is an integer for each y ∈ Ih
Lk+1

(w) and using (5.34)
together with translation invariance we get that, for some suitable constant c10 > 0 depending
only on δ,

(5.35)

P

[
there exists some y ∈ Ih

Lk+1
(w) such that

�y�hLk
is not (hLk, lk)-threatened

]

≤
⌈

hLk+1

�(δ/4)hLk�
⌉(

c8l
−α
k

) ≤ c(δ)l−α+1
k ≤ c10L

−(α−1)/5
k+1

for every k such that Lk ≥ c7 > 4/δ, uniformly over h ≥ 1.
Now that c10 is fixed, let us consider (5.33). Since we are assuming α ≥ 8, the exponent

(23 − 3α)/20 appearing in the left-hand side is negative. Therefore, (5.33) holds as soon as
k is sufficiently large. This concludes the proof. �

REMARK 15. Notice that we have only considered rounded points �y�hLk
. This was

crucial for the conclusion of Lemma 5.7 to hold uniformly over all integers h. Indeed, if
we had considered every integer y ∈ Ih

Lk+1
(w), the factor h would not have canceled out in

(5.35). This shows that the reason for introducing the rounding procedure in equation (5.7) is
to lower the entropy when looking for non-threatened points inside boxes.
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From now on, we will keep k2 fixed as in Lemma 5.7 and we will check whether certain
points are (hLk2, lk2)-threatened. We cannot hope that the random walk will always be close
to a threatened point. We instead look at the density of time that the random walk spends
around threatened points as made precise in the following definition.

DEFINITION 5.8. Fix h ≥ 1 and let k2 be as in Lemma 5.7. Given some k ≥ k2 + 1 and
an allowed path γ = (γ (t))t∈[0,hLk], we define its threatened density as

Dh(γ ) := 1

Lk/Lk2+1
#
{

0 ≤ j <
Lk

Lk2+1
: ⌊

γ (jhLk2+1)
⌋
hLk2

is (hLk2, lk2)-threatened
}
.

Note that on the complementary of the event appearing in the equation (5.32) in
Lemma 5.7, every allowed path γ = (γ (t))t∈[0,hLk2+1] starting at Ih

Lk2+1
(w) ∩ L has Dh(γ )

equal to one. More precisely,

(5.36)

[
there exists some y ∈ Ih

Lk2+1
(w) such that

�y�hLk2
is not (hLk2, lk2)-threatened

]c

⊆
[

every allowed path
(
γ (t)

)
t∈[0,hLk2+1] starting at

Ih
Lk2+1

(w) ∩L satisfies Dh(γ ) = 1

]
.

Indeed, according to the definition of Dh(γ ), for k = k2 + 1 one only needs to check whether
the starting point of γ is (hLk2, lk2)-threatened.

Considering the above remark, Lemma 5.7 establishes that at scale k2 + 1, with high prob-
ability all the paths starting at Ih

Lk2+1
∩L have Dh(γ ) = 1. But, as we have already observed,

the random walker path will eventually pass through regions composed of nonthreatened
points which could cause the threatened density to drop under one.

The next lemma, which is the main result of this section, shows that, with high probability,
every allowed path spends a positive proportion of its time next to threatened points.

LEMMA 5.9 (Threatened paths). Assume α ≥ 8. Then, for any integer k ≥ k2 + 1, we
have

(5.37) P

[
there exists an allowed path γ = (

γ (t)
)
t∈[0,hLk]

starting at Ih
Lk

(w) ∩L and having Dh(γ ) < 1/2

]
≤ c10L

−(α−1)/5
k ,

uniformly in h ≥ 1 and w ∈ R2.

Similar to what we have done in the definition of the speeds vk in Section 4, we are going
to introduce a sequence of densities that will always remain above 1/2. Note that by our
choice of scales (see (4.1))

(5.38)
∑
k≥1

2

lk
≤ 1

2
,

so that if we define

(5.39) ρk2 := 1 and ρk+1 := ρk − 2

lk
for k ≥ k2,

we have ρk ≥ 1/2 for every k ≥ k2.

PROOF OF LEMMA 5.9. We use a renormalization scheme based on an induction on
k ≥ k2 + 1. The case k = k2 + 1 has already been dealt with in Lemma 5.7.
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We introduce hierarchical events, similar to those appearing in (5.37). For this, given k ≥
k2 + 1 and an index m ∈ Mh

k (recall the definition in (4.6)) we define

(5.40) Sm :=
[

there exists an allowed path γ = (
γ (t)

)
t∈[0,hLk]

starting at Im ∩L and satisfying Dh(γ ) ≤ ρk

]
and write

(5.41) sh
k := sup

m∈Mh
k

P[Sm].

Since all the densities ρk are at least equal to 1/2, it is enough to show that

(5.42) sh
k ≤ c10L

−(α−1)/5
k for every k ≥ k2 + 1,

uniformly over h ≥ 1.
Observe that by Lemma 5.7 we already have

(5.43) sh
k2+1 ≤ c10L

−(α−1)/5
k2+1 ,

uniformly over h ≥ 1. Therefore, from now on we assume that 5.42 holds for some k ≥ k2 +1
and prove that it also holds for k + 1.

Recall the definition of the events Fm in (4.8). Using the exact same argument as in the
proof of Lemma 4.2, we can show that for m ∈ Mh

k+1 with k ≥ k2

(5.44)
on the event Sm ∩

( ⋂
m′∈Cm

Fm′
)

there exist m1,m2 in Cm such that

Sm1 ∩ Fm1 and Sm2 ∩ Fm2 occur and d(Bm1,Bm2) ≥ hLk.

In fact, if m = (h, k + 1,w) ∈ Mk+1, one can split the time interval π2(w) + [0, hLk+1]
into lk layers of length Lk . An allowed path γ starting at Im, crosses each of the lk layers
starting from a point in an interval of the type Imi

with mi ∈ Cm. Assume that, for at most
two of these layers, the event Smi

occurs at the corresponding index mi . Then we would have
Dh(γ ) ≥ ρk − 2ρk/lk > ρk+1 so that Sm could not occur. Therefore, Smi

has to occur for at
least three layers which allows us to find the boxes Bm1 and Bm2 with time separation at least
equal to hLk .

Note also that Smi
∩Fmi

is measurable with respect to the environment inside Bmi
together

with the arrival times (T x
i ) and the random variables (Ux

i ) associated to space-time points
inside Bmi

.
Therefore, using the fact that Bm1 and Bm2 are boxes of side lengths at most 5hLk sepa-

rated by a time-distance at least equal to hLk , that P is stationary, invariant under shifts by L
and using D(c0, α) we conclude that

(5.45) P
(
(Sm1 ∩ Fm1) ∩ (Sm2 ∩ Fm2)

) ≤ (
sh
k

)2 + c0L
−α
k .

