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ASYMPTOTIC ZERO DISTRIBUTION OF RANDOM
ORTHOGONAL POLYNOMIALS

BY THOMAS BLOOM AND DUNCAN DAUVERGNE1

University of Toronto

We consider random polynomials of the form Hn(z) = ∑n
j=0 ξj qj (z)

where the {ξj } are i.i.d. nondegenerate complex random variables, and the
{qj (z)} are orthonormal polynomials with respect to a compactly supported
measure τ satisfying the Bernstein–Markov property on a regular compact
set K ⊂ C. We show that if P(|ξ0| > e|z|) = o(|z|−1), then the normalized
counting measure of the zeros of Hn converges weakly in probability to the
equilibrium measure of K . This is the best possible result, in the sense that the
roots of Gn(z) = ∑n

j=0 ξj zj fail to converge in probability to the appropriate
equilibrium measure when the above condition on the ξj is not satisfied.

We also consider random polynomials of the form
∑n

k=0 ξkfn,kz
k , where

the coefficients fn,k are complex constants satisfying certain conditions, and
the random variables {ξk} satisfy E log(1 + |ξ0|) < ∞. In this case, we estab-
lish almost sure convergence of the normalized counting measure of the zeros
to an appropriate limiting measure. Again, this is the best possible result in
the same sense as above.

1. Introduction. In this paper, we will be concerned with the global distribu-
tion of the complex zeros of random polynomials.

The origin of the problems goes back to results on the Kac ensemble of random
polynomials

Hn(z) =
n∑

j=0

ξj z
j ,

where the ξj are i.i.d. nondegenerate complex-valued random variables. Here, a
random-variable is nondegenerate if its law is supported on at least two points.
The interest is in the behaviour of the zeros of Hn(z) as n → ∞.

The study of the global behaviour of the zeros of Hn was initiated by Hammer-
sley [9]. Shortly thereafter, Shparo and Shur proved the first results about concen-
tration of zeros near the unit circle [23].

The Kac ensemble has been extensively studied (see the introduction of [18]
and references given there). In particular, Ibragimov and Zaporozhets [12] showed
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that the condition

(1) E log
(
1 + |ξ0|) < ∞

is both necessary and sufficient for almost sure weak* convergence of the normal-
ized counting measure of the zeros (i.e., 1

Dn

∑Dn

j=1 δ(zj ) where z1, . . . , zDn are the
zeros of Hn and Dn = sup{i ≤ n : ξi �= 0}) to normalized Lebesgue measure on the
unit circle, 1

2π
dθ .

Shiffman and Zelditch [22] took the point of view that the functions {zi}i=0,1,...

are an orthonormal basis for the polynomials in L2( 1
2π

dθ). Generalizing this idea,
they considered random polynomials of the form

(2) Hn(z) =
n∑

j=0

ξjqj (z),

where the ξj are complex Gaussians of mean zero and variance one, and the qj

are an orthonormal basis for the polynomials in L2(dμ) for certain measures μ

with compact support K in the complex plane. They showed that the normalized
counting measure of the zeros converges almost surely to the equilibrium measure
of K in the weak* topology.

The problems studied in this paper have also been studied in other contexts.
For random polynomials using a basis other than orthogonal polynomials, see [11,
18]. For random holomorphic sections of a line bundle, see [3, 21]. For random
polynomials in several variables, see [2, 4–6].

In this paper, we will primarily be concerned with finding the weakest possible
conditions on the i.i.d. coefficients that will result in the same limiting behaviour
of the zeros. Results on this problem may be found in [18], and on specializing to
the one-variable case, in [2, 5, 6].

In Theorem 5.3, we establish convergence in probability for the zeros of random
polynomials of the form (2) with i.i.d. coefficients satisfying

(3) P
(|ξ | ≥ e|z|) = o

(|z|−1)
.

This is a best possible result in the sense that if (3) is not satisfied for the Kac
ensemble, then the normalized counting measure of the zeros does not converge
in probability to equilibrium measure on the unit circle. We prove this in Theo-
rem 5.6.

