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We use the Mallows permutation model to construct a new family of
stationary finitely dependent proper colorings of the integers. We prove that
these colorings can be expressed as finitary factors of i.i.d. processes with
finite mean coding radii. They are the first colorings known to have these
properties. Moreover, we prove that the coding radii have exponential tails,
and that the colorings can also be expressed as functions of countable-state
Markov chains. We deduce analogous existence statements concerning shifts
of finite type and higher-dimensional colorings.

1. Introduction. A stochastic process indexed by a metric space is said to be finitely
dependent if subsets of variables separated by some fixed distance are independent. Finitely
dependent processes appear in classical limit theorems, statistical physics and probabilistic
combinatorics [4, 22, 28, 29, 34, 37, 43, 50]. For several decades, the only known stationary
finitely dependent processes were the block-factors: processes obtained from an i.i.d. se-
quence by applying a finite-range function. Indeed in 1965, Ibragimov and Linnik [34] raised
the question of whether there exist finitely dependent processes not expressible as block fac-
tors. While finitely dependent processes enjoyed significant attention in the intervening years
[1, 2, 17–19, 24, 35, 36, 52], it was only in 1993 that Ibragimov and Linnik’s question was
resolved in the affirmative by Burton, Goulet and Meester [15]. Many subsequent works [12,
14, 20, 37, 43, 46, 47] explored the properties of such processes, but the question remained:
are there “natural” stationary finitely dependent processes that are not block-factors?

Recently, Holroyd and Liggett [32] answered this question in the affirmative by proving the
surprising fact that proper coloring distinguishes between these classes of processes. More
precisely, they constructed stationary finitely dependent colorings of Z, and provided a simple
argument showing that no block-factor is a coloring. A process (Xi)i∈Z is a q-coloring if each
Xi takes values in {1, . . . , q}, and almost surely Xi �= Xi+1 for all i. A stationary q-coloring
is k-dependent if the random sequences (Xi)i<0 and (Xi)i≥k are independent of one another.
A process is finitely dependent if it is k-dependent for some k, and it is a coloring if it is a q-
coloring for some q . By an argument of Schramm [33], there is no stationary 1-dependent 3-
coloring of Z. Holroyd and Liggett [32] constructed a stationary 1-dependent 4-coloring and a
stationary 2-dependent 3-coloring (implying trivially that stationary k-dependent q-colorings
exist for all k ≥ 1 and q ≥ 3 other than (k, q) = (1,3)). These colorings were constructed in
[32] by specifying cylinder probabilities (which are obtained in a rather mysterious way) and
appealing to the Kolmogorov extension theorem, without a direct probabilistic construction
on Z.

Here is a way to formalize this last concept. We say that X = (Xi)i∈Z is a finitary factor
of an i.i.d. process, or simply that X is ffiid, if it is equal in law to F(Y ) where Y = (Yi)i∈Z
is an i.i.d. sequence and F is a translation-equivariant function (i.e., one that commutes
with translations of Z) satisfying the following property: for almost every sequence y (with
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respect to the law of Y ), there exists r < ∞ such that F(y)0 = F(y′)0 whenever y′ agrees
with y on {−r, . . . , r}. Let R(y) be the minimal such r . The random variable R = R(Y ) is the
coding radius of the finitary factor. In other words, X0 is determined by examining only those
variables Yi within a finite but random distance R from the origin. Finitary factors generalize
block-factors: the latter are finitary factors with bounded coding radius.

In [30], it was shown that the 1-dependent 4-coloring of [32] is ffiid with infinite expected
coding radius. However, the following question mentioned therein remained unanswered:
does there exist a finitely dependent coloring that is ffiid with finite mean coding radius?

We resolve this question as well as several others from [30–32] by constructing a new
family of finitely dependent colorings whose coding radii have exponential tails.

THEOREM 1. There exists a stationary, reversible, finitely dependent proper coloring of
Z that is symmetric under permutations of the colors and that can be expressed in each of the
following ways:

(i) as a finitary factor of an i.i.d. process, with exponential tail on the coding radius; and
also

(ii) as a function of a countable state Markov chain with exponential tail on the return
time to any given state.

More precisely, there exists a stationary k-dependent q-coloring with all of the above prop-
erties for each of

(k, q) = (1,5), (2,4), (3,3),

as well as for all larger q in each case.

By the statement that a process X = (Xi)i∈Z is a “function of a countable state Markov
chain” we mean that there exists a stationary Markov chain (Yi)i∈Z on a countable state space
S and a function h on S such that X has the same distribution as (h(Yi))i∈Z. A process X is
reversible if (Xi)i∈Z has the same distribution as (X−i)i∈Z, and a q-coloring X is symmetric
under permutations of the colors if (Xi)i∈Z has the same distribution as (σ (Xi))i∈Z for any
permutation σ of {1, . . . , q}.

Both the finitary factors and the countable Markov chains arising in Theorem 1 admit
simple and explicit descriptions; see the Painting Algorithm later in the Introduction. See
Figure 1 for some simulations. These descriptions involve an additional real parameter, t ,
which must be set at a specific, irrational value depending on k and q in order for the coloring
to be finitely dependent.

FIG. 1. Samples of the k-dependent q-colorings from Theorem 1 for (k, q) = (1,5), (2,4), (3,3) (top to bottom,
resp.), together with the constraint graphs appearing in their construction. The colors form a proper coloring of
the constraint graph as well as of Z. The bubble endpoints (integers not covered by the interior of any one arc)
form a Bernoulli process with carefully chosen irrational parameter depending on k and q . The constraint graph
is not symmetric in law under reflection, even though the coloring is.
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The existence of colorings satisfying properties (i) and (ii) of Theorem 1 resolves open
problems (v) and (ii) of [32], respectively.

We will show that our colorings with k = 1 and q ≥ 5 coincide with the colorings con-
structed in [31]. The purpose of that paper was to show that there are symmetric finitely
dependent q-colorings with q ≥ 5. Thus Theorem 1 shows that these colorings are ffiid with
finite mean coding radius, resolving [31], problem 4. Moreover, the original colorings of [32]
with (k, q) = (1,4), (2,3) can be seen as boundary cases of our construction, as discussed
later in the Introduction.

The 1-dependent q-colorings from Theorem 1 have the further curious property that if one
conditions on the absence of color q , the resulting coloring is equal in law to the 2-dependent
(q −1)-coloring. (No other colorings from the theorem may be obtained from one another by
conditioning in this manner.) Each of the k-dependent q-colorings constructed in Theorem 1
is strictly k-dependent, that is, k-dependent but not (k − 1)-dependent.

Sections 4 and 5 of [32] show that finitely dependent colorings can be written neither as
block factors nor as functions of finite state Markov chains, respectively. The former result
is a consequence of an earlier result in [49], where it appears in a different form, motivated
by applications in distributed computing. Further consequences and extensions appear in [3]
and [33]. For example, block factors must contain arbitrarily long constant sequences with
positive probability.

In addition to showing that proper coloring distinguishes general stationary finitely depen-
dent processes from block factors, Holroyd and Liggett [32] generalized this conclusion from
proper coloring to all local constraints (i.e., shifts of finite type) satisfying a certain nonde-
generacy condition. As a consequence of our main theorem, we will deduce an analogue of
this result involving properties (i) and (ii) of the main theorem. See the discussion later in the
Introduction.

We reiterate a natural conjecture suggested in [30]: there exists a k-dependent q-coloring
that is a finitary factor of an i.i.d. process with finite mean coding radius if and only if k ≥
1, q ≥ 3, and (k, q) /∈ {(1,3), (2,3), (1,4)}. Theorem 1 establishes half of this conjecture:
it remains to be seen whether every ffiid coloring has infinite mean coding radius in the
remaining cases (k, q) ∈ {(2,3), (1,4)}.

Coloring has applications in computer science. Colors may represent time schedules or
communication frequencies for machines in a network, where adjacent machines are not per-
mitted to conflict with each other. Finite dependence implies a security benefit—an adversary
who gains knowledge of some colors learns nothing about the others, except within a fixed
finite distance. A ffiid coloring with finite mean coding radius is desirable for the purpose
of efficient computation. Such a coloring can be computed by the machines in distributed
fashion, based on randomness generated locally, combined with communication with other
machines within a random distance of finite mean. All machines follow the same protocol,
and no central authority is needed; see, for example, [44, 49] for more information.

Outline of proof. We next discuss the main ideas behind the proof of Theorem 1, which
involves an intricate interplay of various ideas from combinatorics and physics.

At the heart of our construction (as well as those of [32]) is the following simple but
mysterious picture. Imagine that integers arrive in a random order. When an integer arrives,
it is assigned a uniformly random color from those not present among its current neighbors,
by which we mean the nearest integers to its left and right that arrived previously. As a useful
alternative description, the random order gives rise to a graph, which we call the constraint
graph, in which two integers are adjacent if and only if they were neighbors at some time.
(The constraint graph was also considered in [30], and may be interpreted as the planar dual
of the binary search tree [23] of a permutation.) The final coloring is a uniformly random
proper coloring of the constraint graph.
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The proof of finite dependence begins with a version of this picture restricted to a finite
interval, and involves remarkable cancellations that occur only when the set-up is precisely
correct. The required arrival order is not uniformly random. Rather, it arises by reweighting
a simple underlying probability measure by the number of proper colorings of the constraint
graph. The fact that such a reweighting can produce colorings with exceptional properties is
reminiscent of the theory of two-dimensional quantum gravity, in which statistical mechanics
models are studied on random planar maps that are weighted according their partition func-
tion for the model. There, as here, the model on the appropriately weighted random map has
special properties that are not enjoyed by the same model on a fixed graph such as a Euclidean
lattice; see, for example, [25] and references therein.

For the 1-dependent 4-coloring and 2-dependent 3-coloring of [32], the underlying mea-
sure was uniform over permutations of an interval. For our new construction, the underlying
measure is the Mallows measure, in which each permutation is weighted by a parameter t

raised to the power of the number of its inversions. (An inversion is a pair of elements whose
order is reversed.) The Mallows measure was originally introduced in statistical ranking the-
ory [45], and has enjoyed a recent flurry of interest in contexts including mixing times [9,
21], statistical physics [56, 57], learning theory [13], longest increasing subsequences [7, 10,
48] and stable marriage [5]. The computations and combinatorial identities required to prove
finite dependence in our case are t-analogues of those in [32]. (The more usual terminol-
ogy is “q-analogue,” but in this article q is reserved for the number of colors. See [55] for
background on q-analogues.) Since the Mallows measure is not reflection-invariant, the re-
versibility claimed in Theorem 1 requires a further highly nontrivial combinatorial argument.

The Mallows parameter t must be chosen carefully. Specifically, for the q-coloring to be
k-dependent, the parameters q , k and t must satisfy the “tuning equation”

(1) qt
(
1 − tk

) = (1 + t)
(
1 − tk+1)

.

The tuning equation arises by setting a certain coefficient equal to zero in a recurrence for
the cylinder probabilities of the colorings. Finite dependence of the colorings stems from this
cancellation. This is reminiscent of a phenomenon in the theory of Schramm–Loewner evolu-
tion, in which SLE(κ) curves possess additional distributional symmetries for special values
of κ , stemming from cancellations in the coefficients of a stochastic differential equation
[41].

For the three cases (k, q) = (1,5), (2,4), (3,3) highlighted in Theorem 1, the required
values of t are respectively

3 − √
5

2
,

3 − √
5

2
, and

1 + √
13 +

√
2(

√
13 − 1)

4
.

The equality between the t values for the pair of cases (1,5) and (2,4) generalizes to the pair
(1, q) and (2, q − 1) with q ≥ 4. This is behind the conditioning property mentioned earlier.

When restricted to finite intervals, the above construction yields a consistent family of
random colorings, which extends to a coloring of Z via Kolmogorov extension. However,
proving that this random coloring satisfies properties (i) and (ii) of the theorem requires a
more direct construction. To achieve this, we extend the random arrival picture to Z. This
presents several challenges. On a finite interval, the reweighting introduces an extra factor
every time an integer arrives at either end of the interval of its predecessors.

For the uniform model introduced in [32], it turns out that these endpoint arrivals are suffi-
ciently rare that their effect washes out in the limit, and the associated random order on Z is in
fact uniform. However, this means that the constraint graph has many long edges. (A typical
edge has infinite mean length, by the well-known record value waiting time property.) This
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is the reason for the power law tail in the finitary factor construction of the 1-dependent 4-
coloring in [30]. (Since it is also necessary to properly color the constraint graph, it turns out
that this framework does not yield a finitary factor construction of the 2-dependent 3-coloring
at all. See [30] and the earlier discussion.)

The situation for our model is very different. For a fixed parameter t , the Mallows permu-
tation of a sufficiently large finite interval can be naturally viewed as a perturbation of the
identity, with a strong left-to-right bias in the corresponding order. Consequently, (right) end-
point arrivals now have a positive density, and their reweighting effect is not washed out in
the limit. The resulting random order on Z follows a new (and quite natural) two-parameter
variant of the Mallows measure, which we call the bubble-biased Mallows measure. (Infinite-
interval versions of the standard Mallows measure were constructed in [27].) As a result of
the endpoint arrivals, the constraint graph is much better behaved than in the previous case.
It decomposes into a sequence of finite “bubbles,” joined at their endpoints. The length of a
bubble has exponential tails, allowing us to prove properties (i) and (ii) in Theorem 1. Some
further technical details are involved in making the transition from finite intervals to Z rigor-
ous. In particular, it is useful to consider convergence of the Lehmer code of a permutation
(see, e.g., [8] for a definition).

