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We consider the stochastic differential equation

dXt = b(Xt ) dt + dLt ,

where the drift b is a generalized function and L is a symmetric one dimen-
sional α-stable Lévy processes, α ∈ (1,2). We define the notion of solution
to this equation and establish strong existence and uniqueness whenever b

belongs to the Besov–Hölder space Cβ for β > 1/2 − α/2.

1. Introduction. In this article, we consider the stochastic differential equation (SDE)

(1.1) Xt = x +
∫ t

0
b(Xs) ds + Lt, t ≥ 0,

where the initial condition x ∈ R, L is a symmetric 1-dimensional α-stable process with
α ∈ (1,2) (i.e., a Markov process whose generator is given by (2.3)), and the drift b is in
the Hölder–Besov space Cβ = Cβ(R,R) for β ∈ R (see [37], Definition 7). When β ≤ 0,
this equation is not well posed in the classical sense. Indeed, in this case b is not a function
but just a distribution and the expression b(Xs) is not well defined. Thus it is not clear a
priori what should be called a solution to the SDE. Inspired by the Bass–Chen approach [6],
we formulate a natural notion of a solution to (1.1) (see Definition 2.1) and establish strong
existence and pathwise uniqueness of a solution when β > 1−α

2 ; see Theorem 2.3.
It has been well known for quite a long time that ordinary differential equations (ODEs)

regularize when an additional forcing by Brownian motion is added. Indeed, if b : Rd →R
d ,

d ≥ 1, is a β-Hölder function, 0 < β < 1, then an ODE

dXt = b(Xt) dt, t ≥ 0

might have multiple solutions or no solutions when b is a bounded measurable function.
However, once the random forcing by Brownian motion (Bt )t≥0 is added, the corresponding
SDE

(1.2) dXt = b(Xt) dt + dBt , t ≥ 0

has a unique strong solution even for bounded measurable b without any additional assump-
tions on continuity. This phenomenon is called “regularization by noise” in the literature. For
SDE (1.2), the strong existence and uniqueness of solutions was established by Zvonkin in
[46] in the case d = 1 and extended by Veretennikov [44] to the multidimensional setting.
Later Krylov and Röckner [29] generalized this result for the case of a locally unbounded b

under a suitable integrability condition. In all the above cases, the proofs use a Zvonkin-type
transformation [46] that allows to make the “nonregular” drift much more regular.
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It turns out that it is possible to consider drifts that are not functions but generalized func-
tions. In this case, one needs to specify what exactly is meant by a solution to (1.2) since
it is not straightforward to define the term

∫ t
0 b(Xs) ds. Among the first works studying the

question of weak existence and uniqueness for SDEs with generalized drift, we would like
to mention [38, 39] by Portenko. Further results were obtained by Harisson and Shepp [26]
who showed strong existence and uniqueness of solutions to (1.2) in d = 1 if b(·) equals a
constant c times the delta function and |c| < 1. Le Gall [34] generalized this result for the
case where b is a finite signed measure.

A general approach for studying SDEs with distributional drift was developed by Bass
and Chen in [6]. They suggested a natural definition of a solution to SDE (1.2) via an ap-
proximating scheme and established strong existence and uniqueness for (1.2) whenever b

is the distributional derivative of Cγ functions with γ > 1/2. Their main tool was again the
Zvonkin method; they used the fact that for d = 1 the Zvonkin transformation can completely
eliminate the drift.

The above question has also been studied for other types of forcing instead of Brownian
motion. For the case where SDE is driven by a fractional Brownian motion, we refer the
reader to [5]; the results about general continuous forcings can be found in [11]. In the case
of a forcing by a pure jump process, it is clear that this process should have “sufficiently
many” small jumps. That is, if Brownian motion is replaced in (1.2) just by the standard
Poisson process, then this does not give any improvement in the regularity properties of the
equation. Indeed, the equation will already have multiple solutions while still “waiting” for
the first jump of the Poisson process. Thus it is natural to expect that the bigger the intensity
of small jumps the rougher drift b can be.

Indeed, Tanaka, Tsuchiya, Watanabe in [42] proved that in the case d = 1 equation (1.1)
has a pathwise unique solution if L is a symmetric α-stable process, b is a bounded Borel
measurable function and α > 1 (recall that the bigger the parameter α ∈ (0,2), the higher is
the intensity of small jumps). On the other hand, it was also shown in [42] that if α ∈ (0,1)

and b is bounded Hölder continuous with exponent β , where 0 < β < 1 − α, then equation
(1.1) might have multiple solutions. The case of higher dimensions was resolved by Priola in
[40] who showed that in the case of dimension d ≥ 2 and α ∈ [1,2), the pathwise uniqueness
holds for this equation if the drift b is in Cβ and β > 1 − α/2. This result was extended by
Chen, Song and Zhang in [12] to the case α ∈ (0,1).

Let us also mention other related works. Bogachev and Pilipenko in [10] showed strong
existence and uniqueness for (1.1) for b being a function of bounded variation and belonging
to a certain Kato class (see [10], Definition 1, (9) and (10)). Malliavin differentiability of
strong solutions to SDEs driven by truncated α-stable process and with drift b ∈ Cβ , β >

2 − α, α ∈ (1,2) was shown in [24].
From the discussion above, the reader may notice the following gap between the cases

of α < 2 and α = 2. For α ∈ (1,2), the pathwise uniqueness for (1.1) if d = 1 is shown by
Tanaka, Tsuchiya and Watanabe in [42] for b being a bounded Borel measurable function.
However, in the case of α = 2 and d = 1 Bass and Chen [6] have shown that the strong
existence and uniqueness hold under much milder assumptions on b; namely b can be the
distributional derivative of Cγ functions with γ > 1/2. This paper closes this gap, by showing
that for α ∈ (1,2) in dimension d = 1 the strong existence and uniqueness hold for (1.1) under
much more relaxed conditions on the drift b than in [42]. Our main result in Theorem 2.3
states that for α ∈ (1,2) there is a unique strong solution to (1.1) if b is in the Hölder–Besov
space Cβ for β > 1−α

2 . That is, loosely speaking, b is allowed to be a distributional derivative
of a Hölder continuous function with the Hölder exponent greater than 3−α

2 . We note that
this bound on the regularity of b exactly matches the result of Bass and Chen [6] for the case
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α = 2. To the best of our knowledge, our result is the first strong existence and uniqueness
result for stable SDEs with a general distributional drift.

In this article, we mainly consider strong solutions to (1.1). Let us briefly mention that
other notions of existence and uniqueness have also been studied for (1.2) and (1.1). Weak
existence and uniqueness results for (1.2) with generalized drifts have been obtained in [7],
[19], [20], [18] and [45]. The question of weak uniqueness and existence for (1.1) was stud-
ied in Kulik [30] for b measurable and locally bounded and in Kim and Song [28], Chen
and Wang [13] for b from a certain Kato class. Some of these results are also valid for the
case when the SDEs have a nontrivial diffusion coefficient. A stronger notion of path-by-
path uniqueness has been established for (1.2) in a seminal work by Davie [15] when b is
a bounded measurable function and it has been generalized by Priola [41] for (1.1) with
α ∈ (0,2) and b is a bounded continuous function in Cβ with β > 1 − α

2 .
In the next section, we present the main result of the paper.

2. Main result and overview of proof. We begin with introducing the basic notation
and definitions. For k ∈ Z+, D ⊂R

k and function f : D →R, we denote its supremum norm
by ‖f ‖ := supx∈D |f (x)|. If the function f is random, then supremum in the definition of
‖f ‖ will be taken only over nonrandom variables. For f,g : R → R, we define 〈f,g〉 :=∫
R

f (x)g(x) dx.
We denote by C∞

b the space of all bounded and infinitely differentiable functions R → R.
Let C∞

c be the space of all functions from C∞
b with compact support. Let S be the space

of Schwartz functions R → R and let S ′ be its dual space, that is, the space of Schwartz
distributions. We will work with the Besov–Hölder spaces Cγ := Bγ∞,∞, where γ ∈ R, which
are defined using the Littlewood–Paley blocks (see the Supplementary Material [3], Section 1,
for a precise definition). Let ‖ · ‖γ be the norm associated with the space Cγ , γ ∈ R.

Recall that for γ ∈ (0,∞) \N the space Cγ is the usual Hölder space of functions that are
�γ  times continuously differentiable and whose �γ -th derivative is Hölder continuous with
exponent γ −�γ . For γ ∈ (−1,0) the space Cγ includes all derivatives (in the distributional
sense) of Hölder functions with exponent γ + 1.

Let γ ∈ R. In what follows, we say that a sequence of functions (fn)n∈Z+ converges to a
function f in Cγ− as n → ∞ if there exists N ∈ Z+ such that supn≥N ‖fn‖γ ≤ 2‖f ‖γ and

lim
n→∞‖fn − f ‖η = 0 for any η < γ .

It is well known (see [43] for a detailed introduction of Besov spaces or [25], Theorem 3.23)
that for any f ∈ Cγ , there is a sequence of functions (fn)n∈Z+ ⊂ C∞

b such that fn → f in
Cγ− as n → ∞.

2.1. Main result and discussion. In this article, we study stochastic differential equa-
tion (1.1). First, let us fix a complete filtered probability space (�,F, (Ft )t≥0,P) on which
L = (Lt )t≥0 is a symmetric 1-dimensional α-stable process, for α ∈ (1,2). Furthermore,
(�,F, (Ft )t≥0,P) is sufficiently rich to contain other processes considered in this paper. Re-
call that since the drift b is not a function but just a distribution, is not straightforward to
define the notion of the solution to this equation. Inspired by [6], Definition 2.1, we give the
following definition.

DEFINITION 2.1. Let β ∈ R, b ∈ Cβ , α ∈ (1,2) and L = (Lt )t≥0 be a symmetric 1-
dimensional α-stable process. We say that a càdlàg process X = (Xt)t≥0 is a solution to (1.1)
with the initial condition x ∈R if there exists a continuous process A = (At )t≥0 such that:

1. Xt = x + At + Lt , t ≥ 0;



STRONG EXISTENCE AND UNIQUENESS FOR STABLE SDES 181

2. for any sequence of functions (bn)n∈Z+ such that bn ∈ C∞
b , n ∈ Z+ and bn → b in Cβ−,

as n → ∞ we have

(2.1) An
t :=

∫ t

0
bn(Xs) ds → At as n → ∞

in probability uniformly over bounded time intervals.

A similar definition for the Brownian case is also stated in [45], Definition 3.9. Note that
for β > 0, Definition 2.1 coincides with the standard definition of a solution.

DEFINITION 2.2. Let ρ ∈ (0,1]. We say that a solution X to (1.1) belongs to class V(ρ)

if for any T > 0 and any κ < ρ there exists C = C(T , κ) > 0 such that

(2.2) E|At − As |2 ≤ C|t − s|2κ , s, t ∈ [0, T ].

Given a symmetric α-stable process L on a probability space, a strong solution to (1.1)
is a càdlàg process X that is adapted to the complete filtration generated by L and which
is a solution to (1.1). A weak solution of (1.1) is a couple (X,L) on the complete filtered
probability space (�,F, (Ft )t≥0,P) such that Xt is adapted to Ft , Lt is an (Ft )t≥0 adapted
symmetric α-stable process and X is a solution to (1.1). We say weak uniqueness holds for
(1.1) if whenever (X,L) and (X̃, L̃) are two weak solutions of (1.1) and X0 has the same
distribution as X̃0, then the process (Xt)t≥0 has the same law as the process (X̃t )t≥0. We say
pathwise uniqueness holds for (1.1) if whenever (X,L) and (X̃,L) are two weak solutions
of (1.1) with common L on a common probability space (w.r.t. possibly different filtrations)
and with the same initial condition, then P(Xt = X̃t for all t ≥ 0) = 1. We say that strong
uniqueness holds for (1.1) if whenever X and X̃ are two strong solutions of (1.1) relative to
L with the common initial condition X0, then P(Xt = X̃t for all t ≥ 0) = 1. Clearly, pathwise
uniqueness implies strong uniqueness.

As mentioned earlier, pathwise uniqueness for SDE (1.1) when β > 0 was established
by Tanaka, Tsuchiya, Watanabe [42]. We present now our main theorem, which extends the
result of [42] for the case β ∈ (1−α

2 ,0].

THEOREM 2.3. For any x ∈ R, α ∈ (1,2), β > 1−α
2 and b ∈ Cβ , stochastic differential

equation (1.1) has a unique strong solution in the class V((1 + β
α
) ∧ 1).