As a corollary of Theorem 5.3, we resolve a conjecture of Pristker and Ra-
machandran ([18], Conjecture 2.5). Very roughly, they asked if there exist i.i.d.
random variables {ξi}i∈N and a sequence {qi}i∈N of orthonormal polynomials with
respect to a measure τ on the unit circle such that the normalized counting mea-
sures of the zeros of

Hn(z) =
n∑

i=0

ξiqi(z)
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converge almost surely along a subsequence {ni}, but not almost surely along the
whole sequence. In Remark 5.4, we use Theorem 5.3 to construct random polyno-
mials Hn(z) with this property.

The basic strategy of the proofs is to prove convergence of the normalized log-
arithmic potential

(4)
1

n
log

∣∣Hn(z)
∣∣

to the Green’s function VK of the compact set K . This implies that the normalized
counting measure of the zeros of Hn converges to the equilibrium measure in the
weak* topology.

The main difficulty here is in establishing lower bounds on the normalized log-
arithmic potential (4). This is accomplished in Theorem 5.2. To do this, we use
the Kolmogorov–Rogozin inequality. This inequality has been previously used to
establish lower bounds of this type in [13]. Unlike in that paper, our arguments
dispense with the need for circular symmetry of the polynomials when applying
the inequality.

In addition to the above results on convergence in probability, we also consider
almost sure convergence of the normalized zero counting measure of random poly-
nomials of the form

(5) Gn(z) =
n∑

i=0

ξifn,iz
i .

Here, the ξi are nondegenerate i.i.d. complex random variables satisfying

(6) E log
(
1 + |ξ0|) < ∞

and the coefficients {fn,i : 0 ≤ i ≤ n,n ∈ N} satisfy

lim
n→∞

1

n
log

(
n∑

k=0

|fn,k|rk

)
= V (r).

Here, V (r) is a continuous function and the convergence above is locally uni-
form. We will also assume that sufficiently many of the coefficients fn,k are large
enough. This assumption will be made precise in Section 6.

The conditions on the coefficients fn,k are quite general and, therefore, the en-
sembles of the form (5) include many examples of random polynomials. For ex-
ample, random polynomials of the form (2), where the measure μ is rotationally
symmetric, satisfy these conditions. Random polynomials formed from an array
of orthogonal polynomials induced by a rotationally symmetric measure and a ro-
tationally symmetric weight function also fit into this category (see Section 6 for
details).

Random polynomials with slightly stronger restrictions on the coefficients fn,k

were analyzed by Kabluchko and Zaporozhets in [13]. In that paper, the authors
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proved that the normalized counting measure of the zeros of Gn(z) converges in
probability to the appropriate limiting measure, and asked when this could be ex-
tended to almost sure convergence. They showed almost sure convergence for a
few particular arrays using ad hoc methods.

In Theorem 6.5, we prove almost sure convergence of the normalized counting
measure of the zeros for random polynomials of the form (5) with the above con-
ditions imposed on the sequence {fn,k}, answering the question of Kabluchko and
Zaporozhets. The measures converge to a measure ν that is equal as a distribution
to 1

2π
�V (|z|).

Note that again, the condition E log(1+|ξ0|) < ∞ on the random variables is the
best possible, in the sense that if this condition fails, then almost sure convergence
fails for the Kac ensemble (see [12] for details).

Kabluchko and Zaporozhets also considered random analytic functions of a sim-
ilar form. Our methods can be easily extended to include this case, but we choose
to only address random polynomials in this paper for ease of exposition.

Again, our method for almost sure convergence is based on proving conver-
gence of the normalized logarithmic potential (4). The main obstacle is again in
obtaining a lower bound on 1

n
log |Gn(z)|. For proving almost sure convergence,

the Kolmogorov–Rogozin inequality is too weak, so a stronger concentration in-
equality is needed.

For this, we use a small ball probability theorem of Nguyen and Vu [16]. This
gives a stronger concentration estimate than the Kolmogorov–Rogozin inequality
for sums of the form

∑n
i=1 ξiai , where the ais are fixed and the ξis are i.i.d. random

variables. This stronger estimate requires that the coefficients ai are sufficiently
spread out in the plane.