The distinction between our new construction and that of [32] may be interpreted via the
language of phase transition. For the tuning equation (1) to have a solution in t , the parameters
k and q must satisfy the inequality qk ≥ 2(k + 1). This is satisfied with equality along a
critical curve qk = 2(k + 1) in the (k, q) plane; see Figure 2. On the curve, we have t = 1,
and there are precisely two integer solutions, (1,4) and (2,3), giving the colorings of [32].
(The Mallows measure reduces to the uniform measure when t = 1.) On one side of the curve,
the construction does not work, while on the other side we obtain the colorings of this article.
This fits the signature of a phase transition: an abrupt qualitative change in behavior, with
power laws at criticality, and exponential decay in the off-critical regime. We believe that the
same phase transition phenomenon applies to finitely dependent colorings of Z in complete
generality, not just to the specific construction here (although currently no other constructions
are known, besides trivial embellishments). Indeed, it is proved in [32] that no stationary 1-
dependent 3-coloring exists (so no solution exists on that side of the curve). We believe that
the stationary 1-dependent 4-coloring and 2-dependent 3-coloring (the “critical” cases) are

FIG. 2. Phase diagram for k-dependent q-colorings. The phase boundary is the curve qk = 2(k + 1). The two
lattice points on this curve correspond to the 1-dependent 4-coloring and 2-dependent 3-coloring of [32]. In the
region qk < 2(k + 1), there do not exist k-dependent q-colorings (the × at (k, q) = (1,3) indicates the case
ruled out by an argument of Schramm in [33]). The 1-dependent q-colorings from [31] correspond to the outlined
region. When qk > 2(k + 1), there exists a k-dependent q-coloring that is ffiid with finite expected coding radius,
by Theorem 1.
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unique. (Some evidence for the former case is given in [32].) Moreover, we conjecture that no
stationary 1-dependent 4-coloring or 2-dependent 3-coloring is ffiid with finite mean coding
radius.

We reiterate that in [30], the 1-dependent 4-coloring was shown to be ffiid with infinite
expected coding radius. We do not have an analogous explicit ffiid representation of the 2-
dependent 3-coloring. A result of Smorodinsky [53] states that stationary finitely dependent
processes of equal entropy are finitarily isomorphic, implying that the 2-dependent 3-coloring
of [32] is ffiid, but [53] contains only a brief sketch of the proof, and the details do not seem
to be available. However, Spinka [54] has recently obtained an alternative proof that every
finitely dependent process is ffiid.

An algorithm for finitely dependent coloring. There is a remarkably direct construction
of the colorings of the main theorem, which we now present. While properties (i) and (ii)
in the theorem (as well as stationarity, coloring constraints and color symmetry) follow in a
straightforward manner from the description, the finite dependence and reversibility proper-
ties are more subtle, and will be explained later.

Painting Algorithm. Input: positive integers q and k satisfying qk > 2(k + 1). Output:
the k-dependent q-coloring (Xi)i∈Z constructed as follows.

Stage 0. Let t be the unique solution to (1) in (0,1). Set s = t (q − 2)/(q − 1 − t). Start
with Xi unassigned for every i ∈ Z.

Stage 1. Let B = (Bi)i∈Z be an i.i.d. Bernoulli process with each Bi ∈ {0,1} taking value
1 with probability s. To each i with Bi = 1, assign a random color Xi ∈ {1, . . . , q}, in such a
way that, conditional on B , the subsequence (Xi : Bi = 1) of assigned values is the trajectory
of a simple symmetric random walk on the complete graph with vertex set {1, . . . , q} at
stationarity; such a trajectory may be sampled algorithmically as a finitary factor of i.i.d.
using coupling from the past; see Section 7.

Stage 2. Consider pairs of nearest integers a < b that were assigned colors in Stage 1, that
is, Ba = Bb = 1 while Bi = 0 for a < i < b. Independently for each such pair and conditional
on Stage 1, we fill in the missing colors via the following recursive procedure. Let K be a
random element of {a + 1, . . . , b − 1} with truncated geometric distribution of parameter t ,
that is, P(K = �) = ct�, where c is a constant of proportionality. Assign XK a uniformly
random color in {1, . . . , q} \ {Xa,Xb}. Conditional on the previous steps, recursively apply
the same procedure to each of the intervals {a, . . . ,K} and {K, . . . , b} until all integers have
been assigned colors.

It is important to note that the conditional law, given Stage 1, of the coloring (Xi)
b
i=a

for integers a < b in Stage 2 is not simply the conditional law of the final process (Xi)i∈Z
restricted to {a, . . . , b} given Xa and Xb. For example, it is possible that (X1,X2,X3,X4) =
(1,2,1,2) (for instance if all 4 values are assigned at Stage 1). However, if Stage 1 assigns
X1 = 1 and X4 = 2 but not X2 or X3, it is then impossible for Stage 2 to fill the interval in
this way, because both colors 1 and 2 are unavailable for the first insertion. Our construction
is more subtle than such naive conditioning would suggest. In particular, the specific choices
of the parameters s and t of the Bernoulli and geometric processes are crucial, as we shall
see.
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Compact Markov chains. While we now have an entire family of finitely dependent col-
orings, all the known proofs of finite dependence rely on delicate cancellations in the finite
dimensional distributions. It is natural to seek examples whose finite dependence follows by
more direct reasoning. Here is one potential candidate. Consider a stationary discrete-time
Markov chain on a compact (but perhaps uncountable) metric space. Any partition of the
space into q parts immediately gives a stationary {1, . . . , q}-valued process. Suppose that
the Markov chain always moves by at least distance ε > 0 at every step. Then by choosing
a finite partition into parts of diameter less than ε (which is possible by compactness), we
would obtain a stationary proper coloring. Suppose that in addition the chain mixes perfectly
k steps, in the sense that from any initial state it is at stationarity at time k. Then the coloring
would be finitely dependent.

We do not know whether there exists a Markov chain with all the above properties. (In
particular, we do not know how to construct one by “working backwards” from the known
colorings.) We show that there is no reversible chain with the desired properties.

PROPOSITION 2. If (Xn)n∈Z is a stationary reversible Markov process on a compact
metric space (S, d) such that X0 is independent of Xk for some integer k > 0, then there does
not exist ε > 0 such that d(X0,X1) ≥ ε almost surely.

Shifts of finite type and higher dimensions. From a finitely dependent coloring of Z, one
may construct finitely dependent colorings in higher dimensions, as well as finitely dependent
processes satisfying more general local constraints (namely nonlattice shifts of finite type), as
shown in [32]. Applying this to the colorings from Theorem 1 yields the next two corollaries,
which we state after giving the necessary definitions.

The hypercubic lattice is the graph with vertex set Zd and an edge between u and v when-
ever ‖u−v‖1 = 1; the graph is also denoted Z

d . A process on Z
d is stationary if it is invariant

in law under all translations of Zd , and it is ffiid if it is equal in law to F(Y ) where Y is an
i.i.d. process on Z

d and F is a translation-equivariant function satisfying the following prop-
erty: for almost every configuration y (with respect to the law of Y ), there exists r < ∞ such
that F(y)0 = F(y′)0 whenever y′ agrees with y on {−r, . . . , r}d . Let R(y) be the minimal
such r . We call the random variable R = R(Y ) the coding radius of the process. A process
indexed by a graph is k-dependent if its restrictions to two subsets of V are independent
whenever the subsets are at graph-distance greater than k from each other.

The following is a consequence of our Theorem 1 combined with methods of [33].

COROLLARY 3. Let d ≥ 2. There exist integers q = q(d) and k = k(d) such that:

(i) there exists a ffiid 1-dependent q-coloring of Zd with exponential tail on the coding
radius;

(ii) there exists a stationary ffiid k-dependent 4-coloring of Zd with exponential tail on
the coding radius.

Coloring is a special case of the following more general notion, in which the requirement
that adjacent colors differ is replaced with arbitrary local constraints. A shift of finite type is
a set of sequences S characterized by an integer k and a set W ⊆ {1, . . . , q}k as follows:

S = S(q, k,W) := {
x ∈ {1, . . . , q}Z : (xi+1, . . . , xi+k) ∈ W ∀i ∈ Z

}
.

We call the shift of finite-type nonlattice if for some w ∈ W we have that

gcd
{
t ≥ 1 : ∃x ∈ S with (x1, . . . , xk) = (xt+1, . . . , xt+k) = w

} = 1.

The following is a consequence of our Theorem 1 combined with methods of [32].
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COROLLARY 4. Let S be a nonlattice shift of finite type on Z. There exists an integer
k (depending on S) and a k-dependent ffiid process X with exponential tail on the coding
radius such that the random sequence X belongs to S almost surely.

Intermediate in generality between q-colorings and shifts of finite type is the class of
stochastic processes taking values in the vertex set of a finite graph such that realizations
of the process are a.s. paths. For the complete graph on q vertices Kq , such a process is
precisely a q-coloring. A natural modification of the construction of [32] was systematically
investigated in [42], in which the graph Kq was replaced with a weighted graph. It was found
that, other than straightforward modifications of the 1-dependent 4-coloring and 2-dependent
3-coloring of [32], no other finitely dependent processes arise in this manner. It would be
interesting to see whether or not the obvious t-analogue of this result holds.

Organization of the paper. Section 2 covers background material and simple facts about
the combinatorial objects we will use in the proof of the main theorem. Section 3 constructs
the colorings in the main theorem by starting on finite intervals and using Kolmogorov exten-
sion. Section 4 shows that the colorings are reversible. Sections 5 and 6 complete the proof
of the main theorem by providing a second construction of the colorings as a finitary factor
with exponential tails on the coding radius.

The remaining results claimed in the Introduction are proven in Sections 8 and 9. Open
problems are in Section 10.

2. Permutations, codes, colorings and graphs. This section introduces notation and
basic facts used in the proof of Theorem 1. As stated previously, the essence of this theorem
is that finitely dependent colorings arise as t-analogues of the random colorings in [32]. The
t-analogue of a positive integer n is [n]t := 1+ t +· · ·+ tn−1, which is equal to n when t = 1
and equal to (1 − tn)/(1 − t) otherwise. Many numerical equalities that are combinatorial
in nature generalize to polynomial identities between t-analogues. This phenomenon appears
frequently in algebraic combinatorics [55]. The t-factorial [n]!t and the t-binomial coefficient( n
kt

)
are defined via the formulas

[n]!t :=
n∏

k=1

[k]t and
(
n

k

)
t

:= [n]!t
[k]!t [n − k]!t

.

There are n! permutations in Sn. A t-analogue of this fact is that

(2) [n]!t = ∑
σ∈Sn

t inv(σ ),

where the inversion number inv(σ ) is defined to be

inv(σ ) := #
{
1 ≤ i < j ≤ n : σ(i) > σ(j)

}
.

Equation (2) is well known and easy to prove, if one uses the right bijection (see, e.g., [55],
Proposition 1.3.17). It also follows from the proof of Lemma 6 later in this section.

The Mallows measure Malt with parameter t is the probability measure on Sn assigning
to each permutation σ ∈ Sn a probability of t inv(σ )/[n]!t . A Mallows random permutation is a
random element of Sn whose law is a Mallows measure. Since inv(σ ) = inv(σ−1), a Mallows
random permutation is equal in law to its inverse.

Various statistics of Mallows random permutations are related to geometric random vari-
ables. We will need a rather extravagant list of variants of the geometric distribution. Let X

be a random variable:
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(i) X is an i-truncated, t-geometric random variable if

P(X = j) = tj

1 + t + · · · + t i
, 0 ≤ j ≤ i.

(ii) X is a u-zero-weighted, i-truncated, t-geometric random variable if

P(X = j) = u1[j=0]tj

u + t + · · · + t i
, 0 ≤ j ≤ i.

(iii) X is a u-max-weighted, i-truncated, t-geometric random variable if

P(X = j) = u1[j=i]tj

1 + t + · · · + t i−1 + uti
, 0 ≤ j ≤ i.

(iv) X is a u-end-weighted, i-truncated, t-geometric random variable if

P(X = j) = u1[j∈{0,i}]tj

u + t + · · · + t i−1 + uti
, 0 ≤ j ≤ i.

(v) X is a u-zero-weighted, t-geometric random variable if

P(X = j) = u1[j=0]tj

u + t
1−t

, 0 ≤ j < ∞.

Intervals of integers are sets of the form I ∩ Z where I is an interval of real numbers.
We write �a, b� for [a, b) ∩Z and we use similar blackboard-bold notation for other types of
intervals as well. The cardinality of a set S is denoted by #S.

As we will be constructing colorings directly on Z, it is convenient to introduce notation
for permutations of arbitrary integer intervals I , which may be finite or infinite. A permuta-
tion of I is a bijection from I to itself, and we write Sym(I ) for the set of all such bijections.
We identify Sym(I ) with the subset of Sym(Z) consisting of permutations fixing all elements
of Z \ I . A finite permutation is a permutation fixing all but finitely many integers. For per-
mutations σ, τ ∈ Sym(I ), we write σ ◦ τ for their composition, which maps i to σ(τ(i)). For
a sequence of permutations {σj }j∈J indexed by a finite interval J = �a, b� of Z, we denote
their composition:

©
j∈J

σj := σa ◦ σa+1 ◦ · · · ◦ σb−1 ◦ σb.