With this, we can estimate

(5.46)

sh
k+1

L
−(α−1)/5
k+1

≤ L
(α−1)/4
k

(
25l4

k

((
sh
k

)2 + c0L
−α
k

) + 5l2
k c

−1
3 e−c3Lk

)
≤ 25l4

kL
(α−1)/4
k

((
sh
k

)2 + c0L
−α
k + c−1

3 e−c3Lk
)

≤ 25L
1+(α−1)/4
k

(
c2

10L
−2(α−1)/5
k + c0L

−α
k + c−1

3 e−c3Lk
)

≤ 25
(
c2

10 + c0
)
L

(23−3α)/20
k + 25c−1

3 L
(α+31)/4
k e−c3Lk

(5.33)≤ 1,

concluding the proof of Lemma 5.9. �
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6. Proof of Theorem 2.4. We are now ready to prove the main result of this article.

PROOF OF THEOREM 2.4. In view of Lemma 3.1, it is enough to prove that v− = v+.
Suppose by contradiction that v− < v+ and let

(6.1) δ = v+ − v−
4

and η := δ

4lk2

,

where k2 is given as in Lemma 5.7.
From now on, given an index k ≥ k2 + 1 we will choose h = hk = Lk so that the quantities

hLk and hLk2 that appeared often in the previous section will be turned into L2
k and LkLk2 ,

respectively. Our aim is to show that

(6.2) lim
k→∞pL2

k
(v+ − η/2) = 0,

which contradicts the definition of v+.
Let us start by proving that allowed paths usually do not exceed average speed v+ + η.

More precisely, given some k ≥ k2 + 1 and w ∈ R2, we consider the box B
Lk

Lk
(w) = (w +

[−2L2
k,3L2

k] × [0,L2
k]) and slice it along the sequence of time steps

(6.3) J0,w = π2(w) + {
0,LkLk2,2LkLk2, . . . , (Lk/Lk2 − 1)LkLk2

}
,

which contains Lk/Lk2 elements (see Figure 4 for an illustration). We want a lower bound on
the probability of the following event:

(6.4) G1(w) :=
[

for every y ∈ B
Lk

Lk
(w) ∩L with π2(y) ∈ J0,w

X
y
LkLk2

− π1(y) ≤ (v+ + η)LkLk2

]
.

By paving the box B
Lk

Lk
(w) with boxes of side length 5LkLk2 by LkLk2 and using Lemma 3.1,

we conclude that

(6.5) sup
w∈[0,1)×{0}

P
(
G1(w)c) ≤ c

(
Lk

Lk2

)2
(LkLk2)

−α/4

which converges to zero as k goes to infinity, since we are assuming α > 8.
Roughly speaking, inequality (6.5) shows that that the random walker cannot hurry up too

much in any of the time subintervals of length LkLk2 . Moreover, we know from Lemma 5.9
that it typically spends a large proportion of its time on threatened points. Indeed, let us
denote

(6.6) G2(w) :=
[

every allowed path γ = (
γ (t)

)
t∈[0,L2

k] starting at

w + [
0,L2

k

) × {0} ∩L satisfies DLk(Y ) ≥ 1/2

]

and use Lemma 5.9 in order to get

(6.7) sup
w∈[0,1)×{0}

P
(
G2(w)

) ≥ 1 − c10L
−(α−1)/5
k .

Given w ∈ R2 and y ∈ (w +[0,L2
k)×{0})∩L, note that by definition (Y

y
t )t∈[0,L2

k] is an al-
lowed path (recall Definition 2.2 and conditions (a), (b), (c) defining Yy ). Therefore, if we de-
note by J y ⊆ {0, . . . ,Lk/Lk2+1 −1} the set of indices j for which the point �Yy

jLkLk2+1
�LkLk2

is (LkLk2, lk2)-threatened so that, on the event G2(w), the set J y has at least Lk/(2Lk2+1)

elements.
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FIG. 4. The final bound in the proof of Theorem 2.4. The large boxes correspond to the displacements for j ∈ Jy ,

while the small boxes are obtained by paving B
Lk
Lk

with boxes of side length 5LkLk2 by LkLk2 .

Suppose now that G1(w)∩G2(w) occurs. Then, given a point y ∈ (w+[0,L2
k)×{0})∩L,

we can estimate

X
y

L2
k

− π1(y) =
Lk/Lk2+1−1∑

j=0

X
y
(j+1)LkLk2+1

− X
y
jLkLk2+1

= ∑
j∈J y

[
X

y
(j+1)LkLk2+1

− X
y
jLkLk2+1

]
+ ∑

j /∈J y

[
X

y
(j+1)LkLk2+1

− X
y
jLkLk2+1

]
.

Since we are on G1(w), X
y
(j+1)LkLk2+1

− X
y
jLkLk2+1

≤ (v+ + η)Lk2+1, so

X
y

L2
k

− π1(y) ≤ ∑
j∈J y

[
X

y
(j+1)LkLk2+1

− X
y
jLkLk2+1

]
+

(
Lk

Lk2+1
− ∣∣J y

∣∣)(v+ + η)LkLk2+1.

Now, for j ∈ J y , �Xy
jLkLk2

� is (LkLk2, lk2)-threatened. Furthermore, since G1(w) occurs,
Lemma 5.4 guarantees that

X
y
(j+1)LkLk2+1

− X
y
jLkLk2+1

≤ (v+ − δ/2lk2)LkLk2

and we can estimate

X
y

L2
k

− π1(y) ≤ ∣∣J y
∣∣(v+ − δ/(2lk2)

)
LkLk2+1 +

(
Lk

Lk2+1
− ∣∣J y

∣∣)(v+ + η)LkLk2+1

≤ v+L2
k − ∣∣J y

∣∣(δ/2lk2)LkLk2+1 +
(

Lk

Lk2+1
− ∣∣J y

∣∣)ηLkLk2+1

≤ v+L2
k − (δ/4lk2 − η/2)L2

k = (v+ − η/2)L2
k.

The fact that supw∈[0,1)×{0} P(G1(w) ∩ G2(w)) converges to one proves (6.2) which, in
turn, contradicts the definition of v+. This proves that v− = v+ and, consequently, the proof
of Theorem 2.4 follows immediately from Lemma 3.1. �

7. Proof of Theorem 2.5. In this section, we prove Theorem 2.5, which gives us condi-
tions to conclude that the speed of the random walker is strictly positive.
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PROOF OF THEOREM 2.5. Since the hypotheses of Theorem 2.4 are satisfied, we already
have a law of large numbers for the random walker, as well as a deviations bound for its
asymptotic speed. Therefore, all we have to do is to establish the sign of the random walker’s
speed.

For this proof, we will need two exponents β and γ satisfying

(7.1) β ∈
(

5, α − 14

4

)
and γ ∈

(
4 + β

2 + 4α
,

1

4

)
.

The need for these exact requirements will become clear later in the proof. For now, all one
needs to observe is that this is possible since we assumed that α > 5 + 14/4 = 8.5: indeed,
one can choose β and β ′ satisfying

(7.2) 5 < β < β ′ < α − 14

4
and then take γ = 4 + β ′

2 + 4α
.

Note that for the above we had to assume α > 8.5, although we believe that this number has
no intrinsic meaning and could be improved upon.