REMARK 2.4. We note that in our setting requirement 2 of Definition 2.1 follows from
a weaker condition. Let X = x + A + L be a càdlàg adapted process in class V((1 + β

α
) ∧ 1)

and assume that (2.1) holds only for a particular sequence of smooth functions (b̃n)n∈Z+
converging to b in Cβ−. Then, under the hypothesis of Theorem 2.3, it follows from our
proofs (see the proof of Proposition 2.8) that (2.1) holds also for any other smooth sequence
(bn)n∈Z+ converging to b in Cβ−.

Though we do not consider the case α = 2 (i.e., when L is replaced by the standard Brow-
nian motion B), our proof can be suitably modified to show that Theorem 2.3 holds for case
α = 2 (with an appropriate replacement of L by B in Definition 2.1). We note that in this
case the result would be less restrictive than the corresponding result in [6]. Indeed, we al-
low (bn)n∈Z+ to be an arbitrary sequence of smooth functions approximating b, whereas [6]
imposes extra conditions on regularity of An (cf. Definition 2.1 and [6], condition (iii) of
Definition 2.1). In a recent preprint [45], weak solutions for equation (1.2) in the multidi-
mensional case are considered. In Definition 3.9 of [45], the sequence (bn)n∈Z+ is allowed to
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be an arbitrary sequence of twice continuously differentiable functions approximating b in a
suitable normed space.

To prove our result, we further develop the Zvonkin drift transformation method discussed
in the Introduction. There are a number of key differences in comparison to the Brownian
case considered in [6]. First, the Zvonkin transformation cannot be written down explicitly.
Second, this transformation does not eliminate the drift entirely. Third, the proof of the neces-
sary Krylov type estimate is not straightforward, since X does not have the required moments
of high order. Therefore, one cannot imitate the techniques from [6] directly. An additional
challenge for proving the main result comes from the following observation. Under assump-
tions of Theorem 2.3, if β < 0 and X is in class V((1 + β

α
) ∧ 1), then the upper bound on

κ from Definition 2.2 is less than 1, and thus the process At could be of infinite variation.
However, since (2.2) holds with κ > 1/2, A has zero quadratic variation. This makes X a
Dirichlet process, but not necessarily a semimartingale.

We conclude this subsection with some remarks on possible research directions. One could
suitably reformulate (1.1) in higher dimensions and try to see whether existence and unique-
ness (weak or strong) hold. As we will see later in Section 5, where we discuss existence
of weak solutions in d = 1, it is easy to adapt our arguments to show weak existence in any
dimension. Further, by a suitable adaptation of the arguments presented in [45] it may be pos-
sible to derive the weak uniqueness as well. As for the pathwise uniqueness in dimensions
d ≥ 2, we would like to note that, under the current assumptions on β and α, our argument
does not work (see Remark 2.11). It should be further noted that even deriving weak exis-
tence in d ≥ 2 would require a much deeper understanding; in particular, generalizations of
many regularity estimates from Section 4 will be needed. Since our focus is on showing the
strong existence/uniqueness, we do not discuss higher dimensions in this paper in order not
to deviate attention of the reader from the key ideas.

Another interesting direction is to try to give an alternative definition of the solution via
local time, that is, formally speaking, representing the solution of (1.1) as

Xt = x0 +
∫
R

b(x)lxt dx + Lt, t ≥ 0,

where lxt is the local time of X at x up to time t . It is not difficult to show that the local time
lxt exists (see Remark 5.4). However, in order to define the integral

∫
R

b(x)lxt dx rigorously,
one has to show that x �→ lxt falls in the right regularity class. This is very challenging and
will be subject of our future work.

The next subsection is devoted to the overview of the proof of the main result.

2.2. Overview of the proof of Theorem 2.3. The proof of Theorem 2.3 consists of two
parts: namely, existence and uniqueness. Usually proving existence is an “easy” part of these
types of theorems. Indeed, in the case when the coefficients in the stochastic differential
equation are sufficiently regular, it is possible to directly show strong existence. For example,
for equation (1.1) when b is a bounded continuous function strong existence follows via a
simple compactness argument (see the comment before [40], Lemma 4.1). However, for the
equations with a generalized drift the situation is much more complicated, since even the
notion of a solution should be defined very carefully.

In the intermediate steps of our proof, we will use additionally the notion of a virtual
solution, which has been introduced recently for related equations with distributional drift
(see [18], Definition 25). The notion is based on applying a Zvonkin-type transformation
to the equation of interest and obtaining a “transformed” equation where the drift is more
regular (see [46] and [44]). The broad strategy of the proof then involves showing existence
and uniqueness for the “transformed” equation; its solution is called a “virtual solution.”



STRONG EXISTENCE AND UNIQUENESS FOR STABLE SDES 183

However, it is not obvious at all how to identify the concept of a solution to (1.2) with the
virtual solution. Recently, it was shown in [45] for some multidimensional equations driven
by the Brownian motions that the virtual solutions are solutions to the martingale problem
associated with the original equation. It is technically challenging to carry out the program for
proving Theorem 2.3; in particular, as mentioned before, the solution X = (Xt)t≥0 will not
be a semimartingale. So the classical tools and methods will not be applicable. The novelty of
our approach is in working with the correct notion of a (natural) solution, a suitable adaptation
of the transformation, along with a specific technique for the identification of solutions and
virtual solutions.

ASSUMPTION 2.5. For the rest of the paper, we fix α ∈ (1,2), β ∈ (1−α
2 ,0), b ∈ Cβ , the

initial condition x ∈ R and the length of the time interval T > 0.

Our goal is to show that for the parameters chosen above, the stochastic differential equa-
tion (1.1) has a unique strong solution in the time interval [0, T ]. Note also that we do not lose
generality by choosing β < 0, since if we prove existence and uniqueness for any b ∈ Cβ0 ,
then it also holds for any b ∈ Cβ with β ≥ β0.

As mentioned earlier, to study (1.1) we use a new version of the Zvonkin method. With
the help of a certain auxiliary function u : R+ × R → R, one can consider the process
Yt := u(t,Xt), t ≥ 0. This process satisfies a new SDE (which we will call the Zvonkin
equation) with better drift and worse (though still not “too bad”) noise. If one can prove that
this Zvonkin SDE has a unique strong solution and the function u is “nice,” then this would
imply that the original SDE (1.1) also has a unique strong solution.

Thus everything depends on the choice of the transformation function u. In the original
papers [46] and [44], the function u was a solution of a certain parabolic partial differen-
tial equation. Motivated by [17], Priola [40] suggested to take a different u, which arises
from a family of resolvent equations. We further develop Priola’s approach to accommodate
distributional drift.

To present the equation on u, we need to recall a couple of notions. In what follows, Lα

will denote the fractional Laplace operator −(−	)α/2, and D(Lα) its domain. Recall that
S ⊂ D(Lα) and if f ∈ S , then

(2.3) Lαf (x) =
∫
R

(
f (x + y) − f (x) − yf ′(x)1|y|≤1

)
cα|y|−1−α dy,

with cα > 0 (see [33], (2.4) and Definition 2.6).

DEFINITION 2.6. Let {Pt }t≥0 be the Markov semigroup with the infinitesimal generator
Lα .

Note that Lα is the generator of the symmetric one-dimensional α-stable process L. We
extend the definition of Lα to the space of all Schwarz distributions in the standard way.
Namely, for f ∈ S ′ we set

〈Lαf,φ〉 := 〈f,Lαφ〉, φ ∈ S.

We will be also dealing with products of a function and a distribution. In this regard, let us
recall that if f ∈ Cγ1 and g ∈ Cγ2 , where γ1, γ2 ∈ R and γ1 + γ2 > 0, then the product fg is
well defined as a distribution. More precisely, the map (f, g) → fg extends to a continuous
bilinear map from Cγ1 × Cγ2 → Cγ1∧γ2 ; see, for example, [23], Corollary 1.

Now we can present the equation on the transformation function u. We consider the fol-
lowing equation:

(2.4) λu −Lαu − f u′ = g,
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where λ > 0, f,g ∈ Cη, η ∈ R. We understand this equation in the distributional sense: we
say that u ∈ Cγ is a solution to (2.4) if γ > 1 − η and for any φ ∈ S ,〈

λu −Lαu − f u′, φ
〉 = 〈g,φ〉.

We note that the term f u′ above involves the product of a function and a distribution. How-
ever, thanks to our additional assumption γ > 1 − η and the explanations above, this product
is well defined.

Clearly, for η > 0 and γ > α, equation (2.4) can be interpreted pointwise.
We will call (2.4) the resolvent equation and we are going to use it extensively throughout

the proof. In different parts of the proof, we will be substituting f and g by the drift b, its
smooth approximations bn or sometimes just by 0. For brevity, we will say uλ

f,g solves (2.4)

to imply that uλ
f,g is a solution to (2.4) with the parameters λ, f and g. However, if it is clear

from the context, we may drop the additional indices.
Note that the difference of our approach and [40] is that we allow f and g in (2.4) to be

distributions (and not just regular functions). It will make establishing corresponding esti-
mates much more trickier; on the other hand, it will allow us to deal with the distributional
drift in our main SDE (1.1).

Our first step is to show that the resolvent equation (2.4) is actually well defined. That is,
it has a unique solution with prescribed regularity and possesses a continuity property.

PROPOSITION 2.7. For any η > 1
2 − α

2 and M > 0, there exists λ0 = λ0(η,M) such that
for any λ ≥ λ0 and any f,g ∈ Cη with ‖f ‖η ≤ M the following hold:

(i) there exists a unique solution uλ
f,g to (2.4) in C 1+α

2 . Furthermore, for each γ ∈ [0 ∨
η,α + η) we have uλ

f,g ∈ Cγ and there exists a constant C = C(η, γ ) > 0 such that

(2.5)
∥∥uλ

f,g

∥∥
γ ≤ Cλ−1− η

α
+ γ

α ‖g‖η

(
1 + ‖f ‖η

);
(ii) for any sequences of functions (fn)n∈Z+ , (gn)n∈Z+ such that fn → f and gn → g in

Cη− as n → ∞, we have ∥∥uλ
fn,gn

− uλ
f,g

∥∥
(1+α)/2 → 0 as n → ∞.

Our next step is to derive the Zvonkin equation, which is more challenging in our case due
to the fact that b is a distribution. Let uλ

b = uλ
b,b be the unique solution to (2.4), which exists

by Proposition 2.7. We would like to apply the Zvonkin-type transform φ(x) = x + uλ
b(x)

to X solving (1.1). As mentioned earlier, a solution to SDE (1.1) is not a semimartingale.
Thus we cannot use the standard Itô formula and have to employ and develop the theory of
Dirichlet processes.

For our next result, we will need a couple of facts about the symmetric α-stable proces Lt .
It is well known that

(2.6) Lt =
∫ t

0

∫
|r|≤1

rÑ(ds, dr) +
∫ t

0

∫
|r|>1

rN(ds, dr).

Here, N(ds, dr) is the Poisson random measure associated with L and Ñ(ds, dr) is
the compensated Poisson random measure. The compensator measure of N is given by
cα|r|−1−α ds dr .

PROPOSITION 2.8. Let λ0 = λ0(β,2‖b‖β) be as in Proposition 2.7 and let λ ≥ λ0. Let
X = (Xt)t∈[0,T ] be a weak solution to (1.1) in the class V((1 + β

α
) ∧ 1) and uλ

b = uλ
b,b be the
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unique solution to (2.4). Then for any t ∈ [0, T ],

(2.7)
uλ

b(Xt) + Xt = uλ
b(x) + x + λ

∫ t

0
uλ

b(Xs) ds

+
∫ t

0

∫
R

[
uλ

b(Xs− + r) − uλ
b(Xs−)

]
Ñ(ds, dr) + Lt .

As mentioned before, we will call the SDE (2.7) the Zvonkin equation. Note that: first, all
the terms in the Zvonkin equation make sense; second, (2.7) does not have any distributional
drift term like (1.1); and finally, if λ is very large but still finite, then uλ

b is very close to
zero, and thus the only term with Xt that will not disappear in (2.7) (apart from Xt itself) is
λ

∫ t
0 uλ

b(Xs) ds, which is smooth in t and behaves “nicely.” To establish (2.7), the Krylov-type
estimate is used (see Lemma 5.3).

To show existence of a weak solution for (1.1) and (2.7), we construct an approximating
sequence. Let (bn)n∈Z+ be a sequence of functions in C∞

b such that bn converges to b in Cβ−
and ‖bn‖β ≤ 2‖b‖β . Let Xn = (Xn

t )t∈[0,T ], n ∈ Z+ be the strong solution to the following
stochastic differential equation:

(2.8) Xn
t = x +

∫ t

0
bn

(
Xn

s

)
ds + Lt, t ∈ [0, T ]

and put An = (An
t )t∈[0,T ], n ∈ Z+,

(2.9) An
t =

∫ t

0
bn

(
Xn

s

)
ds, t ∈ [0, T ].