The Lehmer code is a standard way of encoding permutations of finite intervals by a se-
quence of integers [39]. We will use an extension of this to (possibly infinite) intervals I of Z.
For such intervals, we define the Lehmer code to be the map L : Sym(I ) → �0,∞�I given
by

L (σ )i = #
{
j ∈ I : j > i and σ(j) < σ(i)

}
, σ ∈ Sym(I ), i ∈ I.

The Lehmer code is a refinement of the inversion number,

inv(σ ) := #
{
(i, j) ∈ I 2 : j > i and σ(j) < σ(i)

}
,

in the sense that
∑

i∈I L (σ )i = inv(σ ). A variant of the Lehmer code is the insertion code,
which is the map L̃ : Sym(I ) → �0,∞�I given by

L̃ (σ )i := L (σ )σ−1(i)

= #
{
j ∈ I : j < i and σ−1(j) > σ−1(i)

}
, σ ∈ Sym(I ), i ∈ I.

The entries of L̃ (σ ) are a permutation of those in L (σ ), so
∑

i∈I L̃ (σ )i = inv(σ ). Figure 3
illustrates the definitions of L and L̃ .
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FIG. 3. The Lehmer code and the insertion code can be read from the scatter plot of a permutation. Visualization
of (a) L (σ )7 = 1 and (b) L̃ (σ )7 = 5 for the permutation σ = 687192435. The quantities are the numbers of
dots in the shaded regions.

Clearly, 0 ≤ L (σ )i ≤ sup I − i and 0 ≤ L̃ (σ )i ≤ i − inf I for all i ∈ I . Let

�I = {
� ∈ �0,∞�I : 0 ≤ �i ≤ sup I − i,∀i ∈ I

}
and

�̃I = {
� ∈ �0,∞�I : 0 ≤ �i ≤ i − inf I,∀i ∈ I

}
,

so that L (Sym(I )) ⊆ �I and L̃ (Sym(I )) ⊆ �̃I . When I is finite, L and L̃ are bijec-
tions from Sym(I ) to �I and �̃I , respectively, with explicit inverse functions which we now
describe.

For a finite interval J of Z, let π−
J ∈ Sym(Z) denote the permutation fixing Z \ J and

cyclically decrementing J , that is,

π−
J (j) =

⎧⎪⎪⎨⎪⎪⎩
j − 1, minJ < j ≤ maxJ,

maxJ, j = minJ,

j, j ∈ Z \ J.

The permutation π−
J has a single cycle, which has size #J .

Let D : �0,∞�I → Sym(Z) denote the map

(3) D(�) = ©
i∈I

π−
�i,i+�i �, � ∈ �0,∞�I .

See Figure 4. Also let D̃ : �0,∞�I → Sym(Z) denote the map

(4) D̃(�) = ©
i∈I

π−
�i−�i ,i�, � ∈ �0,∞�I .

LEMMA 5. Suppose that I is a finite interval of Z. Then L is a bijection from Sym(I ) to
�I , with inverse given by the restriction of D to �I . Similarly, L̃ is a bijection from Sym(I )

to �̃I , with inverse given by the restriction of D̃ to �̃I .

The proof, which is straightforward, is omitted. Similar results are well known and appear,
for example, in [10, 27, 55]. See, in particular, [55], Proposition 1.3.9.

LEMMA 6. For 1 ≤ i ≤ n, let Gi be an (n − i)-truncated t-geometric random variable,
and suppose that G1, . . . ,Gn are independent. Then the law of D(G1, . . . ,Gn) is the Mallows
measure on Sn with parameter t .
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FIG. 4. Depiction of D(�) for the sequence � = (5,6,5,0,4,0,1,0,0). Given �, draw crosses on NW-SE diag-
onals such that the ith such diagonal from the left contains �i crosses. Then follow the wires upwards to obtain
the permutation σ = D(�). In this case, σ = 687192435.

PROOF. It follows from Lemma 5 that for all σ ∈ Sn,

P
(
D(G1, . . . ,Gn) = σ

) = P
(
(G1, . . . ,Gn) = L (σ )

)
.

By the independence of G1, . . . ,Gn, the right-hand side equals

n∏
i=1

P
(
Gi = L (σ )i

)
.

The result now follows since
∑n

i=1 L (σ )i = inv(σ ). �

Having discussed permutations and their encodings, we now relate these objects to words.
Fix a (possibly infinite) interval I of Z and an integer q ≥ 1. A word x = (xi)i∈I indexed by
I is a function from I to �1, q�, and its entries are referred to as characters. It is proper if
xi �= xi+1 whenever i, i + 1 ∈ I . A q-coloring is defined to be a proper word. The length of
a word, denoted by |x|, is the cardinality of its index set I . We denote the empty word by
∅. The concatenation of a word x indexed by �a, b� with a word y indexed by �b, c� is the
word xy indexed by �a, c� whose restrictions to �a, b� and �b, c� are x and y, respectively.
Similar notation is used for concatenations of words with individual characters. Given a word
x indexed by I and a set A ⊆ I of size m, the subword (xi : i ∈ A) is defined to be the word
xi1xi2 · · ·xim , where ik is the kth smallest element of A. In other words, it is the subsequence
of x indexed by A.

Following [32], we say that a permutation σ of I is a proper building of a word x if for
each t ∈ I the subword

xσ (t) := (
xi : σ(i) ≤ t

)
of x is proper. We write σ � x if this occurs. Note that x is proper if and only if it has some
proper building, in which case for instance the identity permutation is a proper building.

The following picture will be very useful. We regard σ(i) as the arrival time of i. Then
xσ (t) is the subword of x that has arrived by time t . At time step t , the integer σ−1(t)

arrives, and the character xσ−1(t) is inserted into xσ (t − 1) (or the empty word, if t = min I ).
The insertion code L̃ (σ )t has a natural interpretation in terms of arrivals, from which its



354 A. E. HOLROYD, T. HUTCHCROFT AND A. LEVY

name derives: it is the distance from the right at which xσ−1(t) is inserted in xσ (t − 1). More
precisely, for all t > min I there are subwords u and v of x such that

xσ (t − 1) = uv, xσ (t) = uxσ−1(t)v and |v| = L̃ (σ )t .

For example, if σ = 25431 and t = 4, then

xσ (t − 1) = x1x4x5, xσ−1(t) = x3, xσ (t) = x1x3x4x5,

and L̃ (σ )t = |x4x5| = 2.
The condition σ � x can also be expressed in the language of graphs. Let I be the index set

of x. Then for a graph G with vertex set I , we say that x is a proper coloring of G if xi �= xj

whenever i and j are adjacent in G. Given a permutation σ of I , we define its constraint
graph 
σ to have vertex set I and an undirected edge between i and j , where i < j , if and
only if σ(i) < σ(k) > σ(j) for all k ∈ �i, j �. In other words, two integers are adjacent in 
σ

if and only if they both arrive prior to any integer between them. It is immediate from the
definitions that σ � x if and only if x is a proper coloring of 
σ . See Figure 5 for an example
of a constraint graph.

Next, we consider decompositions of graphs that arise naturally in the context of buildings.
Let G be a graph whose vertex set I is a (possibly infinite) interval of Z. An integer i ∈ I

is a bubble endpoint of G if there do not exist j and k with j < i < k such that j and k are
adjacent in G. A bubble of G is a subgraph induced by a finite interval of Z whose endpoints
are consecutive bubble endpoints, and bub(G) denotes the set of all bubbles. Note that every
endpoint of I is a bubble endpoint. See Figure 5.

LEMMA 7. Let G be a graph whose vertex set I is a (possibly infinite) interval of Z.
Then G = ⋃

bub(G) iff the infimum and supremum of the set of bubble endpoints agree with
those of I .

The proof is immediate. Note that the condition on the set of bubble endpoints holds auto-
matically if I is finite.

Next, we consider bubbles of constraint graphs of permutations. An integer i is a record
of a permutation σ if it is either the maximum or minimum of the set{

σ(j) : j ≤ σ−1(i)
}
.

Records are a well-studied permutation statistic, both combinatorially [11] and probabilisti-
cally [6, 16, 26, 40]. A founder of a permutation σ is defined to be a record of σ−1. Equiva-
lently, i is a founder of σ iff there do not exist j and k with j < i < k and σ(j) < σ(i) > σ(k).
Phrased in terms of the arrival times picture, i is a founder if and only if either:

• it arrives prior to all smaller elements of I , or
• it arrives prior to all larger elements of I .

We write F(σ ) for the set of founders of σ .

FIG. 5. Constraint graph of the permutation σ = 687192435. Vertices of the constraint graph are labeled
1, . . . ,9. The image under σ is written below each vertex, and these are interpreted as arrival times. An arc
is drawn between two vertices if they arrive before every vertex between them. The bubbles of this constraint
graph are the subgraphs induced by �1,4�, �4,6�, �6,8� and �8,9�.
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LEMMA 8. Let σ be a permutation of an interval I ⊆ Z (which may be finite or infinite).
Then the set of bubble endpoints of the constraint graph 
σ is F(σ ). Furthermore, if I =

�0, n�, then #F(σ ) = #{i ∈ I : L̃ (σ )i ∈ {0, i}}.
In particular, this implies that if #I ≥ 2 then # bub(
σ ) is one less than the number of

founders of σ (which could be infinite for a permutation of an infinite interval). Notation
involving Lehmer codes often simplifies when working on the interval �0, n�. Note that this
interval has n + 1 elements.

PROOF OF LEMMA 8. If i is not a bubble endpoint of 
σ , then there must exist j < i < k

such that j and k arrive prior to all elements of �j, k�, and in particular i. Thus i is not a
founder. Conversely if i is not a founder, then there exist j < i < k with σ(j) < σ(i) > σ(k).
Now choose j maximal and k minimal satisfying these conditions to obtain an edge of 
σ

passing over i, showing that i is not a bubble endpoint. This establishes the first claim.
For the second claim, observe that

F(σ ) = {
i ∈ I : L̃ (σ )σ(i) ∈ {

0, σ (i)
}} = σ

({
i ∈ I : L̃ (σ )i ∈ {0, i}})

.

Thus #F(σ ) = #{i ∈ I : L̃ (σ )i ∈ {0, i}}. �

Let Colq(G) be the number of proper q-colorings of a graph G.

LEMMA 9. For any q ≥ 3, any finite interval I of Z, and any permutation σ of I ,

Colq(
σ ) = q(q − 2)#I−1
(

q − 1

q − 2

)#F(σ )−1
.

PROOF. Without loss of generality, assume that I = �0, n�. For each i ∈ �0, n�, let 
i
σ

denote the subgraph of 
σ induced by the set of the first i vertices to arrive, σ−1(�0, i�).
The graph 
1

σ can be colored in q ways. Suppose x is a proper coloring of 
i
σ . If i + 1 is a

record of σ−1, then i + 1 has degree 1 in 
i+1
σ , and there are exactly q − 1 colorings of 
i+1

σ

extending x. Otherwise, i + 1 has degree 2 in 
i+1
σ and, since both of the neighbors of i + 1

in 
i
σ have different colors in x, there are exactly q − 2 proper colorings of 
i+1

σ extending
x. Thus, we have that

Colq
(

i+1

σ

) =
{
(q − 1)Colq

(

i

σ

)
if i + 1 is a record of σ−1,

(q − 2)Colq
(

i

σ

)
otherwise,

and the claim follows. �

A key element of the proof of our main theorem is a joint probability measure on colorings
and permutations of a finite interval. The marginal law of the coloring will provide the finite-
dimensional distributions for our coloring of Z. The marginal law of the permutation will
belong to the following family of permutation measures. Let I ⊂ Z be a finite interval and let
u and t be nonnegative real parameters. The bubble-biased Mallows measure with parameters
t and u is the probability measure BMal = BMalt,u = BMalIt,u on Sym(I ) given by

(5) BMal
({σ }) = u#F(σ )t inv(σ )∑

τ∈Sym(I ) u
#F(τ )t inv(τ )

, σ ∈ Sym(I ),

where the equality of these two expressions follows from (8). If #I ≥ 2, then # bub(
σ ) is
one less than the number of records of σ−1 and we also have that

BMal
({σ }) = u# bub(
σ )t inv(σ )∑

τ∈Sym(I ) u
# bub(
τ )t inv(τ )

, σ ∈ Sym(I ),
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which justifies the name of the measure. The key property of BMal is that for q ≥ 3 and
u = q−1

q−2 we have that, by Lemma 9,

(6) BMalt,u
({σ }) = Colq(
σ )t inv(σ )∑

τ∈Sym(I ) Colq(
τ )t inv(τ )
, σ ∈ Sym(I ).

That is, BMal is the law of a Mallows random permutation biased by the number of proper
q-colorings of its constraint graph. We extend the definition of the Mallows measure from
permutations of �1, n� to permutations of an arbitrary finite interval I by declaring it to be
the special case u = 1 of BMalt,u. We remark that, even though Malt (σ ) = Malt (σ−1) for all
σ , the quantities BMalt,u(σ ) and BMalt,u(σ−1) differ in general when u �= 1. This fact adds
significant complications to our proof of the main theorem.

