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In this article, we consider random Wigner matrices, that is, symmetric
matrices such that the subdiagonal entries of Xn are independent, centered
and with variance one except on the diagonal where the entries have vari-
ance two. We prove that, under some suitable hypotheses on the laws of the
entries, the law of the largest eigenvalue satisfies a large deviation principle
with the same rate function as in the Gaussian case. The crucial assumption
is that the Laplace transform of the entries must be bounded above by the
Laplace transform of a centered Gaussian variable with same variance. This
is satisfied by the Rademacher law and the uniform law on [−√

3,
√

3]. We
extend our result to complex entries Wigner matrices and Wishart matrices.

1. Introduction. Very few large deviation principles could be proved so far in random
matrix theory. Indeed, the natural quantities of interest such as the spectrum and the eigen-
vectors are complicated functions of the entries. Hence, even if one considers the simplest
model of Wigner matrices which are self-adjoint with independent identically distributed en-
tries above the diagonal, the probability that the empirical measure of the eigenvalues or
the largest eigenvalue deviates toward an unlikely value is very difficult to estimate. A well-
known case where probabilities of large deviations can be estimated is the case where the
entries are Gaussian, centered and well-chosen covariances, the so-called Gaussian ensem-
bles. In this case, the joint law of the eigenvalues has an explicit form, independent of the
eigenvectors, displaying a strong Coulomb gas interaction. This formula could be used to
prove a large deviations principle for the empirical measure in [10] and for the largest eigen-
value [9] (see also [25] for further discussions of the Wishart case, and [16]). More recently,
in a breakthrough paper, C. Bordenave and P. Caputo [14] tackled the case of matrices with
heavy tails, that is, Wigner matrices with entries with stretched exponential tails, going to zero
at infinity more slowly than a Gaussian tail. The driving idea to approach this question is to
show that large deviations are in this case created by a few large entries, so that the empirical
measure deviates towards the free convolution of the semicircle law and the limiting spectral
measure of the matrix created by these few large entries. This idea could be also used to grasp
the large deviations of the largest eigenvalue by F. Augeri [2]. Generalization to subgraphs
counts and the eigenvalues of random graphs are given in [3, 12, 15]. In the Wishart case,
[17] considered the large deviations for the largest eigenvalue of very thin Wishart matrices
W = GG∗, in the regime where the matrix G is L × M with L much smaller than M . In
the case of Bernoulli entries with parameter p � 1, precise large deviations could be derived
recently for the largest and second largest eigenvalues [12, 15]. Hence large deviations for
bounded entries, or simply entries with sub-Gaussian tails, remained mysterious in the case
of Wigner matrices or Wishart matrices with L of order M . In this article, we analyze the
large deviations of the largest eigenvalue of Wigner matrices with Rademacher or uniformly
distributed random variables. More precisely, our result holds for any independent identically
distributed entries with distribution with Laplace transform bounded above by the Laplace
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transform of the Gaussian law with the same variance. We then prove a large deviation prin-
ciple with the same rate function than in the Gaussian case: large deviations are universal in
this class of measures. We show that this result generalizes to complex entries Wigner ma-
trices as well as to Wishart matrices. We are considering the case of general sub-Gaussian
entries in a companion paper with F. Augeri. We show in particular that the rate function is
different from the rate function of the Gaussian case, at least for deviations toward very large
values.

1.1. Statement of the results. We consider a family of independent real random variables
(a

(1)
i,j )0≤i≤j≤N , such that the variables a

(1)
i,j are distributed according to the laws μN

i,j . We

moreover assume that the μN
i,j are centered,

μN
i,j (x) =

∫
x dμN

i,j (x) = 0,

and with covariance:

μN
i,j

(
x2) =

∫
x2 dμN

i,j (x) = 1 ∀1 ≤ i < j ≤ N,

μN
i,i

(
x2) = 2 ∀1 ≤ i ≤ N.

We say that a probability measure μ has a sharp sub-Gaussian Laplace transform iff

(1) ∀t ∈ R, Tμ(t) =
∫

exp{tx}dμ(x) ≤ exp
{
t2μ(x2)

2

}
.

The terminology “sharp” comes from the fact that for t small, we must have

Tμ(t) ≥ exp
{
t2μ(x2)

2

(
1 + o(t)

)}
.

Then we assume that we have the following.

ASSUMPTION 1.1 (A0). We assume that the (μN
i,j )i≤j satisfy a sharp Gaussian Laplace

transform.

REMARK 1.1. Note that the above hypothesis implies that we have the following uni-
form estimates:

• The μN
i,j have a uniform lower bounded Laplace transform: For any δ > 0, there exists

ε(δ) > 0 such that for any |t | ≤ ε(δ), any 1 ≤ i ≤ j ≤ N , any N ∈ N,

TμN
i,j

(t) ≥ exp
{(1 − δ)t2μN

i,j (x
2)

2

}
.

• Moreover, the TμN
i,j

are uniformly C3 in a neighborhood of the origin: For ε > 0 small

enough, sup|t |≤ε supi,j,N |∂3
t lnTμN

i,j
(t)| is finite.

Indeed, the sharp sub-Gaussian hypothesis implies that for all i, j,N , all integer numbers p,∫
|x|pdμN

i,j (x) ≤
(∫

|x|p+1e− x2
2 dx/

√
2π

) p
p+1 ≤ cp!

for some universal constant c. This implies that in the vicinity of the origin, TμN
i,j

expands in

power series, with a radius of convergence which does not depend on i, j,N , from which the
above uniform controls hold.
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REMARK 1.2. We could assume a weaker upper bound on the Laplace transform for the
diagonal entries such as the existence of A finite such that∫

etx dμN
i,i(x) ≤ exp

{
t2 + A|t |} ∀1 ≤ i ≤ N;

see the proof of Theorem 1.18.

EXAMPLE 1.3.

(1) Clearly, a centered Gaussian variable has a sharp sub-Gaussian Laplace transform.
(2) The Rademacher law B = 1

2(δ−1 + δ1) satisfies a sharp sub-Gaussian Laplace trans-
form since for all real number t ,

TB(t) = cosh(t) ≤ et2/2.

(3) U , the uniform law on the interval [−√
3,

√
3], satisfies a sharp sub-Gaussian Laplace

transform since we have ∫
x2 dU(x) = 1,

and

TU(t) = 1

t
√

3
sinh(t

√
3) = ∑

n≥0

t2n3n

(2n + 1)! .

Since for all n ≥ 0, 3n

(2n+1)! ≤ 1
2nn! , it follows that TU(t) ≤ e

t2
2 .

(4) More generally, if μ is a symmetric measure on R (i.e., such as μ(−A) = μ(A) for
any Borel subset A of R) such that∫

x2 dμ(x) = 1,

∫
x2n dμ(x) ≤ (2n)(2n − 1) · · · (n + 1)

2n
∀n ≥ 2,

then μ satisfies a sharp sub-Gaussian Laplace transform.
(5) If X, Y are two independent variables with distribution μ and μ′, two probability

measures which have a sharp sub-Gaussian Laplace transform, for any a ∈ [0,1], the distri-
bution of

√
aX + √

1 − aY has a sharp sub-Gaussian Laplace transform.

Note that many measures do not have a sharp sub-Gaussian–Laplace transform, for ex-
ample, the sparse Gaussian law obtained by multiplying a Gaussian variable by a Bernoulli
variable, or well-chosen sums of Rademacher laws. We will also need that the empirical
measure of the eigenvalues concentrates in a stronger scale than N ; see Lemma 1.12. To this
end, we will also make the following classical assumptions to use standard concentration of
measure tools.

ASSUMPTION 1.2. There exists a compact set K such that the support of all μN
i,j is

included in K for all i, j ∈ {1, . . . ,N} and all integer number N , or all μN
i,j satisfy a log-

Sobolev inequality with the same constant c independent of N . More precisely, in the later
case and when the entries are complex, we assume that they are of the form z(x + iy) with a
complex number z, and independent real variables x, y which satisfy log-Sobolev inequality
with the same constant c independent of N .

REMARK 1.4. All the examples of Example 1.3 satisfy Assumption 1.2, except possibly
for sums of Gaussian variables and bounded entries.
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We then construct for all N ∈ N, a real Wigner matrix N × N X
(1)
N by setting

X
(1)
N (i, j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a

(1)
i,j√
N

when i ≤ j,

a
(1)
j,i√
N

when i > j.

We denote λmin(X
(1)
N ) = λ1 ≤ λ2 ≤ · · · ≤ λN = λmax(X

(1)
N ) the eigenvalues of X

(1)
N . It is

well known [27] that under our hypotheses the empirical distribution of the eigenvalues
μ̂N

X
(1)
N

= 1
N

∑N
i=1 δλi

converges weakly toward the semicircle distribution σ : for all bounded

continuous function f ,

lim
N→∞

∫
f (x) dμ̂N

X
(1)
N

(x) =
∫

f (x) dσ(x) = 1

2π

∫ 2

−2
f (x)

√
4 − x2 dx a.s.

It is also well known that the eigenvalues stick to the bulk since we assumed the entries have
sub-Gaussian moments [1, 18]:

lim
N→∞λmin

(
X

(1)
N

) = −2, lim
N→∞λmax

(
X

(1)
N

) = 2, a.s.

Our main result is a large deviation principle from this convergence.

THEOREM 1.5. Suppose Assumptions 1.1 and 1.2 hold. Then the law of the largest eigen-
value λmax(X

(1)
N ) of X

(1)
N satisfies a large deviation principle with speed N and good rate

function I (1) which is infinite on (−∞,2) and otherwise given by

I (1)(ρ) = 1

2

∫ ρ

2

√
x2 − 4dx.

In other words, for any closed subset F of R,

lim sup
N→∞

1

N
lnP

(
λmax

(
X

(1)
N

) ∈ F
) ≤ − inf

F
I (1),

whereas for any open subset O of R,

lim inf
N→∞

1

N
lnP

(
λmax

(
X

(1)
N

) ∈ O
) ≥ − inf

O
I (1).

The same result holds for the opposite of the smallest eigenvalue −λmin(X
(1)
N ).