The strong existence and uniqueness for (2.8) is well known (see, e.g., [2], Theorem 6.2.3).
To show tightness and subsequential limit of the above sequence, we will use the Zvonkin
transformation. We obtain the following result. Let the Skorokhod space DR[0, T ] be the
space of all càdlàg functions from [0, T ] to R.

PROPOSITION 2.9. Let λ0 = λ0(β,2‖b‖β) be as in Proposition 2.7 and λ ≥ λ0. Let uλ
b =

uλ
b,b be the unique solution to (2.4) and let (Xn,An) be defined as above. Then there exists a

subsequence nk such that (Xnk ,Ank ) converges weakly to (X,A) in DR[0, T ]. Further:

(i) X is a weak solution of the Zvonkin equation (2.7).
(ii) X is a weak solution to stochastic differential equation (1.1) and it is in the class

V((1 + β
α
) ∧ 1).

Our final ingredient is to establish pathwise uniqueness for (2.7).

PROPOSITION 2.10. There exists λ1 = λ1(β,‖b‖β) such that for any λ > λ1 the Zvonkin
equation (2.7) has a pathwise unique solution.

Strong existence and uniqueness for equations of the type (2.7) with non-Lipschitz co-
efficients have been studied before, see, for example, [35, 36]. In our proof, we will show
that equations of the type (2.7) satisfy the hypothesis of [36], Theorem 3.2, yielding path-
wise uniqueness. One could also prove the result directly. For the sake of completeness, we
provide such a proof in the Supplementary Material [3], Section 8.

REMARK 2.11. It should be possible to extend the results from Proposition 2.9 to any
dimension. However, our argument for proving Proposition 2.10 works only in d = 1.
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We now have all the key ingredients to complete the proof of Theorem 2.3. Proposi-
tion 2.9(ii) shows that (1.1) has a weak solution. Proposition 2.10 and Proposition 2.8 to-
gether show that (1.1) has pathwise uniqueness. We then use [31], Theorem 3.4, to establish
the classical Yamada–Watanabe theorem, which implies existence and uniqueness of a strong
solution in our general setting. We present the details in Section 5.4.

The rest of the paper is organized as follows. In Section 3, we present a number of prelim-
inary results that are used for the proof of the theorem. Most of them are very well known
and are provided for the sake of completeness. We discuss the basic properties of the Besov
norms, convergence in the Skorokhod space and Dirichlet processes. Section 4 is devoted to
the proof of Proposition 2.7. In Section 5, we give the proofs of Propositions 2.8, 2.9, 2.10.
This allows to complete the proof of Theorem 2.3 in Section 5.4. Some auxiliary results are
proved in the Supplementary Material [3].

Convention on constants. Throughout the paper, C denotes a positive constant whose value
may change from line to line. All other constants will be denoted by C1,C2, . . . They are all
positive and their precise values are not important. The dependence of constants on parame-
ters if needed will be mentioned inside brackets, for example, C(α,β).

3. Preliminaries.

3.1. Besov norms and fractional Laplacian. In this section, we collect some standard
properties of Besov norms and the fractional Laplacian that will be used throughout the paper.

First, we recall that for any γ ∈ R the space Cγ includes all distributions which are distri-
butional derivatives of elements of Cγ+1.

The next lemma provides useful properties of Besov norms.

LEMMA 3.1. Let f be a function R →R. Then:

(i) For any η, γ ∈ R and η < γ , we have ‖f ‖η ≤ ‖f ‖γ .
(ii) For any η, γ ∈ R and η < 0 < γ , there exist constants C1 > 0, C2 > 0 such that

‖f ‖η ≤ C1‖f ‖ ≤ C2‖f ‖γ .

(iii) For any η ∈ R, there exists C > 0 such that

(3.1)
∥∥f ′∥∥

η−1 ≤ C‖f ‖η.

(iv) For any η, γ ∈ R, η + γ > 0 there exists C > 0 such that for any g ∈ Cγ ,

(3.2) ‖fg‖η∧γ ≤ C‖f ‖η‖g‖γ .

Further, the constants C, C1, C2 do not depend on the functions f , g.

PROOF. (i) and (ii) follow, for example, from [37], Exercise 2. (iii) This follows from,
for example, [43], Formula 2.3.8.(6). (iv) follows immediately from, for example, [37], Sec-
tion 2.3 and [37], Theorem 13. �

The properties of Besov norms established in Lemma 3.1 are basic and we will be using
them further in the paper without explicit reference to the lemma. Our last lemma in this
section describes additional properties of Besov norms in relation to the fractional Laplacian
and its associated semigroup.

LEMMA 3.2.

(i) For any γ ∈ R, there exists C > 0 such that for any f ∈ Cγ ,

‖Lαf ‖γ−α ≤ C‖f ‖γ .
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(ii) For any γ ≥ 0, η ∈ (−∞, γ ] there exists C > 0 such that for any f ∈ C∞
b , t ∈ (0,1],

‖Ptf ‖γ ≤ Ct
η−γ

α ‖f ‖η

(iii) For any γ ≥ 0, η ∈ (−∞, γ ] there exists C > 0 such that for any f ∈ C∞
b , t ≥ 1,

‖Ptf ‖γ ≤ C‖f ‖η.

(iv) For any f ∈ C∞
b ,∫

R

∣∣Lαf (x)
∣∣dx ≤ 4cα

∫
R

∣∣f (x)
∣∣dx + 2cα

2 − α

∫
R

(
sup

z∈[x−1,x+1]
∣∣f ′′(z)

∣∣)dx,

where the constant cα was defined in (2.3).

PROOF. (i), (iii), (iv). These statements are standard however we were not able to find
their proofs in the literature; for the sake of completeness, we provide their proofs in the
Supplementary Material [3], Section 2. (ii) We refer the reader to [22]. Even though the
statement of Lemma A.7 is for a bounded set, one can verify that the proof works also for R.

�

3.2. Properties of convergence in the Skorokhod space. Let E be a metric space. In this
section, we provide some technical though important tools for studying convergence in the
Skorokhod space DE[0, T ], that is, the space of all càdlàg functions from [0, T ] to E. We
refer the reader to [8], Chapter 3 and [16], Chapter 3 for a detailed treatment of the Skorokhod
space and the necessary definitions. Denote by d the Skorokhod distance in DE . Let � be the
set of continuous strictly increasing functions mapping [0, T ] onto [0, T ].

We will use the following lemma, which is just a minor modification of a corresponding
lemma from [32]. For the convenience of the reader and for the sake of exposition, we state
this proposition and its proof below.

LEMMA 3.3 (cf. [32], Lemma 2.1). Let E1 and E2 be metric spaces and let , n,
where n ∈ Z+, be mappings DE1[0, T ] →DE2[0, T ], T > 0. Suppose that for any n ∈ Z+ we
have n(Z ◦μ) = n(Z)◦μ whenever Z ∈ DE1[0, T ], μ ∈ �. Further assume that Zn → Z

in the uniform metric implies n(Zn) → (Z) in the uniform metric. Then Zn → Z in the
Skorokhod topology implies (Zn,n(Zn)) → (Z,(Z)) in the Skorokhod topology.

PROOF. The proof follows the proof of [32], Lemma 2.1, with minor modifications. Let
ρE1 and ρE2 denote the metric on E1 and E2, respectively. Let ρE1×E2 be the product metric
on E1 × E2.

Take any Z ∈ DE1[0, T ], a sequence (Zn)n∈Z+ , Zn ∈ DE1[0, T ] and assume that
d(Zn,Z) → 0. Then there exists a mapping μn ∈ � such that ‖μn − I‖ → 0 where I denote
the identity map and supt∈[0,T ] ρE1((Z

n ◦ μn)(t),Zt ) → 0. By the assumptions, this implies
that

sup
t∈[0,T ]

ρE2

(
n(

Zn ◦ μn)
(t),(Z)(t)

) → 0.

Since n(Zn ◦ μn) = n(Zn) ◦ μn, we finally obtain

d
((

Zn,n(
Zn))

,
(
Z,(Z)

))
≤ ∥∥μn − I

∥∥ + sup
t∈[0,T ]

ρE1×E2

(([
Zn ◦ μn]

(t),
[
n(

Zn) ◦ μn]
(t)

)
,
(
Zt,(Z)(t)

))
→ 0.

This implies the statement of the lemma. �
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We will use the following simple lemma that deals with convergence of integrals in the
Skorokhod space.

LEMMA 3.4. Let (Xn)n∈Z+ be a sequence of elements in DR[0, T ] converging a.s. in
the Skorokhod metric to X. Let (fn)n∈Z+ be a sequence of continuous functions R

2 → R

converging uniformly to f . Assume

sup
n∈Z+

‖fn‖ < ∞.

Let A ∈ R be a Borel measurable set and let θ be a finite measure on A.
Then the process Jn defined as

Jn(t) :=
∫ t

0

∫
A

fn

(
Xn

s−, r
)
θ(dr) ds, t ∈ [0, T ],

uniformly on [0, T ] converges to the process J

J (t) :=
∫ t

0

∫
A

f (Xs−, r)θ(dr) ds, t ∈ [0, T ]
a.s. as n → ∞.

PROOF. We have∥∥Jn − J
∥∥ ≤

∫ T

0

∫
A

∣∣fn

(
Xn

s−, r
) − f (Xs−, r)

∣∣θ(dr) ds.

Recall that Xn converges to X a.s. in the Skorokhod metric. Therefore, for almost all ω ∈ �

the sequence (Xn
t−(ω))n∈Z+ converges to Xt−(ω) for all but countably many t ∈ [0, T ]. Since

the sequence (fn)n∈Z+ is uniformly bounded and converges pointwise to f , we can apply the
dominated convergence theorem to conclude∥∥Jn − J

∥∥ → 0 a.s. as n → ∞. �

The next lemma is more complicated and it deals with passing to the limit in stochastic
integrals.

LEMMA 3.5. Let (Xn,Ln)n∈Z+ be a sequence of elements in DR2[0, T ] converging a.s.
in the Skorokhod metric to (X,L). Let ν be a Levy measure satisfying

(3.3)
∫
R

(
1 ∧ r2)

ν(dr) < ∞.

Assume that L, (Ln)n∈Z+ are Lévy processes with the Lévy measure ν. Let Nn and Ñn be the
Poisson measure and compensated Poisson measure associated with Ln, respectively, where
n ∈ Z+. Define N and Ñ in a similar way. Let (FXn

t )t≥0 (resp., (FX
t )t≥0) be the natural

filtration of Xn (resp., X). Assume that for any compact set A ⊂ R \ {0} and 0 ≤ s < t ≤ T

the random variable Ñn
t (A) − Ñn

s (A) is independent of FXn

s ∨F Ñn

s . Then:

(i) For any compact set A ⊂ R \ {0} and 0 ≤ s < t ≤ T , the random variable Ñt (A) −
Ñs(A) is independent of FX

s ∨F Ñ
s .

(ii) Let (fn)n∈Z+ be a sequence of continuous functions R2 →R converging uniformly to
f . Assume that for some C > 0,

(3.4)
∣∣fn(x, r)

∣∣ ≤ C
(|r| ∧ 1

)
, x, r ∈ R, n ∈ Z+.
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Then for any T > 0 the process In defined as

In(t) :=
∫ t

0

∫
R

fn

(
Xn

s−, r
)
Ñn(ds, dr), t ∈ [0, T ]

converges in probability in the Skorokhod space DR[0, T ] to the process I ,

I (t) :=
∫ t

0

∫
R

f (Xs−, r)Ñ(ds, dr), t ∈ [0, T ].

The proof of this lemma is provided in the Supplementary Material [3], Section 3.

3.3. Dirichlet processes. Recall that a weak or strong solution to SDE (1.1) is not nec-
essarily a semimartingale; it belongs to a more general class of processes called Dirichlet
processes. Thus to study properties of solutions of our equation we need to develop some
parts of the theory of Dirichlet processes. This is done in this section. We begin with the
following definitions.

DEFINITION 3.6 ([21]). We say that a continuous adapted process (At )t∈[0,T ] is a pro-
cess of zero energy if A0 = 0 and

lim
δ→0

sup
πT :|πT |<δ

E
( ∑

ti∈πT

|Ati+1 − Ati |2
)

= 0,

where πT denotes a finite partition of [0, T ] and |πT | denotes the mesh size of the partition.

DEFINITION 3.7 ([21]). We say that an adapted process (Xt)t∈[0,T ] is a Dirichlet process
if

(3.5) Xt = Mt + At, t ∈ [0, T ],
where M is a square–integrable martingale and A is an adapted process of zero energy.

It was proven in [21] that such decomposition (3.5) of a Dirichlet process X is unique. Thus
we see that the class of Dirichlet processes naturally extends the class of semimartingales.
Note however that since the process A in decomposition (3.5) might be of infinite variation,
the integral with respect to A might be not well defined in the classical sense. The next
definition extends the notion of a stochastic integral to the class of integrals with respect to
zero-energy processes. We shall define the integral with respect to the zero-energy process A

as a limit in probability of the corresponding forward Riemann sums.