LEMMA 10. For all i ∈ �0, n�, let Gi be a u-end-weighted, i-truncated, t-geometric ran-
dom variable, and suppose that G0, . . . ,Gn are independent. Then the law of D̃(G0, . . . ,Gn)

is BMal
�0,n�
t,u .

PROOF. It follows from Lemma 5 that for all σ ∈ Sym(�0, n�),

P
(
D̃(G0, . . . ,Gn) = σ

) = P
(
(G0, . . . ,Gn) = L̃ (σ )

)
.

By the independence of G0, . . . ,Gn, the right-hand side equals

n∏
i=0

P
(
Gi = L̃ (σ )i

) =
n∏

i=0

u1[L̃ (σ )i∈{0,i}]tL̃ (σ )i

u + t + · · · + uti−1 + uti
.

The exponent of u in this product is #F(σ ) by Lemma 8, and the exponent of t is inv(σ ). We
deduce that

P
(
D̃(G0, . . . ,Gn) = σ

) = u#F(σ )t inv(σ )∏n
i=0(u + t + · · · + uti−1 + uti)

,

from which the claim follows. �

3. Finite dependence. The purpose of this section is to construct random colorings of
Z that are finitely dependent by starting on finite intervals and appealing to Kolmogorov
extension.

PROPOSITION 11. Fix t ∈ [0,1] and q ≥ 3. Let u = q−1
q−2 . Then there is a random q-

coloring of Z such that for every finite interval I , its restriction to I has the law of a uniform
q-coloring of the constraint graph of a BMalt,u-distributed permutation of I .

The random coloring is strictly k-dependent iff (q, k, t) satisfies the tuning equation

(7) qt[k]t = [2]t [k + 1]t .
Note that the equation (7) is equivalent to (1) provided t �= 1. The proof of Proposition 11

is given at the end of this section after several intermediate results.
Consider the probability measure Joint = Jointt,q,n on Sn × �1, q�n given by

Joint
({

(σ, x)
}) = 1[σ � x]t inv(σ )

Z(t, q, n)
,

where the normalizing constant Z(t, q, n) is

Z(t, q, n) = ∑
σ∈Sn

∑
x∈�1,q�n

1[σ � x]t inv(σ ) = ∑
σ∈Sn

Colq(σ )t inv(σ ).
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The permutation marginal of Joint is BMal, by (6). If the random pair (σ, x) has law Joint,
then the conditional law of x given σ is the uniform measure on proper q-colorings of 
σ .
We denote the marginal probability mass function of x by P col = P col

t,q,n,

(8) P col(x) = ∑
σ∈Sn

1[σ � x]t inv(σ )

Z(t, q, n)
.

LEMMA 12. Let t ∈ [0,1] and q ≥ 3. There exists a measure MalCol = MalColq,t on
�1, q�Z such that if X = (Xi)i∈Z is random with law MalCol, then X is stationary and

P
[
(Xi+1, . . . ,Xi+n) = x

] = P col
t,q,n(x)

for all i ∈ Z, for all n ≥ 0, and for all x ∈ �1, q�n.

The random colorings of Z which we construct in the proof of the main theorem have law
MalColq,t for certain values of t .

To prove Lemma 12, we first establish some recurrence relations concerning the building
numbers of words. The building number Bt(x) is the unnormalized version of P col

t,q,n given
by

Bt(x) := ∑
σ∈Sn

1[σ � x]t inv(σ ) = Z(t, q, n)P col(x), x ∈ �1, q�n.

This specializes when t = 1 to the number of proper buildings, which was a key player in the
earlier construction of [32]. Observe that∑

x∈�1,q�n

Bt (x) = Z(t, q, n)

and that Bt(∅) = 1.
The reason we use Bt(x) (rather than using P col directly) is that it satisfies simpler recur-

rences, as we will now see. We abbreviate a word x = (xi)i∈�1,n� by writing x = x1 · · ·xn,
and we use the notation x̂i := x1 · · ·xi−1xi+1 · · ·xn.

LEMMA 13. For all n ≥ 1, all words x ∈ �1, q�n, and all real t ≥ 0 we have

(9) Bt(x) = 1[x is proper]
n∑

i=1

tn−iBt (x̂i),

and

(10) Bt(x) =
n∑

i=1

tn−iBt (x̂i) − [2]t
n∑

j=2

1[xj−1 = xj ]tn−jBt (x̂j ).

Equation (9) is a t-analogue of [32], Proposition 9. The variant recurrence (10) (which was
not used in [32]) simplifies a large amount of casework. As an alternative to the proof below,
one may deduce (10) from (9) via the Möbius inversion formula for posets [55], Section 3.7.

PROOF OF LEMMA 13. To prove equation (9), observe that the permutation σ is a
proper building of x with σ−1(n) = i if and only if x is proper and the permutation
σ̂i := σ1 · · ·σi−1σi+1 · · ·σn ∈ Sn−1 is a proper building of x̂i . Now (9) follows from the easy
observation that inv(σ ) = inv(σ̂i) + n − i.
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To establish (10), write 1[x is proper] as 1[x1 �= x2] · · ·1[xn−1 �= xn]. Then by (9),

(11) Bt(x) =
n∏

j=2

(
1 − 1[xj−1 = xj ]) n∑

i=1

tn−iBt (x̂i).

Next, observe that for any pair of distinct indices i �= j , the expression

1[xj−1 = xj ]1[xi−1 = xi]Bt(x̂k)

vanishes for all k. Indeed, any word x with xj−1 = xj and xi−1 = xi must still have adjacent
repeated indices even after deleting an arbitrary symbol, and so the resulting word has no
proper buildings. Expanding (11) and discarding such terms,

Bt(x) =
(

1 −
n∑

j=2

1[xj−1 = xj ]
)

n∑
i=1

tn−iBt (x̂i).

If the expression 1[xj−1 = xj ]Bt(x̂k) is nonzero, then k ∈ {j − 1, j} and x̂k = x̂j . Thus

Bt(x) =
n∑

i=1

tn−iBt (x̂i) −
n∑

j=2

1[xj−1 = xj ]
n∑

i=1

tn−iBt (x̂i)

=
n∑

i=1

tn−iBt (x̂i) −
n∑

j=2

1[xj−1 = xj ](tn−j + tn−j+1)
Bt(x̂j ).

Factoring out [2]t = t + 1 from the second term in the latter expression yields (10). �

Using these recurrences, we show that the marginals of MalCol are consistent.

PROPOSITION 14 (Consistency). For all x ∈ �1, q�n and all a ∈ �1, q�, we have that∑
a∈�1,q�

P col
t,q,n+1(ax) = ∑

a∈�1,q�

P col
t,q,n+1(xa) = P col

t,q,n(x).

In the following proof and for the remainder of this section, we write � to denote a dummy
variable that is summed over �1, q�. For example, given a function f : �1, q�m+k → R and a
word x of length m, we write f (x�k) as a shorthand for

∑
y∈�1,q�k f (xy).

PROOF. To prove that P col
t,q,n+1(�x) = P col

t,q,n(x), we establish by induction on n that

(12) Bt(x�) = (
q[n + 1]t − [2]t [n]t )Bt(x), x ∈ �1, q�n.

This is clear when n = 0. Let x be a word of length n, and suppose that (12) holds for all
words of length at most n − 1. Also suppose that x is proper, for otherwise (12) is trivial.

Applying equation (10) from Lemma 13, we see that for any a ∈ �1, q� we have that

(13) Bt(xa) = t

n∑
i=1

tn−iBt (x̂ia) + Bt(x) − 1[xn = a][2]tBt (x).

Summing over all a ∈ �1, q� yields that

Bt(x�) = t

n∑
i=1

tn−iBt (x̂i�) + qBt(x) − [2]tBt (x).
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Hence by the inductive hypothesis

(14) Bt(x�) = t
(
q[n]t − [2]t [n − 1]t ) n∑

i=1

tn−iBt (x̂i) + qBt(x) − [2]tBt (x).

By (9), we have that
∑n

i=1 tn−iBt (x̂i) = Bt(x). Substituting this into (14) and using the trivial
identity t[n]t + 1 = [n + 1]t , we deduce (12).

Combining (12) with (3) yields that P col
t,q,n+1(x�) = P col

t,q,n(x). By an analogous argument,

we have that P col
t,q,n+1(�x) = P col

t,q,n(x) as well. �

REMARK 15. Inducting on the equality (12) yields a formula for the normalizing con-
stant Z(t, q, n). Interestingly, when q , k, t satisfy the tuning equation (7), this expression
simplifies to give

(15) Z(t, q, n) = [n]!t
(

q

[k + 1]t
)n (

k + n

k

)
t

.

Lemma 12 now follows easily.

PROOF OF LEMMA 12. The family of cylinder measures in the statement of the lemma
is consistent, by Proposition 14. Thus by the Kolmogorov extension theorem [38] there exists
a random coloring, X, for which (12) holds. Stationarity of X is immediate. �

PROPOSITION 16 (k-dependence). Suppose that the integers q ≥ 3 and k ≥ 1 and the
real number t ≥ 0 satisfy the tuning equation qt[k]t = [2]t [k + 1]t (7). Then for all x ∈
�1, q�m and y ∈ �1, q�n we have that

(16)
∑

a∈�1,q�k

P col
t,q,m+k+n(xay) = P col

t,q,m(x)P col
t,q,n(y).

This proposition implies that a coloring with law MalCol is k-dependent whenever (q, k, t)

satisfies the tuning equation (7).

PROOF OF PROPOSITION 16. Define constants {cn,m : n,m ≥ 0} recursively by set-
ting c0,0 = 1, c1,0 = c0,1 = (q[n + 1]t − [2]t [n]t )k , and for each n,m ≥ 1 setting cn,m =
tk+ncm−1,n + cm,n−1. (It is possible to solve this recurrence and write cn,m explicitly in terms
of t-binomial coefficients, but we will not need to do this.) To prove the claim, it suffices to
prove by induction on n + m that

(17) Bt

(
x �k y

) = cm,nBt (x)Bt (y)

for every n,m ≥ 0, x ∈ �1, q�m, and y ∈ �1, q�n. The case m = n = 0 is trivial, and the cases
n = 1, m = 0 and n = 0, m = 1 follow from (12).

Let m,n ≥ 1, and suppose that (17) holds for all words x and y with lengths at most
m − 1 and n, respectively, and for all words x and y with lengths at most m and n − 1,
respectively. Furthermore, suppose that x and y are proper, since the desired result holds
trivially otherwise. Let a = a1a2 · · ·ak denote a word; a will be summed over �1, q�k below.
Applying equation (10) of Lemma 13 yields that

Bt(xay) =
m∑

i=1

tm+k+n−iBt (x̂iay) +
k∑

i=1

tk+n−iBt (xâiy) +
n∑

i=1

tn−iBt (xaŷi)

− [2]t1[xm = a1]tk+n−1Bt(xâ1y)
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− [2]t
k−1∑
i=1

1[ai = ai+1]tk+n−i−1Bt(xâiy)

− [2]t1[ak = y1]tn−1Bt(xâky).

Summing over all a ∈ �1, q�k implies that

Bt

(
x �k y

) =
m∑

i=1

tm+k+n−iBt

(
x̂i �k y

) + q

k∑
i=1

tk+n−iBt

(
x �k−1 y

)

+
n∑

i=1

tn−iBt

(
x �k ŷi

)

− [2]t t k+n−1Bt

(
x �k−1 y

) − [2]t
k−1∑
i=1

tk+n−i−1Bt

(
x �k−1 y

)
− [2]t tn−1Bt

(
x �k−1 y

)
which simplifies to

Bt

(
x �k y

) = tk+n
m∑

i=1

tm−iBt

(
x̂i �k y

) +
n∑

i=1

tn−iBt

(
x �k ŷi

)
+ tn−1(

qt[k]t − [2]t [k + 1]t )Bt

(
x �k−1 y

)
.

(18)

Note that we have not yet used the assumption that (q, k, t) satisfies the tuning equation
(7). Crucially, the coefficient of Bt(x �k−1 y) in (18) vanishes when the tuning equation is
satisfied, so that

(19) Bt

(
x �k y

) = tk+n
m∑

i=1

tm−iBt

(
x̂i �k y

) +
n∑

i=1

tn−iBt

(
x �k ŷi

)
.

By the inductive hypothesis and equation (9) from Lemma 13, (19) expands to

Bt

(
x �k y

)
= tk+ncm−1,n

m∑
i=1

tm−iBt (x̂i)Bt (y) + cm,n−1

n∑
i=1

tn−iBt (x)Bt (ŷi)

= [
tk+ncm−1,n + cm,n−1

]
Bt(x)Bt (y).

(20)

This completes the induction. �

The final result we will need for Proposition 11 is a converse to the previous lemma.

LEMMA 17. Let q ≥ 3 and t ≥ 0 be given. Suppose that k is a number such that, for all
m ≥ 0 and n ≥ 0 and for all words x ∈ �1, q�m and y ∈ �1, q�n,∑

a∈�1,q�k

P col
t,q,m+k+n(xay) = P col

t,q,m(x)P col
t,q,n(y).