The statement of the theorem contemplates two cases: random walkers that can only jump
to the right or to the left. Of course, these two cases are symmetrical, so that it is sufficient
to prove only one of these claims. Here, we consider random walkers that can only jump to
the left, since this will make it easier for us to employ lemmas from Section 4. The running
assumption is thus

(7.3) P
[
Xo

1 ≤ −1
]
> 0.

We start by proving that it is very hard for the random walk to remain still, or more pre-
cisely, that there exists a constant c11 > 0 such that

(7.4) P
[
Xo

L = 0
] ≤ c11L

−α for every L ≥ 1.

To see why the above is true, we first define

(7.5) qk := P
[
Xo

3k = 0
]

for k ≥ 0.

Then, the hypothesis (7.3) guarantees that q0 < 1. Moreover, since the random walker can
only jump in one direction, we have that

(7.6)
[
Xo

3k+1 = 0
] ⊆ [

Xo
3k = 0

] ∩ [
X

(0,2·3k)

3k = 0
]
.

To conclude the proof of (7.4), we follow exactly the same arguments as in the proof of
Lemma 5.5, observing that we fix H = 1 (so that we can ignore all the statements about
uniformity on H ) and we replace c6 by 1 − P[Xo

1 = 0]. With these observations in mind, the
proof of Lemma 5.5 applies directly to show (7.4).

Before proving that the random walker has a negative speed, we first prove a sublinear
bound, or more precisely, we claim that

(7.7) P
[
Xo

L

L
> −L−γ

]
≤ cL2−2γ−αγ .

First, let us observe that the above event is contained in

(7.8)

[
for some i ∈ {

0,Lγ ,2Lγ , . . .
} ∩ [0,L], and some

integer x ∈ {−L1−γ , . . . ,0
}
, we have X

(x,iLγ )
Lγ = 0

]
.

In fact, if we are not on the above event, the random walker has to make at least one jump
to the left every Lγ steps (as long as it remains on the right of −L1−γ ) and, therefore, Xo

L ≤
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−L1−γ . Therefore, we can use a union bound over i ∈ {0,Lγ ,2Lγ , . . .} ∩ [0,L] and x ∈
{−L1−γ , . . . ,0} and translation invariance in order to show that

(7.9) P
[
Xo

L

L
> −L−γ

]
≤ 5L2−2γP

[
Xo

Lγ = 0
] (7.4)≤ cL2−2γ−αγ ,

establishing (7.7).
We will now use a renormalization to bootstrap the statement (7.7) (which has a vanishing

speed) into our desired negative speed result. The strategy to show a negative upper bound on
the speed of the random walker is very similar to the one used to prove Lemma 4.1. However,
our task now will be much simpler since we can already count on Lemmas 4.2 and 4.3 that
have been proved in Section 4. But first, let us recall some notation.

Let lk and Lk be defined as in (4.1), fix h = 1 and recall the notation Bm and Im introduced
right after (4.6). Recall also the definitions of Am(v) in (3.1) and pH(v) in (3.2).

As we have mentioned, we are now going to use some results of Section 4. For this, we
recall that our random environment was assumed to satisfy D(c0, α), which clearly implies
the weaker D(c0, β). The reason why we will make use of this weaker decoupling condition
is because it makes the hypothesis of Lemma 4.3 weaker as well.

Recalling that β > 5, we can see that Lemma 4.3 can be applied in the current context,
giving that

(7.10)
if for some k̃ ≥ c5 and v ∈ R we have p1

k̃
(v) ≤ L

−β/2
k̃

, then it holds that

p1
k(vk) ≤ L

−β/2
k for every k ≥ k̃,

where vk is defined through: v
k̃
= v and vk+1 = vk + 8/lk , for k ≥ k̃ + 1, similarly to (4.12).

Note that in Lemma 4.3 we needed to assume k ≥ k1(v), in order for the speeds vk we
considered to be defined and larger than v+. Here, this assumption will be replaced by the
second condition in (7.11) below.

In view of the above, all we need to prove now is that there exists some scale k̃ ≥ c5 and
some initial speed v < 0, for which

(7.11) p1
k̃
(v) ≤ L

−β/2
k̃

and v < −2
∑
k≥k̃

8

lk
,

the last condition being important because it implies that supk vk < 0, leading to a negative
upper bound on the speed.

To complete the proof, let us find the initial speed v and the scale k̃ as required. We first
estimate the decay of the sum in (7.11) by noting that, since lk+1 ≥ 2lk for every k ≥ 1 we
have

(7.12) 2
∑
k≥k′

8

lk
≤ 32

lk′
.

Therefore, if we take vi = −L
−γ
i , we get

(7.13) p1
i (vi) ≤ P

[
Xo

Li

Li

> −L
−γ
i

]
(7.9)≤ cL

2−γ (2+α)
i

(7.1),i large≤ L
−β/2
i .

Using the fact that γ < 1/4, we conclude that for large enough i

(7.14) vi ≤ −32

li
≤ −2

∑
j≥i

8

lj
.

Finally, we use the above bound, together with (7.13) to conclude that for some i large enough
we can set v = vi and k̃ = i satisfying all the requirements of (7.11). This finishes the proof
of the theorem. �
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8. Applications. In this section, we present applications of our main results, Theo-
rems 2.4 and 2.5. In some cases, we just prove that a given process satisfies Denv(c0, α) for
some α large enough. Remark 5 then allows to apply our results for a large class of random
walkers in that environment.

8.1. The (backwards) contact process. Random walks on supercritical contact process
have been studied in various papers such as [7, 19, 32]. In [32], the authors prove a LLNs
and a CLT for such random walks under quite general assumptions. As an illustration of the
applicability of our methods, we provide a new proof of the law of large numbers for this
model in dimension 1. As we have mentioned before, the proof of a central limit theorem is
still beyond the scope of our techniques.

Since our decoupling condition on the environment is not sensitive to time-reversal, our
results also apply with no additional difficulty to random walks on the supercritical backwards
contact process. This process appears naturally as a model for genealogies of populations.
There are fewer known results about random walks in this environment. These include a
LLN and an invariance principle for random walks on the occupied cluster [11], and a LLN
and CLT for random walks close to symmetric walks in high density environment [10]. Our
results are novel in this context.

Here, we refrain from introducing the full notation and some classical auxiliary results
for the contact process and refer to [31] or Section 2 of [32] for its definition via graphical
construction and for the proofs of some of these results. For x, y ∈ Z and s, t ∈ R, we write
(x, t) ↔ (y, s) if the two space-time points are connected through the percolation structure on
Z×R induced by the graphical representation (note that time is allowed to assume negative
values). We use a similar notation for denoting connection between subsets of Z×R.

Fix an infection rate λ > 0. For A ⊂ Z and t ∈ R, we define

(8.1) ηA,t
s (x) := 1A×{t}↔(x,t+s), s ≥ 0, x ∈ Z.

The process ηA,t is called the contact process started from A at time t . Similarly, we define
its dual η̂A,t

(8.2) η̂A,t
s (x) := 1A×{t}↔(x,t−s), s ≥ 0, x ∈ Z.