While we do not treat the multivariable case in this paper, our methods are flexi-
ble enough to still be applied in that setting. In particular, our proof of convergence
in probability goes through with only minor modifications for the case of multi-
variable random orthogonal polynomials. Our proof of almost sure convergence
can be adapted to fit specific multivariable random polynomial ensembles, that is,
the multivariable Kac ensemble.

Further work. In a follow-up paper [7], the second author uses the small ball
probability techniques of Section 6 to prove almost sure convergence of the nor-
malized counting measure of the zeros for general random orthogonal polynomials
of the form (2) under the condition (6). Necessity of this condition (as well as the
condition P(|ξ | > e|z|) = o(|z|−1) for convergence in probability) is also proven
in [7].

2. Preliminaries. In this section, we recall some basic results in potential the-
ory.

Let D ⊂C be an open set. A function u on D is subharmonic if it:

(i) takes values in [−∞,+∞).
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(ii) is upper semicontinuous.
(iii) satisfies the submean inequality. That is, given w ∈ D, there exists ρ > 0 such

that

u(w) ≤ 1

2π

∫ 2π

0
u
(
w + reit )dt (0 ≤ r < ρ).

We denote by sh(D) the collection of subharmonic functions on D. Note that if f

is analytic on D then log |f | ∈ sh(D).
A set E ⊂ C is polar if there is a nonconstant subharmonic function u with

E ⊂ {u = −∞}. Subharmonic functions are locally integrable and thus polar sets
are of Lebesgue planar measure zero.

For a function f on D, we denote by f ∗ its upper semicontinuous regularization
given by

f ∗(z) := lim sup
w→z

f (w).

Let Pn denote the space of polynomials of degree ≤ n. Let

L(C) = {
u ∈ sh(C)

∣∣u(z) − log
∣∣z| is bounded above as |z| → +∞}

.

If p ∈ Pn is a nonconstant polynomial, then 1
deg(p)

log |p| ∈ L(C).
For a compact set K ⊂C, the Green’s function of K is given by

VK(z) := sup
{

1

deg(p)
log

∣∣p(z)
∣∣|

p is a nonconstant polynomial, and ‖p‖K ≤ 1
}
.

(7)

Whenever K is nonpolar, V ∗
K ∈ L(C). Note that VK = V

K̃
where

K̃ := {
z : ∣∣p(z)

∣∣ ≤ ‖p‖K for all polynomials p
}

is the polynomially convex hull of K . Also, VK is harmonic on C \ K̃ .
We say that K is regular when VK is continuous, that is, VK = V ∗

K . This is
equivalent to the unbounded component of the complement of K being regular for
the Dirichlet problem. Any regular set is nonpolar and for K regular, VK = 0 for
all z ∈ K̃ .

For a general nonpolar compact set K , the logarithmic capacity of K may be
defined as e−ρ where the Green’s function has the asymptotic expansion

VK(z) = log |z| − ρ + o(1)

as |z| → ∞. For equivalent characterizations of logarithmic capacity, see [19],
Chapter 5. In this paper, we will restrict to regular sets.

EXAMPLE 2.1. Let K = {z : |z| = 1} be the unit circle in the plane. Then K is
regular and VK(z) = max(0, log |z|). The polynomially convex hull of K is given
by K̃ = {z : |z| ≤ 1}.
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The following theorem is from [19] (Theorems 3.4.2 and 3.4.3).

THEOREM 2.2. Let D ⊂ C be open. Let {ψn(z)}n=1,2,... be a sequence in
sh(D) which is locally bounded above. Then

w(z) :=
(
lim sup

n
ψn(z)

)∗

and

w1(z) :=
(
sup
n

ψn(z)
)∗

are subharmonic on D. Furthermore, w(z) = lim supn ψn(z) outside of a polar
set, and w1(z) = supn ψn(z) outside a polar set.

We present the following simple result without proof.

LEMMA 2.3. Let f be upper semicontinuous and g continuous on D with
f ≤ g. Suppose that f = g at a dense set of points in D. Then f = g on D.