DEFINITION 3.8 ([14], page 90). Let f : R→R be a bounded continuous function with
a bounded continuous derivative. Let X be a Dirichlet process with decomposition (3.5). For
n ∈ Z+, let Dn := {tni } be a sequence of refining (and nonrandom) partitions of [0, T ] whose
mesh size tends to 0 as n → ∞. Then∫ t

s
f (Xr) dAr := (P) lim

n→∞
∑

tni ∈Dn,tni ∈[s,t)
f (Xtni

)(Atni+1
− Atni

), 0 ≤ s ≤ t ≤ T

(if exists), where the limit is taken in probability.

It was shown in [14], Theorem 3.1, that if f is a bounded continuous function with a
bounded continuous derivative, then the integral

∫ ·
0 f (Xs) dAs exists and does not depend on

the choice of the sequence of refining partitions Dn.
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We will need a couple of statements describing further properties of integrals with respect
to Dirichlet processes. Some of the results are close in spirit to [6], Lemma 2.3 and [45],
Lemma 3.12 and thus their proofs are moved to the Supplementary Material [3].

In the first lemma, we prove that under certain regularity conditions, the convergence
in probability in the definition of the Dirichlet integral can be improved to convergence in
Lp(�).

LEMMA 3.9. Let (X,A) be as in Definition 3.7. Let f : R → R be a bounded contin-
uous function with a bounded continuous derivative. Suppose that for some p1,p2 > 0 and
γ1, γ2 > 0 with γ1 + γ2 > 1 and 1/h := 1/p1 + 1/p2 ≤ 1 there exist constants Cf ,CA ≥ 1
such that for any s, t ∈ [0, T ]

E
∣∣f (Xt) − f (Xs)

∣∣p1 ≤ (Cf )p1 |t − s|p1γ1, E
∣∣f (Xt)

∣∣p1 ≤ (Cf )p1,(3.6)

E|At − As |p2 ≤ (CA)p2 |t − s|p2γ2 .(3.7)

(i) Then for any 0 ≤ s ≤ t ≤ T the sequence of partial sums

In :=
2n−1∑
i=0

f (Xtin
)(A

ti+1
n

− Atin
),

where

tkn := s + k2−n(t − s) for k = 0,1, . . . ,2n;n ∈ Z+,

converges to I := ∫ t
s f (Xr) dAr in Lh = Lh(�).

(ii) Moreover, there exists a constant C = C(T , γ1, γ2) > 0 such that for any 0 ≤ s ≤
t ≤ T , n ∈ Z+, we have the following estimate of the remainder term:

(3.8) ‖I − In‖Lh
≤ CCf CA2−n(γ1+γ2−1).

(iii) Finally, there exists C = C(T , γ1, γ2) > 0 such that for any 0 ≤ s ≤ t ≤ T ,

(3.9)
∥∥∥∥∫ t

s
f (Xr) dAr

∥∥∥∥
Lh

≤ CCf CA(t − s)γ2 .

PROOF. We present the proof in the Supplementary Material [3], Section 4. �

The second lemma of this subsection deals with the approximations of the integral with
respect to a Dirichlet process.

LEMMA 3.10. Let (X,A) be as in Definition 3.7. Let (fn)n∈Z+ be a sequence of func-
tions R→R that are uniformly bounded, continuous and have a bounded continuous deriva-
tive. Assume that all fn satisfy condition (3.6) with the same parameters p1, γ1 and Cf1 for
all n ∈ Z+.

Let (bn)n∈Z+ be a sequence of bounded continuous functions. Define

An
t :=

∫ t

0
bn(Xs) ds, t ∈ [0, T ].

Suppose that for each t ∈ [0, T ] the sequence (An(t))n∈Z+ converges in probability to A(t).
Assume that A and all functions An, n ∈ Z+ satisfy condition (3.7) with the same param-

eters CA, p2, γ2.
Finally, assume that γ1 + γ2 > 1 and 1/p1 + 1/p2 ≤ 1.
Then for any t ∈ [0, T ] we have

(3.10)
∫ t

0
fn(Xs) dAs −

∫ t

0
fn(Xs)bn(Xs) ds → 0 in probability as n → ∞.

PROOF. We present the proof in the Supplementary Material [3], Section 5. �
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4. Proof of Proposition 2.7: Analysis of the resolvent equation. The primary purpose
of this section is to prove Proposition 2.7. We will follow an approach similar to [40]. We
begin the analysis of equation (2.4) with the case f = 0.

LEMMA 4.1. The resolvent equation (2.4) with λ ≥ 1, f = 0, g ∈ Cη, η > −α has a
unique solution in the class of bounded functions. Furthermore, for each γ ∈ [0 ∨ η,α + η),
this solution uλ

0,g ∈ Cγ and there exists a constant C = C(η, γ ) > 0 such that

(4.1)
∥∥uλ

0,g

∥∥
γ ≤ Cλ−1−η/α+γ /α‖g‖η.

PROOF. We begin with uniqueness. Let u1, u2 be two bounded solutions of (2.4) with
λ > 0, f = 0, g ∈ Cη. Then the function v := u1 − u2 is obviously bounded and we have
Lαv = λv. Take any test function φ ∈ S . It follows from the definition of the solution that

(4.2) 〈v,Lαφ − λφ〉 = 0.

We claim now that for any h ∈ C∞
c one has

〈v,h〉 = 0.

To prove it, we fix any h ∈ C∞
c and put

(4.3) ψ(x) :=
∫ ∞

0
e−λtPth(x) dt =

∫
R

∫ ∞
0

e−λtpt (x − y)dth(y) dy, x ∈ R,

where pt is the α-stable transition density.
Now let us use the standard estimates on α-stable transition density (see, e.g., [9], Theo-

rem 2.1) and its self-similarity, pt(x) = t−1/αp1(t
−1/αx), to get

pt(x) ≤ c min
{
t−1/α, t |x|−1−α}

for any x ∈ R,

for some constant c > 0. Therefore, we easily derive for any x ∈ R,

(4.4)

∫ ∞
0

e−λtpt (x) dt ≤ C

∫ ∞
0

e−λt min
{
t−1/α, t |x|−1−α}

dt

≤ C(λ)min
{
1, |x|−1−α}

,

for some constant C(λ) > 0. For p > 0, define the following normed space of functions on
R:

Crap,p ≡
{
f ∈ Cb : ‖f ‖rap,p := sup

x∈R
∣∣f (x)

∣∣ max
{
1, |x|p}

< ∞
}
,

where Cb is the set of bounded continuous functions on R. From (4.3) and (4.4), one can
immediately derive that

ψ,ψ ′,ψ ′′ ∈ Crap,1+α.

Moreover, one can check that ψ,ψ ′,ψ ′′ ∈ L1(R)∩C∞
b and also (see, e.g., [40], Theorem 3.3)

that

Lαψ − λψ = h.

Fix arbitrary ε ∈ (0,1). Let now ψn be a sequence of C∞
c functions, such that ψn, ψ ′

n, ψ ′′
n

converge to ψ , ψ ′, ψ ′′ in L1(R) and in Crap,1+α−ε , respectively. Then we get∫
R

(
sup

z∈[x−1,x+1]
∣∣ψ ′′

n (z) − ψ ′′(z)
∣∣)dx → 0.
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Hence by Lemma 3.2(iv) we have∫
R

∣∣Lαψn(x) −Lαψ(x)
∣∣dx → 0.

Therefore, using (4.2) and the fact that the function v is bounded, we get∣∣〈v,h〉∣∣ = ∣∣〈v,Lαψ − λψ〉∣∣
≤ ∣∣〈v,Lαψn − λψn〉

∣∣ + ∣∣〈v,λψn − λψ〉∣∣ + ∣∣〈v,Lαψn −Lαψ〉∣∣ → 0.

Thus

〈v,h〉 = 0

for all h ∈ C∞
c . This yields v = 0 and completes the proof of uniqueness.

To show existence of solution and to establish estimate (4.1), we adapt some ideas from
the proof of [40], Theorem 3.3. Fix γ ∈ [0 ∨ η,α + η) and take any α′ ∈ (α,2). We begin
with the case g ∈ C∞

b . It was shown in [40], Theorem 3.3 that in this case equation (2.4) with
f = 0 has a unique solution in Cα′

. This solution is given by

uλ
0,g(x) :=

∫ ∞
0

e−λtPtg(x) dt, x ∈ R,

where the semigroup (Pt )t≥0 is as in Definition 2.6. Hence, using Lemma 3.2(ii), (iii), we
obtain ∥∥uλ

0,g

∥∥
γ ≤

∫ +∞
0

e−λt‖Ptg‖γ dt

=
∫ 1

0
e−λt‖Ptg‖γ dt +

∫ +∞
1

e−λt‖Ptg‖γ dt

≤ C‖g‖η

∫ 1

0
e−λt t−(γ−η)/α dt + C‖g‖η

∫ ∞
1

e−λt dt

≤ Cλ−1−η/α+γ /α‖g‖η,

(4.5)

where the last inequality follows from the fact that λ ≥ 1.
Now take any g ∈ Cη and fix arbitrary η′ ∈ (γ −α,η). Let gn ∈ C∞

b , n ∈ Z+ be a sequence
of approximations of g such that ‖gn − g‖η′ → 0 as n → ∞ and

(4.6) sup
n

‖gn‖η ≤ 2‖g‖η.

Consider the function un := uλ
0,gn

. By above, un is well defined and un ∈ Cα′
.

Let vn,m := un − um, n,m ∈ Z+. We see that vn,m solves (2.4) with f = 0 and the right-
hand side gn − gm. Furthermore, since un,um ∈ Cα′

, we see that vn,m ∈ Cα′
. Recall that

the solution to (2.4) with f = 0 and smooth right-hand side is unique in class Cα′
by [40],

Theorem 3.3. Therefore, we can apply (4.5) (with η′ instead of η) to obtain

‖un − um‖γ = ‖vn,m‖γ = ∥∥uλ
0,gn−gm

∥∥
γ ≤ Cλ−1−η′/α+γ /α‖gn − gm‖η′ .

This implies that (un)n∈Z+ is a Cauchy sequence in Cγ , and hence there exists some u ∈ Cγ

such that ‖u − un‖γ → 0 as n → ∞. We claim that u is a solution to (2.4) with f = 0 and
the right-hand side g. Indeed,

‖λu −Lαu − g‖γ−α = ∥∥λ(u − un) −Lα(u − un) − (g − gn)
∥∥
γ−α

≤ λ‖u − un‖γ−α + ∥∥Lα(u − un)
∥∥
γ−α + ‖g − gn‖γ−α

≤ λ‖u − un‖γ + C‖u − un‖γ + ‖g − gn‖η′,
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where we used the fact that γ − α < η′, Lemma 3.1, and Lemma 3.2. By passing to the limit
as n → ∞, we deduce

λu −Lαu − g = 0,

and hence u indeed solves (2.4) with f = 0 and the right-hand side g. To complete the proof,
it remains to note that by (4.5),

‖u‖γ ≤ ‖un‖γ + ‖u − un‖γ ≤ Cλ−1−η/α+γ /α‖gn‖η + ‖u − un‖γ .

By passing to the limit as n → ∞ and using (4.6), we obtain (4.1). �

Now we are ready to prove the first part of Proposition 2.7.

PROOF OF PROPOSITION 2.7(i). We begin by proving a crucial inequality that will be
used many times in this proposition. Let δ > −α and let u be any bounded solution to (2.4)
with f,g ∈ Cδ , λ ≥ 1. Obviously,

(4.7) λu −Lαu = f u′ + g.

Let ρ ∈ R be such that ρ > −δ and ρ ≥ δ. Using (4.7) and Lemma 4.1, we derive that for any
γ ∈ [0 ∨ δ,α + δ) there exists C = C(δ, γ,ρ) > 0 such that

‖u‖γ ≤ Cλ−1− δ
α
+ γ

α
∥∥f u′ + g

∥∥
δ

≤ Cλ−1− δ
α
+ γ

α
(‖g‖δ + ‖f ‖δ

∥∥u′∥∥
ρ

)
≤ Cλ−1− δ

α
+ γ

α
(‖g‖δ + ‖f ‖δ‖u‖ρ+1

)
,

(4.8)

whenever δ +ρ > 0 and ρ ≥ δ. Here, we have used inequalities from Section 3.1, specifically
(3.2) in the second inequality and (3.1) in the third inequality. We will apply (4.8) repeatedly.
Now we can start proving (2.5).

