Translator Disclaimer
March 2020 Cutoff for the mean-field zero-range process with bounded monotone rates
Jonathan Hermon, Justin Salez
Ann. Probab. 48(2): 742-759 (March 2020). DOI: 10.1214/19-AOP1373

Abstract

We consider the zero-range process with arbitrary bounded monotone rates on the complete graph, in the regime where the number of sites diverges while the density of particles per site converges. We determine the asymptotics of the mixing time from any initial configuration, and establish the cutoff phenomenon. The intuitive picture is that the system separates into a slowly evolving solid phase and a quickly relaxing liquid phase: as time passes, the solid phase dissolves into the liquid phase, and the mixing time is essentially the time at which the system becomes completely liquid. Our proof uses the path coupling technique of Bubley and Dyer, and the analysis of a suitable hydrodynamic limit. To the best of our knowledge, even the order of magnitude of the mixing time was unknown, except in the special case of constant rates.

Citation

Download Citation

Jonathan Hermon. Justin Salez. "Cutoff for the mean-field zero-range process with bounded monotone rates." Ann. Probab. 48 (2) 742 - 759, March 2020. https://doi.org/10.1214/19-AOP1373

Information

Received: 1 January 2019; Published: March 2020
First available in Project Euclid: 22 April 2020

zbMATH: 07199860
MathSciNet: MR4089493
Digital Object Identifier: 10.1214/19-AOP1373

Subjects:
Primary: 37A25, 60J27, 60K35, 82C22

Rights: Copyright © 2020 Institute of Mathematical Statistics

JOURNAL ARTICLE
18 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.48 • No. 2 • March 2020
Back to Top