Let L1
loc(D) denote the space of locally integrable functions on D. The next

theorem gives conditions for a sequence of subharmonic functions to converge in
L1

loc(D).

THEOREM 2.4 (see also [5], Proposition 4.4). Let D ⊂ C be open. Let
{ψn(z)}n=1,2,... be a sequence in sh(D) which is locally bounded above and let
w(z) ≥ (lim supn ψn(z))

∗. Suppose that w is continuous and that there is a count-
able dense set of points

{zi}i∈N ⊂ D such that

lim
n→∞ψn(zi) = w(zi) for all i ∈ N.

Then ψn → w in L1
loc(D).

PROOF. The first step is to show that for any subsequence J ⊂ N and any
z ∈ D, that (

lim sup
n∈J

ψn(z)
)∗ = w(z).

To this end, let J ⊂ N be a subsequence. By Theorem 2.2,

wJ :=
(
lim sup

n∈J

ψn(z)
)∗

is subharmonic on D. By Lemma 2.3, wJ = w on D. This completes the first step.
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Next, we proceed by contradiction to prove the theorem. Suppose that the con-
clusion of the theorem does not hold. Then there exists a closed ball B ⊂ D and
ε > 0 such that for some subsequence J1 ⊂ N we have, for n ∈ J1,

(8) ‖ψn − w‖L1(B) ≥ ε.

However, appealing to Theorem 3.2.12 of [10], there is a subsequence J2 ⊂ J1
and g ∈ L1(B) with limn∈J2 ψn = g in L1(B). It follows from standard measure
theory that there is a further subsequence J3 ⊂ J2 with limn∈J3 ψn(z) = g(z) for
a.e. z ∈ B so that g(z) = wJ (z) = w(z) a.e. in B . This contradicts (8). �

We remark that L1
loc(D) may be endowed with a metric as follows.

REMARK 2.5. Let L1
loc(D) denote the space of functions locally in L1 on an

open set D ⊂ C. The space L1
loc(D) is a metric space as follows: let X1,X2, . . . be

a sequence of compact subsets of D with
⋃∞

i=1 Xi = D,Xi ⊂ Xi+1 for all i. For
f,g ∈ L1

loc(D) set

ρ(f, g) :=
∞∑
i=1

2−i min
[
1,‖f − g‖L1(Xi)

]
.

3. Construction of random polynomials. We will construct random polyno-
mials by “randomizing” linear combinations of orthogonal polynomials. We con-
sider random polynomials of the form

(9) Hn(z) :=
n∑

j=0

ξjqj (z),

where the ξj are i.i.d. complex-valued random variables, and the {qj (z)} are or-
thonormal polynomials constructed below.

To emphasize the randomness, we will sometimes use the notation Hn(z,ω)

where ω ∈ 
 and the i.i.d. random variables ξi are defined on a probability space
(
,F,P).

REMARK 3.1. As discussed in the beginning of the Introduction, Hn is
of degree Dn = sup{i ≤ n : ξi �= 0}. The nondegeneracy of ξi guarantees that
limn→∞ Dn/n = 1 almost surely, and no parts of this paper are affected by the
discrepancy between Dn and n. To simplify the exposition, we therefore assume
Dn = n throughout the paper.

Let K be a compact and regular subset of C. We construct the polynomials
qj (z) as follows:

Let τ be a finite measure on K . Apply the Gram–Schmidt orthogonalization
procedure to the monomials {zj } in L2(τ ) for j = 0,1, . . . to obtain a sequence of
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polynomials {q0, q1, . . .}. Assume that τ satisfies the Bernstein–Markov property
(see [6]). That is, for all ε > 0, there is an M > 0 such that for all p ∈ Pn we have

(10) ‖p‖K ≤ Meεn‖p‖L2(τ ).

Then we have the following convergence result for every z ∈ C (from [6]):

(11) VK(z) = lim
n→∞

1

2n
log

n∑
j=0

∣∣qj (z)
∣∣2.