Then there exists an integer k′ ≤ k such that (q, k′, t) satisfies the tuning equation (7).
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PROOF. From (18) in the proof of Proposition 16, if x is a word of length m and y is a
word of length n then

Bt

(
x �k y

) = tk+n
m∑

i=1

tm−iBt

(
x̂i �k y

) +
n∑

i=1

tn−iBt

(
x �k ŷi

)
+ (

qtn[k]t − tn−1[2]t [k + 1]t )Bt

(
x �k−1 y

)
,

which holds for all q , k, and t . In particular, taking x and y to be words of length one, and
subtracting two instances of the last equation yields

Bt

(
1 �k 2

) − Bt

(
1 �k 1

) = (
qt[k]t − [2]t [k + 1]t )(

Bt

(
1 �k−1 2

) − Bt

(
1 �k−1 1

))
.

Upon iterating this identity, we obtain that

Bt

(
1 �k 2

) − Bt

(
1 �k 1

) = (
Bt(12) − Bt(11)

) k∏
k′=1

(
qt

[
k′]

t − [2]t [k′ + 1
]
t

)
.

Under our hypotheses on k, the left-hand side of the previous equation vanishes. Since
Bt(12) = t + 1 is nonzero but Bt(11) = 0, one of the factors in the product on the right
vanishes. �

We conclude this section by proving the proposition stated at the very beginning.

PROOF OF PROPOSITION 11. We show that, for all t ∈ [0,1] and all q ≥ 3, the mea-
sure MalColq,t is the law of a random coloring X = (Xi)i∈Z satisfying all conditions in the
proposition. Namely,

• for each finite interval I , the restricted coloring (Xi)i∈I is equal in law to a uniform q-
coloring of the constraint graph of a BMalt,u-distributed permutation of I , and

• the coloring X is strictly k-dependent if and only if (q, k, t) satisfies the tuning equation
qt[k]t = [2]t [k + 1]t (7).

The claims in the first bullet follow from Lemma 12 and the comments involving Joint pre-
ceding that lemma. The second bullet follows by combining Lemma 12 with Proposition 16
and Lemma 17. �

4. Reversibility. The primary purpose of this section is to prove the following.

PROPOSITION 18. For q ≥ 3 and t ∈ [0,1], if (Xi)i∈Z has law MalColq,t , then so does
(X−i )i∈Z.

This proposition plays an auxiliary role in the proof of Theorem 1, and its proof is techni-
cal. Readers eager for the proof of the main theorem may safely proceed to the next section.

The secondary purpose of this section is to justify the following claim from the Introduc-
tion. In fact, it is a corollary of the previous result.

COROLLARY 19. For each q ≥ 4, there exists a unique t ∈ [0,1] such that (q,1, t) sat-
isfies (7). For this t , the symmetric 1-dependent q-colorings from [31] have law MalColq,t .

Throughout this section, we fix a finite interval I of Z and a word x indexed by I . Recall
from Section 2 that a permutation σ of I is a proper building of x if and only if each of the
subwords

xσ (t) = (
xi : σ(i) ≤ t

)
, t ∈ I
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is proper. The word xσ (t) is obtained from xσ (t − 1) by inserting xσ−1(t) at position L̃ (σ )t
from the right.

For i, j ∈ I , we write (ij) for the permutation transposing i and j . We also define
�k(σ) := L̃ (σ )k+1 − L̃ (σ )k .

LEMMA 20. Let I be a finite interval of Z and let k be an integer such that k, k + 1 ∈ I .
Let δ be an integer and let � = (�i : i ∈ I \ {k, k + 1}) be a sequence. Let Aδ,� be the set of
permutations σ of I such that restriction of L̃ (σ ) to I \ {k, k + 1} is � and �k(σ) = δ. Then
for all words x ∈ �1, q�I ,

(21) #{σ ∈ Aδ,� : σ � x} = #
{
σ ∈ Aδ,� : (k k + 1) ◦ σ � x

}
.

We remark that if it were the case that for all graphs G

(22) #{σ ∈ Aδ,� : 
σ = G} = #{σ ∈ Aδ,� : 
(k k+1)◦σ = G},
then (21) would follow immediately, since σ � x is equivalent to the assertion that x is a
proper coloring of the graph 
σ . As we will see in the proof, (22) does hold in many cases
but not all. For example, it does not hold in the case I = �1,4�, k = 3 and δ = �1 = �2 = 0
with the graph

G = (I,E), where E = {
(1,2), (2,3), (1,3), (3,4), (1,4)

}
.

We will use the following result in the proof of the lemma.

LEMMA 21. Let I be a finite interval, let k be an integer such that min I ≤ k < max I ,
and let σ be a permutation of I . Then

L̃
(
(k k + 1) ◦ σ

) = (
. . . , �k−1, �k+1−1[�k+1>�k], �k+1[�k+1≤�k], �k+2, . . .

)
,

where L̃ (σ ) = (. . . , �k−1, �k, �k+1, �k+2, . . .).

In particular, �k((k k + 1) ◦ σ) = 1 − �k(σ).

The proof is straightforward and is omitted.

PROOF OF LEMMA 20. Fix x, k, δ and �. For any permutation σ of I and any set S of
such permutations, we write

σ ′ := (k k + 1) ◦ σ, S′ = {
σ ′ : σ ∈ S

}
.

Note that σ ′′ = σ and #S = #S′. The only difference between σ and σ ′ is that the integers
arriving at times k and k + 1 are interchanged. In particular, xσ (t) = xσ ′

(t) for all t �= k. Let
E be the set of permutations of I that are proper buildings of x. Using this notation, (21) may
be expressed as

(23) #Aδ,� ∩ E = #Aδ,� ∩ E′.

Say that a permutation σ is almost proper (at k, with respect to x) if xσ (t) is a proper word
for all t �= k, and let P be the set of almost proper permutations. Observe that E ⊆ P and that
P ′ = P , from which it follows that E′ ⊆ P as well.

Since #Aδ,� ∩ (P \ E) = #Aδ,� ∩ P − #Aδ,� ∩ E and similarly with E′ in place of E, (23)
is equivalent to

(24) #Aδ,� ∩ (P \ E) = #Aδ,� ∩ (
P \ E′).
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It follows from Lemma 21 that (Aδ,�)
′ = A1−δ,�. Thus (Aδ,� ∩ (P \ E′))′ is equal to

A1−δ,� ∩ (P \ E) and, therefore, #Aδ,� ∩ (P \ E′) = #A1−δ,� ∩ (P \ E). Substituting this
into equation (24), we see that it is equivalent to

(25) #Aδ,� ∩ (P \ E) = #A1−δ,� ∩ (P \ E).

We establish (25) by exhibiting an involution of the set F := P \ E that leaves � fixed
and interchanges δ with 1 − δ. Observe that F is the set of permutations σ that are almost
proper but xσ (k) is nonproper. Thus for σ ∈ F the word xσ (k) is nonproper but becomes
proper after deleting a single character. This means that there exists a unique pair of integers
r = rσ and s = sσ such that r < s and xr = xs and r , s occur as consecutive indices in the
sequence (m : σ(m) ≤ k) that indexes xσ (k). Observe that either σ(r) = k or σ(s) = k. Let
a = σ−1(k + 1) denote the integer arriving at time k + 1. Since xσ (k + 1) is proper, xa must
be inserted between xr and xs . (This implies, in particular, that �k(σ) ∈ {0,1}.)

Define the function f on F via

f (σ) = σ ◦ (
rσ sσ )

, σ ∈ F.

That is, f interchanges the arrival times of r and s in σ . Since xrσ = xsσ for σ ∈ F , it follows
that xσ (t) = xf (σ)(t) for all t ∈ I . Thus f (σ) ∈ F as well. Furthermore, rf (σ) = rσ and
similarly for s, from which it follows that f is involutive. All that remains is to verify that f

preserves � and interchanges δ with 1 − δ, that is,

(26) L̃
(
f (σ)

)
i = L̃ (σ )i, i ∈ I \ {k, k + 1}, σ ∈ F,

and

(27) �k

(
f (σ)

) = 1 − �k(σ), σ ∈ F.

Suppose, for the sake of concreteness, that σ(j) = k; the other case σ(i) = k is similar. The
subwords of x built by σ and f (σ) at times k − 1, k and k + 1 are then

xσ (k − 1) = uxiv, xσ (k) = u xi xj© v , xσ (k) = u xi xa© xjv ,

xf (σ)(k − 1) = uxjv, xf (σ)(k) = u xi© xjv , xf (σ)(k) = u xi xa© xjv ,

where we have circled the character that was just inserted, boxed the subword to its right, and
set u = (xm : σ(m) < k, k < i) and v = (xm : σ(m) < k,m > j). Thus when σ(j) = k, we
have that

�k(σ) = |xjv| − |v| = 1 and �k

(
f (σ)

) = |xjv| − |xjv| = 0.

Similarly, when σ(i) = k, we have that

�k(σ) = |xjv| − |xjv| = 0 and �k

(
f (σ)

) = |xjv| − |v| = 1.

This establishes (27). Moreover, (26) clearly holds when i > k + 1, and for i < k it follows
since xr and xs occupy the same relative positions in the respective subwords xσ (i) and
xf (σ)(i). �

Fix n ≥ 0. For a word x = (xi)
n
i=0, we write x = (xn−i)

n
i=0 for its reversal. For a permuta-

tion σ ∈ Sym(�0, n�), its reversal is the permutation σ with σ(i) = σ(n − i).

LEMMA 22. Let σ be a Mallows-distributed permutation of �0, n�. Then

P(σ � x) = P(σ � x), ∀x ∈ �1, q��0,n�.
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PROOF. Write Gi and G i for the respective laws of Xi and i − Xi , where 0 ≤ i ≤ n

and Xi is an i-truncated, t-geometric random variable. By Lemma 10, the random sequences
L̃ (σ ) and L̃ (σ ) have laws G0 ⊗ G1 ⊗ · · · ⊗ Gn and G0 ⊗ · · · ⊗ Gn, respectively. Fix a word
x and let Bx denote the set of tuples � ∈ {0}× · · ·× �0, n� such that D̃(�) is a proper building
of x. The desired result is equivalent to

(28) G0 ⊗ · · · ⊗ Gn(Bx) = G0 ⊗ · · · ⊗ Gn(Bx).

Note that G0 = G0. We will establish (28) by showing that

G0 ⊗ · · · ⊗ Gn(Bx) = G0 ⊗ G1 ⊗ · · · ⊗ Gn−1 ⊗ Gn(Bx)

= G0 ⊗ G1 ⊗ · · · ⊗ Gn−1 ⊗ Gn(Bx)

· · · = G0 ⊗ G1 ⊗ · · · ⊗ Gn−1 ⊗ Gn(Bx)

· · · = G0 ⊗ G1 ⊗ · · · ⊗ Gn−1 ⊗ Gn(Bx)

· · · · · · · · ·
· · · = G0 ⊗ G1 ⊗ · · · ⊗ Gn−1 ⊗ Gn(Bx).

More precisely, we will show that for all 0 ≤ k < m ≤ n fixed,

(29) μ(Bx) = μ′(Bx),

where

μ = G0 ⊗ · · · ⊗ Gk−1 ⊗ Gk ⊗ Gk+1 ⊗ Gk+2 ⊗ · · · ⊗ Gm−1 ⊗ Gm ⊗ · · · ⊗ Gn and

μ′ = G0 ⊗ · · · ⊗ Gk−1 ⊗ Gk ⊗ Gk+1 ⊗ Gk+2 ⊗ · · · ⊗ Gm−1 ⊗ Gm ⊗ · · · ⊗ Gn.

Any two independent truncated geometric random variables are conditionally uniform
on the set of possible values given their difference. From this, it follows that a ran-
dom tuple L with law μ is conditionally uniform on some set given Lk+1 − Lk and
(Li : i ∈ �0, n� \ {k, k + 1}). Thus by Lemma 20, the following conditional probabilities are
equal:

μ
(
Bx | Lk+1 − Lk, (Li : i �= k, k + 1)

)
= μ

(
B ′

x | Lk+1 − Lk, (Li : i �= k, k + 1)
)
,

where

B ′
x := {

� ∈ {0} × · · · × �0, n� : (k k + 1) ◦ D̃(�) � x
}
.

Integrating out the conditioning yields that

(30) μ(Bx) = μ
(
B ′

x

)
.

If (Lk,Lk+1) has law Gk ⊗ Gk+1, then(
Lk+1 − 1[Lk+1 > Lk],Lk + 1[Lk+1 ≤ Lk])

has law Gk ⊗ Gk+1. When combined with Lemma 21, this yields that μ(B ′
x) = μ′(Bx). We

now deduce (29) from this and (30). The lemma follows by repeated application of (29) as
indicated above. �

COROLLARY 23. If X = (Xi)i∈Z is a random q-coloring of Z with law MalColq,t , then

(X0,X1, . . . ,Xn)
d= (Xn,Xn−1, . . . ,X0), n ≥ 0.
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PROOF. This is immediate from the previous lemma and the definition of MalColq,t . �

PROOF OF PROPOSITION 18. This is immediate from Corollary 23. �

PROOF OF COROLLARY 19. By inspection, (q, t,1) satisfies (7) if and only if q = (t +
1)2/t , which is equivalent to

(31) t1/2 + t−1/2 = √
q.