Therefore, the large deviations principles are the same as in the case of Gaussian entries
as soon as the entries have a sharp sub-Gaussian–Laplace transforms and are bounded, for
instance, for Rademacher variables or uniformly distributed variables. Hereafter, we show
how this result generalizes to other settings. First, this result extends to the case of Wigner
matrices with complex entries as follows. We now consider a family of independent random
variables (a

(2)
i,j )1≤i≤j≤N , such that the variables a

(2)
i,j are distributed according to a law μN

i,j

when i ≤ j , which are centered probability measures on C (and on R if i = j ). We write
a

(2)
i,j = xi,j + iyi,j where xi,j = �(a

(2)
i,j ) and yi,j = 
(a

(2)
i,j ). We suppose that for all i ∈ [1,N],

yi,i = 0. In this context, for a probability measure on C, we will consider its Laplace trans-
form to be the function

Tμ(z) :=
∫

exp
{�(az̄)

}
dμ(a).

We assume the following.
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ASSUMPTION 1.3 (A0c). For all i < j ,

∀t ∈ C, TμN
i,j

(t) ≤ exp
(|t |2/4

)
,

and for all i,

∀t ∈ R, TμN
i,i

(t) ≤ exp
(
t2/2

)
.

Observe that the above hypothesis implies that for all i < j , 2E[x2
i,j ] = 2E[y2

i,j ] =
E[x2

i,i] = 1 and E[xi,j yi,j ] = 0. Examples of distributions satisfying Assumption 1.3 are
given by taking (xi,j , yi,j ) centered independent variables with law satisfying a sharp sub-
Gaussian–Laplace transform. Hereafter, we extend naturally Assumption 1.2 by assuming
that the compact K is a compact subset of C or log-Sobolev inequality holds in the complex
setting.

We then construct for all N ∈ N, X
(2)
N a complex Wigner matrix N × N by letting

X
(2)
N (i, j) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a
(2)
i,j√
N

when i ≤ j,

a
(2)
j,i√
N

when i > j.

Again, it is well known that the spectral measure of X
(2)
N converges toward the semicircle

distribution σ and that the eigenvalues stick to the bulk [1].

THEOREM 1.6. Assume that Assumptions 1.3 and 1.2 hold. Then the law of the largest
eigenvalue λmax(X

(2)
N ) of X

(2)
N satisfies a large deviation principle with speed N and good

rate function I (2) which is infinite on (−∞,2) and otherwise given by

I (2)(ρ) = 2I (1)(ρ) =
∫ ρ

2

√
x2 − 4dx.

We finally generalize our result to the case of Wishart matrices. We let L, M be two inte-
gers with N = L + M . Let G

(β)
L,M be a L × M matrix with independent entries (a

(β)
i,j ) 1≤i≤L

1≤j≤M

with laws μ
L,M
i,j on the real line if β = 1 and on the complex plane if β = 2. The μ

L,M
i,j

satisfy a sharp sub-Gaussian–Laplace transform (with real or complex values) for all i, j ∈
[1,L] × [1,M], and its complementary uniform lower bound (Assumption 1.1, or Assump-
tion 1.3), are centered and have covariance one. We set W

(β)
L,M = 1

L
G

(β)
L,M(G

(β)
L,M)∗. When

M/L converges toward α, the spectral distribution of W
(β)
L,M converges toward the Pastur–

Marchenko law [24]: for any bounded continuous function f ,

lim
N→∞

∫
f (x) dμ̂L

W
(β)
L,M

(x) =
∫

f (x) dπα(x) a.s.,

where if α ≥ 1 and aα = (1 − √
α)2, bα = (1 + √

α)2,

πα(dx) =
√

(bα − x)(x − aα)

2πx
1[aα,bα] dx.

When α < 1, the limiting spectral measure has additionally a Dirac mass at the origin
with mass 1 − α. We hereafter concentrates on the case M ≥ L up to replace W

(β)
L,M by

(G
(β)
L,M)∗G(β)

L,M/M . Again, the extreme eigenvalues were shown to stick to the bulk [7]. We
prove a large deviation principle from this convergence.
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THEOREM 1.7. Assume that the μN
i,j satisfy Assumption 1.2. Assume they satisfy a sharp

Gaussian–Laplace transform 1.1 when β = 1 or 1.3 when β = 2. Assume that there exists
α ≥ 1 and κ > 0 so that M

L
−α = o(N−κ). Then the law of the largest eigenvalue λmax(W

(β)
L,M)

of W
(β)
L,M satisfies a large deviation principle with speed N and good rate function J (β) which

is infinite on (−∞, bα) and otherwise given by

J (β)(x) = β

4(1 + α)

∫ x

bα

√
(y − bα)(y − aα)

y
dy,

where β = 1 in the case of real entries, and β = 2 in the case of complex entries.

This problem can be recasted in terms of Hermitian models X
(wβ)

N with independent entries
(hereafter, the subscript wβ refers to Wishart matrices with real (resp. complex) entries when

β = 1 (resp. β = 2)). Indeed if we consider X
(wβ)

N the N × N Hermitian matrix given by

X
(wβ)

N =

⎛⎜⎜⎝ 0
1√
N

G
(β)
L,M

1√
N

(
G

(β)
L,M

)∗ 0

⎞⎟⎟⎠
the spectrum of X

(wβ)

N is given by L eigenvalues
√

L
N

λ, L eigenvalues −
√

L
N

λ, where λ are

the eigenvalues of W
(β)
L,M , and M − L vanishing eigenvalues. Hence, the largest eigenvalue

of W
(β)
L,M is the square of the largest eigenvalue of X

(wβ)

N multiplied by N/L. X
(wβ)

N is, like

X
β
N a Hermitian matrix which is linear in the random entries, but it has more structure with

its zero entries. It is therefore equivalent to show a large deviation principle for the largest

eigenvalue of X
(wβ)

N with speed N and rate function

I (wβ)(x) = J (β)((1 + α)x2).
This amounts to consider a Wigner matrix with some entries set to zero. We denote a

(wβ)

i,j the

entries of
√

NX
(wβ)

N :

a
(wβ)

i,j = 0, if i, j ≤ L or i, j ≥ L + 1,

a
(wβ)

i,j = a
(β)
i−L,j , i ≥ L + 1, j ≤ L,

a
(wβ)

i,j = a
(β)
j−L,i, j ≥ L + 1, i ≤ N.

Again, we denote by μN
i,j the law of the i, j th entry of this matrix. Hereafter, we denote by

σw the limiting spectral distribution of X
(wβ)

N given for any test function f by∫
f (x) dσw(x) = 1

1 + α

(∫
f

(√
x

1 + α

)
dπα(x)

+
∫

f

(
−
√

x

1 + α

)
dπα(x)

)
+ α − 1

α + 1
f (0).

(2)

Therefore, we shall prove Theorem 1.7 by showing the following.

THEOREM 1.8. Assume that the μN
i,j satisfy Assumption 1.2. Assume they satisfy a sharp

Gaussian–Laplace transform 1.1 when β = 1 or 1.3 when β = 2. Assume that there exists
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α ≥ 1 and κ > 0 so that M
L

−α = o(N−κ). Then the law of the largest eigenvalue λmax(X
(wβ)

N )

of X
(wβ)

N satisfies a large deviation principle with speed N and good rate function I (wβ) which
is infinite on (−∞, b̃α), if b̃α = √

(1 + α)−1bα and otherwise given by

I (wβ)(x) = β

1 + α

∫ x

b̃α

1

y

√
(1 + α)2

(
y2 − 1

)2 − 4α dy,

where β = 1 in the case of real entries, and two in the case of complex entries.

1.2. Scheme of the proof. The idea of the proof is reminiscent of Cramér’s approach
to large deviations: we appropriately tilt measures to make the desired deviations likely. The
point is to realize that it is enough to shift the measure in a random direction and use estimates
on spherical integrals obtained by one of the authors and M. Maïda [19]. To be more precise,
we shall follow the usual scheme to prove first exponential tightness.

LEMMA 1.9. For β = 1,2,w1,w2, assume that the distribution of the entries a
(β)
i,j satisfy

Assumption 1.1 for β = 1,w1 and Assumption 1.3 for β = 2,w2. Then

lim
K→+∞ lim sup

N→∞
1

N
lnP

[
λmax

(
X

(β)
N

)
> K

] = −∞.

Similar results hold for λmin(X
(β)
N ).

This result is proved in Section 2. Note that in fact the proof of Lemma 1.9 requires only
sub-Gaussian tails. Therefore, it is enough to prove a weak large deviation principle.

In the following, we summarize the assumptions on the distribution of the entries as fol-
lows.

ASSUMPTION 1.4. Either the μN
i,j are uniformly compactly supported in the sense that

there exists a compact set K such that the support of all μN
i,j is included in K , or the μN

i,j

satisfy a uniform log-Sobolev inequality in the sense that there exists a constant c independent
of N such that for all smooth function f ,∫

f 2 ln
f 2

μN
i,j (f

2)
dμN

i,j ≤ cμN
i,j

(‖∇f ‖2
2
)
.

More precisely, in the later case and when the entries are complex, we assume that they are of
the form z(x+iy) with a complex number z, and independent real variables x, y which satisfy
log-Sobolev inequality with the same constant c independent of N . When β = 1,w1 μN

i,j

satisfy Assumption 1.1. When β = 2,w2, they satisfy Assumption 1.3. In the case of Wishart
matrices, β = w1 or w2, we assume that there exists α > 0 and κ > 0 so that |M

L
− α| ≤ N−κ

for N large enough.

We shall first prove that we have a weak large deviation upper bound.

THEOREM 1.10. Assume that Assumption 1.4 holds. Let β = 1,2,w1,w2. Then, for any
real number x,

lim sup
δ→0

lim sup
N→∞

1

N
lnP

(∣∣λmax
(
X

(β)
N

)− x
∣∣ ≤ δ

) ≤ −Iβ(x).

We shall then obtain the large deviation lower bound.
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THEOREM 1.11. Assume that Assumption 1.4 holds. Let β = 1,2,w1,w2. Then, for any
real number x,

lim inf
δ→0

lim inf
N→∞

1

N
lnP

(∣∣λmax
(
X

(β)
N

)− x
∣∣ < δ

) ≥ −Iβ(x).

To prove Theorem 1.10, we first show that the rate function is infinite below the right
edge of the support of the limiting spectral distribution. To this end, we use that the spectral
measure μ̂N converges toward its limit with a much larger probability. We denote this limit
σβ : σ1 = σ2 = σ is the semicircle law and σw1 = σw2 = σw is the symmetrization of Pastur–
Marchenko law (2). We let d denote the Dudley distance:

d(μ, ν) = sup
‖f ‖L≤1

∣∣∣∣∫ f (x) dμ(x) −
∫

f (x) dν(x)

∣∣∣∣,
where ‖f ‖L = supx �=y |f (x)−f (y)

x−y
| + supx |f (x)|.