Furthermore, since K is regular, (11) holds locally uniformly. It follows from (10)
that given ε > 0 there is an M > 0 such that, for all j ∈ N, we have that∥∥qj (z)

∥∥
K ≤ Meεj ,

and so

(12)
∣∣qj (z)

∣∣ ≤ Men(VK(z)+ε) for all j ∈ {0,1, . . . , n}, z ∈ C.

We consider random variables ξ0, ξ1, . . . satisfying

(13) P
(|ξ0| > e|z|) = o

(|z|−1)
.

Our next goal is to establish versions of Theorem 2.4 that are specific to random
polynomials. We first prove two lemmas which give upper bounds on logarithmic
potentials.

LEMMA 3.2. Let ξ0, ξ1, . . . be i.i.d. random variables satisfying (13), and let
Hn(z,ω) be the random polynomials given by (9).

For any subsequence Y ⊂ N, there is a further subsequence Y0 ⊂ Y such that
almost surely, the family { 1

n
log |Hn| : n ∈ Y0} is locally bounded above, and such

that for all z ∈ C,

(14) lim sup
n∈Y0

1

n
log

∣∣Hn(z,ω)
∣∣ ≤ VK(z).

PROOF. It follows from (13) that for every ε > 0 we have

(15) P
(|ξ0| > eε|z|) = o

(|z|−1)
.

Letting 
n,ε = {ω ∈ 
 : |ξi(ω)| ≤ eεn for i = 0, . . . , n}, the asymptotics in (15)
imply that

P
(

c

n,ε

) → 0 as n → ∞.

Thus, given a subsequence Y ⊂ N there is a further subsequence Y0 ⊂ Y , Y0 =
{n1, n2, . . .} such that

∞∑
s=0

P
(

c

ns,ε

)
< ∞.
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Therefore by the Borel–Cantelli lemma, for every ε > 0 we can almost surely find
an s0 ∈ N such that for every s ≥ s0, we have∣∣ξi(ω)

∣∣ ≤ eεns for every i ∈ {0, . . . , ns}.
Therefore, for any ε > 0, (12) implies that, almost surely,

lim sup
s→∞

1

ns

log

(
ns∑

i=0

∣∣ξiqi(z)
∣∣) ≤ VK(z) + 2ε for every z ∈ C.

Letting ε tend to 0, and observing that |Hns (z,ω)| ≤ ∑ns

i=0 |ξiqi(z)| completes the
proof of (14). The fact that the sequence { 1

n
log |Hn| : n ∈ Y0} is locally bounded

above follows since the convergence in (11) is locally uniform. �

By imposing a stronger condition on the ξi , we can get an almost sure upper
bound on 1

n
log |Hn|. We state this lemma in slightly greater generality here so that

it fits into the framework that we adopt in Section 6.

LEMMA 3.3. Let ξ0, ξ1, . . . be nondegenerate i.i.d. random variables satisfy-
ing

(16) E log
(
1 + |ξ0|) < ∞,

and let Hn(z) = ∑n
i=0 ξiqn,i(z) be a sequence of random polynomials, where each

qn,i is a polynomial of degree i. Suppose that there exists a continuous function V

such that

lim
n→∞

1

n
log

(
n∑

i=0

|qn,i |
)

= V

locally uniformly on C. Then almost surely, the family { 1
n

log |Hn|}n∈N is locally
bounded above, and

lim sup
n→∞

1

n
log

∣∣Hn(z,ω)
∣∣ ≤ V (z) for all z ∈ C.

PROOF. Condition (16) implies that
∞∑

n=0

P
(|ξn| > eεn)

< ∞ for every ε > 0.

Therefore, for any ε > 0, the Borel–Cantelli lemma implies that there exists a
random constant C such that almost surely

|ξn| < Ceεn for all n.

The lemma then follows by similar reasoning to that used in the proof of
Lemma 3.2. �

We will also use the following lemma, presented without proof.
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LEMMA 3.4. Let a0, a1, . . . be a sequence of nonzero complex numbers and
A ≥ 0. The following equations are equivalent:

(i) lim
n→∞

1

n
log

(
n

max
i=0

|ai |
)

= A,

(ii) lim
n→∞

1

n
log

(
n∑

i=0

|ai |
)

= A,

(iii) lim
n→∞

1

2n
log

(
n∑

i=0

|ai |2
)

= A.