Provided
√

q ≥ 2, there exists t = t (q) ∈ [0,1] satisfying this equation. Then for any proper
word x,

Bt(x) =
n∑

i=0

tn−iBt (x̂i) and Bt(x) =
n∑

i=0

t iBt (x̂i),

where the first equation is due to Lemma 13 and the second follows by combining Lemma 13
with Corollary 23. Averaging these two equalities yields

Bt(x) =
n∑

i=0

(
tn−i + t i

2

)
Bt(x̂i).

By (31), the coefficients of this recurrence agree with those of [31], equation (2.2). �

5. Convergence of Lehmer codes. Previously, we showed that MalColq,t is k-
dependent whenever (q, k, t) satisfy the tuning equation (7) and that MalColq,t is reversible.
The key step remaining in the proof of the main theorem is to exhibit a finitary factor of an
i.i.d. process having this law. We accomplish this over the course of the next two sections.
The idea will be to give a probabilistic construction of the colorings on Z. On a finite interval,
this was done already in Proposition 11. Our goal now is to extend this construction to Z by
taking appropriate limits.

In this section, we show that the law of the Lehmer code of a BMal-distributed permutation
of �−n,n� is i.i.d. in the limit as n → ∞ with a certain distribution. In the next section, we
will use this i.i.d. sequence to produce a random coloring of Z satisfying all of the properties
claimed in Theorem 1.

Both the Lehmer code, L , and the insertion code, L̃ , play an important role in these
sections. The zeros of the Lehmer code occur at key locations in the coloring (essentially,
they are the renewal times). On the other hand, the pushforward of BMal under the insertion
code is the product of truncated geometric distributions. The pushforward under the Lehmer
code is not a product measure for general finite intervals, but our main result in this section
is that it tends toward a product measure as the interval approaches Z.

Recall that the Lehmer code is the map L : Sym(I ) → �0,∞�I given by

L (σ ) = (
#

{
j ∈ I : j > i and σ(j) < σ(i)

})
i∈I for σ ∈ Sym(I ).

Here, we identify �0,∞�I with the subset of �0,∞�Z consisting of sequences vanishing on
Z \ I , so that we can compare permutations on different intervals.

Recall from Section 2 that when #I ≥ 2, the bubble-biased Mallows measure BMalt,u on
permutations assigns to each σ ∈ Sym(I ) a probability proportional to u# bub(
σ )t inv(σ ).

PROPOSITION 24. Let σn be a random permutation of �−n,n� with law BMalt,u. As
n → ∞ the sequence L (σn) converges in law, with respect to the product topology on
�0,∞�Z, to an i.i.d. sequence of u-zero-weighted, t-geometric random variables.
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The remainder of this section is devoted to the proof of this proposition, which will require
several technical lemmas to carry out. Recall that F(σ ) denotes the set of founders of the
permutation σ (see Section 2).

LEMMA 25. Let σ be a permutation of �0, n�. Then σ−1(0) is a founder of σ and

σ−1(0) = min
{
0 ≤ i ≤ n : L (σ )i = 0

}
and(32)

F(σ ) ∩ �σ−1(0), n� = {
i ∈ I : L (σ )i = 0

}
and(33)

F(σ ) ∩ �0, σ−1(0)� = {
i ∈ I : L (σ )i = σ(i)

}
.(34)

PROOF. By the definition of a founder, i ∈ F(σ ) if and only if either σ(k) > σ(i) for all
k > i or σ(j) > σ(i) for all j < i. When i = σ−1(0) both conditions hold. If i > σ−1(0),
then the latter condition cannot hold, and so

F(σ ) ∩ �σ−1(0), n� = {
i ∈ I : σ(k) > σ(i) for all k > i

} = {
i ∈ I : L (σ )i = 0

}
.

Similarly, if i < σ−1(0), then the former condition cannot hold, and so

F(σ ) ∩ �0, σ−1(0)� = {
i ∈ I : σ(j) > σ(i) for all j < i

} = {
i : L (σ )i = σ(i)

}
,

where the last equality follows since σ(i) − L (σ )i = #{j < i : σ(j) < σ(i)}. �

LEMMA 26. Let m > n, let σ be a random permutation of �m,n� with law BMalt,u
and let i ∈ �m,n�. Given σ−1(m) < i, the random variables (L (σ )j )

n
j=i are conditionally

independent of each other, with the conditional law of L (σ )j being the u-zero-weighted,
(n − j)-truncated, t-geometric distribution.

PROOF. By a simple relabeling, we assume that m = 0 without loss of generality. Fix
i ∈ �0, n�. For each � = (�i, . . . , �n) ∈ �0, n − i� × · · · × {0}, let

A (�) = {
τ ∈ Sym

(
�0, n�

) : τ−1(0) < i and L (τ )j = �j for all i ≤ j ≤ n
}
.

We have by definition of BMalt,u that there exists a constant Z = Z(i, t, u, n) such that

P
((

L (σ )i, . . . ,L (σ )n
) = � | σ−1(0) < i

) = P(σ ∈ A (�))

P(σ−1(0) < i)

= 1

Z

∑
τ∈A (�)

t inv(τ )u#F(τ )

for each � ∈ �0, n − i� × · · · × {0}.
Observe that∑

τ∈A (�)

t inv(τ )u#F(τ ) = ∑
τ∈A (�)

n∏
j=0

tL (τ )j u1[j∈F(τ )]

=
n∏

j=i

t�j u1[�j=0]
[ ∑

τ∈A (�)

i−1∏
j=0

tL (τ )j u1[j∈F(τ )]
]
,

(35)

where in the second equality we have applied equation (33) of Lemma 25. Let

Ru,n,i,t (�) := ∑
τ∈A (�)

i−1∏
j=0

tL (τ )j u1[j∈F(τ )]
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denote the bracketed expression in (35). The product appearing in Ru,n,i,t factorizes into two
factors, corresponding to equations (33) and (34) of Lemma 25, respectively:

Ru,n,i,t (�) = ∑
τ∈A (�)

[
τ−1(0)−1∏

j=0

tL (τ )j u1[L (τ )j=τ(j)]
]

×
[

i−1∏
j=τ−1(0)

tL (τ )j u1[L (τ )j=0]
]
.

(36)

We wish to show that the function Ru,n,i,t is constant, that is, that for any pair of tuples � and
�′ belonging to �0, n − i� × · · · × {0}, it holds that Ru,n,i,t (�) = Ru,n,i,t (�

′).
Recall that L is a bijection from Sym(�0, n�) to �0, n� × · · · × {0} with inverse D . For

any τ ∈ A (�), equation (33) implies that τ−1(0) < i if and only if there exists j ∈ �0, i� such
that L (τ )j = 0. Thus L (A (�)) is the set of tuples in �0, n� × · · · × {0} whose restriction
to �i, n� is � and whose restriction to �0, i� has at least one entry that vanishes. The set
L (A (�′)) bears a similar description. Let P be the bijection from L (A (�)) to L (A (�′))
leaving the restriction to �0, i� fixed, and let Q = D ◦ P ◦ L be the corresponding bijection
from A (�) to A (�′).

The explicit formula for D given in (3) implies that

τ(j) =
(

j

©
k=0

π−
�k,k+L (τ )k �

)
(j)

for every τ ∈ Sym(�0, n�) and 0 ≤ j < i. Since P fixes the restriction of L (τ ) to �0, i�, we
have that Q fixes the restriction of τ to �0, i�. Applying (33) once more shows that Q also
fixes τ−1(0). Thus, each summand of (36) is unchanged by the action of Q, from which it
follows that Ru,n,i,t (�) = Ru,n,i,t (�

′). Since � and �′ were arbitrary, Ru,n,i,t does not depend
on �. The lemma now follows from (35). �

A real-valued random variable X is said to stochastically dominate another random vari-
able Y if P(X > r) ≥ P(Y > r) for all r .

LEMMA 27. Fix 0 < t < s < 1 and u ≥ 1. Let S be an n-truncated, s-geometric random
variable and let T be a u-end-weighted, n-truncated, t-geometric random variable. Then S

stochastically dominates T for all

n ≥ n0 := logs/t

(
u · 1 − t

1 − s

)
.

For terminology regarding variants of geometric random variables, refer to equations (i) to
(v) in Section 2.

PROOF. Let M be a u-max-weighted n-truncated t-geometric variable. By inspection of
the mass functions of M and T , it is apparent that M stochastically dominates T for all u ≥ 1.
Thus it remains to show that S stochastically dominates M .

For this, we argue that P(M < k) ≥ P(S < k) for all k ∈ �1, n�, which by the formulas in
(i) and (iii) of Section 2 is equivalent to

1−tk

1−t

1−tn

1−t
+ utn

≥ 1 − sk

1 − sn+1 ,
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which is, in turn, equivalent to

1 − tk

1 − sk
≥ 1 − tn + utn(1 − t)

1 − sn+1 .

Since t < s, the left-hand side of the latter inequality is a decreasing function of k, and thus
it suffices to prove the inequality for k = n. In this case, the inequality rearranges to(

s

t

)n

≥ u · 1 − t

1 − s
· 1 − sn

1 − tn
.

By our choice of n0, the inequality holds for all n ≥ n0, as desired. �

We use the previous lemma to prove the following tightness result for the bubble-biased
Mallows measure.

LEMMA 28. Fix u ∈ [1,∞) and t ∈ [0,1). For each n ≥ 0 let σn be a random permuta-

tion of �0, n� with law BMal
�0,n�
t,u . Then (σ−1

n (0))n≥0 is tight.

PROOF. We prove the result by finding a coupling of the permutations in which

P

(
sup
n

σ−1
n (0) = ∞

)
= 0,

from which tightness follows.
Let (Xσ

n )n≥0 be a independent random variables with Xσ
n being u-end-weighted, n-

truncated, and t-geometric. By Lemma 10, for all n the law of the random permutation

σn = D̃(Xσ
0 , . . . ,Xσ

n ) is BMal
�0,n�
t,u . By inspection of the formula (4) for D̃ , it follows that

the sequence {σ−1
n (0)}n is a.s. non-decreasing and, therefore,

(37) P

(
sup
n

σ−1
n (0) ≥ k

)
= lim

n→∞P
(
σ−1

n (0) ≥ k
) ∀k ≥ 0.

When u = 1, the law of σn is Malt , and the same holds for σ−1
n by inversion symmetry of

the Mallows measure. Since σ−1
n (0) = L (σ−1

n )0, it follows by Lemma 6 that σ−1
n (0) is an

n-truncated, t-geometric random variable. Combining this with (37) implies that supn σ−1
n (0)

is a.s. finite when u = 1.
We extend this result from the case u = 1 to u > 1 using a domination argument. Fix s

such that t < s < 1 and take n0 to be any integer larger than the constant n0(s, t, u) from
Lemma 27, thereby guaranteeing that an s-geometric n-truncated random variable stochasti-
cally dominates a u-end-weighted, n-truncated, t-geometric random variable for all n ≥ n0.
Let (Xτ

n)n≥0 be independent random variables with Xτ
n being n-truncated and s-geometric.

We couple (Xσ
n )n>n0 and (Xτ

n)n>n0 such that Xσ
n ≤ Xτ

n a.s. for all n > n0 using Strassen’s
theorem [58]. By applying Lemma 10 with (t, u) = (s,1), it follows that for all n ≥ 0, the
random permutation τn = D̃(Xτ

0 , . . . ,Xτ
n) has law Mals . Hence supn τ−1

n (0) is a.s. finite by
the previous analysis of the case u = 1.

For all i ∈ �0,∞� and all ai ∈ �0, i�, the probabilities P(Xσ
i = ai) and P(Xτ

i = ai) are
positive. We claim that, for any sequence of integers a0, . . . , an0 satisfying these conditions,
we have that

P

(
sup
n

σ−1
n (0) = ∞|Xσ

i = ai,∀0 ≤ i ≤ n0

)
≤ P

(
sup
n

τ−1
n (0) = ∞|Xτ

i = ai,∀0 ≤ i ≤ n0

)
.

(38)
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Indeed, this is equivalent to

P

(
sup
n

D̃
(
a0, . . . , an0,X

σ
n0+1, . . . ,X

σ
n

)−1
(0) = ∞

)
≤ P

(
sup
n

D̃
(
a0, . . . , an0,X

τ
n0+1, . . . ,X

τ
n

)−1
(0) = ∞

)
,

which follows since the function D̃(�0, . . . , �n)
−1(0) is nondecreasing in each of its argu-

ments, as seen by inspection of the formula (4) for D̃ .
But we have already shown that P(supn τ−1

n (0) = ∞) = 0, whereupon the right side of (38)
is zero. Thus the left-hand side is zero as well. This implies that P(supn σ−1

n (0) = ∞) = 0,
from which the lemma now follows. �

PROOF OF PROPOSITION 24. Let L = (Li)i∈Z be a sequence of i.i.d. u-zero-weighted,
t-geometric random variables. For each n, let σn be a random permutation of �−n,n� with
law BMalt,u. The statement of the proposition is equivalent to the equality

(39) lim
n→∞P

((
L (σn)i

)
i∈I = �

) = P
(
(Li)i∈I = �

)
,

for all finite intervals I ⊂ Z and for all � ∈ �0,∞�I .
By considering the interval �0,2n� and shifting, Lemma 28 implies that

lim
n→∞P

(
σ−1

n (−n) < min I
) = 1

Combining this with Lemma 26 establishes (39), proving the proposition. �

6. Proof of main theorem. Fix t ∈ (0,1) and q ≥ 3. In Section 3, we constructed a
measure MalColq,t which is the law of a k-dependent q-coloring of Z whenever (q, k, t)

satisfies the tuning equation (7). Here, we give a construction, directly on the integers, of a
random coloring with this law. This random coloring will arise as a uniform proper q-coloring
of a certain random infinite graph. Thus, we begin by explaining what we mean by a “uniform
proper q-coloring” of an infinite graph.