LEMMA 1.12. Assume that the μN
i,j are uniformly compactly supported or satisfy a uni-

form log-Sobolev inequality, as well as, in the case w1, w2, that there exists κ > 0 such that
|M
N

− α| ≤ N−κ . Then, for β = 1,2,w1,w2, there exists κ ′ ∈ (0, 1
10 ∧ κ) such that

lim sup
N→∞

1

N
lnP

(
d
(
μ̂N

X
(β)
N

, σβ

)
> N−κ ′) = −∞.

The proof of this lemma is given in the Appendix. As a consequence, we deduce that the
extreme eigenvalues cannot deviate toward a point inside the support of the limiting spec-
tral measure with probability greater than e−CN for any C > 0 and, therefore, we have the
following.

COROLLARY 1.13. Under the assumption of Lemma 1.12, for β = 1,2 let x be a real
number in (−∞,2) or for β = w1,w2, take x ∈ (−∞, b̃α). Then, for δ > 0 small enough,

lim sup
N→∞

1

N
lnP

(∣∣λmax
(
X

(β)
N

)− x
∣∣ ≤ δ

) = −∞.

Indeed, as soon δ > 0 is small enough so that x + δ is smaller than 2 − δ for β = 1,2
(resp., bα − δ for β = w1,w2), d(μ̂N ,σβ) is bounded below by some κ(δ) > 0 on the event

that |λmax(X
(β)
N ) − x| ≤ δ. Hence, Lemma 1.12 implies the corollary.

In order to prove the weak large deviation bounds for the remaining x’s, we shall tilt the
measure by using spherical integrals:

IN(X, θ) = Ee

[
eθN〈e,Xe〉],

where the expectation holds over e which follows the uniform measure on the sphere S
N−1

with radius one. The asymptotics of

JN(X, θ) = 1

N
ln IN(X, θ)

were studied in [19] where it was proved in the following.

THEOREM 1.14 ([19], Theorem 6). If (EN)N∈N is a sequence of N × N real symmetric
matrices when β = 1 and complex Hermitian matrices when β = 2, such that:
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• The sequence of empirical measures μ̂N
EN

weakly converges to a compactly supported mea-
sure μ,

• There are two reals λmin(E), λmax(E) such that limN→∞ λmin(EN) = λmin(E) and
limN→∞ λmax(EN) = λmax(E),

and θ ≥ 0, then

lim
N→∞JN(EN, θ) = J

(
μ,θ,λmax(E)

)
.

The limit J is defined as follows. For a compactly supported probability measure, we
define its Stieltjes transform Gμ by

Gμ(z) :=
∫
R

1

z − t
dμ(t).

We assume hereafter that μ is supported on a compact [a, b]. Then Gμ is a bijection
from R \ [a, b] to ]Gμ(a),Gμ(b)[\{0} where Gμ(a), Gμ(b) are taken as the (possibly in-
finite) limits of Gμ(t) when t → a− and t → b+. We denote by Kμ its inverse and let
Rμ(z) := Kμ(z) − 1/z be its R-transform as defined by Voiculescu in [26] (defined on a
neighborhood of the origin, but also on ]Gμ(a),Gμ(b)[). In the sequel, for any compactly
supported probability measure μ, we denote by r(μ) the right edge of the support of μ. In
order to define the rate function, we now introduce, for any θ ≥ 0, and λ ≥ r(μ),

(3) J (μ, θ,λ) := θv(θ,μ,λ) − β

2

∫
log

(
1 + 2

β
θv(θ,μ,λ) − 2

β
θy

)
dμ(y),

with

v(θ,μ,λ) :=

⎧⎪⎪⎨⎪⎪⎩
Rμ

(
2

β
θ

)
if 0 ≤ 2θ

β
≤ Hmax(μ,λ) := lim

z↓λ

∫ 1

z − y
dμ(y),

λ − β

2θ
if

2θ

β
> Hmax(μ,λ).

We shall later use that spherical integrals are continuous. We recall here Proposition 2.1 from
[22] (see [23] for an erratum) and Theorem 6.1 from [19]. We denote by ‖A‖ the operator

norm of the matrix A given by ‖A‖ = sup‖u‖2=1 ‖Au‖2 where ‖u‖2 =
√∑ |ui |2.

PROPOSITION 1.15. For every θ > 0, every κ ∈ ]0,1/2[ and every M > 0, there exist a
function gκ :R+ →R

+ going to 0 at 0 such that for any δ > 0 and N large enough, with BN

and B ′
N such that d(μ̂N

BN
, μ̂N

B ′
N
) < N−κ , |λmax(BN) − λmax(B

′
N)| < δ and supN ‖BN‖ ≤ M ,

supN ‖B ′
N‖ ≤ M : ∣∣JN(BN, θ) − JN

(
B ′

N, θ
)∣∣ < gκ(δ).

From Theorem 1.14 and Proposition 1.15, we deduce the following.

COROLLARY 1.16. For every θ > 0, every κ ∈ ]0,1/2[ and every M > 0, for any δ > 0
and μ a probability measure supported in [−M,M], if we denote by BN the set of symmetric
matrices BN such that d(μBN

,μ) < N−κ , |λmax(BN) − ρ| < δ, and supN ‖BN‖ ≤ M , for N

large enough, we have

lim sup
N→∞

sup
BN∈BN

∣∣JN(BN, θ) − J (μ, θ, ρ)
∣∣≤ 2gκ(δ),

where gκ is the function in Proposition 1.15.
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By Lemma 1.9 and Lemma 1.12, it is enough to study the probability of deviations on the
set where JN is continuous.

COROLLARY 1.17. Suppose Assumption 1.2 holds. For δ > 0, take a real number x and
set for M large (larger than x + δ in particular), AM

x,δ to be the set of N × N self-adjoint
matrices given by

AM
x,δ = {

X : ∣∣λmax(X) − x
∣∣ < δ

}∩ {
X : d(μ̂N

X,σβ

)
< N−κ ′}∩ {

X : ‖X‖ ≤ M
}
,

where κ ′ is chosen as in Lemma 1.12. Let x be a real number, δ > 0 and κ ′ as in Lemma 1.12.
Then, for any L > 0, for M large enough

P
(∣∣λmax

(
X

(β)
N

)− x
∣∣ < δ

) = P
(
X

(β)
N ∈AM

x,δ

)+ O
(
e−NL).

We are now in position to get an upper bound for P(X
(β)
N ∈ AM

x,δ). In fact, by the continuity
of spherical integrals of Corollary 1.16, for any θ ≥ 0,

P
(
X

(β)
N ∈ AM

x,δ

) = E

[
IN(X

(β)
N , θ)

IN(X
(β)
N , θ)

1AM
x,δ

]

≤ E
[
IN

(
X

(β)
N , θ

)]
exp

{
−N inf

X∈AM
x,δ

JN(X, θ)
}

(4)

≤ E
[
IN

(
X

(β)
N , θ

)]
exp

{
N
(
2gκ(δ) − J (σβ, θ, x)

)}
,

where we used that x → J (σβ, θ, x) is continuous and took N large enough. It is therefore
central to derive the asymptotics of

FN(θ,β) = 1

N
lnE

[
IN

(
X

(β)
N , θ

)]
,

and we shall prove in Section 3 the following.

THEOREM 1.18. Suppose Assumption 1.4 holds. For β = 1,2,w1,w2 and θ ≥ 0,

lim
N→∞FN(θ,β) = F(θ,β)

with F(θ,β) = θ2/β if β = 1,2 and when β = wi , i = 1,2:

F(θ,wi) = sup
x∈[0,1]

{
2θ2

i
x(1 − x) + i

2(1 + α)
ln(1 − x) + iα

2(1 + α)
lnx

}
− iCα,

where Cα = 1
2(1+α)

ln( 1
1+α

) + α
2(1+α)

ln α
1+α

.

We therefore deduce from (4), Corollaries 1.17 and 1.16 and Theorem 1.18, by first letting
N going to infinity, then δ to zero and finally M to infinity, that

lim sup
δ→0

lim sup
N→∞

1

N
lnP

(∣∣λmax
(
X

(β)
N

)− x
∣∣ < δ

) ≤ F(θ,β) − J (σβ, θ, x).

We next optimize over θ to derive the upper bound:

lim sup
δ→0

lim sup
N→∞

1

N
lnP

(∣∣λmax
(
X

(β)
N

)− x
∣∣ < δ

)
≤ − sup

θ≥0

{
J (σβ, θ, x) − F(θ,β)

}
.

(5)
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To complete the proof of Theorem 1.10, we show in Section 4 that, with the notations of
Theorems 1.7, 1.6 and 1.8, we have the following.

PROPOSITION 1.19. For β = 1,2,w1,w2,

Iβ(x) = sup
θ≥0

{
J (σβ, θ, x) − F(θ,β)

}
.

To prove the complementary lower bound, we shall prove the following.

LEMMA 1.20. For β = 1,2, for any x > 2 and for β = w1,w2 for any x > b̃α , there
exists θ = θx ≥ 0 such that for any δ > 0 and M large enough,

lim inf
N→∞

1

N
ln

E[1
X

(β)
N ∈AM

x,δ

IN(X
(β)
N , θ)]

E[IN(X
(β)
N , θ)]

≥ 0.

This lemma is proved by showing that the matrix whose law has been tilted by the spherical
integral is approximately a rank one perturbation of a Wigner matrix, from which we can
use the techniques developed to study the famous BBP transition [8]. The conclusion of
Theorem 1.11 follows since then

P
(
X

(β)
N ∈ AM

x,δ

) ≥
E[1Xδ

N∈AM
x,δ

IN(X
(β)
N , θx)]

E[IN(X
(β)
N , θx)]

E
[
IN

(
X

(β)
N , θx

)]
× exp

{
−N sup

X∈AM
x,δ

JN(X, θx)
}

≥ exp
{
N
(−2gκ(δ) + F(θx,β) − J (σβ, θx, x) + o(1)

)}
≥ exp

{−NIβ(x) − N(o(1) + 2gκ(δ))
}
,

where we finally used Theorem 1.18 and Lemma 1.20.