Note if we set aj = qj (z) at any point z where none of the polynomials qj (z)

are zero and A = VK(z), then (11) shows that each of the above conditions are
met.

4. Zeros of random polynomials. We are concerned with the zeros of ran-
dom polynomials of the form (9). We will prove, under appropriate circumstances,
the weak* convergence as n approaches infinity of the normalized counting mea-
sure of the zeros to the equilibrium measure of K .

Given a compact nonpolar set K ⊂ C, the equilibrium measure μK is defined
as the unique probability measure which minimizes over probability measures μ

on K , the functional ([20], Theorem I.3)

(17)
∫∫

log
1

|z − t | dμ(z) dμ(t).

It may also be characterized by (see [20], Appendix B, Lemma 2.4)

(18) μK = 1

2π
�V ∗

K,

where � denotes the Laplacian and the equation is in the sense of distributions.
Now, if pn is a polynomial of degree n, the normalized counting measure of its

zeros (counting multiplicity) is given by

(19)
1

2π
�

(
1

n
log |pn|

)
= 1

n

n∑
j=1

δ(zj ),

where z1, z2, . . . , zn are the zeros of pn and δ(z) denotes the Dirac-delta measure
at z.

We will use the notation ZHn to denote the normalized counting measure of the
zeros of the random polynomial Hn. That is,

(20) ZHn = 1

2π
�

(
1

n
log |Hn|

)
.
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We can now state conditions under which ZHn converges almost surely and in
probability. We first state the following application of Theorem 2.4 to zero mea-
sures of polynomials.

THEOREM 4.1. Let pn be a sequence of degree-n polynomials and let V be
a continuous, subharmonic function on C. Suppose that the following hypotheses
are satisfied:

(i) The sequence { 1
n

log |pn| : n ∈ N} is locally bounded above.
(ii) For every z ∈C, we have

lim sup
n

1

n
log

∣∣pn(z)
∣∣ ≤ V (z).

(iii) There exists a countable dense set of points {zi}i∈N ⊂ C such that

lim
n→∞

1

n
log

∣∣pn(zi)
∣∣ = V (zi) for all i ∈ N.

Then Zpn converges to 1
2π

�V in the weak∗ topology (here we are thinking of
1

2π
�V as a measure).

PROOF. By Theorem 2.4, 1
n

log |pn| converges to VK in L1
loc(C). Applying

1
2π

� to both 1
n

log |pn| and VK gives that Zpn converges to 1
2π

�V as distributions
and, therefore, in the weak∗ topology. �

We have the following consequence of Theorem 4.1 that we will use to prove
convergence in probability in Section 5.

THEOREM 4.2. Let Hn be a sequence of random polynomials of the form (9)
with coefficients ξi satisfying (13). Suppose that there exists a countable dense set
of points {zi}i∈N ⊂C such that for every zi , we have

lim
n→∞

1

n
log

∣∣Hn(zi,ω)
∣∣ = VK(zi) in probability.

Then

ZHn −−−→
n→∞ μK in probability

in the weak* topology on probability measures on C. That is, for any open set U

in the weak* topology containing μK , we have that

P(ZHn ∈ U) → 1 as n → ∞.
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PROOF. First, we recall that (see [14], Lemma 3.2) a sequence of random el-
ements with values in a metric space converges in probability to some limit if
and only if every subsequence of those random elements contains a further subse-
quence which converges almost surely to the same limit.

Let Hn(z,ω) be a sequence of random polynomials satisfying the hypotheses
of the theorem. Let Y ⊂ N be a subsequence. We will find a further subsequence
Y ∗ ⊂ Y such that

(21) lim
n∈Y ∗ ZHn = μK weak* almost surely.