First, we deal with the case η > 0, and take f,g ∈ Cη. By [40], Theorem 3.4, equation
(2.4) has a solution uλ

f,g ∈ Cα for all λ > 0. We will show that

(4.9) uλ
f,g ∈ Cγ for any λ > 0, γ < α + η.

Assume the converse. Then there exist α ≤ γ1 < γ2 < α + η, such that ‖uλ
f,g‖γ1 <∞,

‖uλ
f,g‖γ2 = ∞ and γ2 −γ1 < α−1. We apply (4.8) with γ = γ2, δ = (γ1 −1)∧η, ρ = γ1 −1.

Note that all the additional constraints are satisfied: since γ2 < α +η and γ2 < α +γ1 −1, we
see that γ2 < α + (γ1 − 1)∧η, and thus γ2 ∈ [0 ∨ δ,α + δ). Using the fact that by assumption
f,g ∈ Cη, we derive∥∥uλ

f,g

∥∥
γ2

≤ C(λ)
(‖g‖(γ1−1)∧η + ‖f ‖(γ1−1)∧η

∥∥uλ
f,g

∥∥
γ1

)
< ∞,

However, this contradicts the assumption ‖uλ
f,g‖γ2 = ∞. Thus uλ

f,g ∈ Cγ for any γ < α + η.
We apply (4.8) again, but now with a different set of parameters: we take γ = η + 1, δ =

ρ = η. Then we obtain

(4.10)
∥∥uλ

f,g

∥∥
η+1 ≤ C1λ

−1+ 1
α
(‖g‖η + ‖f ‖η

∥∥uλ
f,g

∥∥
η+1

)
,

where C1 > 0. By above, ‖uλ
f,g‖η+1 < ∞. Take now λ1 ≥ 1 such that

1 − C1λ
−1+ 1

α

1 M ≥ 1/2.
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Since C1 depends only on η, we see that λ1 depends only on η, M . For λ ≥ λ1 and ‖f ‖η ≤ M ,
we get from (4.10),

(4.11)
∥∥uλ

f,g

∥∥
η+1 ≤ 2C1λ

−1+ 1
α ‖g‖η ≤ 2C1‖g‖η.

Finally, applying again (4.8) with δ = ρ = η and γ ∈ [η,α + η) we get for λ ≥ λ1∥∥uλ
f,g

∥∥
γ ≤ Cλ−1− η

α
+ γ

α ‖g‖η

(‖f ‖η + 1
)
,

where we used bound (4.11). This establishes (2.5) for η > 0 when λ ≥ λ1.
Now we can treat the case η ≤ 0. The problem here is that we do not know a priori that in

this case (2.4) has a solution. Therefore, we have to study approximations. We will still use
(4.8) as a main tool however with a different set of parameters (since η is negative we cannot
take δ = ρ = η).

Thus we start with considering any f,g ∈ C∞
b , λ > 0. By (4.9), equation (2.4) has a so-

lution uλ
f,g ∈ C∞

b . We apply (4.8) with γ = α/2 + 1/2, δ = η, and ρ = α/2 − 1/2. Since
η > 1/2 − α/2, one can easily see that all the additional constraints on the parameters in
(2.4) are satisfied. We get∥∥uλ

f,g

∥∥
(1+α)/2

(
1 − C2λ

− 1
2 + 1

2α
− η

α ‖f ‖η

) ≤ C2λ
− 1

2 + 1
2α

− η
α ‖g‖η,

where C2 > 0 and we have used the fact that ‖uλ
f,g‖(1+α)/2 < ∞. Choose λ2 ≥ 1 such that

1 − C2λ
− 1

2 + 1
2α

− η
α

2 M ≥ 1/2.

Similarly, λ2 depends only η, M . For λ ≥ λ2 = λ2(η,M) and ‖f ‖η ≤ M we get

(4.12)
∥∥uλ

f,g

∥∥
(1+α)/2 ≤ 2C2‖g‖η.

Now we take any f,g ∈ Cη. Similar to the proof of Lemma 4.1, we fix arbitrary η′ ∈
(1−α

2 , η) and approximate f and g by the sequences fn, gn ∈ C∞
b , correspondingly, such that

‖fn − f ‖η′ → 0, ‖gn − g‖η′ → 0 as n → ∞,

‖fn‖η ≤ 2‖f ‖η, ‖gn‖η ≤ 2‖g‖η for all n ∈ Z+.

Consider the function un := uλ
fn,gn

. By above, un ∈ C∞
b . Put vn,m := un − um, n,m ∈ Z+.

It follows that vn,m ∈ C∞
b and solves

(4.13) λvn,m −Lαvn,m − fnv
′
n,m = gn − gm + (fn − fm)u′

m.

Clearly, the right-hand side of (4.13) is in C∞
b . Therefore, using the uniqueness theorem for

equation (2.4) with smooth coefficients ([40], Theorem 3.4) we see that vn,m is the unique
solution to (4.13). Thus we can apply bound (4.12) (with η′ instead of η). We make use of
the fact that ‖fn‖η ≤ 2‖f ‖η to get for λ ≥ λ2(η

′,2M) and ‖f ‖η ≤ M ,

‖un − um‖(1+α)/2 = ‖vn,m‖(1+α)/2 ≤ C
(‖gn − gm‖η′ + ∥∥(fm − fn)u

′
m

∥∥
η′

)
≤ C

(‖gn − gm‖η′ + ‖fm − fn‖η′
∥∥u′

m

∥∥
α/2−1/2

)
≤ C

(‖gn − gm‖η′ + ‖fm − fn‖η′‖gm‖η′
)
,

where in the final inequality we used bound (4.12) once again, this time with η. Recalling that
‖gm‖η ≤ 2‖g‖η, we see that the sequence (un)n∈Z+ is a Cauchy sequence in C(1+α)/2. Hence
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there exists u ∈ C(1+α)/2 such that ‖un − u‖(1+α)/2 → 0 as n → ∞. Applying Lemma 3.2,
we derive for any n ∈ Z+,∥∥λu −Lαu − f u′ − g

∥∥
(1−α)/2

= ∥∥λ(u − un) −Lα(u − un) − f (u − un)
′ − (g − gn)

∥∥
(1−α)/2

≤ λ‖u − un‖(1+α)/2 + C‖u − un‖(1+α)/2

+ C‖f ‖η‖u − un‖(1+α)/2 + C‖g − gn‖η.

After taking the limit as n → ∞, we see that u solves (2.4).
Note that thanks to (4.12),

‖u‖(1+α)/2 ≤ lim
n→∞‖u − un‖(1+α)/2 + lim sup

n→∞
‖un‖(1+α)/2 ≤ C‖g‖η.

Using this inequality and the fact that u solves (2.4), we apply again (4.8) with γ ∈ [0, α + η),
δ = η, ρ = α/2 − 1/2 to obtain

‖u‖γ ≤ Cλ−1− η
α
+ γ

α
(‖g‖η + C‖f ‖η‖g‖η

)
.

This establishes (2.5) for η ≤ 0 when λ > λ2(η
′,2M). Set

λ3(η,M) :=
{
λ1(η,M) if η > 0,

λ2
(
η′,2M

)
if η ≤ 0,

to complete the proof of (2.5).
Thus it remains to show uniqueness. If u1, u2 ∈ C(1+α)/2 are two solutions of (2.4), then

for v := u1 − u2 we obviously have v ∈ C(1+α)/2 and

λv −Lαv = f v′.
Therefore, the right-hand side of the above equation is well defined and is in Cη. Therefore,
we can apply (4.8) with γ = α/2 + 1/2, δ = η, ρ = α/2 − 1/2 to obtain for some C3 > 0,

‖v‖(1+α)/2 ≤ C3λ
− 1

2 + 1
2α

− η
α ‖f ‖η‖v‖(1+α)/2.

Choose λ4 ≥ 1 such that

C3λ
− 1

2 + 1
2α

− η
α

4 ‖M‖η ≤ 1/2.

Then, by above, ‖v‖(1+α)/2 ≤ 1
2‖v‖(1+α)/2 whenever λ ≥ λ4(η,M) and ‖f ‖η ≤ M . As

‖v‖(1+α)/2 < ∞, this implies that ‖v‖(1+α)/2 = 0, and hence v = 0. This establishes unique-
ness of the solutions to (2.4). �

PROOF OF PROPOSITION 2.7(ii). Let (fn)n∈Z+ , (gn)n∈Z+ be arbitrary sequences of func-
tions such that fn → f and gn → g in Cη− as n → ∞. Without loss of generality, we
can assume that supn∈Z+ ‖fn‖η ≤ 2‖f ‖η ≤ 2M and supn∈Z+ ‖gn‖η ≤ 2‖g‖η ≤ 2M . Denote

u := uλ
f,g , un := uλ

fn,gn
, vn := u − un. By part (i), vn ∈ C(1+α)/2 and solves

λvn −Lαvn − f v′
n = g − gn + u′

n(f − fn).

Fix arbitrary η′ ∈ (1−α
2 , η). Then we apply Proposition 2.7(i) with η′ instead of η to get that

for any λ ≥ λ0(η
′,2M) we have

‖un − u‖(1+α)/2

= ‖vn‖(1+α)/2

≤ Cλ− 1
2 + 1

2α
− η′

α
(‖gn − g‖η′ + ‖fn − f ‖η′‖un‖(1+α)/2

)(
1 + ‖f ‖η′

)
≤ C(1 + M)2λ− 1

2 + 1
2α

− η′
α

(‖gn − g‖η′ + ‖fn − f ‖η′‖gn‖η

) → 0. �
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5. Proof of Theorem 2.3. In this section, we present the proof of our main result, Theo-
rem 2.3. We will follow the sketch of the proof presented in Section 2.2. We will rely on the
machinery related to the resolvent equation developed in Section 4 and Preliminaries from
Section 3. Recall that we have fixed α ∈ (1,2), β ∈ (1/2 − α/2,0), b ∈ Cβ , the initial condi-
tion x ∈ R and the length of time interval T > 0. Our goal is to show that (1.1) has a unique
strong solution on time interval [0, T ].

We begin with a very standard calculation of the second moment of a stochastic integral.
We will use this result a couple of times, and hence for the sake of completeness we decided
to state it precisely.

LEMMA 5.1. Let L be an α-stable Lévy process, ν be its Lévy measure and Ñ be the
compensated Poisson measure associated with L. Assume that f : [0, T ] ×R+ × � →R is
a measurable function adapted to the filtration of L. Suppose that there exist γ ∈ (α/2,1]
and constant Cf > 0 such that P-a.s.

(5.1)
∣∣f (s, r,ω)

∣∣ ≤ Cf

(|r|γ ∧ 1
)
, s ∈ [0, T ], r ∈ R.

Then there exists a constant C > 0 such that for any stopping times τ1, τ2 ∈ [0, T ] with
τ1 ≤ τ2 we have

(5.2) E
(∫ τ2

τ1

∫
R

f (s, r,ω)Ñ(ds, dr)

)2
≤ CC2

f E|τ2 − τ1|.

The proof of the lemma is given in the Supplementary Material [3], Section 6.
The upcoming subsections are devoted to the proofs of Propositions 2.8, 2.9, 2.10. We

complete the proof of Theorem 2.3 in Section 5.4.

5.1. Proof of Proposition 2.8: Any weak solution of (1.1) solves the Zvonkin equation. We
will use different properties of integrals with respect to the Dirichlet processes established in
Section 3.3. We begin with the following simple moment bound.

LEMMA 5.2. Let X be a weak solution of SDE (1.1) in the class V((1 + β
α
) ∧ 1). Then

for any γ ∈ [0, α) there exists a constant C > 0 such that for any s, t ∈ [0, T ],
(5.3) E|Xt − Xs |γ ≤ C|t − s|γ /α.

PROOF. First, note that by basic properties of an α–stable process we have for γ ∈ [0, α),

E|Lt − Ls |γ ≤ C|t − s|γ /α, s, t ∈ [0, T ].
It follows from our assumptions that 1/α < 1 + β/α. Therefore, using Jensen’s inequality
and the fact that X is in the class V((1 + β

α
) ∧ 1) we obtain for any s, t ∈ [0, T ],

E|Xt − Xs |γ ≤ CE|At − As |γ + CE|Lt − Ls |γ ≤ C|t − s|γ /α.

This immediately yields (5.3). �

LEMMA 5.3 (Krylov-type estimate). Let X be a weak solution of SDE (1.1) in the class
V((1 + β

α
) ∧ 1). Then for any δ ∈ [0, 1

1/2−β/α
), κ ∈ [0,1 + β/α) there exists a constant C =

C(T ) > 0 such that for any f ∈ C∞
b , 0 ≤ s ≤ t ≤ T we have

(5.4) E

∣∣∣∣∫ t

s
f (Xl) dl

∣∣∣∣δ ≤ C|t − s|δκ‖f ‖δ
β .
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PROOF. We begin by observing that X is a Dirichlet process (as A has zero energy due
to (2.2) since X is in the class V((1 + β

α
) ∧ 1)). Let us fix f ∈ C∞

b and 0 ≤ s < t ≤ T . Take
now any δ < 1/(1/2 − β/α). Since we took β < 0, we have δ < 2.