2. Exponential tightness. In this section, we prove Lemma 1.9. We will use a standard
net argument that we recall for completeness. We denote by S

N−1 the unit sphere in C
N if

β = 2 or RN if β = 1. For N ∈ N, let RN be a 1/2-net of the sphere (i.e., a subset of the
sphere S

N−1 such as for all u ∈ S
N−1 there is v ∈ RN such that ‖u − v‖2 ≤ 1/2). Here, the

sphere is inside R
N for β = 1,w1 and C

N for β = 2,w2. We know that we can take RN with
cardinality smaller than 32N . We notice that for M > 0,

(6) P
[∥∥X(β)

N

∥∥ ≥ 4K
] ≤ 92N sup

u,v∈RN

P
[〈
X

(β)
N u, v

〉 ≥ K
]
.

Indeed, if we denote, for v ∈ S
N−1, uv to be an element of RN such that ‖uv − v‖2 ≤ 1/2,∥∥X(β)

N

∥∥ = sup
v∈SN−1

∥∥X(β)
N v

∥∥
2 ≤ sup

v∈SN−1

(∥∥X(β)
N uv

∥∥
2 + 1

2

∥∥X(β)
N

∥∥)
so that

(7)
∥∥X(β)

N

∥∥ ≤ 2 sup
u∈RN

∥∥X(β)
N u

∥∥
2.

Similarly, taking v = X
(β)
N u

‖X(β)
N u‖2

, we find

∥∥X(β)
N u

∥∥
2 = 〈

v,X
(β)
N u

〉 ≤ 〈
uv,X

(β)
N u

〉+ ‖v − uv‖2
∥∥X(β)

N v
∥∥

2
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from which we deduce that ∥∥X(β)
N

∥∥ ≤ 4 sup
u,v∈RN

〈
X

(β)
N u, v

〉
and (6) follows. We next bound the probability of deviations of 〈X(β)

N v,u〉 by using Tcheby-
chev’s inequality. For θ ≥ 0, we indeed have

P
[〈
X

(β)
N u, v

〉 ≥ K
]

≤ exp{−θNK}E[exp
{
Nθ

〈
X

(β)
N u, v

〉}]
≤ exp{−θNK}E

[
exp

{√
N

(
2
∑
i<j

�(
a

(β)
i,j ui v̄j

)+∑
i

ai,iuivi

)}]

≤ exp{−θNK} exp
(

θ2N

β ′
(

2
∑
i<j

|ui |2|vj |2 +∑
i

|ui |2|vi |2
))

,

(8)

where we used that the entries have a sharp sub-Gaussian–Laplace transform. In the case of
Wishart matrices, we bounded above some vanishing contributions by a nonnegative term.
When β = wi , β ′ = i, otherwise β ′ = β . We can now complete the upper bound:

P
[〈
X

(β)
N u, v

〉 ≥ K
] ≤ exp

(
θ2N

β ′
‖u‖2

2‖v‖2
2 + 〈u, v〉2

2
− θNK

)

≤ exp
(
N

(
1

β ′ − K

))
,

where we took θ = 1. We conclude that

P
[〈
X

(β)
N u, v

〉 ≥ K
] ≤ exp

(
N(1 − K)

)
.

This completes the proof of the lemma with (6).

3. Proof of Theorem 1.18. We consider in this section a random unit vector e taken
uniformly on the sphere S

N−1 and independent of X
(β)
N . We define FN by setting, for θ > 0,

FN(θ,β) = 1

N
lnE

X
(β)
N

Ee

[
exp

(
Nθ

〈
e,X

(β)
N e

〉)]
,

where we take both the expectation Ee over e and the expectation E
X

(β)
N

over X
(β)
N . In this

section, we derive the asymptotics of FN(θ,β). F(θ,β) is as in Theorem 1.18. We prove a
refinement of Theorem 1.18, which shows that under our assumption of sharp sub-Gaussian
tails, the random vector e stays delocalized under the tilted measure.

PROPOSITION 3.1. Suppose Assumption 1.1 holds if β = 1,w1 and Assumption 1.3
holds if β = 2,w2. Denote by V ε

N = {e ∈ S
N−1 : ∀i, |ei | ≤ N−1/4−ε}. Then, for ε ∈ (0, 1

4),

F(θ,β) = lim
N→+∞FN(θ,β) = lim

N→∞
1

N
lnEe

[
1e∈V ε

N
E

X
(β)
N

[
exp

(
Nθ

〈
e,X

(β)
N e

〉)]]
.

We first consider the case of Wigner matrices and then the case of Wishart matrices: in
both cases, the proof shows that the above delocalization holds (i.e., we can restrict ourselves
to vectors e in V ε

N ) and we shall not mention it in the following statements.
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3.1. Wigner matrices. In this section, we prove Theorem 1.18 in the case of Wigner
matrices, namely, the following.

LEMMA 3.2. Suppose Assumption 1.1 holds if β = 1 and Assumption 1.3 holds if β = 2.
Then for any θ ≥ 0,

lim
N→+∞FN(θ,β) = F(θ,β) = θ2

β
.

PROOF. By denoting Lμ = lnTμ, we have

E
X

(β)
N

[
exp

(
Nθ

〈
e,X

(β)
N e

〉)]
= E

X
(β)
N

[
exp

{√
Nθ

(
2
∑
i<j

�(
a

(β)
i,j ej ēi

)+∑
i

a
(β)
i,i |ei |2

)}]

= exp
{∑

i<j

LμN
i,j

(2θ ēiej

√
N) +∑

i

LμN
i,i

(
θ |ei |2

√
N
)}

,

where we used the independence of the (a
(β)
i,j )i≤j . Using that the entries have a sharp sub-

Gaussian–Laplace transform (using on the diagonal the weaker bound LμN
i,i

(t) ≤ 1
β
t2 + A|t |)

and
∑

e2
i = 1, we deduce that

E
X

(β)
N

[
exp

(
Nθ

〈
e,X

(β)
N e

〉)]
≤ Ee

[
exp

{
2Nθ2

β

∑
i<j

|ei |2|ej |2 + Nθ2

β

∑
i

|ei |4 + A
√

Nθ
∑
i

e2
i

}]

≤ exp
(
N

θ2

β
+ A

√
Nθ

)
.

Hence, we have proved the following upper bound:

(9) lim sup
N→∞

FN(θ,β) ≤ lim sup
N→∞

sup
e∈SN−1

1

N
lnE

X
(β)
N

[
exp

(
Nθ

〈
e,X

(β)
N e

〉)] ≤ θ2

β
.

We next prove the corresponding lower bound. The idea is that the expectation over the vector
e concentrates on delocalized eigenvectors with entries so that

√
Neiēj is going to zero for

all i, j . As a consequence, we will be able to use the uniform lower bound on the Laplace
transform to lower bound FN(θ,β). Let V ε

N be as in Proposition 3.1. We have that

E
[
exp

(
Nθ

〈
e,X

(β)
N e

〉)]
≥ Ee

[
1e∈V ε

N

∏
i<j

exp
{
LμN

i,j
(2

√
Nθēiej )

}∏
i

exp
{
LμN

i,i

(√
Nθ |ei |2)}].

For e ∈ V ε
N , 2

√
Nθ |eiej | ≤ 2θN−ε so that

lim
N→+∞ sup

e∈V ε
N

|2√
Nθeiej | = 0.

By the uniform lower bound on the Laplace transform of Assumptions 1.1 or 1.3, we deduce
that for any δ > 0 and N large enough

(10) E
[
exp

(
Nθ

〈
e,X

(β)
N e

〉)] ≥ Pe

[
V ε

N

]
e
N θ2

β
(1−δ)

.

We shall use that
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LEMMA 3.3. For any ε ∈ (0,1/4), we have

lim
N→∞Pe

[
e ∈ V ε

N

] = 1.

As a consequence, we deduce from (10) that for any δ > 0 and N large enough

lim inf
N→∞ FN(θ,β) ≥ (1 − δ)

θ2

β
.

Hence, together with (9), we have proved the announced limit

lim
N→∞FN(θ,β) = θ2

β

which completes the proof of Lemma 3.2. Finally, we prove Lemma 3.3. To this end, we use
the well-known representation of the vector e as a renormalized (real or complex) Gaussian
vector:

e = g

‖g‖2
,

where g = (g1, . . . , gN) is a Gaussian vector of covariance matrix IN . By the law of large
numbers, we have the following almost sure limit:

lim
N→∞

‖g‖2√
N

= 1.

We also have by the union bound

P
[∃i ∈ [1,N], |gi | > N1/4−ε/2

] ≤ NP
[|g1| > N1/4−ε/2

] ≤ N exp
{
−1

4
N1/2−2ε

}
from which the result follows. �

3.2. Wishart matrices. In this subsection, we prove Theorem 1.18 in the case of Wishart
matrices, namely, the following.

LEMMA 3.4. Let β = w1 or w2. Suppose Assumption 1.4 holds. Then for any θ ≥ 0, for
i = 1,2,

lim
N→∞FN(θ,wi) = F(θ,wi)

= sup
x∈[0,1]

{
2θ2

i
x(1 − x) + i

2(1 + α)
ln(x) + iα

2(1 + α)
ln(1 − x)

}
− iCα,

where Cα = 1
2(1+α)

ln( 1
1+α

)+ α
2(1+α)

ln α
1+α

. Moreover, the supremum is achieved at a unique
xθ,α in [0,1] (as it maximizes a strictly concave function). xθ,α is the almost sure limit of
‖e(1)‖2

2, the norm of the first L entries of e, under the tilted law,

dPθ (e) = EX[exp{θN〈e,X(β)
N e〉}]

Ee[EX[exp{θN〈e,X(β)
N e〉}]]

dP(e).