One can show that ηA,t and η̂A,t have the same distribution, that is, the contact process is
self-dual. Also note that

(8.3) ηZ,t
s (x) = 1

η̂
{x},t+s
s �=0

,

where 0 stands for the configuration in SZ = {0,1}Z whose all coordinates are null. Finally,
we define the stationary contact process in the upper invariant measure by

(8.4) ηt (x) := 1
η̂

{x},t
s �=0 ∀s≥0

.

(Note that, for this process, the space state is S = {0,1}.)
We want to prove the decoupling inequality Denv(c0, α) for the environment η when λ >

λc, the critical infection rate (i.e., above which η is not identically 0). For that, the following
classical result is going to be useful.

PROPOSITION 8.1 ([23]). For every λ > λc, there exists c = c(λ) > 0 such that

(8.5) P
[
η

{0},0
t �= 0,but η{0},0

s = 0 for some s > t
] ≤ c−1 exp{−ct},

for every t ≥ 0.
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We now prove the decoupling inequality for the contact process in the upper invariant
measure.

PROPOSITION 8.2. For any λ > λc and α > 0, the process ηt satisfies Denv(c0, α) for
some c0 > 0.

PROOF. Fix t, r > 0 and let B2 ⊂ L be a box of the form [z, z+ 5r]× [t + r, t + 6r] ∩L,
z ∈ R. Let also f1 and f2 be two functions measurable with respect to σ(ηs(x); s ≤ t, x ∈ Z)

and σ(ηs(x); (x, s) ∈ B2), respectively, and such that fi(·) ∈ [0,1] for i = 1,2. It is enough
to bound the covariance between functions of this type.

Now, let us introduce another process (η′
s)s≥t as follows:

(8.6) η′
s(x) = η

Z,t
s−t (x) = 1

η̂
{x},s
s−t �=0

,

the contact process started from the fully infected configuration at time t , or in other words,
the set of points (x, s) in the “semiplane” s ≥ t from which the dual process survives down
to time t .

Note that the process (η′
s)s≥t+r is independent of (ηs)s≤t . Therefore, we can bound

Cov(f1, f2) ≤ P
[
η′

s(x) �= ηs(x) for some (x, s) ∈ B2
]

≤ P
[
η′

t+r (x) �= ηt+r (x) for some x ∈ [z − 100r, z + 100r]]
+ P

[∃y /∈ [z − 100r, z + 100r],∃(x, s) ∈ B2 : (y, t + r) ↔ (x, s)
]

≤ c exp
{−c′r

}
,

where in the last inequality we have used a simple large deviations estimate for a Poisson
random variable to bound the second term, and the self-duality property (8.3) together with
Proposition 8.1 to bound the first term (100 plays no special role and is just a big enough
number). �

8.2. Systems with a positive spectral gap. In this section, we treat environments that
satisfy a few hypotheses falling into the L2-theory of stochastic processes. More precisely,
let us assume that:

(a) (ηt )t≥0 is a càdlàg Markov process on SZ.
(b) (ηt )t≥0 has a stationary measure ν and a semigroup (St )t≥0 satisfying Stf (η) =

Eη[f (ηt )] that is strongly continuous in L2(ν).
(c) The generator L of the process has a positive spectral gap.

The following result is standard (see, e.g., Lemma A.3 in [3]).

PROPOSITION 8.3. Under the above hypotheses, there exists β > 0 such that

(8.7)
∥∥∥∥St (f ) −

∫
f dν

∥∥∥∥
ν

≤ e−βt‖f ‖ν,

where ‖·‖ν is the L2-norm associated with ν.

We now show that

PROPOSITION 8.4. Let η = (ηt )t≥0 be a Markov process with stationary measure ν.
Assume that η satisfies (8.7). Then for any α > 0, there exists c0 > 0 for which η satisfies
Denv(c0, α).
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PROOF. For an interval I ⊂ R, let D(I,SZ) be the set of càdlàg paths from I to SZ

and let us abbreviate ηI := (ηs)s∈I . Let r ≥ 1, T ≥ 0, f1 : D([0, T ], SZ) → [−1,1] and
f2 : D(R+, SZ) → [−1,1] with Eν[f2(η)] = 0. It is enough to show that there exists β > 0
such that for any such choice of r , T , f1, f2,

(8.8)
∣∣Eν

[
f1(η[0,T ])f2(η[T +r,+∞))

]∣∣ ≤ e−βr .

For η0 ∈ SZ, let f̃2(η0) := Eη0[f2(ηR+)]. Note that ν(f̃2) = 0. By the Markov property ap-
plied at times T and T + r , the left-hand term in (8.8) can be rewritten and bounded as
follows:

(8.9)
∣∣Eν

[
f1(η[0,T ])Sr f̃2(ηT )

]∣∣ ≤ Eν

[(
Sr f̃2(ηT )

)2]1/2 = ν
(
(Sr f̃2)

2)1/2 ≤ e−βr . �

Above we used stationarity of ν for the equality sign and (8.7) in the last inequality.
Examples that fall into this class are:

(a) Independent spin flip dynamics.
(b) Glauber dynamics for the Ising model in Z; see [31], Corollary 4.18, page 210.
(c) The “East model” that will be discussed in more detail in Section 8.3, see [2].

8.3. The East model and its distinguished zero. The East model is a Markov process
on {0,1}Z that can be described as follows. Fix a parameter ρ ∈ (0,1). With rate one, each
site tries to update: to a 1 (occupied site) with probability ρ and to a 0 (empty site) with
probability 1 − ρ. The update is successful at a site x if and only if x + 1 is empty at the time
of the update. More formally, the generator of the process is given by

(8.10) Lf (η) = ∑
x∈Z

(
1 − η(x + 1)

)(
ρη(x) + (1 − ρ)

(
1 − η(x)

))[
f
(
ηx) − f (η)

]
,

where ηx denotes the configuration η flipped at x. The process can be constructed in the
following way: attach to all sites in Z independent parameter 1 Poisson processes; think of
them as clocks ringing at exponential times to signal update possibilities. With every clock
ring, associate independently a Bernoulli variable with parameter ρ. When a clock rings at x,
check the state of its right neighbour x + 1. If it is occupied, nothing changes; if it is empty,
the configuration at x is refreshed using the Bernoulli variable associated with the ring. In the
latter case, the ring is called legal.

This process was introduced in the physics literature [28] to model the glass transition. It
is not difficult to check that the product Bernoulli measure ν = Ber(ρ)⊗Z is reversible for
this dynamics. Moreover, it was shown in [2] that the East model has positive spectral gap at
any density ρ ∈ (0,1).

One of the tools that are useful in the study of this model is the so-called distinguished
zero [2], a càdlàg process on Z which we now describe. Recall the graphical construction
given above. Start the process from a configuration with a 0, say at the origin, and call it
the distinguished zero. Wait for the first legal ring at the origin. By definition of a legal ring,
before that time the configuration does not change at the origin and we let the distinguished
zero remain there. Again by definition, at the time of the first legal ring, the site 1 is empty; we
then make the distinguished zero jump one step to the right. Then we iterate the construction:
the distinguished zero remains at 1 until a legal ring occurs there and then jumps to site 2.
See Figure 5 for an illustration.