We claim that it is sufficient to show (5.4) only for those s, t that are close enough; further,
we assume that |t − s| ≤ 1. Indeed, if this is already proven, then for any s, t ∈ [0, T ], s ≤ t

we can take an increasing sequence (ti)i∈[0,N] such that t0 = s, tN = t , ti+1 − ti ≤ 1 and
N ≤ T . Then

E

∣∣∣∣∫ t

s
f (Xl) dl

∣∣∣∣δ ≤ N

N−1∑
i=0

E

∣∣∣∣∫ ti+1

ti

f (Xl) dl

∣∣∣∣δ ≤ CN‖f ‖δ
β

N−1∑
i=0

|ti+1 − ti |δκ

≤ C‖f ‖δ
βN1+δκ |t − s|δκ

≤ C‖f ‖δ
β |t − s|δκ ,

for some C = C(T ). Thus we can safely assume that |t − s| ≤ 1.
Now let us consider a function vλ := uλ

0,f , where λ ≥ 1; this function is well defined by
Lemma 4.1. We apply Itô’s formula for Dirichlet processes [14], Theorem 3.4 (see also [4],
Theorem 5.15(ii)) to derive for 0 ≤ s < t ≤ T

vλ(Xt) − vλ(Xs) =
∫ t

s
Lαvλ(Xl) dl +

∫ t

s

∫
R

[
vλ(Xl− + r) − vλ(Xl−)

]
Ñ(dl, dr)

+
∫ t

s

(
vλ)′

(Xl−) dAl

=
∫ t

s

∫
R

[
vλ(Xl− + r) − vλ(Xl−)

]
Ñ(ds, dr)

+ λ

∫ t

s
vλ(Xl) dl −

∫ t

s
f (Xl) dl

+
∫ t

s

(
vλ)′

(Xl) dAl,

where we also used the fact that vλ solves (2.4) with 0 in place of f and f in place of g. By
rearranging the terms, we get

E

∣∣∣∣∫ t

s
f (Xl) dl

∣∣∣∣δ ≤ C
∥∥vλ

∥∥δ(
2 + λ(t − s)

)δ
+ CE

∣∣∣∣∫ t

s

∫
R

[
vλ(Xl− + r) − vλ(Xl−)

]
Ñ(ds, dr)

∣∣∣∣δ
+ CE

∣∣∣∣∫ t

s

(
vλ)′

(Xl) dAl

∣∣∣∣δ
= I1 + I2 + I3.

(5.5)

Now recall that we supposed that |t − s| ≤ 1. Then we can take λ := (t − s)−1. We imme-
diately get by Lemma 4.1 with γ = εα/δ, η = β that for any ε > 0,

(5.6) I1 ≤ C(t − s)δ+δβ/α−ε‖f ‖δ
β .

Note that for any ρ ∈ (0,1)∣∣vλ(Xl− + r) − vλ(Xl−)
∣∣ ≤ 2

∥∥vλ
∥∥
ρ

(|r|ρ ∧ 1
)
.
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Therefore, we take ρ = α/2 + αε/δ and apply consequently Lemma 5.1, Jensen’s inequality,
and Lemma 4.1 with γ = ρ, η = β . We get

(5.7) I2 ≤ C
(∥∥vλ

∥∥
ρ

)δ|t − s|δ/2 ≤ C|t − s|δ+δβ/α−ε‖f ‖δ
β .

Thus it remains to estimate I3. Let

(5.8) ε > 0, ρ ∈ (−β + εα,α + β − 1), σ ∈ [2, α/ρ)

be parameters to be chosen later. Lemma 4.1 and Lemma 5.2 imply for any t1, t2 ∈ [0, T ],
E
∣∣(vλ)′

(Xt1) − (
vλ)′

(Xt2)
∣∣σ ≤ (∥∥(

vλ)′∥∥
ρ

)σ E|Xt1 − Xt2 |ρσ ≤ C1‖f ‖σ
β |t1 − t2|ρσ/α

for some C1 > 0. Recall that since X is in the class V((1 + β
α
) ∧ 1), there exists C2 > 0 such

that for any t1, t2 ∈ [0, T ],
E|At1 − At2 |2 ≤ C2|t1 − t2|2(1+β/α−ε).

Thus we can apply Lemma 3.9 with Cf = C
1/σ
1 ‖f ‖β , CA = C

1/2
2 , p1 = σ , p2 = 2, γ1 = ρ/α,

γ2 = 1 + β/α − ε. Our choice of parameters ρ and σ automatically implies that γ1 + γ2 > 1
and 1/p1 + 1/p2 ≤ 1. Thus all the conditions of Lemma 3.9 are satisfied. Further, we also
have that

1

h
:= 1

p1
+ 1

p2
= 1

σ
+ 1

2
> 1/2 − β/α + ε.

Recall that σ and ρ were arbitrary parameters that satisfy bounds in (5.8). By choosing ρ

close enough to its lower bound −β + εα and choosing σ close enough to its upper bound
α/ρ, one can make 1/h to be arbitrarily close (though still bigger) to 1/2 − β/α + ε. There-
fore, bound (3.9) yields for any h < (1/2 − β/α + ε)−1,

E

∣∣∣∣∫ t

s
v′(Xl) dAl

∣∣∣∣h ≤ C‖f ‖h
β |t − s|h(1+β/α−ε).

Combining this with (5.6) and (5.7) and substituting them into (5.5), we obtain (5.4). This
completes the proof of the lemma. �

REMARK 5.4. If one is interested to show existence of the local time for weak solutions
to (1.1), one would need to use the Krylov-type estimate presented in (5.4) for a sequence of
functions that approximate the delta function. Using the appropriate Hölder–Besov regularity
properties of the delta function, one should be able to derive all the details.

PROOF OF PROPOSITION 2.8. Let X be a weak solution to (1.1) in the class V((1 +
β
α
) ∧ 1). Let (bn)n∈Z+ be a sequence of C∞

b functions converging to b in Cβ−. Without loss
of generality, we can assume that for each n ∈ Z+ we have ‖bn‖β ≤ 2‖b‖β .

Fix λ ≥ λ0(β,2‖b‖β). Let un = uλ
bn,bn

be a unique C1/2+α/2 solution to (2.4). It follows
from Proposition 2.7(i) that un ∈ C∞

b . Definition 2.1 implies that A has zero energy, and thus
X is a Dirichlet process. We apply Itô’s formula for Dirichlet processes ([14], Theorem 3.4;
see also [4], Theorem 5.15(ii)) to derive for t ≥ 0,

un(Xt) = un(x) +
∫ t

0
Lαun(Xs) ds

+
∫ t

0

∫
R

[
un(Xs− + r) − un(Xs−)

]
Ñ(ds, dr)

+
∫ t

0
u′

n(Xs−) dAs.

(5.9)
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We continue (5.9) as follows, using the fact that un solves (2.4):

un(Xt) = un(x) +
∫ t

0

∫
R

[
un(Xs− + r) − un(Xs−)

]
Ñ(ds, dr)

+ λ

∫ t

0
un(Xs) ds −

∫ t

0
bn(Xs) ds

+
∫ t

0
u′

n(Xs) dAs −
∫ t

0
u′

n(Xs)bn(Xs) ds.

(5.10)

For any fixed t ∈ [0, T ], let us pass to the limit in (5.10) as n → ∞. Since by Proposi-
tion 2.7(ii) un converges to u in C1/2+α/2, it is clear that

(5.11)

un(Xt) → u(Xt), un(x) → u(x),

λ

∫ t

0
un(Xs) ds → λ

∫ t

0
u(Xs) ds a.s. as n → ∞.

Note that since 1/2 + α/2 > 1, there exists C > 0∣∣un(Xs− + r) − u(Xs− + r) − un(Xs−) + u(Xs−)
∣∣ ≤ C‖un − u‖1/2+α/2

(|r| ∧ 1
)
.

Therefore by Lemma 5.1 we have

(5.12)
E
(∫ t

0

∫
R

[
un(Xs− + r) − u(Xs− + r) − un(Xs−) + u(Xs−)

]
Ñ(ds, dr)

)2

≤ C‖un − u‖2
1/2+α/2T .

Using again that ‖un − u‖1/2+α/2 → 0 as n → ∞, we deduce from (5.12) that

(5.13)

∫ t

0

∫
R

[
un(Xs− + r) − un(Xs−)

]
Ñ(ds, dr)

→
∫ t

0

∫
R

[
u(Xs− + r) − u(Xs−)

]
Ñ(ds, dr),

in probability as n → ∞.
By the definition of a solution,

(5.14)
∫ t

0
bn(Xs) ds → At,

in probability as n → ∞.
Thus, it remains to find the limit of the last two terms in the right-hand side of (5.10).

Fix ε > 0 small enough. Applying Proposition 2.7(ii) and Lemma 5.2, we obtain for any
t1, t2 ∈ [0, T ],

E
∣∣u′

n(Xt1) − u′
n(Xt2)

∣∣σ ≤ (∥∥u′
n

∥∥
ρ

)σ E|Xt1 − Xt2 |ρσ ≤ C1‖b‖σ
β |t1 − t2|ρσ/α

whenever

(5.15) ρ ∈ (−β + εα,α + β − 1); σ ∈ (0, α/ρ).

Furthermore, by the definition of the solution and Lemma 5.3, for any t1, t2∈ [0, T ],
E|At1 − At2 |h ≤ C2|t1 − t2|h(1+β/α−ε);

E

∣∣∣∣∫ t2

t1

bn(Xl) dl

∣∣∣∣h ≤ C2‖b‖h
β |t1 − t2|h(1+β/α−ε),
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whenever 0 ≤ h < 1/(1/2 − β/α). Now we can apply Lemma 3.10 to the functions (u′
n),

(bn), A, with the following parameters: Cf1 := C
1/σ
1 ‖b‖β , p1 := σ , γ1 := ρ/α, CA := C

1/h
2 ,

p2 = h, γ2 = 1 + β/α − ε. It follows from (5.15) that γ1 + γ2 > 1. Note that

1

p1
+ 1

p2
= 1

σ
+ 1

h
>

ρ

α
+ 1/2 − β/α > 1/2 − 2β/α + ε.

Further, by choosing h close enough to 1/(1/2 − β/α), ρ close enough to −β + εα, σ close
enough to α/ρ, one can guarantee that 1

p1
+ 1

p2
will be arbitrarily close to 1/2 − 2β/α + ε.

However, for ε small enough we have 1/2 − 2β/α + ε < 1. Hence for some suitable choice
of parameters, one has 1

p1
+ 1

p2
< 1. Hence all the conditions of Lemma 3.10 are satisfied.

Thus ∫ t

0
u′

n(Xs) dAs −
∫ t

0
u′

n(Xs)bn(Xs) ds → 0,

in probability as n → ∞. Combining this with (5.11), (5.13), (5.14), we can pass to the limit
in probability in (5.10) as n → ∞. We obtain that for each fixed t the following identity holds
a.s.:

u(Xt) = u(x) +
∫ t

0

∫
R

[
u(Xs− + r) − u(Xs−)

]
Ñ(ds, dr)

+ λ

∫ t

0
u(Xs) ds − At .

To complete the proof, it remains to note that At = Xt − Lt − x; thus Xt is indeed a weak
solution to equation (2.7). �

5.2. Proof of Proposition 2.9: Weak existence. In this section, we establish Proposi-
tion 2.9.

As explained in Section 2.1, we will construct a sequence of solutions to the approximated
equations with smooth coefficients and then prove that this sequence has a limiting point,
which solves SDE (1.1) in the weak sense. Thus let (bn)n∈Z+ be a sequence of C∞

b functions
converging to b in Cβ−. Without loss of generality, we can assume that for each n ∈ Z+ we
have ‖bn‖β ≤ 2‖b‖β . Recall the definitions of (Xn)n∈Z+ and (An)n∈Z+ , which are given in
(2.8) and (2.9), correspondingly. Recall the definition of the function λ0 in Proposition 2.7.

For λ ≥ λ0(β,2‖b‖β), let uλ
n := uλ

bn,bn
be the unique solution of the resolvent equation

(2.4) in class C 1+α
2 . By Proposition 2.7(i), uλ

n is well defined and uλ
n ∈ C∞

b . For brevity, in this
subsection further we will write just λ0 instead of λ0(β,2‖b‖β).

LEMMA 5.5.