PROOF. We have, with the same notation than in the previous case,

E
X

wi
N

[
exp

(
Nθ

〈
X

(wi)
N e, e

〉)] = exp
{ ∑

1≤i≤M,1≤j≤L

LμN
i,j

(√
N2θe

(1)
i ē

(2)
j

)}
,
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where e = (e(1), e(2)), that is, e(1) is the vector made of the L first entries of e and e(2) the
vector made of the M last entries of e. Using that the μN

i,j have a sharp sub-Gaussian Laplace
transform, we deduce that with V ε

N as in Proposition 3.1 we find that for any δ > 0 and N

large enough

Ee

[
1V ε

N
e(1−δ) 2θ2

i
N‖e(1)‖2

2‖e(2)‖2
2
] ≤ E

X
wi
N

[
IN(θ,wi)

]
≤ Ee

[
e

2θ2
i

N‖e(1)‖2
2‖e(2)‖2

2
]
,

(11)

where ‖e(1)‖2
2 = 1 − ‖e(2)‖2

2 follows a Beta law with parameters (iL/2, iM/2). Hence, its
distribution is given by

BetaiM/2,iL/2(dx) = CM,LxiL/2−1(1 − x)iM/2−11x∈[0,1] dx,

with CM,L = �(iN/2)/�(iM/2)�(iL/2). Therefore, the Laplace method implies that

lim
N→∞

1

N
lnEe

[
exp

{
2θ2

i
N
∥∥e(1)

∥∥2
2

∥∥e(2)
∥∥2

2

}]

= sup
x∈[0,1]

{
2θ2

i
x(1 − x) + iα

2(1 + α)
ln(1 − x) + i

2(1 + α)
ln(x)

}
− iCα.

(12)

(12) thus yields the expected upper bound. To get the lower bound in (11), observe that
conditioning by ‖e(1)‖2, e(1) and e(2) follow uniform laws on spheres of appropriate radius
so that Lemma 3.3 applies. Hence, V ε

N has probability going to one under this conditional
measure and we can remove its indicator function in the lower bound of (11). We then apply
the Laplace method under the Beta law to conclude. Finally, we see from the above that for
any set A and any δ > 0,

P
θ (∥∥e(1)

∥∥2
2 ∈ A

)
≤ exp

{−NF(θ,wi) + Nδ
} ∫

A
xiL/2−1(1 − x)iM/2−1 exp

{
2θ2

i
Nx(1 − x)

}
dx

from which it follows by Laplace method that the law of ‖e(1)‖2
2 satisfies a large deviation up-

per bound with speed N and good rate function which is infinite outside [0,1] and otherwise
given by

−2θ2

i
x(1 − x) − iα

2(1 + α)
ln(1 − x) − i

2(1 + α)
lnx + F(θ,wi).

In particular, ‖e(1)‖2
2 converges almost surely toward the unique minimizer xθ,α of this strictly

convex function (which vanishes there). �

4. Identification of the rate function. To complete the proof of the large deviation up-
per bound of Theorem 1.10, we need to identify the rate function, that is, prove Proposi-
tion 1.19. This could a priori be done by saying that the rate function corresponds to the one
that is well known for the Gaussian case. But for the sake of completeness, we verify directly
that we have the same formula.

4.1. Wigner matrices. We first consider the case of Wigner matrices. Recall that we want
to prove that for β = 1,2,

(13) Iβ(x) = β

2

∫ x

2

√
y2 − 4dy = max

θ>0

(
J (σ, θ, x) − θ2

β

)
,
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where J (μ, θ,λ) was defined in (3). Note that when μ = σ , Rσ (x) = x and Hmax(σ,λ) =
Gσ(λ) = 1

2(λ − √
λ2 − 4). To prove (13), observe first that the function

ϕ(θ, x) = J (σ, θ, x) − θ2

β

vanishes when 2θ
β

≤ Hmax(σ, x) = Gσ(x), since then J (σ, θ, x) = β
2 × ∫ 2

β
θ

0 Rσ (u)du = θ2

β

(see [19], p. 4). For 2θ
β

> Gσ (x), the critical points of ϕ(·, x) satisfy

2θ

β
= (∂θJ )(σ, θ, x).

Computing the derivative of J shows that they are solution of

2θ

β
= x − β

2θ

which has a unique solution θx > βGσ (x)/2 which is given by

2θx

β
= 1

2

(
x +

√
x2 − 4

) = 1

Gσ(x)
.

Therefore, Iβ(x) = ϕ(θx, x). We can compute the derivative of Iβ and since θx is a critical
point of ϕ, we find that

∂xIβ(x) = (∂xϕ)(θx, x) = (∂xJ )(σ, θx, x) = θx − β

2
Gσ(x) = β

2

√
x2 − 4.

This proves the claim since Iβ(2) = 0.

4.2. Wishart matrices. Let us now consider Wishart matrices and compute

Iwβ (x) = max
θ>0

(
J (σw, θ, x) − F(θ,wβ)

)
.

As in the previous proof, it is enough to compute the point θx where ϕ(θ, x) = J (σw, θ, x)−
F(θ,wβ) achieves its maximal value since then we can compute

∂xIwβ (x) = ∂xJ (σw, θx, x) = θx − β

2
Gσw(x).

Note that θx exists as ϕ is continuous in θ , going to −∞ at infinity. To identify θx , we remark
that when it is larger than β

2 Gσw(x), it must satisfy the equation of the critical points of ϕ:

x = ∂θF (θ,wβ) + β

2θ
=: K(θ).

Our goal is therefore to identify K and in fact its inverse θx = K−1(x).
We first show that K is analytic away from the origin and equals the inverse Kσw(2θ

β
)

of the Stieljes transform for small θ . Indeed, we claim that θ → F(θ,wβ) is analytic in a
neighborhood of ]0,+∞[. We recall that it is given in Lemma 3.4 by

F(θ,wβ) = sup
x∈[0,1]

�(θ, x) − βCα,

�(θ, x) := 2θ2

β
x(1 − x) + β

2(1 + α)
ln(x) + βα

2(1 + α)
ln(1 − x).

The maximizer xθ,α of �(θ, x) is solution of

(∂x�)(x, θ) = 1

β2 θ2(1 − 2x) + 1

(1 + α)x
− α

(1 + α)(1 − x)
= 0.
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Clearly, x → (∂x�)(x, θ) takes its zeroes away from 0, 1 and is analytic in a complex neigh-
borhood of [ε,1 − ε] for any ε > 0. Moreover, ∂x� can only vanish in a small neighborhood
of x = 1/2 when θ is large. But for �(θ) > δ, the real part of −∂2

x�(θ, x) is bounded below
uniformly by some c(ε) > 0 uniformly a complex neighborhood Uε of [ε,1 − ε] provided
the imaginary part of θ is smaller than some κε,δ > 0. Hence, the implicit function theorem
implies that θ → xθ,α , and so F(·,wβ), is analytic in a neighborhood of �(θ) ≥ δ for any
δ > 0. We next show that for θ small enough,

(14) F(θ,wβ) = β

2

∫ 2
β
θ

0
Rσw(u)du.

F is clearly lower bounded by this value as for any M

F(θ,wβ) ≥ lim inf
N→∞

1

N
lnE

X
(wβ)

N

[
1|λmax(X

(wβ)

N )|≤M
IN

(
X

(wβ)

N , θ
)]

so that for 2θ
β

≤ Gσw(M), [19], Theorem 1.6, gives the lower bound. The upper bound is
obtained similarly by using the exponential tightness which permits to restrict oneself to
{|λmax| ≤ M}. Therefore, we conclude that K is analytic in �(θ) > δ and equals

Kσw

(
2θ

β

)
= Rσw

(
2θ

β

)
+ β

2θ

for small θ . We want to find the inverse of K . We thus look for an analytic extension of Kσw .
But in fact Kσw satisfies an algebraic equation. Indeed, observe that

Gσw(x) = 2xGπα

(
(1 + α)x2)+ α − 1

(1 + α)x
,

where it is well known that Gπα , the Stieltjes transform of the Wishart matries, is solution of

(2z)2Gπα(z)
2 − 4z(z + 1 − α)Gπα(z) + 4z − 8α = 0.

We deduce that at least for small x, Kσw is solution of(
(1 + α)Kσw(x)x + 1 − α

)2 − 2
(
Kσw(x) + 1 − α

)(
(1 + α)xKσw(x) + 1 − α

)
+ 4(1 + α)Kσw(x)2 − 8α = 0.

As a consequence, K is also solution of this equation for all x, by analyticity. Now, we are
looking for the inverse of K and so we deduce that θx = K−1(x) is solution of the equation(

2

β
(1 + α)xθx + 1 − α

)2
− 2(x + 1 − α)

(
2

β
(1 + α)xθx + 1 − α

)
+ 4(1 + α)x2 − 8α = 0.

(15)

For 2θx

β
≤ Gσw(x), the solution is

2

β
θx = 2α

1 + α

x2 + 1 − α −√
(x2 − 1 − α)2 − 4α

2x2 + 1 − α

1 + α

1

x
= Gσw(x)

but when 2θx

β
> Gσw(x) we have to take the other solution of the quadratic equation

2

β
θx = 2α

1 + α

x2 + 1 − α +√
(x2 − 1 − α)2 − 4α

2x2 + 1 − α

1 + α

1

x
.

As a result, we then have

∂xIwβ (x) = θx − β

2
Gσw(x) = βα

1 + α

√
(x2 − 1 − α)2 − 4α

x2 ,

which completes the proof.
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5. Large deviation lower bounds. Recall that we need to prove Lemma 1.20, that is
find for any x > 2 (or b̃α for Wishart matrices) a θ = θx ≥ 0 such that for any δ > 0 and M

large enough,

lim inf
N→∞

1

N
ln

E[1
X

(β)
N ∈AM

x,δ

IN(X
(β)
N , θ)]

E[IN(X
(β)
N , θ)]

≥ 0,

where we recall that

AM
x,δ = {

X : ∣∣λmax(X) − x
∣∣ < δ

}∩ {
d
(
μ̂N

X,σβ

)
< N−κ ′}∩ {‖X‖ ≤ M

}
.

For a vector e of the sphere S
N−1 and X a random symmetric matrix, we denote by P

(e,θ)
N

the probability measure defined by

dP
(e,θ)
N (X) = exp(Nθ〈Xe, e〉)

EX[exp(Nθ〈Xe, e〉)] dPN(X),

where PN is the law of X
(β)
N . We have

E
[
1

X
(β)
N ∈AM

x,δ

IN

(
X

(β)
N , θ

)]
= Ee

[
P

(e,θ)
N

(
AM

x,δ

)
EX

[
exp

(
Nθ〈Xe, e〉)]](16)

≥ Ee

[
1e∈V ε

N
P

(e,θ)
N

(
AM

x,δ

)
EX

[
exp

(
Nθ〈Xe, e〉)]],

where we recall that V ε
N = {e ∈ S

N−1 : |ei | ≤ N−1/4−ε}. The main point to prove the lower

bound will be to show that P(e,θ)
N (AM

x,δ) is close to one for delocalized vectors e ∈ V ε
N and

then proceed as before to show that V ε
N has probability close to one under the tilted measure.