The interest of this object is that, because information travels from right to left in the East
model, the distinguished zero acts as a buffer between the dynamics on its left and right. More
precisely, conditional to the distinguished zero starting from the origin being at x at time t ,
the distribution of the configuration on {0, . . . , x − 1} is exactly Ber(ρ)⊗x , no matter what
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FIG. 5. [12] In grey, a trajectory of a distinguished zero up to time t ; time goes downwards, sites are high-
lighted in black at the times when they are occupied. The crosses represent clock rings at the site occupied by the
distinguished zero.

the initial configuration was (which had a zero at the origin). One application of our results
is that the distinguished zero travels with positive speed to the right, which was not known
previously.

PROPOSITION 8.5. Start the East process with a distribution whose marginal on N is
Ber(ρ)⊗N and which puts a zero at the origin. Let ξt be the position at time t of the distin-
guished zero started from the origin. Then, a.s.

(8.11)
ξt

t
−→
t→∞ vd(ρ) > 0.

We also partially recover a result of [12, 25].

PROPOSITION 8.6. Start the East process from the product Bernoulli distribution with
parameter 1 on −N, 0 on the origin and ρ on N. Let Xt be the position of the leftmost zero
at time t . Then a.s.

(8.12)
Xt

t
−→
t→∞ vf (ρ) < 0.

Both these results follow from Theorems 2.4 and 2.5, together with the orientation property
of the East model. Namely, in the East process, the distribution on {x, x + 1, . . .} depends
only on the initial distribution on {x, x +1, . . .}. This follows immediately from the graphical
construction.

PROOF OF PROPOSITION 8.5. Let us first give an alternative definition of the process
(ξt )t≥0. No matter what the initial configuration is, ξ0 = 0. Then if the process sits at x at a
given time, we wait for the first legal ring at x, at which time ξ jumps to the right. It is easy to
check that this process coincides with the distinguished zero if there is a zero at the origin in
the initial configuration. The upside of this formulation is that it fits in our setting (where the
environment is stationary and cannot have a 0 at the origin almost surely). The T x

i are given
by the Poisson clocks on each site and g is given by g(ηT x

i
(x), ηT x

i
(x+1),Ux

i ) = 1−ηT x
i
(x+

1). Moreover, thanks to the orientation property of the East model mentioned immediately
above, the law of ξ depends only on the marginal distribution of the initial measure on N.
Therefore, we can apply Theorems 2.4 and 2.5 to get the result (condition (2.20) is easy to
check). �

PROOF OF PROPOSITION 8.6. Similar to the previous proof, we give an alternative def-
inition of the front process Xt . No matter what the initial configuration is, X0 = 0. Then if



RWDRE WITH NONUNIFORM MIXING 2045

the process sits at x at a given time, we wait for the first legal ring either at x or x − 1. If it
happens at x and the associated Bernoulli variable is 1, we let X jump one step to the right.
If it happens at x − 1 and the associated Bernoulli variable is 0, we let X jump one step to
the left. Else X remains at x and we wait for a new legal ring. It is not difficult to check that
this process coincides with the front process when the initial configuration is as in Proposi-
tion 8.6. The orientation property together with a simple adaptation (see Remark 16 below)
then allows us to apply the results of Theorems 2.4 and 2.5 to this problem. �

REMARK 16. Strictly speaking, the process described in the proof of Proposition 8.6
does not exactly fit in our setting as described in Section 2.2 since the jumping times T x

i

should now be given by the superposition of the clocks at x and x − 1 and the jumps depend
on which of these two clocks has actually rung. Although we could generalize our setting in
Section 2.2 in order to accommodate for this more general situation, for the sake of simplicity,
we prefer to leave the standard adaptations for the interested reader.

8.4. Independent renewal chains. Let us fix a sequence (an)n∈N of positive real numbers
satisfying

(8.13) 0 < an ≤ ce− log2 n for every n > 0

and consider the induced probability distribution pn = (1/Z)an, where Z is the appropriate
normalization constant. We now consider the state space S = Z+ and define a renewal chain
with renewal times given by pn. More precisely, consider a Markov process on S evolving
according to the following generator:

(8.14) Lf (n) =
⎧⎪⎨⎪⎩

f (n − 1) − f (n) if n > 0,∑
k>0

pk

(
f (k) − f (0)

)
if n = 0.

Intuitively speaking, when the chain is at some site n > 0, it jumps with unitary rate one
to n − 1. At zero, it also jumps with rate one to a random integer n > 0 with probability
proportional to pn.

It is not difficult to see that this chain has stationary distribution given by

(8.15) qn = 1

Z′
∑
j≥n

an, Z′ = ∑
n>0

∑
j≥n

an.

We independently, for each site x ∈ Z, let ηt (x) evolve as the above chain starting from
the stationary measure, thus defining the dynamic random environment. To see that this chain
satisfies Denv(c0, α), we refer the reader to (3.47) of [26]. Note that this chain is not uniformly
mixing as observed in Remark 3.7 of [26].

9. Counterexample of an ergodic environment. In this section, we outline the main
steps in the construction of an example of random environment which is space-time ergodic,
but such that very natural random walks can be constructed on top of it without obeying a
LLN. In our example, all hypotheses of Theorem 2.4 will be satisfied except that the law of
the environment (here also denoted P ) fails to fulfill the decoupling property Denv(c0, α) and,
consequently, P does not satisfy D(c0, α). Property Denv(c0, α) is replaced by the weaker
assumption that P is ergodic with respect to space-time shifts. This example should serve as
a cautionary tale for the difficulties in going from ergodicity of the space-time environment
to ergodicity of the environment as viewed from the random walker. For comments on related
constructions already existing in the literature of random walk on random environments, see
Remark 19.
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FIG. 6. An illustration of the environment built in our counterexample.

The random environment that we construct assigns the colors black, white or gray to every
point in the plane; see Figure 6. These colors will influence the local drift experienced by the
random walker. We will give a precise definition of the jump rates in a moment, but for now
it is enough to know that black sites will induce a drift to the right, white sites will induce a
drift to the left and gray sites will induce symmetric jumps for the walker.

The construction of this environment is based on a colored continuum percolation, in
which random obstacles (which are colored either black or white) are placed on top of each
other. Although this model resembles confetti percolation, there are differences that make us
prefer to describe it as a colored continuum percolation. The colored obstacles are going to
be tilted rectangle with random side lengths, and their position will be decided according to
Poisson point processes in the plane; see Figure 6 for an illustration.

In this Poissonian soup of rectangles, black rectangles will be tilted towards the right and
will induce a positive drift on the random walker. On the contrary, white rectangles will be
tilted to the left and induce a negative drift on the walker. Finally, regions that are not covered
by any rectangle will be declared gray.

Roughly speaking, when the random walk hits large monochromatic regions, it will expe-
rience a strong drift for a long time. This behavior will ultimately result in linear fluctuations
on the displacement of the random walker’s trajectory, therefore breaking the LLNs.