First, suppose that the graph in question is the nearest-neighbor graph on the integers. We
define a uniform proper q-coloring of this graph to be the bi-infinite trajectory of a stationary
simple random walk on the complete graph (without self-loops) with vertex set �1, q�.

For a graph G with vertex set Z, recall that the bubble endpoints of G were defined in
Section 2 to be those integers i such that there do not exist integers j and k adjacent in G with
j < i < k. Say that G is good if it is q-colorable, its set of bubble endpoints is unbounded
from above and below, and consecutive bubble endpoints are adjacent in G. For any good
graph G, we define a uniform proper q-coloring of G to be a random coloring equal in law
to the output of the following algorithm.

UNIFORM COLORING ALGORITHM. Input: a good graph G with vertex set Z.

(i) Let (be)e∈Z be an increasing enumeration of the bubble endpoints of G.
(ii) Let (Ye)e∈Z be a uniform proper q-coloring of Z, and set Xbe = Ye for all e ∈ Z.

(iii) Conditional on step (ii), for each bubble of G, choose independently a proper q-
coloring of the bubble uniformly from among those that assign the colors from step (ii) to the
bubble endpoints. Output the resulting coloring (Xi)i∈Z.

LEMMA 29. Let G be a good graph. Let (Xi)i∈Z be a uniform proper q-coloring of G.
Then for every finite interval I ⊂ Z whose endpoints are bubble endpoints of G, the coloring
(Xi : i ∈ I ) is distributed uniformly on the set of proper q-colorings of the subgraph of G

induced by I .
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PROOF. Write GI for the subgraph of G induced by I . Let (b0, b1, . . . , bn) be an increas-
ing enumeration of the bubble endpoints of G contained in I , and let bubi be the subgraph of
G induced by �bi−1, bi � for 1 ≤ i ≤ n. Then GI = bub1 ∪· · · ∪ bubn, and there is a bijection
between proper q-colorings of GI and proper q-colorings of bub1, . . . ,bubn that agree at
their endpoints.

Thus if U = (Ui : i ∈ I ) is a uniform proper q-coloring of GI , then the conditional law
of U given Ub0,Ub1, . . . ,Ubn coincides with that of (Xi : i ∈ I ) given Xb0,Xb1, . . . ,Xbn , by
step (iii) of the algorithm. Since the subgraph of G induced by b0, b1, . . . , bn is a path, the
laws of (Xb0,Xb1, . . . ,Xbn) and (Ub0,Ub1, . . . ,Ubn) are equal by step (ii) of the algorithm.
Thus the unconditional laws of U and (Xi : i ∈ I ) coincide. �

Recall the definition of the constraint graph 
σ of a permutation σ of Z. In the case when
σ is a finite permutation of Z, the graph 
σ can be expressed in terms of the Lehmer code
L (σ ), a sequence in which all but finitely many entries vanish. We now extrapolate to a
graph defined in terms of a more general sequence. Recall the map D , inverse to L , defined
in Section 2.

DEFINITION (of 
[�]). Let � ∈ �0,∞�Z be a sequence for which the zero set (i ∈ Z : �i =
0) is unbounded from above and below. Let (ik)k∈Z be an increasing enumeration of the zero
set of �, and for each k ∈ Z let Ak = (�i : i ∈ �ik, ik+1�). Then the graph 
[�] is defined to be


[�] := ⋃
k∈Z


D(Ak).

This generalizes the definition of the constraint graph in that, if σ is a finite permutation
of Z, then 
[L (σ )] = 
σ . In fact, this follows from the next lemma.

LEMMA 30. For any integers a ≤ i < j ≤ b and for any sequence � ∈ �0,∞�Z with zero
set unbounded from above and below, the integers i and j are adjacent in 
[�] if and only if
they are adjacent in the constraint graph of D(�a, �a+1, . . . , �b).

PROOF. First, suppose that there exists k ∈ �i, j � such that �k = 0. Then i and j are
nonadjacent in 
[�] by definition. Likewise, they are nonadjacent in the constraint graph of
the permutation σ = D(�a, �a+1, . . . , �b) since k is a founder of σ by Lemma 25.

Otherwise, there exist a′ ≤ i < j ≤ b′ such that a′ and b′ are consecutive zeros of �.
Thus by definition of 
[�], the integers i and j are adjacent in 
[�] iff they are adjacent
in the constraint graph of σ ′ = D(a′, a′ + 1, . . . , b′). Thus, the lemma will follow once we
show that i and j are adjacent in 
σ iff they are adjacent in 
σ ′ . Recall the explicit formula
(3) expressing the function D as a composition of cycles, from the discussion preceding
Lemma 5 in Section 2. From this formula, it follows that

σ = i−1©
k=a

π−
�k,k+�k � ◦

j

©
k=i

π−
�k,k+�k � ◦ b©

k=j+1
π−

�k,k+�k �

and

σ ′ = i−1©
k=a′

π−
�k,k+�k � ◦

j

©
k=i

π−
�k,k+�k � ◦ b′

©
k=j+1

π−
�k,k+�k �.

The cycle π−
�k,k+�k � leaves the relative ordering of �i, j � unchanged whenever k /∈ �i, j �.

Thus it is only the shared middle factor which determines the relative ordering of σ and σ ′
on �i, j �. This, in turn, determines whether σ(i) < σ(k) > σ(j) for all i < k < j , which is
equivalent to i and j being adjacent in σ , and respectively for σ ′. �
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COROLLARY 31. For � ∈ �0,∞�Z with zero set unbounded from above and below,

(i) the set of bubble endpoints of 
[�] is equal to the zero set of �, and
(ii) 
[�] is good.

PROOF. By definition of 
[�], all zeros of � are bubble endpoints. Conversely, suppose
that �i > 0. Let j < i be maximal such that �j = 0 and let k > i be minimal such that �k = 0.
Then j is adjacent to k in the constraint graph of D(�j , �j+1, . . . , �k) and, therefore, by
Lemma 30 j and k are also adjacent in 
[�]. Thus i is not a bubble endpoint, proving part (i).

By part (i), the bubble endpoints of 
[�] are unbounded from above and below. By
Lemma 7, 
[�] decomposes into a collection of finite bubbles joined at their endpoints. Now
Lemma 9 implies that 
[�] is q-colorable. That consecutive bubble endpoints of 
[�] are
adjacent follows from the corresponding property for a single bubble of the constraint graph
of a permutation. Thus 
[�] is good. �

We can now prove the following key result.

PROPOSITION 32. Set u = q−1
q−2 and let L = (Li)i∈Z be an i.i.d. sequence of u-zero-

weighted, t-geometric random variables. Conditional on L, choose a uniform proper q-
coloring of 
[L]. Then the (unconditional) law of the resulting coloring of Z is MalColq,t .

We fix u = q−1
q−2 for the remainder of the section.

PROOF OF PROPOSITION 32. By Corollary 31(ii), 
[L] is a.s. good. Let X = (Xi)i∈Z
be a uniform proper q-coloring of 
[L] and let Y = (Yi)i∈Z be a random coloring with
law MalColq,t . Let σn be a random permutation of �−n,n� with law BMalt,u and let Yn =
(Y n

i : i ∈ �−n,n�) be a uniform proper coloring of 
σn . By Proposition 11, the sequence Yn

is equal in law to (Yi : i ∈ �−n,n�).
In Proposition 24, we showed that L (σn) converges in distribution to L. Thus by the

Skorohod representation theorem [38], there exists a coupling of (σn)n≥0 and L such that
L (σn) a.s. converges to L. Fix such a coupling.

Fix a finite interval J of Z and let I be the (random) smallest interval containing J whose
endpoints are zeros of L. There is a random integer N which is almost surely finite such that
on the event N < n we have that L (σn)i = Li for all i ∈ I .

It follows from our earlier observations that (Xi)i∈I and (Y n
i )i∈I have the same conditional

distribution given L, σn, and the event that N < n. Indeed, under this conditioning both
(Xi)i∈I and (Y n

i )i∈I are uniformly distributed on the set of proper q-colorings of the subgraph
of 
[L] induced by I by Lemmas 29 and 30. Since J ⊆ I and N < ∞ a.s., we deduce that

(Yi)i∈J
d= (

Yn
i

)
i∈J

d−−−→
n→∞ (Xi)i∈J .

The claim follows since J was arbitrary. �

The last proposition yields the following construction of a random coloring with law
MalCol. Let L be the above i.i.d. sequence. Assign to the zero set of L a uniform proper
q-coloring of Z. Conditional on these colors and L, assign to the intervals between each pair
of consecutive zeros i, j of L an independent, uniformly random proper q-coloring of the
constraint graph of D(Li, . . . ,Lj ) conditioned to agree at i and j with the colors previously
assigned. Then by Corollary 31, the resulting coloring of Z is conditionally a uniform proper
q-coloring of the constraint graph of 
[L] given L, from which it follows by Proposition 32
that the coloring has law MalCol. It remains to show, using this construction, that the color-
ings can be expressed both as finitary factors of i.i.d. processes and as functions of countable
Markov chains. This is relatively routine, and we provide the details below.
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PROPOSITION 33. There exists a countable state space S, a function h : S → �1, q�,
and a Markov process (Yi)i∈Z on S such that the process (Xi)i∈Z = (h(Yi))i∈Z has law
MalColq,t . Moreover, the return time of each state of S has exponential tail.

PROOF. Let L be an i.i.d. sequence of u-zero-weighted, t-geometric random variables.
Conditional on L, let X = (Xi)i∈Z be a uniform proper q-coloring of 
[L]. By the previous
proposition, X has law MalColq,t . It remains to express X as a function of a Markov process
with the stated properties.

For each k ∈ Z, let Xk and Lk denotes the shifted sequences

Xk = (
Xk

i

)
i∈Z = (Xi−k)i∈Z and Lk = (

Lk
i

)
i∈Z = (Li−k)i∈Z.

For each k, let f +
k = min{i > 0 : Lk

i = 0} and f −
k = max{i ≤ 0 : Lk

i = 0}. Let Gk be the
subgraph of 
[Lk] induced by �f −

k , f +
k �. For each k ∈ Z, let Yk be the tuple

Yk = (−f −
k , f +

k ,Gk,
(
Xk

j

)
j∈�f −

k ,f +
k �

)
.

The tuple Yk takes values in the set S′ of tuples (f 1, f 2,G,x), where f 1 and f 2 are non-
negative integers, G is a graph with vertex set �−f 1, f 2�, and x is a q-coloring of G. Note
that S′ is countable. Let S be the support of Y0 on S′. We define h : S → �1, q� by setting
h(f 1, f 2,G,x) = x0, so that (Xi)i∈Z = (h(Yi))i∈Z as desired.

Clearly, Y is stationary. To prove that Y is Markov, it suffices to show that (Yi)i>0 and
(Yi)i<0 are conditionally independent given Y0. Since f +

0 is the location of the first bub-
ble endpoint of 
[L] to the right of the origin, it follows from the definition of a uniform
proper q-coloring that (Yi)i>f +

0
is conditionally independent of (Yi)i<f +

0
given Yf +

0
. Now

Yf +
0

determines the sequence Y0, Y1, . . . , Yf +
0

, as does Y0, so therefore (Yi)i>0 and (Yi)i<0

are conditionally independent given Y0. Thus Y is a Markov process.
That the return times have exponential tails follows in a straightforward manner. �

PROPOSITION 34. There exists a ffiid process with law MalColq,t whose coding radius
has exponential tail.

Before proving Proposition 34, we show how to produce a ffiid uniform proper q-coloring
of Z with exponential tail on the coding radius, using a simple application of the technique
of coupling from the past [51].

Let (Zi)i∈Z be an i.i.d. sequence, where each Zi is a chosen uniformly from the set
{(a, b) ∈ �1, q�2 : a �= b} of ordered pairs of distinct elements of �1, q�.

We claim that there is almost surely a unique sequence X = (Xi)i∈Z satisfying the con-
straints

(40) Xi =
{
Z1

i if Z1
i �= Xi−1,

Z2
i if Z1

i = Xi−1,

and furthermore that X can be computed as a finitary factor of Z with an exponential tail on
the coding radius. Given its existence, it is easily seen that X is a uniform proper q-coloring
of Z.

First, notice that if Z1
i /∈ {Z1

i−1,Z
2
i−1}, then we must have Xi = Z1

i . Thus, it is possible to
compute Xi for arbitrary i by first finding the maximal Ti ≤ i such that Z1

Ti
/∈ {Z1

Ti−1,Z
2
Ti−1},

setting XTi
= Z1

Ti
, and then computing Xj for all Ti ≤ j ≤ i by applying the recurrence

(40). This shows that there is almost surely a unique solution X of (40), and that X can be
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computed as a finitary factor of Z with coding radii (i − Ti)i∈Z. Finally, we observe that
i − Ti is a geometric random variable, since

P(i − Ti ≥ n) =
n∏

k=1

P
(
Z1

i−j+1 ∈ {
Z1

i−j ,Z
2
i−j

}) =
(

2

q

)n

.