(i) For each λ ≥ λ0, n ∈ Z+, t ∈ [0, T ], we have

(5.16)
uλ

n

(
Xn

t

) = uλ
n(x) +

∫ t

0

∫
R

(
uλ

n

(
Xn

s− + r
) − uλ

n

(
Xn

s−
))

Ñ(ds, dr)

+ λ

∫ t

0
uλ

n

(
Xn

s

)
ds − An

t .

(ii) Further, for any ε > 0 there exists a constant C > 0 such that for any n ∈ Z+, δ ≤
1/λ0, and stopping time τ ∈ [0, T ] we have

(5.17) E
∣∣An

τ+δ − An
τ

∣∣2 ≤ Cδ2(1+ β
α
−ε)‖b‖2

β

(‖b‖β + 1
)2

.
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(iii) There exists a constant C > 0 such that for any n ∈ Z+, t ∈ [0, T ] we have

(5.18) E
∣∣An

t

∣∣2 ≤ C‖b‖2
β

(‖b‖β + 1
)2

.

(iv) Finally, the sequence {(Xn,An)}n∈Z+ is tight in DR2[0, T ].

PROOF. (i) Since uλ
n ∈ C∞

b , identity (5.16) follows immediately by an application of Itô’s
formula (see, e.g., [2], Theorem 4.4.7) to the process Xn and the function uλ

n.
(ii) Fix δ ≤ 1/λ0, stopping time τ , and ε > 0 small enough. For λ ≥ λ0, n ∈ Z+ we denote

I
n,λ
t :=

∫ t

0

∫
R

(
uλ

n

(
Xn

s− + r
) − uλ

n

(
Xn

s−
))

Ñ(ds, dr), t ∈ [0, T ].
It follows from (5.16) that for any λ ≥ λ0 we have∣∣An

τ+δ − An
τ

∣∣ ≤ ∣∣uλ
n

(
Xn

τ+δ

) − uλ
n

(
Xn

τ

)∣∣ + ∣∣In,λ
τ+δ − In,λ

τ

∣∣
+ λ

∫ τ+δ

τ

∣∣uλ
n

(
Xn

s

)∣∣ds

≤ ∥∥uλ
n

∥∥(2 + λδ) + ∣∣In,λ
τ+δ − In,λ

τ

∣∣.
(5.19)

Now let us pick λ := δ−1. Since δ ≤ 1/λ0, we clearly have λ ≥ λ0. Then it follows from
Proposition 2.7(i) with γ = εα, η = β and the bound ‖bn‖β ≤ 2‖b‖β that

(5.20) ‖uλ
n‖(2 + λδ) ≤ Cδ1+ β

α
−ε‖b‖β

(‖b‖β + 1
)
,

where the constant C > 0 depends only on α, β and ε (but not n, δ, λ or τ ).
Note that for any γ ∈ (0,1), we have∣∣uλ

n

(
Xn

s− + r
) − uλ

n

(
Xn

s−
)∣∣ ≤ ∥∥uλ

n

∥∥
γ

(
1 ∧ |r|γ )

, s ∈ [0, T ], r ∈R.

Thus we can take γ := α/2 + αε and deduce from Lemma 5.1 and Proposition 2.7(i) with
γ = α/2 + εα, η = β that

E
(
I

n,λ
τ+δ − In,λ

τ

)2 ≤ Cδ
(∥∥uλ

n

∥∥
α/2+αε

)2 ≤ Cδ2(1+ β
α
−ε)‖b‖2

β

(‖b‖β + 1
)2

,

where again the constant C does not depend on n, δ, λ or τ . Combining this bound with
(5.19) and (5.20), we establish (5.17).

(iii) It is clear that for any t ∈ [0, T ] there exists N ∈ Z+ and a increasing sequence
(ti)i∈[0,N] such that t0 = 0, tN = t and ti+1 − ti ≤ 1/λ0. Further, one can take N = �T λ0�.
Then it follows from part (ii) of the lemma and the fact that A0 = 0 that

E
∣∣An

t

∣∣2 ≤ N

N−1∑
i=0

E
∣∣An

ti+1
− An

ti

∣∣2 ≤ C(T ,λ0, α,β)‖b‖2
β

(‖b‖β + 1
)2

,

which proves (5.18).
(iv) To establish the tightness of {(Xn,An)}n∈Z+ , first let us verify that the sequence

(An)n∈Z+ is tight in DR[0, T ]. We would like to apply the Aldous theorem [1], Theorem 1.
Thus we need to check that for each t ∈ [0, T ] the sequence of random variables (An

t )n∈Z+ is
tight; and that for any sequence of stopping times (τn)n∈Z+ and constants δn → 0 we have

(5.21) An
τn+δn

− An
τn

→ 0 as n → ∞ in probability.

The first condition of Aldous’ theorem holds thanks to part (iii) of the lemma. Indeed,
bound (5.18) yields that for each fixed t ∈ [0, T ] the sequence (An

t )n∈Z+ is tight.
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To verify the second condition of Aldous’ theorem, we take a sequence of stopping times
(τn)n∈Z+ and a sequence of constants δn → 0. We can assume without loss of generality that
δn ≤ 1/λ0 for all n ∈ Z+. Then we apply part (ii) of the lemma with τ = τn, δ = δn. We derive

(5.22) E
∣∣An

τn+δn
− An

τn

∣∣ ≤ C‖b‖β

(‖b‖β + 1
)√

δn → 0 as n → ∞,

where we used the fact that 1 + β/α > 1/2. This implies (5.21). Thus all the conditions of
[1], Theorem 1, are satisfied and the sequence (An)n∈Z+ is tight.

Recall that Xn
t = An

t +x+Lt . It follows from (5.18) and (5.22) that the sequence (Xn)n∈Z+
also satisfies the conditions of [1], Theorem 1. Hence (Xn)n∈Z+ is tight.

To complete the proof, it remains to note that An is continuous in t for each n. Thus
(An)n∈Z+ is actually C-tight and, therefore, the sequence {(Xn,An)}n∈Z+ is tight in DR2[0, T ]
by [27], Corollary VI.3.33(b). �

Now we are ready to prove the main result of this subsection.

PROOF OF PROPOSITION 2.9(i). Fix λ ≥ λ0(β,2‖b‖β). In this proof, for brevity we will
write u := uλ

b,b and un := uλ
bn,bn

.
We use the approximating sequence {(Xn,An)}n∈Z+ constructed in Lemma 5.5. It follows

from Lemma 5.5 that this sequence is tight in DR2[0, T ]. Hence by the Prokhorov theorem
there exists a subsequence (nk) such that (Xnk ,Ank ) converges weakly in the Skorokhod
space DR2[0, T ] to the limit (X,A). In order not to overburden the notation, we suppose
that we have already passed to this subsequence, and thus we assume that (Xn,An) con-
verges weakly to (X,A). Then by the Skorokhod representation theorem (see, e.g., [16],
Theorem 3.1.8) there exists a sequence of random elements (X̂n, Ân) defined on a common
probability space (�̂, F̂, P̂) such that (X̂n, Ân) → (X̂, Â) a.s. in the Skorokhod metric and
Law(X̂n, Ân) = Law(Xn,An), Law(X̂, Â) = Law(X,A).

Denote L̂n := X̂n − Ân − x, and define similarly L̂. By the above,

Law(L̂n) = Law(Xn − An − x) = Law(L).

Thus, L̂n is an α-stable Lévy process. It follows from Lemma 3.3, that (X̂n, Ân, L̂n) con-
verges a.s. in the Skorokhod metric to (X̂, Â, L̂). Hence L̂ is also an α-stable Lévy process.
Denote by ˜̂Nn (resp., ˜̂N ) the compensated Poisson random measure of L̂n (resp., L̂).

It follows from the above considerations and (5.16) that for t ∈ [0, T ],

(5.23)
un

(
X̂n

t

) − un(x) − λ

∫ t

0
un

(
X̂n

s

)
ds + Ân

t

=
∫ t

0

∫
R

(
un

(
X̂n

s− + r
) − un

(
X̂n

s−
))˜̂Nn(ds, dr).

Let us pass to the limit as n → ∞ in (5.23).
First, we recall that X̂n converges a.s. to X̂ in the Skorokhod metric as n → ∞. By

Proposition 2.7(i), we have supn ‖un‖(1+α)/2 < ∞ and by Proposition 2.7(ii) limn→∞ ‖un −
u‖(1+α)/2 → 0. Therefore, by Lemma 3.3,

(5.24) un

(
X̂n·

) → u(X̂·) as n → ∞ a.s. in DR[0, T ].
By Lemma 3.4,

(5.25) λ

∫ ·
0

un

(
X̂n

s

)
ds → λ

∫ ·
0

u(X̂s) ds as n → ∞ a.s. in DR[0, T ].
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Note that the function
∫ ·

0 u(X̂s) ds is continuous; recall that Ân converges a.s. to a continuous
function Â. Therefore, (5.24), (5.25) and [27], Proposition VI.1.23, yield that the left-hand
side of (5.23) converges a.s. in D[0, T ] to

u(X̂·) − u(x) − λ

∫ ·
0

u(X̂s) ds + Â.

Recall that (X̂n, L̂n) converges a.s. in DR2[0, T ] to (X̂, L̂) and supn ‖un‖(1+γ )/2 < ∞. As

X̂n is a strong solution, it is adapted to the filtration generated by ˜̂Nn, and thus all the condi-
tions of Lemma 3.5 are satisfied. Hence the right-hand side of (5.23) converges in probability
in D[0, T ] to ∫ ·

0

∫
R

(
u(X̂s− + r) − u(X̂s−)

)˜̂N(ds, dr).

Thus,

(5.26)
u(X̂t ) − u(x) − λ

∫ t

0
u(X̂s) ds + Ât

=
∫ t

0

∫
R

(
u(X̂s− + r) − u(X̂s−)

)˜̂N(ds, dr), t ∈ [0, T ].

Since Ât = X̂t − L̂t − x, we see that (X̂, L̂) is indeed a weak solution to (2.7). �

PROOF OF PROPOSITION 2.9(ii). Recall that by definition

X̂t = x + Ât + L̂t , t ∈ [0, T ].
Thus it remains to check that the process Ât satisfies the second property in Definition 2.1
and X̂ is in the class V((1 + β

α
) ∧ 1).

To check the second property, take any approximating sequence (bn)n∈Z+ ∈ C∞
b such that

bn → b in Cβ− as n → ∞ and ‖bn‖β ≤ 2‖b‖β , n ∈ Z+. Take any λ ≥ λ0(β,2‖b‖β). For any
n,m ∈ Z+, we consider un,m := uλ

bn,bm
, which is the unique C(1+α/2) solution to the equation

(2.4) with bn in place of f and bm in place of g. We apply Itô’s formula to the process X̂n.
We get

(5.27)
un,m(

X̂n
t

) − un,m(x) − λ

∫ t

0
un,m(

X̂n
s

)
ds +

∫ t

0
bm

(
X̂n

s

)
ds

=
∫ t

0

∫
R

(
un,m(

X̂n
s− + r

) − un,m(
X̂n

s−
))˜̂Nn(ds, dr).

Consider now u(m) := uλ
b,bm

. Then by Proposition 2.7(ii),

lim
n→∞

∥∥un,m − u(m)
∥∥
(1+α)/2 = 0.

Now for each fixed m ∈ Z+ we pass to the limit as n → ∞ in (5.27). Arguing exactly as in
in part (i) of the proof, we apply Lemmas 3.3, 3.4, 3.5 and [27], Proposition VI.1.23 to obtain

u(m)(X̂t ) − u(m)(x) − λ

∫ t

0
u(m)(X̂s) ds +

∫ t

0
bm(X̂s) ds

=
∫ t

0

∫
R

(
u(m)(X̂s− + r) − u(m)(X̂s−)

)˜̂N(ds, dr).
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Comparing this identity with (5.26), we deduce

(5.28)

∥∥∥∥∫ ·
0

bm(X̂s) ds − Â

∥∥∥∥
≤ ∥∥u(m) − u

∥∥(
2 + (C + λ)T + 2

∑
s≤T

1
(|	Ls | > 1

)) + ∥∥Jm
∥∥,

where we denoted

Jm(t) :=
∫ t

0

∫
|r|<1

(
u(m)(X̂s− + r) − u(m)(X̂s−)

− u(X̂s− + r) − u(X̂s−)
)˜̂N(ds, dr), t ∈ [0, T ].

Clearly, for any x ∈ R, y ≥ 0,∣∣u(m)(x + y) − u(m)(x) − u(x + y) − u(x)
∣∣

≤
∫ x+y

x

∣∣(u(m))′(s) − u′(s)
∣∣ds ≤ y

∥∥u(m) − u
∥∥
(1+α)/2.

Taking into account this inequality and the fact that Jm is a martingale, we apply Doob’s
inequality to derive for any ε > 0,

(5.29) P
(∥∥Jm

∥∥ > ε
) ≤ ε−2EJm(T )2 ≤ CT ε−2∥∥u(m) − u

∥∥2
(1+α)/2.