We start to make our construction precise by defining the sizes of these rectangles. For
this, we introduce the following sequence of scales:

(9.1) L0 = 105, lk = L
1/5
k , Lk+1 = lkLk for integers k ≥ 0.

The above choices are somewhat arbitrary, but enough for the purpose of this section.
For each k ≥ 0, we build a homogeneous Poisson process in R2 with density L−2

k which
are assumed to be independent of one another. Given a scale k, we are going to decorate
each of the points y in the support of the corresponding Poisson process with a rectangle as
follows:

1. The rectangle will be centered at y.
2. It will have length Lk and width log2(Lk).
3. It will be assigned independently colors black or white with equal probability.
4. Its longest axis will form either an angle of −30 or 30 degrees with the vertical axis

depending on whether it is black or white, respectively.
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5. It will be assigned independently a random variable uniformly distributed in [0,1]
called its height that will be possibly used in order to break ties when two rectangles overlap.

We first compute the probability that a certain rectangle resulting from the kth Poisson
process touches the origin. The number of such rectangles is a Poisson random variable with
parameter bounded by

(9.2) cLk · log2(Lk) · L−2
k ,

which is summable in k. Therefore, almost surely, only finitely many scales can influence a
given point, that is, almost surely, each point is covered by finitely many rectangles.

We can now define the environment in which our random walker will evolve. Points in the
plane which are not covered by any rectangle are colored gray. On the other hand if a point
x ∈ R2 is covered by at least one rectangle, we color it with the same color as the largest
rectangle that covers it. In case there are various rectangles at the same scale that cover x, we
break ties using using the color of the highest among these rectangles.

Having fully described the environment, we now define the law of a random walker Yt that
evolves on top of it and whose space-time position will always belong to L = Z×R+. It will
jump with rate one to a neighboring site chosen according to probabilities that depend on the
color of the environment at the moment of jump:

1. If the environment at the moment of jump is gray, the jump is performed symmetrically
(i.e., each neighbor is chosen with probability 0.5),

2. If it is black, the walker jumps with probability 0.9 to the right and 0.1 to the left.
3. If it is white, the walker jumps with probability 0.1 to the right and 0.9 to the left.

We now want to show that the random walker exhibits linear fluctuations, ruling out a
LLN. This is done by showing that in times of order Lk there is a positive probability that
a unique rectangle of size Lk crosses the way of the random walker, essentially determining
the direction it moves.

We start by showing that there is a positive probability that a black rectangle of scale
k touches the sets A = [−2εLk, εLk] × {0} and B = R × {1/2Lk}. In fact, there exists a
positive constant c12 such that

(9.3)
P [a single rectangle at scale k touches A and B and it is black]

≥ cP [a single rectangle at scale k touches A] ≥ c12 for all k ≥ 0.

Indeed, the number of such rectangles at scale k dominates a Poisson random variable having
parameter of order one (up to multiplicative constants it is L2

k · L−2
k = 1).

Now, for a fixed k̄, the probability that some rectangle of a given scale k > k̄ touches
[0,Lk̄]2 can be controlled by considering the area of the sumset of the rectangles [0,Lk̄]2

and [0,Lk] × [0, log2(Lk)]. Therefore,

(9.4)

P
[
some rectangle from scale k > k̄ touches [0,Lk̄]2]
≤ c

∑
k>k̄

(
Lk̄ + log2(Lk)

)
(Lk̄ + Lk)L

−2
k ≤ c

∑
k>k̄

Lk̄

Lk

+ log2(Lk)

Lk

≤ c
∑
k>k̄

1

lk̄ · · · lk−1
+ c

∑
k≥k̄

1√
Lk

.

Note that the term in the right-hand side above converges to zero as k̄ goes to infinity, which
together with (9.3) implies that, as the scale k̄ grows there is a constant probability that
[0,Lk̄]2 will intersect a single rectangle at scale k̄ and no rectangle from larger scales.
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If the event in (9.3) occurs, but not the event in (9.4), then there is a positive probability
that XLk̄

has a displacement larger than Lk̄/10. By symmetry, there is also a positive proba-
bility that XLk̄

is smaller than −Lk̄/10. This rules out the possibility that the random walker
satisfies a LLNs.

All that is left to complete our counterexample is to show that the above random environ-
ment is ergodic with respect to space-time shifts.

For this, we consider two boxes B1 and B2 separated by a distance r and having side length
rβ , for some β ∈ (0,1). We will show that for any two functions f1 and f2 with ‖fi‖ ≤ 1
and that only depend on the environment inside these two boxes, their covariance is bounded
above by some term that vanishes with r .

For that, we will use a technique similar to what is done in [1] for Boolean percolation.
Indeed, the proof of Proposition 2.2 of [1] shows that we can bound the covariance of f1 and
f2 as follows:

(9.5) Cov(f1, f2) ≤ 4P [some rectangle touches both B1 and B2].
The above probability can be bound by summing over all scales of rectangles that are long
enough to touch both boxes. Let k̄ be such that Lk̄−1 < r ≤ Lk̄ and, arguing similar to as in
(9.4), estimate

(9.6)

Cov(f1, f2) ≤ c
∑
k≥k̄

(
Lk + rβ)(log2(Lk) + rβ)L−2

k

r≤Lk̄≤ c
∑
k≥k̄

log2(Lk)

Lk

+ cL
β

k̄

∑
k≥k̄

1

Lk

,

which converges to zero as k̄ goes to infinity (recall that β < 1).
The above inequality implies that P is space-time mixing. Indeed, given a pair of events

A1 and A2 that are invariant with respect to space-time shifts, there exist a real number so > 0
and events Ā1, Ā2 that are measurable with respect to the environment inside a box of side
length so whose probabilities are approximately equal to A1 and A2, respectively. Using
(9.6) with f1 = 1Ā1

and f2 = 1τ(Ā2)
where τ is a space-time shift whose displacement r

satisfies 2rβ > so, that A1 and τ(A2) are essentially independent. It is standard that ergodicity
with respect to space-time shifts is implied from the fact of being mixing with respect to
translations on R2 (see, for instance, [9], page 12).

REMARK 17. As one can inspect the above covariance estimate would not converge to
zero if the boxes B1 and B2 were taken to be of size r as in Denv(c0, α).

REMARK 18. It is currently an open question whether LLN for the random walker fol-
lows by simply assuming that the covariance in Definition 2.1 goes to zero with r .

REMARK 19. Random walks on dynamical random environments in Zd can always be
regarded as random walks on static random environment in Zd+1 where the extra dimension
accounts for the time. In this formulation, they are automatically not elliptic since they are
directed in the time coordinate. Apart from this fact, the random walker constructed in our
example presents some sort of ellipticity. More precisely, it is uniformly elliptic in {e2 −
e1, e2 + e1} meaning that the probability of performing jumps given by one of this vectors is
bounded away from zero (here ei stand for the canonical base vectors).