More precisely, we will show that for ε ∈ (1
8 , 1

4), we can find θ so that for any x > 2 (resp.
x > b̃α) and δ > 0 we can find θx ≥ 0 so that for M large enough,

(17) lim
N→∞ inf

e∈V ε
N

P
(e,θx)
N

(
AM

x,δ

) = 1.

This gives the desired estimate since we then deduce from (16) that for N large enough so
that the above is greater than 1/2,

E
[
1

X
(β)
N ∈AM

x,δ

IN

(
X

(β)
N , θ

)] ≥ 1

2
Ee

[
1e∈V ε

N
E

X
(β)
N

[
exp

(
Nθ

〈
X

(β)
N e, e

〉)]]
so that the desired estimate follows from Proposition 3.1. To prove (17), the first point is to
show the following.

LEMMA 5.1. Take ε ∈ (0, 1
4). There exists κ ′ > 0 and K large enough so that for any θ ,

•
lim

N→∞ sup
e∈V ε

N

P
(e,θ)
N

(
λmax

(
X

(β)
N

) ≥ K
) = 0.

•
lim sup
N→∞

sup
e∈V ε

N

P
(e,θ)
N

(
d
(
μ̂N

X
(β)
N

, σβ

)
> N−κ ′) = 0.
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PROOF. We hereafter fix a vector e on the sphere. The proof of the exponential tightness
is exactly the same as for Lemma 1.9. Indeed, by Jensen’s inequality, we have

EX

[
exp

(
Nθ

〈
X

(β)
N e, e

〉)] ≥ exp
{
NθEX

[〈
X

(β)
N e, e

〉]} = 1.

Moreover, by Tchebychev’s inequality, for any u, v, e ∈ S
N−1, we have∫

1〈X(β)
N u,v〉≥K

exp
(
Nθ

〈
X

(β)
N e, e

〉)
dPN

≤ exp{−NK}EX

[
exp

(
Nθ

〈
X

(β)
N e, e

〉+ N
〈
X

(β)
N u, v

〉)]
≤ exp{−NK} exp

{
N

∑
i,j

|θei ēj + uiv̄j |2
}

≤ exp
{−NK + (θ + 1)2N

}
from which we deduce after taking u, v on a δ-net as in Lemma 1.9 that

P
(e,θ)
N

(
λmax

(
X

(β)
N

) ≥ K
) ≤ 92N exp

{
−1

4
NK + (θ + 1)2N

}
which proves the first point. The second is a direct consequence of Lemma 1.12 and the fact
that the log density of P(e,θ)

N with respect to PN is bounded by θN(|λmax(X)| + |λmin(E)|)
which is bounded by θKN with overwhelming probability by the previous point (recall that
λmin(X) satisfies the same bounds than λmax(X)). �

Hence, the main point of the proof is to show the following lemma.

LEMMA 5.2. Pick ε ∈ ]1
8 , 1

4 [. For any x > 2 if β = 1,2 and x > b̃α if β = w1,w2, there
exists θx such that for every η > 0,

lim
N→∞ sup

e∈V ε
N

P
(e,θx)
N

[|λmax − x| ≥ η
] = 0.

Again, we first consider the simpler Wigner matrix case and then the case of Wishart
matrices.

5.1. Proof of Lemma 5.2 for Wigner matrices. For e ∈ V ε
N fixed, let X(e),N be a matrix

with law P
(e,θ)
N . We have

X(e),N = E
[
X(e),N ]+ (

X(e),N −E
[
X(e),N ])

,

where E[X] denotes the matrix with entries given by the expectation of the entries of the
matrix X. We first show that E[X(e),N ] is approximately a rank one matrix.

LEMMA 5.3. For ε ∈ ]1
8 , 1

4 [, there exists κ(ε) > 0 so that for e ∈ V ε
N ,

E
[
X(e),N ] = 2θee∗ + �(e),N ,

where the spectral radius of �(e),N is bounded by N−κ(ε) uniformly on e ∈ V ε
N .

PROOF OF THE LEMMA. We can express the density of P(e,θ)
N as the following product:

dP
(e,θ)
N

dPXN

(X) = ∏
i≤j

exp
(
21i �=j θ

√
N�(ei ēj ai,j ) − LμN

i,j

(
21i �=j θ

√
Neiēj

))
,



LARGE DEVIATIONS FOR RADEMACHER MATRICES 1455

where the ai,j are defined as in the Introduction, basically a rescaling of the entries by multi-
plication by

√
N .

So since we took our ai,j independent (for i ≤ j ), the entries X
(e),N
i,j remain independent

and their mean is given in function of the Taylor expansion of L as follows:

(
E
[
X(e),N )

])
i,j =

L′
μN

i,j

(2
√

Nθei ēj )

√
N

= 2θ

β
ei ēj + δi,j (2

√
Nθei ēj )Nθ2|ei |2|ej |2√

N

if i �= j , and if i = j

(
E
[
X(e),N ])

i,i =
L′

μN
i,i

(
√

Nθ |ei |2)
√

N
= 2θ

β
ei ēi + δi,i(

√
Nθ |ei |2)Nθ2|ei |4√

N
,

where we used that by centering and variance one, L′
μN

i,j

(0) = 0, HessLμN
i,j

(0) = 1
β

Id for all

i �= j,N , L′′
μN

i,i

(0) = 2
β

for all i, N , and where

(18)
∣∣δi,j (t)

∣∣ ≤ 4 sup
|u|<t

max
i,j,N

{∣∣L(3)

μN
i,j

(u)
∣∣}.

Hence, we have

�
(e),N
i,j = δi,j (2

√
Nθei ēj )

√
Nθ2|ei |2|ej |2, 1 ≤ i, j ≤ N.

In order to bound the spectral radius of this remainder term, we use the following lemma.

LEMMA 5.4. Let A be an Hermitian matrix and B a real symmetric matrix such that

∀i, j, |Ai,j | ≤ Bi,j .

Then the spectral radius of A is smaller than the spectral radius of B .

PROOF. Indeed, if we take u on the sphere such that ‖Au‖2 = ‖A‖, then by denoting A′
the matrix (|Ai,j |) and u′ the vector (|ui |), we have by the triangular inequality,

‖A‖ = ‖Au‖2 ≤ ∥∥A′u′∥∥
2 ≤ ∥∥Bu′∥∥

2 ≤ ‖B‖. �

Therefore, if we choose C so that C ≥ supN,i,j δi,j (2
√

Nθei ēj )θ
2 and set |e|2 to be the

vector with entries (|ei |2)1≤i≤N , we have∥∥�(e),N
∥∥ ≤ C

√
N
∥∥|e|2(|e|2)∗∥∥.

Since ‖|e|2(|e|2)∗‖ = ‖|e|2‖2
2 = ∑

i e
4
i ≤ N−4ε , we deduce that if we take ε′ ∈ ]1/8,1/4[ we

have with κ(ε) = 1/2 − 4ε: ∥∥�(e),N
∥∥ = N−κ(ε). �

REMARK 5.5. F. Augeri noticed that a maybe more elegant proof of this point would be
to use Latala’s theorem [21]:

E
[‖Y‖] ≤ C sup

j

(
E
∑
i

|Yi,j |2
) 1

2
.
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Now we denote

X
(e),N := X(e),N −E

[
X(e),N ]

.

The entries of X(e),N are independent, centered of variance ∂z∂z̄LμN
i,j

(θei ēj

√
N)/N . Re-

call that ∂z∂z̄LμN
i,j

(0) = 1 and that the third derivative of the Laplace transform of the entries

are uniformly bounded so that

∂z∂z̄LμN
i,j

(θei ēj

√
N) = 1 + δi,j

(√
N |eiej |) = 1 + O

(
N−2ε)

uniformly on V ε
N . We can then consider X̃(e),N defined by

X̃
(e),N
i,j = X

(e),N

i,j√
∂z∂z̄LμN

i,j
(θei ēj

√
N)

.

Set Y (e),N = X
(e),N − X̃(e),N . So, we have(

Y (e),N )
i,j = X

(e),N

i,j

(
1 − 1√

∂z∂z̄LμN
i,j

(θei ēj

√
N)

)
.

We next show that for all δ > 0:

(19) lim
N→+∞ sup

e∈V ε
N

P
[∥∥Y (e),N

∥∥ > δ
] = 0.

Indeed, we have the following lemma which is a variant of [1], Theorem 2.1.22.

LEMMA 5.6. Consider for all N ∈ N a random Hermitian matrix AN with independent
subdiagonal entries which are centered and for all k ∈ N:

rN
k = max

i,j
N−k/2

E
[∣∣AN

i,j

∣∣k].
Suppose that there exists N0 ∈ N, C > 0 such that for N ≥ N0:

rN
2 ≤ 1, rN

k ≤ kCk.

Then for all δ > 0, P[λmax(A
N) > 2 + δ] goes to zero as N goes to infinity.

The proof of this lemma is strictly identical to Theorem 2.1.22 in [1] as we only need to
estimate large moments of the matrix, which only requires upper bounds on moments of the
entries (and not equality as assumed in [1]) as soon as the entries are centered.

We apply this lemma to the matrices Y (e),N/δ to derive (19): note that the hypothesis on
the upper bound on moments is a clear consequence of our bounds on Laplace transform and
are uniform for e ∈ V ε

N . Indeed, first remark that for all i, j ,

E
[
exp

(
θX

(e),N

i,j

)] = TμN
i,j

(θ + √
Neiej ) exp

(−√
Neiej − L′

μN
i,j

(
√

Neiej θ)
)
.

As a consequence, for e ∈ V ε
N , we have

E[(√NX
(e),N

i,j )2k]
2k!

≤ E[exp(
√

NX
(e),N

i,j )] +E[exp(−√
NX

(e),N

i,j )]
2

≤ sup
t∈[−(1+N−2ε),1+N−2ε ]

TμN
i,j

(t) exp
(
N−2ε) exp

(
sup

t∈[−N−2ε ,N−2ε ]

∣∣L′
μN

i,j

(t)
∣∣)
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which is uniformly bounded by Assumption 1.3. Therefore, we have found a finite constant
C > 0 such that

(20) sup
e∈V ε

N

sup
i,j

E
[(√

NX
(e),N

i,j

)2k] ≤ C(2k)!.