By condition (13) on the coefficients and Lemma 3.2, we can find a subsequence
Y0 ⊂ Y such that the random polynomials {Hn(z,ω) : n ∈ Y0} satisfy conditions (i)
and (ii) of Theorem 4.1 almost surely. Using the hypothesis of the theorem, there
is a subsequence Y1 ⊂ Y0 and a subset B1 ⊂ 
 with P(B1) = 1 such that

(22) lim
n∈Y1

1

n
log

∣∣Hn(z1,ω)
∣∣ = VK(z1),

for all ω ∈ B1. Next, consider the point z2. Repeating the above procedure, we
obtain a subsequence Y2 ⊂ Y1 and a subset B2 ⊂ 
 with P(B2) = 1 such that (22)
holds on B2 with Y2 in place of Y1 and z2 in place of z1. In this way, we proceed
through the points {zi}i∈N to get a sequence of nested subsequences Y1 ⊃ Y2 ⊃
Y3 · · · and sets {Bi}i∈N of probability one so that (22) holds on Bi with Yi and zi

in place of Y1 and z1.
We now use the Cantor diagonalization procedure to construct a sequence Y ∗ =

{m1 < m2 < · · · }. To do this, pick m1 ∈ Y1, and then recursively select mi ∈ Yi \
{1, . . . ,mi−1} for each i ≥ 2. Since the Yis form a nested sequence, Y ∗ \ Yi is
finite for all i. In particular, this implies that for all ω in the full measure set B =⋂∞

n=1 Bn and i ∈ N, that

lim
n∈Y ∗

1

n
log

∣∣Hn(zi,ω)
∣∣ = VK(zi).

Thus all the conditions of Theorem 4.1 hold almost surely for the sequence of
random polynomials {Hn : n ∈ Y ∗}; applying that theorem proves (21). �

REMARK 4.3. Theorem 4.2 and the input from Lemma 3.2 don’t rely very
much on the fact that the sequence Hn = ∑n

i=0 ξiqi is constructed from an or-
thonormal sequence of polynomials. In particular, the proofs of Theorem 4.2 and
Lemma 3.2 go through analogously in the case where Hn = ∑n

i=0 ξifn,i for an
array of degree-i polynomials {fn,i : i ≤ n ∈ N} with the property

lim
n→∞

1

n
log

(
n∑

i=0

|fn,i |
)

= V.

Here, the convergence above is locally uniform on C and V is a continuous, sub-
harmonic function with the property that V (z)− log |z| is bounded as |z| → ∞. In
this case, the limit of the zero measures ZHn is 1

2π
�V .
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5. Convergence in probability. We wish to use Theorem 4.2 to prove con-
vergence in probability for random polynomials of the form (9). To do this, we
need to prove convergence in probability of the normalized logarithmic potential
at a countable dense set of points. We will in fact prove such convergence at all but
countably many points.

Pointwise convergence in probability is consequence of Theorem 5.2. Equation
(26) gives the upper bound. The lower bound uses the Kolmogorov–Rogozin in-
equality. To complete the convergence in probability of the zeros (Theorem 5.3),
we need only point out that Theorem 5.2 is applicable at all but countably many
points.

For a complex random variable X and a positive real number r , define the con-
centration function

Q(X; r) = sup
x∈C

P
(
X ∈ B(x, r)

)
.

Here, B(x, r) is the open ball of radius r centred at x.

THEOREM 5.1 (Kolmogorov–Rogozin inequality; see [8], Corollary 1 on
page 304). There is a constant C such that for any independent random vari-
ables X1, . . . ,Xn and for any r > 0, we have

Q
(

n∑
i=1

Xi; r
)

≤ C√∑n
i=1[1 −Q(Xi; r)]

.

The concentration function Q also has the following elementary properties.
First, rescaling a complex random variable X by any a ∈ C \ {0} gives that

(23) Q(aX; r) =Q
(
X; r

|a|
)
.

Also, if X and Y are independent random variables, then

(24) Q(X + Y ; r) ≤ Q(X; r).
Theorem 5.2 uses the Kolmogorov–Rogozin inequality to establish a pointwise

lower bound on functions of the form 1
n

log |∑ ξiai |.

THEOREM 5.2. Let a0, a1, . . . be a sequence of nonzero complex numbers
satisfying any of the equivalent conditions of Lemma 3.4.