Let us now briefly comment on some related counterexamples existing in the literature of
random walks on static random environment and their main features.
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In [38], the authors study nearest neighbor random walks on static random environment
in Zd , d ≥ 1 where the transition probabilities are i.i.d. Under the assumption of ellipticity
together with the existence of uniform drift along some direction (nonnestling), they are able
to show LLN and the convergence of the law of the environment as seem from the random
walk to a limiting law which is invariant for the environment as seem from the random walk.
In [16], adding few assumptions, it is shown that this limiting law is absolutely continuous
with respect to the law of the environment itself. It is also presented a counterexample of
nonelliptic random walk on an ergodic static random environment for which the environment
as seem from the random walker converges weakly to a probability measure which is (mu-
tually) singular with respect to the law of the environment. It is worth to mention that the
walker is directed, that is, it is only allowed to perform jumps in the directions {e1, . . . , ed},
therefore, it is not elliptic. However, it is uniformly elliptic in {e1, . . . , ed}. This random walk
does satisfy a LLN.

More similar to our counterexample, in [39] the authors present an example of random
walk Xn in a static random environment on Z2 which is stationary and ergodic with respect
to lattice shifts such that Xn/n converges to (e1 + e2)/2 or (e1 − e2)/2 with probability 1/2
each, therefore, it does not obeys a LLN. However, their example is not uniformly elliptic
even in {e1, e2}. In fact, their random walk is deterministic given the environment.

Acknowledgments. We would like to thank the referees for very useful comments, sug-
gestions and corrections and also for pointing out some important references. This work
has been supported by the ANR projects LSD (ANR-15-CE40-0020) and MALIN (ANR-
16-CE93-0003), and by the LABEX MILYON (ANR-10-LABX-0070) of Université de
Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by
the French National Research Agency (ANR). MH was supported by grants “Projeto Uni-
versal” (307880/2017-6) and “Produtividade em Pesquisa” (406659/2016-8) from CNPq
and by FAPEMIG grant “Projeto Universal” (APQ-02971-17). AT was supported by grants
“Projeto Universal” (406250/2016-2) and “Produtividade em Pesquisa” (309356/2015-6,
304437/2018-2) from CNPq and “Jovem Cientista do Nosso Estado,” (202.231/2015) from
FAPERJ. Part of this collaboration took place in CIB (Lausanne), MH and AT thank the staff
for the support and hospitality. OB and AT visited the University of Geneva where MH was a
long-term research fellow during the beginning of this collaboration. OB and MH acknowl-
edge IMPA for its support and hospitality during several visits.

REFERENCES

[1] AHLBERG, D., TASSION, V. and TEIXEIRA, A. (2018). Sharpness of the phase transition for continuum
percolation in R2. Probab. Theory Related Fields 172 525–581. MR3851838 https://doi.org/10.1007/
s00440-017-0815-8

[2] ALDOUS, D. and DIACONIS, P. (2002). The asymmetric one-dimensional constrained Ising model: Rigor-
ous results. J. Stat. Phys. 107 945–975. MR1901508 https://doi.org/10.1023/A:1015170205728

[3] AVENA, L., BLONDEL, O. and FAGGIONATO, A. (2018). Analysis of random walks in dynamic ran-
dom environments via L2-perturbations. Stochastic Process. Appl. 128 3490–3530. MR3849817
https://doi.org/10.1016/j.spa.2017.11.010

[4] AVENA, L., DEN HOLLANDER, F. and REDIG, F. (2011). Law of large numbers for a class of random walks
in dynamic random environments. Electron. J. Probab. 16 587–617. MR2786643 https://doi.org/10.
1214/EJP.v16-866

[5] AVENA, L., DOS SANTOS, R. S. and VÖLLERING, F. (2013). Transient random walk in symmetric ex-
clusion: Limit theorems and an Einstein relation. ALEA Lat. Am. J. Probab. Math. Stat. 10 693–709.
MR3108811

[6] BÉRARD, J. and RAMÍREZ, A. (2016). Fluctuations of the front in a one-dimensional model for the spread
of an infection. Ann. Probab. 44 2770–2816. MR3531680 https://doi.org/10.1214/15-AOP1034

[7] BETHUELSEN, S. A. (2018). The contact process as seen from a random walk. ALEA Lat. Am. J. Probab.
Math. Stat. 15 571–585. MR3800486

http://www.ams.org/mathscinet-getitem?mr=3851838
https://doi.org/10.1007/s00440-017-0815-8
http://www.ams.org/mathscinet-getitem?mr=1901508
https://doi.org/10.1023/A:1015170205728
http://www.ams.org/mathscinet-getitem?mr=3849817
https://doi.org/10.1016/j.spa.2017.11.010
http://www.ams.org/mathscinet-getitem?mr=2786643
https://doi.org/10.1214/EJP.v16-866
http://www.ams.org/mathscinet-getitem?mr=3108811
http://www.ams.org/mathscinet-getitem?mr=3531680
https://doi.org/10.1214/15-AOP1034
http://www.ams.org/mathscinet-getitem?mr=3800486
https://doi.org/10.1007/s00440-017-0815-8
https://doi.org/10.1214/EJP.v16-866


2050 O. BLONDEL, M. R. HILÁRIO AND A. TEIXEIRA

[8] BETHUELSEN, S. A. and VÖLLERING, F. (2016). Absolute continuity and weak uniform mixing of ran-
dom walk in dynamic random environment. Electron. J. Probab. 21 Paper No. 71, 32. MR3580037
https://doi.org/10.1214/16-EJP10

[9] BILLINGSLEY, P. (1965). Ergodic Theory and Information. Wiley, New York. MR0192027
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[11] BIRKNER, M., ČERNÝ, J., DEPPERSCHMIDT, A. and GANTERT, N. (2013). Directed random walk on the
backbone of an oriented percolation cluster. Electron. J. Probab. 18 Paper No. 80, 35. MR3101646
https://doi.org/10.1214/EJP.v18-2302

[12] BLONDEL, O. (2013). Front progression in the East model. Stochastic Process. Appl. 123 3430–3465.
MR3071385 https://doi.org/10.1016/j.spa.2013.04.014

[13] BLONDEL, O., HILÁRIO, M. R., DOS SANTOS, R. S., SIDORAVICIUS, V. and TEIXEIRA, A. (2019). Ran-
dom walk on random walks: Higher dimensions. Electron. J. Probab. 24 Paper No. 80, 33. MR4003133

[14] BLONDEL, O., HILÁRIO, M. R., SOARES DOS SANTOS, R., SIDORAVICIUS, V. and TEIXEIRA, A. (2017).
Random walk on random walks: Low densities. Preprint. Available at arXiv:1709.01257.