PROOF OF PROPOSITION 34. Consider the i.i.d. sequence (Zi,Ui,Li)i∈Z, where Zi is
chosen uniformly from the set {(a, b) ∈ �1, q�2 : a �= b}, Ui is chosen uniformly from [0,1],
and Li is a u-zero-weighted, t-geometric random variable. We construct the desired process
in two steps. In the first step, we assign to (i ∈ Z : Li = 0) a uniform proper q-coloring by
applying the procedure defined just below the statement of Proposition 34 to (Zi : Li = 0).

In the second step, we assign colors to (i ∈ Z : Li > 0). For such i, let

f −
i = max{j < i : Lj = 0} and f +

i = min{j > i : Lj = 0};
note that i ∈ �f −

i , f +
i � and that f ±

i were assigned colors in the previous step. Conditional

on the previous step, let X�f −
i ,f +

i � be a uniform proper q-coloring of the constraint graph
of D((�k)k∈�f −

i ,f +
i �) consistent with the colors assigned to f ±

i . Assume that X�f −
i ,f +

i � is

defined on the probability space [0,1] and assign to i the color X
�f −

i ,f +
i �

i (Uf −
i

), that is, Uf −
i

is used as a seed to generate the random coloring of �f −
i , f +

i �.
It is easy to see that the coloring of Z thus obtained is a finitary factor of the sequence

(Zi,Ui,Li)i∈Z and that its coding radius has exponential tail. By Lemma 29, it follows that,
conditional on L, the coloring thus produced is a uniform proper q-coloring of 
[L]. Thus
by Proposition 32, the coloring has law MalColq,t . �

Recall the tuning equation (1), which is

qt
(
tk − 1

) = (t + 1)
(
tk+1 − 1

)
.

PROOF OF THEOREM 1. Combine Propositions 11, 18, 33 and 34 to conclude that if for
integers q ≥ 3 and k ≥ 1 there exists t ∈ (0,1) satisfying the tuning equation (1), then the
theorem holds in the case (k, q).

That such a t exists for (k, q) = (1,5), (2,4), (3,3) and all larger k and q follows since
these integers satisfy qk > 2(k + 1), which implies that the polynomial

qt
(
1 − tk

) − (t + 1)
(
1 − tk+1)

is negative at t = 0, vanishes at t = 1, and has negative derivative there. Thus it has a root in
(0,1), providing the desired solution of the tuning equation (1). �

7. Painting algorithm and conditioning. The primary purpose of this section is to ver-
ify correctness of the Painting Algorithm from the Introduction. Recall that its input consists
of positive integers q and k satisfying qk > 2(k + 1) and its output is a random q-coloring of
Z, which we claim is k-dependent.

PROPOSITION 35.

(i) For all positive integers q and k satisfying qk > 2(k + 1), there exists a unique t =
t (q, k) ∈ (0,1) such that (q, k, t) satisfies the tuning equation (1).

(ii) The output of the Painting Algorithm has law MalColq,t (q,k).
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The other purpose of this section is establish that if one conditions the 1-dependent q-
coloring from the main theorem to only use colors in �1, q −1�, this results in the 2-dependent
(q − 1)-coloring from the theorem, and no other pairs of colorings from the theorem are
related in this manner. This is equivalent to the following proposition, which is proven at the
end of this section.

PROPOSITION 36. The only pairs (k, q) and (k′, q ′) such that there exists t ∈ (0,1) for
which (q, k, t) and (q ′, k′, t) both satisfy the tuning equation (1) are

(k, q) = (1, q) and
(
k′, q ′) = (2, q − 1), q ≥ 5.

We now begin working toward Proposition 35. We first establish the following properties
of the tuning equation.

LEMMA 37. Let q and k be integers with k > 0.

(i) There exists t ∈ (0,1) satisfying (1) if and only if qk > 2(k + 1).
(ii) There is at most one t ∈ [0,1) satisfying (1).

We remark that this lemma and others in this section hold more generally when q and k

are real-valued, with the same proofs.

PROOF OF LEMMA 37. The “if” direction of part (i) was established in the proof of
Theorem 1. For the “only if” direction, let

fq,k(t) := qt
(
1 − tk

) − (t + 1)
(
1 − tk+1)

.

We show that when q ≤ q ′ := 2(k + 1)/k, the function fq,k(t) has no zeros in (0,1). Indeed,
in this case fq,k(t) ≤ fq ′,k(t) and since

(41) f ′′
q,k(t) = (k + 1)tk−1(

(k + 2)t − (q − 1)k
)
,

we have that f ′′
q ′,k(t) = −(k + 1)(k + 2)(1 − t)tk−1 and, therefore, fq ′,k is strictly concave on

(0,1). Combined with fq ′,k(1) = f ′
q ′,k(1) = 0, it follows that fq ′,k(t) < 0 for all t ∈ (0,1).

Thus fq,k(t) < 0 when q ≤ 2(k + 1)/k and t ∈ (0,1), implying the “only if” direction of (i).
It remains to establish part (ii) in the case when q and k satisfy qk > 2(k + 1). Then

(q − 1)t > k + 2 ≥ (k + 2)t for all t ≥ 1, so f ′′
q,k(t) < 0 for t ∈ [0,1] by (41). This implies

that fq,k has at most two zeros in [0,1], counting the zero at 1, so therefore fq,k has at most
one zero in [0,1). �

PROOF OF PROPOSITION 35. The first part of the proposition follows from the
Lemma 37.

For the second part, let 
alg be the graph on Z in which integers i < j are adjacent iff i and
j are the first two elements of �i, j � assigned colors by the algorithm. It is straightforward
to verify that the bubble endpoints of 
alg are the integers assigned colors during Stage 1 of
the algorithm, and that conditional on 
alg, the coloring X is a uniform proper q-coloring of

alg.

Thus by Proposition 32, it suffices to show that 
alg is equal in law to 
[L] where L =
(Li)i∈Z is an i.i.d. sequence of u-bubble-weighted, t-geometric random variables. The bubble
endpoints of the two graphs have the same law by Corollary 31(i), since

P(Li ≥ 1) = t/(1 − t)

u + t/(1 − t)
= t (q − 2)

q − 1 − t
= s,

where we have substituted u = q−1
q−2 in the second equality.
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The result will follow from the claim that, for all integers i < j , the subgraphs of 
[L] and

alg induced by �i, j � have the same conditional law given that i and j are bubble endpoints
of 
[L] and 
alg, respectively. We establish this claim by showing that both conditional laws
are equal to the law of the constraint graph of a Mallows-distributed permutation of �i, j �. For

[L], this is straightforward to verify using Lemma 30 together with the observation that the
conditional law of a u-zero-weighted, t-geometric random variable conditioned to be positive
does not depend on u. To prove the same for 
alg, we consider the permutation σ of �i, j � for
which σ(i) − i equals the number of elements of �i, j � that have been assigned colors prior
to i. We regard σ(i) as the arrival time of i. On the event that i and j are bubble endpoints of

alg, the subgraph of 
alg induced by �i, j � is seen to coincide with the constraint graph of
σ .

The integer with arrival time k appears in position L̃ (σ )k from the right in the subse-
quence of �i, j � consisting of integers that have previously arrived. Thus, the random choices
made by the algorithm ensure that:

• L̃ (σ )k is (k − i)-truncated t-geometric, and
• (L̃ (σ )k)k∈�i,j � is a sequence of independent random variables.

Thus by Lemma 10, the permutation σ has law Malt . It follows that for all integers i < j the
conditional laws of the subgraphs of 
[L] and 
alg induced by �i, j �, given that i and j are
bubble endpoints of the respective graphs, coincide.

From this, we deduce that the conditional laws of 
[L] and 
alg given their respective sets
of bubble endpoints are the same. Since we have previously established that these sets have
the same distribution, it follows that 
[L] and 
alg are equal in law. �

We now prove the following lemma, which immediately implies Proposition 36.

LEMMA 38. Consider positive integers q and k and a real number t ∈ (0,1):

(i) The triple (q,1, t) satisfies (1) if and only if (q − 1,2, t) does.
(ii) Given (q, t), there is at most one k satisfying (1).

(iii) Suppose that qk > 2(k+1) and let t (q, k) denote the unique solution of (1) satisfying
0 < t(q, k) < 1. Then t (q, k) > 1

q−1 and limk→∞ t (q, k) = 1
q−1 .

(iv) Given t with 0 < t < 1, there is at most one pair of integers (q, k) with q > 1 and
k ≥ 2 satisfying (1).

PROOF. Part (i) is an easy calculation. Part (ii) follows since (1) is equivalent to

tk+1 = (q − 1)t − 1

q − 1 − t
,

and this also implies part (iii).
Finally, we establish part (iv). Solving for q in (1) yields

(42) q =
(

1 + 1

t

)(
t + 1 − t

1 − tk

)
.

The right-hand side of (42) is strictly decreasing in k. Furthermore, as k → ∞ it tends to
1
t
+ 1, whereas when k = 2 it evaluates to 1

t
+ 1 + t . Therefore, if (q, k, t) is any solution of

(42) with q > 1 and k ≥ 2, we must have that

(43)
1

t
+ 1 < q ≤ 1

t
+ 1 + t, k > 2.

Since t < 1 there can be at most one integer q satisfying (43), in which case by part (ii) there
is at most one k satisfying (1). �

PROOF OF PROPOSITION 36. This is immediate from Lemma 38. �



376 A. E. HOLROYD, T. HUTCHCROFT AND A. LEVY

8. Compact Markov chains. By a process on a space S, we mean a random element
of SZ that is measurable with respect to the product Borel σ -algebra. As mentioned in the
Introduction, it is an open question whether there exists a stationary Markov process (Xi)i∈Z
on a compact metric space (S, d), an integer k > 0, and a real number ε > 0 such that:

(i) X0 and Xk are independent, and
(ii) d(X0,X1) ≥ ε almost surely.

It is trivial to construct chains that satisfy either one of the two conditions. Here are two
somewhat interesting examples. First, let S = [0,1]2. Conditional on X0 = (u, v), let X1 =
(v,U), where U is uniformly distributed on [0,1]. This satisfies (i) with k = 2, but not (ii).
Second, let S be the unit sphere {x ∈R

3 : ‖x‖2 = 1}. Conditional on X0, let X1 be uniformly
distributed on the circle {y ∈ S : 〈y,X0〉 = 0} (where 〈·, ·〉 is the standard inner product on
R

3). This satisfies (ii) (with the Euclidean metric and ε = 1) but not (i).

PROOF OF PROPOSITION 2. Let π denote the law of X0. Since S is Polish, there is a
Markov kernel that is a regular conditional probability for P(X1 ∈ A | X0). This gives rise to
a Markov transition operator P on L2(S,π). Since X is reversible, P is self-adjoint.

Since X0 is independent of Xk , it follows that P i = P k for all i ≥ k. We claim that if
k ≥ 2, then P k = P k−1. Indeed, for all f ∈ L2(S,π),∥∥P k−1f − P kf

∥∥2 = ∥∥P k−1f
∥∥2 − 2

〈
P k−1f,P kf

〉 + ∥∥P kf
∥∥2

= 〈
f,P 2k−2f

〉 − 2
〈
f,P 2k−1f

〉 + 〈
f,P 2kf

〉
.

(44)

Since k ≥ 2, we have that 2k − 2 ≥ k and, therefore, P 2k−2 = P 2k−1 = P 2k . Thus (44)
vanishes for all f , so P k−1 = P k . Hence by induction it follows that P i = P j for every
i, j ≥ 1. This implies that the random variables X1,X2, . . . are i.i.d., from which the proof
may easily be concluded. �

9. Higher dimensions and shifts of finite type.

PROOFS OF COROLLARIES 3 AND 4. A simple modification of the proofs of [32], Corol-
laries 5 and 6, establishes Corollaries 3 and 4, respectively. Namely, replace the 1-dependent
4-coloring used in the proof of Corollary 20 of [32] with the ffiid 1-dependent 5-coloring
with exponential tail on the coding radius from Theorem 1. This results in an ffiid process
with exponential tails, since the maximum of a finite (deterministic) number of independent
random variables with exponential tails still has exponential tails. �

10. Open problems.

(i) For the pairs (k, q) = (1,4) and (2,3), can the (or any) k-dependent q-coloring be
expressed as a finitary factor of i.i.d. with finite expected coding radius? (We suspect that
these colorings are unique and they cannot be so expressed.)

(ii) For which pairs (k, q) do there exist other color-symmetric k-dependent q-colorings
of Z besides the Mallows colorings? We believe that there are no others for the pairs (1,4)

and (2,3).
(iii) Does there exist a stationary Markov process (Xi)i∈Z on a compact metric space

(S, d), an integer k > 0, and a real number ε > 0 such that X0 and Xk are independent and
d(X0,X1) ≥ ε almost surely?

(iv) For each word x ∈ Z
n and every 0 ≤ i ≤ ( n

2
)
, is there a “natural” bijection between

proper buildings of x having i and
( n

2
) − i inversions?
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