By Proposition 2.7(ii), ‖u(m) − u‖(1+α)/2 → 0 as m → ∞. Hence, combining (5.28) and
(5.29), we get ∥∥∥∥∫ ·

0
bm(X̂s) ds − Â

∥∥∥∥ → 0 in probability as m → ∞.

It remains to show that X̂ is in the class V((1 + β
α
) ∧ 1). Fix any 0 ≤ s ≤ t ≤ T . By the

standard argument, we see that it is enough to check (2.2) only for s, t close enough. Thus
we can assume that |t − s| ≤ 1

λ0(β,2‖b‖β)
. It follows from Lemma 5.5(ii) that

E
∣∣Ân

t − Ân
s

∣∣2 = E
∣∣An

t − An
s

∣∣2 ≤ C|t − s|2(1+ β
α
−ε)‖b‖2

β

(‖b‖β + 1
)2

.

By Fatou’s lemma,

E|Ât − Âs |2 ≤ C|t − s|2(1+ β
α
−ε)‖b‖2

β

(‖b‖β + 1
)2

.

This concludes the proof. �

5.3. Proof of Proposition 2.10: Pathwise uniqueness. First of all, we note that thanks to
Proposition 2.7(i), there exists λ1 = λ1(β,‖b‖β) ≥ λ0(β,‖b‖β) such that for any λ > λ1 we
have

(5.30) ‖(
uλ

b,b

)′‖ + ∥∥uλ
b,b

∥∥ ≤ 1/4.

For the rest of this section, we fix λ > λ1. For brevity, we will write u for uλ
b,b. Introduce the

following functions:

φ(w) := w + u(w), b̃(w) := u
(
φ−1(w)

)
,

σ̃ (w, r) := u
(
φ−1(w) + r

) − u
(
φ−1(w)

)
, w, r ∈R.

We will need the following auxiliary lemma.
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LEMMA 5.6. Let γ1, γ2 ∈ [0,1). Denote γ := γ1 + γ2 and assume that γ �= 1. Then the
following hold:

(i) For any f ∈ Cγ , and r, x1, x2 ∈ R we have

(5.31)
∣∣f (x1 + r) − f (x1) − f (x2 + r) + f (x2)

∣∣ ≤ 2‖f ‖γ |x1 − x2|γ1 |r|γ2 .

(ii) For all x1, x2 ∈R,

3

4
|x1 − x2| ≤

∣∣φ(x1) − φ(x2)
∣∣ ≤ 5

4
|x1 − x2|.

In particular, this implies that φ(·) is invertible and the inverse is Lipschitz.
(iii) For all w1,w2, r ∈R,∣∣b̃(w1) − b̃(w2)

∣∣ ≤ |w1 − w2|,(5.32) ∣∣σ̃ (w1, r) − σ̃ (w2, r)
∣∣ ≤

(
2

3
|w1 − w2|

)
∧ |r| ∧ 1.(5.33)

The proof of the above lemma is standard and we prove it in the Supplementary Material
[3], Section 7.

Let Xt be a solution to (2.7) and put Wt := φ(Xt). Then rewriting (2.7), we get

(5.34) Wt = φ(x) + λ

∫ t

0
b̃(Ws) ds +

∫ t

0

∫
R

σ̃ (Ws−, r)Ñ(ds, dr) + Lt .

PROPOSITION 5.7. Equation (5.34) has a pathwise unique solution.

PROOF. Let Wt be a solution to (5.34). Using (2.6), we can rewrite (5.34) as

Wt = φ(x) +
∫ t

0
b̃0(Ws) ds +

∫ t

0

∫
R

(
σ̃ (Ws−, r) + r

)
1|r|<1Ñ(ds, dr)

+
∫ t

0

∫
R

(
σ̃ (Ws−, r) + r

)
1|r|≥1N(ds, dr),

(5.35)

where

b̃0(w) := λb̃(w) − cα

∫
R

σ̃ (w, r)1|r|≥1|r|−α−1 dr.

We are now going to apply [36], Theorem 3.2, which will guarantee pathwise uniqueness
for equation (5.35). Let us verify that all the hypotheses of this theorem are satisfied.

We begin by observing that thanks to (5.32) the function b̃ is Lipschitz. We also see that
by (5.33), there exists a constant C > 0 such that for any w1,w2 ∈ R,∫

|r|≥1

∣∣σ̃ (w1, r) − σ̃ (w2, r)
∣∣|r|−1−α dr ≤ C|w1 − w2|.

Thus condition (3.a) of [36], Theorem 3.2 holds.
It follows from (5.33) that the function σ̃ is Lipschitz in w with the Lipschitz constant less

than 1. Therefore, for each r ∈ R,

(5.36) w → w + (
σ̃ (w, r) + r

)
is a nondecreasing function of w. Using (5.31) with γ1 = 1/2, γ2 = α/2 + ε/2 (and ε > 0
sufficiently small such that β + α > 1+α+ε

2 ), we deduce for any r,w1,w2 ∈ R,∣∣σ̃ (w1, r) − σ̃ (w2, r)
∣∣ ≤ C‖u‖ 1+α+ε

2
|w1 − w2| 1

2 |r| α+ε
2 .
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Therefore, ∫
|r|≤1

∣∣σ̃ (w1, r) − σ̃ (w2, r)
∣∣2|r|−1−α dr

≤ C‖u‖2
1+α+ε

2
|w1 − w2|

∫
|r|≤1

|r|α+ε|r|−1−α dr

≤ C(ε)‖u‖2
1+α+ε

2
|w1 − w2|.

(5.37)

Since β > 1−α
2 , by Proposition 2.7(i) (take η = β there and also recall that β + α > 1+α+ε

2 >

β), we have ‖u‖ 1+α+ε
2

< ∞. This, (5.36) and (5.37) implies that condition (3.b) of [36],
Theorem 3.2 holds.

Thus all the conditions of [36], Theorem 3.2 are satisfied, and hence pathwise uniqueness
for (5.35) holds. Consequently, pathwise uniqueness for (5.34) holds. �

PROOF OF PROPOSITION 2.10. Let X be a solution to (2.7). Then Wt = φ(Xt) is a solu-
tion to (5.34). By Proposition 5.7, pathwise uniqueness holds for (5.34) and by Lemma 5.6(b)
the function φ is invertible. This implies that pathwise uniqueness holds for (2.7). �

As mentioned in the Introduction, a direct proof of Proposition 2.10 is given in the Sup-
plementary Material, [3], Section 8.

5.4. Proof of Theorem 2.3. We have already shown that by Proposition 2.9(ii), (1.1)
has a weak solution in the class V((1 + β

α
) ∧ 1). By Proposition 2.10, we know that path-

wise uniqueness holds for (2.7) and via Proposition 2.8 we know that every weak solu-
tion to (1.1) in the class V((1 + β

α
) ∧ 1) is a weak solution to (2.7). Therefore we have

shown pathwise uniqueness for (1.1). Now we can apply a generalized version of the classi-
cal Yamada–Watanabe theorem; see [31], Theorem 3.4 and Proposition 2.13. The weak exis-
tence and pathwise uniqueness for (1.1) then imply strong existence for the same equation.
For the sake of completeness, we rewrite our equation (1.1) in the notation of [31] and verify
that all the assumptions required for Theorem 3.4 and Proposition 2.13 in [31] are satisfied.

Let x ∈ R. Let (�,F,P) be a complete probability space and (Lt )t≥0 be the symmetric
stable α-process on it. Let ϒ be the product measure of δx and the law of L. Let S1 =
DR[0,∞) and S2 = R × DR[0,∞). Let P(S1 × S2) be the space of probability measures
on S1 × S2 with the product Borel σ -algebras of S1 and S2. Let X be a random variable
on (�,F,P) taking values in S1, Y be a random variable on (�,F,P) taking values in
S2 and μX×Y ∈ P(S1 × S2) be the joint distribution of (X,Y ). Moreover we assume that
Y = (x, (Ls)s≥0), that is, the law of Y is ϒ . Then our model (1.1) is specified by a set of
constraints � relating (X,Y ) where the constraint � is given by

� :=
{
Y = (

x, (Ls)s≥0
)

and X is a solution to (1.1)

in the class V
((

1 + β

α

)
∧ 1

)}
.

We denote by

S�,ϒ := {
μ(X,Y ) ∈ P(S1 × S2) : X,Y satisfy � and μX,Y (S1 × ·) = ϒ(·)}.

We will follow [31] in defining the notion of compatible solution.
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DEFINITION 5.8 (Compatible solutions). For each t ≥ 0, let {FX
t } and {FY

t } be com-
plete filtrations generated by X and Y , respectively (see Remark 2.3 in [31] for the precise
definition of completion). The collection

C ≡ {(
FX

t ,FY
t

) : t ≥ 0
}

will be referred to as a compatibility structure. X is said to be C-compatible with Y if for
each t ≥ 0, and h ∈ L

1(S2,ϒ),

E
(
h(Y ) | FX

t ∨FY
t

) = E
(
h(Y ) | FY

t

)
.

Finally, let

S�,C,ϒ := {μ(X,Y ) ∈ S�,ϒ : X is C-compatible with Y }.

LEMMA 5.9. (X,L) is a weak solution of (1.1) in the class V((1 + β
α
) ∧ 1) if and only if

μ(X,Y ) ∈ S�,C,ϒ .

PROOF. Let (X,L) be a weak solution to (1.1) in the class V((1 + β
α
) ∧ 1) and adapted

to a complete filtration Ft . Define Y·≤t := (x, (Lmin {s,t})s≥0) and Y ·≥t := (Lt+s − Lt)s≥0.
Clearly, for each t ≥ 0 we have FY

t ⊂ FX
t ∨ FY

t ⊂ Ft . Note that Y·≤t is FY
t -measurable.

Further, (Lt )t≥0 is an α-stable process with respect to the filtration Ft , and thus also with re-
spect to FX

t ∨FY
t . This implies that Y ·≥t is independent of FX

t ∨FY
t . For any h ∈ L

1(S2,ϒ)

and for all t ≥ 0, there exist bounded measurable functions ht on R×DR[0,∞) ×DR[0,∞)

such h(Y ) = ht (Y·≤t , Y
·≥t ) a.s. Then, following the argument in the proof of Lemma 2.4 in

[31], we get

E
(
h(Y ) | FX

t ∨FY
t

) = E
(
ht

(
Y·≤t , Y

·≥t ) | FX
t ∨FY

t

)
= E

(∫
ht (Y·≤t , y)P

(
Y ·≥t ∈ dy

) ∣∣∣ FX
t ∨FY

t

)
=

∫
ht (Y·≤t , y)P

(
Y ·≥t ∈ dy

)
= E

(∫
ht (Y·≤t , y)P

(
Y ·≥t ∈ dy

) ∣∣∣ FY
t

)
= E

(
h(Y ) | FY

t

)
.

Thus X is C-compatible with Y and, therefore, μ(X,Y ) ∈ S�,C,ϒ .
For the converse, let (X,Y ) be such that μ(X,Y ) ∈ S�,C,ϒ . Take Ft = FX

t ∨ FY
t . Then it

follows that on the complete filtered probability space (�,F, (Ft )t≥0,P) the process Xt is
adapted to Ft , the process Lt is a (Ft )t≥0 adapted symmetric α-stable process and (X,L)

satisfies (1.1). Hence (X,L) is indeed a weak solution of (1.1) in the class V((1 + β
α
) ∧ 1).

�

To complete the proof of Theorem 2.3, we need the following definition.

DEFINITION 5.10. We say that pointwise uniqueness holds in S�,C,ϒ if for any random
elements X1, X2 and Y defined on the same probability space with μ(X1,Y ) ∈ S�,C,ϒ and
μ(X2,Y ) ∈ S�,C,ϒ one has X1 = X2 a.s.

Now we are ready to finish.



208 S. ATHREYA, O. BUTKOVSKY AND L. MYTNIK

PROOF OF THEOREM 2.3. By Proposition 2.9, we know that (1.1) has a weak solution
in the class V((1 + β

α
) ∧ 1). Thus S�,ϒ �= ∅. By Proposition 2.10 and Proposition 2.8, we

know pathwise uniqueness holds for (1.1). Then the converse part of Lemma 5.9 implies
that pointwise uniqueness holds in S�,C,ϒ . Then pointwise uniqueness in S�,C,ϒ along with
[31], Lemma 2.10, and the direct part of Lemma 5.9, implies that the hypotheses of [31],
Theorem 3.4 are satisfied. Now [31], Theorem 3.4 and Proposition 2.13 together imply that
(1.1) has a unique strong solution in the class V((1 + β

α
) ∧ 1). (As a caution to the reader, to

avoid any confusion, we note that the word “strong” has a different meaning in [31].) �
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