[15] BOLDRIGHINI, C., MINLOS, R. A. and PELLEGRINOTTI, A. (1997). Almost-sure central limit theorem for
a Markov model of random walk in dynamical random environment. Probab. Theory Related Fields
109 245–273. MR1477651 https://doi.org/10.1007/s004400050132

[16] BOLTHAUSEN, E. and SZNITMAN, A.-S. (2002). On the static and dynamic points of view for certain ran-
dom walks in random environment. Methods Appl. Anal. 9 345–375. MR2023130 https://doi.org/10.
4310/MAA.2002.v9.n3.a4

[17] COMETS, F. and ZEITOUNI, O. (2004). A law of large numbers for random walks in random mixing envi-
ronments. Ann. Probab. 32 880–914. MR2039946 https://doi.org/10.1214/aop/1079021467

[18] COMETS, F. and ZEITOUNI, O. (2005). Gaussian fluctuations for random walks in random mixing environ-
ments. Israel J. Math. 148 87–113. Probability in Mathematics. MR2191225 https://doi.org/10.1007/
BF02775433

[19] DEN HOLLANDER, F. and DOS SANTOS, R. S. (2014). Scaling of a random walk on a supercritical contact
process. Ann. Inst. Henri Poincaré Probab. Stat. 50 1276–1300. MR3269994 https://doi.org/10.1214/
13-AIHP561

[20] DEN HOLLANDER, F., KESTEN, H. and SIDORAVICIUS, V. (2014). Random walk in a high density dynamic
random environment. Indag. Math. (N.S.) 25 785–799. MR3217035 https://doi.org/10.1016/j.indag.
2014.04.010

[21] DEUSCHEL, J.-D. and SLOWIK, M. (2016). Invariance principle for the one-dimensional dynamic ran-
dom conductance model under moment conditions. In Stochastic Analysis on Large Scale Interacting
Systems. RIMS Kôkyûroku Bessatsu 59 69–84. Res. Inst. Math. Sci. (RIMS), Kyoto. MR3675925

[22] DREWITZ, A. and RAMÍREZ, A. F. (2014). Selected topics in random walks in random environment. In
Topics in Percolative and Disordered Systems. Springer Proc. Math. Stat. 69 23–83. Springer, New
York. MR3229286 https://doi.org/10.1007/978-1-4939-0339-9_3

[23] DURRETT, R. and GRIFFEATH, D. (1983). Supercritical contact processes on Z. Ann. Probab. 11 1–15.
MR0682796

[24] FREDRICKSON, G. H. and ANDERSEN, H. C. (1984). Kinetic Ising model of the glass transition. Phys.
Rev. Lett. 53 1244–1247.

[25] GANGULY, S., LUBETZKY, E. and MARTINELLI, F. (2015). Cutoff for the East process. Comm. Math.
Phys. 335 1287–1322. MR3320314 https://doi.org/10.1007/s00220-015-2316-x

[26] HILÁRIO, M. R., DEN HOLLANDER, F., DOS SANTOS, R. S., SIDORAVICIUS, V. and TEIXEIRA, A.
(2015). Random walk on random walks. Electron. J. Probab. 20 Paper No. 95, 35. MR3399831
https://doi.org/10.1214/EJP.v20-4437

[27] HUVENEERS, F. and SIMENHAUS, F. (2015). Random walk driven by the simple exclusion process. Elec-
tron. J. Probab. 20 Paper No. 105, 42. MR3407222 https://doi.org/10.1214/EJP.v20-3906

[28] JÄCKLE, J. and EISINGER, S. (1991). A hierarchically constrained kinetic Ising model. J. Phys. B 84 115–
124.

[29] KESTEN, H., KOZLOV, M. V. and SPITZER, F. (1975). A limit law for random walk in a random environ-
ment. Compos. Math. 30 145–168. MR0380998

[30] KOMOROWSKI, T. and OLLA, S. (2005). On mobility and Einstein relation for tracers in time-
mixing random environments. J. Stat. Phys. 118 407–435. MR2123642 https://doi.org/10.1007/
s10955-004-8815-3

[31] LIGGETT, T. M. (2005). Interacting Particle Systems. Classics in Mathematics. Springer, Berlin.
MR2108619 https://doi.org/10.1007/b138374

http://www.ams.org/mathscinet-getitem?mr=3580037
https://doi.org/10.1214/16-EJP10
http://www.ams.org/mathscinet-getitem?mr=0192027
http://www.ams.org/mathscinet-getitem?mr=3508685
https://doi.org/10.1214/16-EJP4666
http://www.ams.org/mathscinet-getitem?mr=3101646
https://doi.org/10.1214/EJP.v18-2302
http://www.ams.org/mathscinet-getitem?mr=3071385
https://doi.org/10.1016/j.spa.2013.04.014
http://www.ams.org/mathscinet-getitem?mr=4003133
http://arxiv.org/abs/arXiv:1709.01257
http://www.ams.org/mathscinet-getitem?mr=1477651
https://doi.org/10.1007/s004400050132
http://www.ams.org/mathscinet-getitem?mr=2023130
https://doi.org/10.4310/MAA.2002.v9.n3.a4
http://www.ams.org/mathscinet-getitem?mr=2039946
https://doi.org/10.1214/aop/1079021467
http://www.ams.org/mathscinet-getitem?mr=2191225
https://doi.org/10.1007/BF02775433
http://www.ams.org/mathscinet-getitem?mr=3269994
https://doi.org/10.1214/13-AIHP561
http://www.ams.org/mathscinet-getitem?mr=3217035
https://doi.org/10.1016/j.indag.2014.04.010
http://www.ams.org/mathscinet-getitem?mr=3675925
http://www.ams.org/mathscinet-getitem?mr=3229286
https://doi.org/10.1007/978-1-4939-0339-9_3
http://www.ams.org/mathscinet-getitem?mr=0682796
http://www.ams.org/mathscinet-getitem?mr=3320314
https://doi.org/10.1007/s00220-015-2316-x
http://www.ams.org/mathscinet-getitem?mr=3399831
https://doi.org/10.1214/EJP.v20-4437
http://www.ams.org/mathscinet-getitem?mr=3407222
https://doi.org/10.1214/EJP.v20-3906
http://www.ams.org/mathscinet-getitem?mr=0380998
http://www.ams.org/mathscinet-getitem?mr=2123642
https://doi.org/10.1007/s10955-004-8815-3
http://www.ams.org/mathscinet-getitem?mr=2108619
https://doi.org/10.1007/b138374
https://doi.org/10.4310/MAA.2002.v9.n3.a4
https://doi.org/10.1007/BF02775433
https://doi.org/10.1214/13-AIHP561
https://doi.org/10.1016/j.indag.2014.04.010
https://doi.org/10.1007/s10955-004-8815-3


RWDRE WITH NONUNIFORM MIXING 2051

[32] MOUNTFORD, T. and VARES, M. E. (2015). Random walks generated by equilibrium contact processes.
Electron. J. Probab. 20 Paper No. 3, 17. MR3311216 https://doi.org/10.1214/EJP.v20-3439

[33] ORENSHTEIN, T. and DOS SANTOS, R. S. (2016). Zero-one law for directional transience of one-
dimensional random walks in dynamic random environments. Electron. Commun. Probab. 21 Paper
No. 15, 11. MR3485384 https://doi.org/10.1214/16-ECP4426

[34] REDIG, F. and VÖLLERING, F. (2013). Random walks in dynamic random environments: A transference
principle. Ann. Probab. 41 3157–3180. MR3127878 https://doi.org/10.1214/12-AOP819
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