Translator Disclaimer
January 2020 From the master equation to mean field game limit theory: Large deviations and concentration of measure
François Delarue, Daniel Lacker, Kavita Ramanan
Ann. Probab. 48(1): 211-263 (January 2020). DOI: 10.1214/19-AOP1359


We study a sequence of symmetric $n$-player stochastic differential games driven by both idiosyncratic and common sources of noise, in which players interact with each other through their empirical distribution. The unique Nash equilibrium empirical measure of the $n$-player game is known to converge, as $n$ goes to infinity, to the unique equilibrium of an associated mean field game. Under suitable regularity conditions, in the absence of common noise, we complement this law of large numbers result with nonasymptotic concentration bounds for the Wasserstein distance between the $n$-player Nash equilibrium empirical measure and the mean field equilibrium. We also show that the sequence of Nash equilibrium empirical measures satisfies a weak large deviation principle, which can be strengthened to a full large deviation principle only in the absence of common noise. For both sets of results, we first use the master equation, an infinite-dimensional partial differential equation that characterizes the value function of the mean field game, to construct an associated McKean–Vlasov interacting $n$-particle system that is exponentially close to the Nash equilibrium dynamics of the $n$-player game for large $n$, by refining estimates obtained in our companion paper. Then we establish a weak large deviation principle for McKean–Vlasov systems in the presence of common noise. In the absence of common noise, we upgrade this to a full large deviation principle and obtain new concentration estimates for McKean–Vlasov systems. Finally, in two specific examples that do not satisfy the assumptions of our main theorems, we show how to adapt our methodology to establish large deviations and concentration results.


Download Citation

François Delarue. Daniel Lacker. Kavita Ramanan. "From the master equation to mean field game limit theory: Large deviations and concentration of measure." Ann. Probab. 48 (1) 211 - 263, January 2020.


Received: 1 April 2018; Revised: 1 February 2019; Published: January 2020
First available in Project Euclid: 25 March 2020

zbMATH: 07206757
MathSciNet: MR4079435
Digital Object Identifier: 10.1214/19-AOP1359

Primary: 60E15, 60F10, 60H10, 91A13, 91A15
Secondary: 60K35, 91G80

Rights: Copyright © 2020 Institute of Mathematical Statistics


This article is only available to subscribers.
It is not available for individual sale.

Vol.48 • No. 1 • January 2020
Back to Top