Furthermore, by the same arguments as in (18), we get

lim
N→∞ sup

e∈V ε
N

(
1 − 1√

∂z∂z̄LμN
i,j

(θei ēj

√
N)

)
= 0

which readily implies that for any δ > 0, for N large enough, all k ≥ 1,

(21) sup
e∈V ε

N

sup
i,j

E

[(√
NY

(e),N
i,j

δ

)2k]
≤ C(2k)!.

Hence, we can apply the previous lemma to deduce that

lim
N→∞ sup

e∈V ε
N

P
[∥∥Y (e),N/3δ

∥∥ ≥ 3
] = 0.

Hence, since

X(e),N = X̃(e),N + 2θ

β
ee∗ + �(e),N + Y (e),N ,

we conclude by combining (19) and Lemma 5.3 that for ε ∈ ]1/4,1/8[ and all δ > 0

(22) lim
N→∞ sup

e∈V ε
N

P
(e,θ)
N

[∥∥∥∥X(e),N −
(
X̃(e),N + 2θ

β
ee∗

)∥∥∥∥ > δ

]
= 0

since all estimates were clearly uniform on e ∈ V ε
N .

And so, to conclude we need only to identify the limit of λmax(X̃
(e),N + 2θ

β
ee∗). It is given

by the well-known BBP transition. We collect below the main elements of the argument for
completeness. To identify this limit, we easily see as in [11] that the eigenvalues of X̃(e),N +
2θ
β

ee∗ satisfy

0 = det
(
z − X̃(e),N − 2θ

β
ee∗

)

= det
(
z − X̃(e),N )

det
(

1 − 2θ

β

(
z − X̃(e),N )−1

ee∗
)

and, therefore, z is an eigenvalue away from the spectrum of X̃(e),N iff〈
e,
(
z − X̃(e),N )−1

e
〉 = β

2θ
.

To take the large N limit, we will use here the very powerful (and hard) results of [13] but
will follow a more pedestrian moment approach in the Wishart case for completeness. It was
indeed shown in Theorem 2.15 of [13] that for all z with 
z > 0, all v ∈ S

N−1, 〈v, (z −
X̃(e),N )−1v〉 converges almost surely toward Gσ(z) This convergence extends to z > 2 first
by noticing that Gσ is continuous when z goes to the real axis. And moreover, for any ε > 0,
N large enough the operator norm of X̃(e),N is bounded by 2+ε by Kòmlos–Füredi’s theorem
[1] so that 〈v, (z − X̃(e),N )−1v〉 is continuous in B(0,2 + ε)c. Therefore, we conclude that
the largest eigenvalue λmax(X̃

(e),N + 2θ
β

ee∗), must converge toward the solution ρθ to

Gσ(ρθ ) = β

2θ
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as soon as it is strictly greater than 2. We find a unique solution to this equation: it is given
by

ρθ = 2θ

β
+ β

2θ
.

Reciprocally, for any x > 2, we can find θx = β
2 (x + √

x2 − 4) so that x = ρθx . Hence, we
have proved that for any sequence of vectors e ∈ V ε

N we have the desired estimate for any
η > 0,

lim
N→∞ sup

e∈V ε
N

P
(e,θx)
N

[|λmax − x| ≥ η
] = 0

which entails the lemma.

5.2. Proof of Lemma 5.2 for Wishart matrices. We next prove Lemma 5.2 for Wishart
matrices and fix e = (e(1), e(2)) ∈ V ε

N . We decompose as in the previous proof

X(e),N = X̃(e),N +E
[
X(e),N ]+ Y (e),N ,

where the entries of X̃(e),N are centered and with covariance 1/N and Y (e),N goes to zero in
norm. We then find by the same argument that

E
[
X(e),N ] = 2θ

β

(
0 e(1)(e(2))∗

e(2)(e(1))∗ 0

)
+ �(e),N ,

where ‖�(e),N‖ ≤ N−κ(ε) and e(1) (resp., e(2)) is the vector made of the first L (resp., M last)
coordinates of e. Letting

S(e) =
(
e(1) 0
0 e(2)

)
and T (e) =

(
0

(
e(2))∗(

e(1))∗ 0

)
we notice that (

0 e(1)(e(2))∗
e(2)(e(1))∗ 0

)
= S(e)T (e).

Therefore, we need to find z > b̃α such that

0 = det
(
z − X̃N,(e) − 2θ

β
S(e)T (e)

)

= det
(
z − X̃N,(e))det

(
1 − 2θ

β
T (e)(z − X̃N,(e))−1

S(e)

)
.

(23)

By writing RX̃N,(e)(z) = (z − X̃N,(e))−1 by blocks with X̃N,(e) with upper right L × M block
G̃N,(e), we get

RX̃N,(e)(z) =
(
R1,1(z) R1,2(z)

R2,1(z) R2,2(z)

)

=
(

zRG̃N,(e)(G̃N,(e))∗
(
z2) G̃N,(e)R(G̃N,(e))∗G̃N,(e)

(
z2)

R(G̃N,(e))∗G̃N,(e)

(
z2)(G̃N,(e))∗ zR(G̃N,(e))∗G̃N,(e)

(
z2)

)
,

where R1,1 is L × L, R1,2 L × M , R2,2 M × M , we get the simpler equation

det

(
I − 2θ

β

(〈
e(2),R2,1(z)e

(1)〉 〈
e(2),R2,2(z)e

(2)〉〈
e(1),R1,1(z)e

(1)〉 〈
e(1),R1,2(z)e

(2)〉
))

= 0.
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Therefore, we need to find z such that

(24)
∣∣∣∣1 − 2θ

β

〈
e(2),R2,1(z)e

(1)〉∣∣∣∣2 − 4θ2

β2

〈
e(2),R2,2(z)e

(2)〉〈e(1),R1,1(z)e
(1)〉 = 0.

We are going to prove the following.

LEMMA 5.7. For any δ, ε > 0,

lim sup
N→∞

sup
e∈V ε

N

P
(e,θ)
N

(
sup

z≥b̃α+ε

∣∣〈e(1),R1,1(z)e
(1)〉

− z(1 + α)
∥∥e(1)

∥∥2
2GMP(α)

(
(1 + α)z2)∣∣ > δ

)
= 0,

lim sup
N→∞

sup
e∈V ε

N

P
(e,θ)
N

(
sup


z≥b̃α+ε

∣∣〈e(2),R2,2(z)e
(2)〉

− z(1 + α)
∥∥e(2)

∥∥2
2GMP(1/α)

(
(1 + α)z2)∣∣ > δ

)
= 0,

lim sup
N→∞

sup
e∈V ε

N

P
(e,θ)
N

(
sup


z≥b̃α+ε

∣∣〈e(2),R2,1(z)e
(1)〉∣∣ > δ

)
= 0,

where GMP(α) is the Stieltjes transform of a Pastur–Marchenko law with parameter α.

We first derive Lemma 5.2 assuming that Lemma 5.7 holds. We have seen in Lemma 3.4
that ‖e(1)‖2

2 converges toward xθ,α almost surely. Therefore, we arrive to the limiting equation

(1 + α)2z2GMP(α)

(
(1 + α)z2)GMP(1/α)

(
(1 + α)z2) = β2

4θ2xθ,α(1 − xθ,α)
.

Now, we claim that ϕ(θ) = θ2xθ,α(1 − xθ,α) is continuous, increasing, going from 0 to +∞.
As xθ,α is a complicated solution of θ (solution of a degree three polynomial equation), we
use the following asymptotic characterization which easily follows from the previous large
deviation considerations (see Lemma 3.4):

4θ

β
xθ,α(1 − xθ,α) = ∂θF (θ,wβ),

where we use that the derivative of � vanishes at its critical point xθ,α . We moreover notice
that G(θ) = F(

√
θ,wβ) is convex in θ (as a supremum of convex functions). Hence,

ϕ(θ) = β

4
θ∂θF (θ,wβ) = β

2
θ2G′(θ2).

It follows that ϕ is smooth as F is and, moreover,

ϕ′(θ) = β
(
θG′(θ2)+ θ3G′′(θ)

)
.

But since ϕ is nonnegative, G′ is nonnegative and so ϕ′ is nonnegative for all θ ≥ 0. The
fact that ϕ goes to infinity at infinity is clear as xθ,α then goes to 1/2. Moreover, for z > b̃α ,
z �→ zGMP(α)((1 + α)z2) and z �→ zGMP(1/α)((1 + α)z2) are positive and decreasing and,
therefore, so are their product. Hence, there exist a θα > 0 so that for every θ ≥ θα , the
equation above has a unique solution on [b̃α,+∞[. Moreover, if we denote ρθ this solution,
θ �→ ρθ is a bijection from [θα,+∞[ onto [b̃α,+∞[.

PROOF OF LEMMA 5.7. The first two results could be derived from [13] but we here
provide a more pedestrian moment approach to achieve this result, a strategy that we could
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have also followed in the Wigner case. We recall that G̃ = GL,M is a L × M matrix with
centered entries with covariance one and sub-Gaussian tails, e = (e(1), e(2)) a unit vector and

R1,1(z) = (
z2 − G̃G̃∗)−1

,

R2,2(z) = (
z2 − G̃∗G̃

)−1
,

R1,2(z) = G̃
(
z2 − G̃∗G̃

)−1
.

In fact, G̃ depends a priori on e but we will derive uniform bounds in e ∈ V ε
N in the following

and we will work conditionally to e. Moreover, to simplify the notation we denote G̃ by G.
The first two points of the lemma are direct consequences of [13], Theorem 2.5. It remains

to see that 〈e(2),R2,1(z)e
(1)〉 goes to 0 as N goes to infinity. Because R2,1(z) = G(z2 −

G∗G)−1 is not the resolvent of the Wishart matrix, but its multiplication by G, we cannot
apply directly [13], Theorem 2.5. We will give an elementary proof of this result based on
classical moment computations. Indeed, for ε > 0, we have already seen thanks to (21) and
Lemma 5.6 that

lim
N→∞ sup

e∈V ε
N

P
(∥∥G∗G

∥∥ ≥ bα + ε
) = 0.

Moreover, on the set where {‖G∗G‖ ≤ bα + ε}, for z > bα + 2ε we can expand

〈
e(2),R2,1(z)e

(1)〉 = −
∞∑

k=0

〈e(1),G(G∗G)ke(2)〉
z2k

= −
K∑

k=0

〈e(1),G(G∗G)ke(2)〉
z2k+2

+ O

(
1

ε

(
bα + ε

bα + 2ε

)K+1)
and hence it is enough to get the convergence in probability of K moments with K ≥
2ε−1 ln ε−1, uniformly in e:

lim
N→∞ sup

e∈V ε
N

P

(
sup

0≤k≤K

∣∣〈e(1),G
(
G∗G

)k
e(2)〉∣∣ ≥ δ

)
= 0.

To this end, it is enough to prove by Tchebychev’s inequality that for all k ≤ K

(25) lim
N→∞ sup

e∈V ε
N

∣∣E[〈e(1),G
(
G∗G

)k
e(2)〉]∣∣ = 0,

and then

(26) lim
N→∞ sup

e∈V ε
N

Var
(〈
e(1),G

(
G∗G

)k
e(2)〉) = 0.

We first prove (25). It is clearly true for k = 0 by centering of the entries and so we consider
k ≥ 1. Let us call W2k+1 the set of words (v1, . . . , v2k+2) of length 2k + 1 so that v2j ∈
{1, . . . ,L} and v2j+1 ∈ {1, . . . ,M}. We use the following notation:

Ev = E[av1,v2av2,v3 · · ·av2k+1,v2k+2].
We have

E
[〈
e(1),G

(
G∗G

)k
e(2)〉] = 1

Nk+1/2

∑
v∈W2k+1

e(1)
v1

Eve
(2)
v2k+2

.
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Given a word v, we can construct a bipartite graph Gv whose vertices are the {v1, v3, . . .}∪
{L + v2,L + v4, . . .} of whose edges (occasionally multiple) are the (L + v2i , v2i−1) and
(L + v2i , v2i+1). We denote V (1)(v) the number of vertices in Gv lying in {1, . . . ,L}, V 2(v)

the number of vertices in Gv lying in {L + 1, . . . ,L + M} and V (v) = V (1)(v) + V 2(v) and
A(v) the number of edges of Gv . If e is an edge of Gv , we denote nv(e) the multiplicity of
this edge.

Let us recall that here the entries ai,j of G are independent but not identically distributed,
with distribution eventually depending on e. Nevertheless, their variance are 1 and their mo-
ments are bounded uniformly, that is, for every k there exists Ck < +∞, independent of
e ∈ V ε

N (see (21)) such that

sup
N,i,j

E
[|ai,j |k] ≤ Ck.

For every word v of length k, we can define Cv = ∏
j≤k C

l(v,j)
j where l(v, j) is the number

of edge of multiplicity j in Gv . we then have

|Ev| ≤ Cv.

We say that two words v, w are equivalent if there exists a bijection φ : {1, . . . ,L} →
{1, . . . ,M} and a bijection ψ : {1, . . . ,M} → {1, . . . ,M} such that v2j = φ(w2j ) and v2j+1 =
ψ(w2j+1). If two words v and w are equivalent, then Cv = Cw .

Let T2k+1 be a the quotient set of words of length 2k + 1 for this equivalency relationship.
We have

E
[〈
e(1),G

(
G∗G

)k
e(2)〉] = 1

Nk+1/2

2k+2∑
j=2

∑
t∈T2k+1,V (v)=j

∑
v|v∼t

e(1)
v1

Eve
(2)
v2k+2

.

Notice that if Gv has an edge of multiplicity 1, then Ev = 0 (since the ai,j are independent
and centered). So for Ev to be nonzero we need that A(v) ≤ (2k + 1)/2 so A(v) ≤ k. Since
Gv is connected V (v) ≤ A(v) + 1 ≤ k + 1. If v ∈ W2k+1, there exists Nv := (L − 1) · · · (L −
V (1)(v) + 1)(M − 1) · · · (M − V 2(v) + 1) ≤ NV (v)−2 equivalent words w1 provided we fix
v1 and v2k+2 so we have the following bound:

E
[〈
e(1),G

(
G∗G

)k
e(2)〉]

≤ 1

Nk+1/2

k+1∑
j=2

∑
t∈T2k+1,V (t)=j

CtNt

∑
1≤v1≤L,1≤v2k+2≤M

∣∣e(1)
v1

e(2)
v2k+2

∣∣.
By using the Cauchy–Schwartz inequality, we have that∑

1≤i≤L,1≤j≤M

∣∣e(1)
i e

(2)
j

∣∣ ≤ N
∥∥e(1)

∥∥
2 × ∥∥e(2)

∥∥
2 ≤ N,

which yields

E
[〈
e(1),G

(
G∗G

)k
e(2)〉] ≤ 1

Nk−1/2

k+1∑
j=2

∑
t∈T2k+1,V (t)=j

CtN
j−2.

The leading order term here is in N−1/2 for k ≥ 1 and so

lim
N→∞ sup

‖e‖2=1

∣∣E[〈e(1),G
(
G∗G

)k
e(2)〉]∣∣ = 0.
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We proceed similarly for the covariance (26):

Var
(〈
e(1),G

(
G∗G

)k
e(2)〉) = 1

N2k+1

∑
v∈W2k+1,w∈W2k+1

e(1)
v1

e(1)
w1

Tv,we(2)
v2k+2

e(2)
w2k+2

,

where Tv,w = Ev,w − EvEw and Ev,w = E[av1,v2av2,v3 · · ·avk,vk+1aw1,w2aw2,w3 · · ·awk,wk+1]
We extend naturally the previous definitions to couples of words. Let us now do the same
analysis than before with couples of words. Let us take T̃2k+1 the quotient set for the equiva-
lency relationship for couples of words. Let (v,w) ∈ T̃2k+1.

First, if Gv,w is not connected, since it is the union of two connected graphs Gv and Gw ,
we have that Gv and Gw do not have any edges in common and so, by independence of the
entries Tv,w = 0. So we can assume that Gv,w is connected.

Then several cases arise.
First, if v1 �= w1 and v2k+2 �= w2k+2, then if one edge of Gv,w is of multiplicity 1, then

Tv,w = 0. So we can assume that all edges are of multiplicity at least 2. We deduce that
A(v,w) ≤ 2k + 1 and V (v,w) ≤ 2k + 2. Let Nv,w be the number of couple of words equiv-
alent to (v,w) provided (v1,w1, v2k+2,w2k+2) are fixed, we have Nv,w ≤ N2k−2. Hence∑

(u,t)∼(v,w)

e(1)
u1

e
(1)
t1

Tv,we(2)
u2k+2

e
(2)
t2k+2

≤ N2k(Cv,w − CvCw).

Then, if v1 = w1 and v2k+2 �= w2k+2 or if v1 �= w1 and v2k+2 = w2k+2, the same reason-
ing concerning the edges holds. So, we have V (v,w) ≤ 2k + 2 and if Nv,w is the number
of couple of words equivalent to (v,w) provided (v1,w1, v2k+2,w2k+2) are fixed, we have
Nv,w ≤ N2k−1. If we are in the case v1 = w1,∑

(u,t)∼(v,w)

e(1)
u1

e
(1)
t1

Tv,we(2)
u2k+2

e
(2)
t2k+2

≤ N2k
∥∥e(1)

∥∥2
(Cv,w − CvCw).

And lastly, if v1 = w1 and v2k+2 = w2k+2, we have again Nv,w ≤ N2k and∑
(u,t)∼(v,w)

e(1)
u1

e
(1)
t1

Tv,we(2)
u2k+2

e
(2)
t2k+2

≤ N2k
∥∥e(1)

∥∥2∥∥e(2)
∥∥2

(Cv,w − CvCw).

Hence, we conclude that

Var
(〈
e(1),G

(
G∗G

)k
e(2)〉) = O

(
1

N

)
. �

APPENDIX: PROOF OF LEMMA 1.12

In this section, we want to prove that if μi,j are supported inside a common compact
K or satisfy a log-Sobolev inequality with a uniformly bounded constant c, the empirical
measure of the eigenvalues of the matrices X

(1)
N , X

(2)
N , X

(w1)
N , X

(w2)
N concentrates as stated in

Lemma 1.12. To this end, we will use two concentration results respectively from [20] and
[5].

THEOREM A.1. By [20], Theorem 1.4 (for the compact case) and [20], Corollary 1.4(b)
(for the logarithmic Sobolev case), we have for β = 1,2,w1,w2, and for N large enough

lim sup
N→∞

1

N7/6 lnP
[
d
(
μ

X
(β)
N

,E[μ
X

(β)
N

]) > N−1/6] < 0,

where d is the Dudley distance.
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We therefore only need to show the following.

THEOREM A.2 ([5], Theorem 4.1). If we let for every N ,

F
X

(1)
N

(x) = μ
X

(1)
N

(]−∞, x]),
Fσ1(x) = σ1

(]−∞, x]),
we have that

sup
x∈R

∣∣Fσ1(x) −E
[
F

X
(1)
N

(x)
]∣∣ = O

(
N−1/4).

In order to conclude, we need only to use Lemma 1.9 to see that F
X

(1)
N

(−M) and 1 −
F

X
(1)
N

(M) decay exponentially fast in N for some fixed M so that

d
(
E[μ

X
(1)
N

], σ1
) ≤ 4e−N + 2M sup

x∈R
∣∣F(x) −E

[
F

X
(1)
N

(x)
]∣∣

= o
(
N−1/6).

The same results hold in the complex case; see, for example, [4], (8.1.3). For Wishart matri-
ces, we rely on [6], Theorem w.1 and w.2. Recall that WN = GL,M(GL,M)∗.

THEOREM A.3 ([6]). Assume that M/N ∈ (1, ε−1) for some fixed ε and M/N converges
towards α. Then

sup
x∈R

∣∣Fπα(x) −E
[
FWN

(x)
]∣∣ = O

(
N−1/10).

We can as well use Lemma 1.9 to conclude that 1 −E[FWN
(M)] goes to zero like e−N for

M large enough. Finally, we conclude by noticing that since∫
f (x) dE[μ̂Xw

N
](x) = N

N + M

∫ (
f (

√
λ) + f (−√

λ)
)
dμ̂WN

(λ)

+ M − N

N
f (0),

we have ∣∣∣∣∫ f (x) d
(
E[μ̂Xw

N
] − σw

)
(x)

∣∣∣∣
≤ ‖f ‖∞

(∣∣∣∣MN − α

∣∣∣∣+ e−N

)

+
∫ M

0

∣∣∂λf (
√

λ)
∣∣∣∣Fπα(λ) −E

[
FWN

(λ)
]∣∣dλ

≤ ‖f ‖L

(
N−κ + e−N + 2MN− 1

10
)
.
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