Let ξ0, ξ1, . . . be a sequence of i.i.d. nondegenerate complex random variables
such that (13) holds. Then

(25) lim
n→∞

1

n
log

∣∣∣∣∣
n∑

i=0

ξiai

∣∣∣∣∣ = A

in probability.
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PROOF. We first show that for any ε > 0,

(26) P

(
1

n
log

∣∣∣∣∣
n∑

i=0

ξiai

∣∣∣∣∣ > A + ε

)
→ 0 as n → ∞.

Recall from the proof of Lemma 3.2 that condition (13) implies that

(27) P
(|ξi | ≤ eεn/2 for i = 0, . . . , n

) → 1 as n → ∞.

On the event in the above probability, we have that

1

n
log

∣∣∣∣∣
n∑

i=0

ξiai

∣∣∣∣∣ ≤ 1

n
log

(
n

max
i=0

|ξi |
)

+ 1

n
log

(
n∑

i=0

|ai |
)

≤ ε

2
+ 1

n
log

(
n∑

i=0

|ai |
)
.

By Lemma 3.4(ii), for all large enough n the right-hand side above is at most A+ε.
Combining this with the convergence in (27) implies (26).

We now show that for any ε > 0, we have

(28) P

(
1

n
log

∣∣∣∣∣
n∑

i=0

ξiai

∣∣∣∣∣ < A − ε

)
→ 0 as n → ∞.

We bound the above probability in terms of the concentration function for the sum
and then apply the Kolmogorov–Rogozin inequality. This gives

P

(
1

n
log

∣∣∣∣∣
n∑

i=0

ξiai

∣∣∣∣∣ < A − ε

)
≤ Q

(
n∑

i=0

ξiai; en(A−ε)

)

≤ C

(
n∑

i=0

(
1 −Q

(
ξiai; en(A−ε))))−1/2

.

To complete the proof of (28), it suffices to prove that the sum

(29)
n∑

i=0

(
1 −Q

(
ξiai; en(A−ε))) =

n∑
i=0

(
1 −Q

(
ξi; en(A−ε)

|ai |
))

approaches infinity as n → ∞. Here, the equality follows from rescaling (equation
(23)).

For this, first observe that by the nondegeneracy of ξ0, we can find positive num-
bers D1, D2 such that for all d ≤ D1, we have that Q(ξ0;d) ≤ D2 < 1. Therefore,
to show that the sum in (29) approaches infinity as n → ∞, it is enough to show
that |Jn| → ∞ as n → ∞, where

Jn =
{
i ≤ n : en(A−ε)

|ai | ≤ D1

}
.

We note that in Lemma 3.4, A ≥ 0. We will consider two cases, A = 0 and A > 0,
and first deal with the case A = 0. In this case, for all i we have that

en(A−ε)

|ai | −→ 0 as n → ∞.
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Therefore, for all i there exists a number Ni such that i ∈ Jn for all n ≥ Ni . There-
fore, |Jn| → ∞ as n → ∞.

Now, suppose A > 0. We may assume that 0 < ε < A. Fix δ ∈ (0, ε/2). By
Condition (i) of Lemma 3.4, there exists an integer N such that for all n ≥ N , we
have that

1

n
log

(
n

max
k=0

|ak|
)

∈ [A − δ,A + δ].
This implies that for all k ≥ N , we have |ai | ≤ ek(A+δ) for i ≤ k. Also, for all
m ≥ N there exists a minimal k(m) ≤ m such that |ak(m)| ≥ em(A−δ). Fixing k ≥ N

we consider those m such that k = k(m). The conditions above guarantee that
m ≥ k and that m(A − δ) ≤ k(A + δ). This yields

(30)
∣∣{m ∈N : k = k(m)

}∣∣ ≤ 2δk

A − δ
+ 1.

Now, observe that for all n ≥ N(A−δ)
A−ε/2 , for every m ∈ [n(A−ε/2)

A−δ
, n], we have that

en(A−ε)

|ak(m)| ≤ e−εn/2.

Choosing n large enough so that e−εn/2 < D1, we then have that

|Jn| ≥
∣∣∣∣
{
k ≤ n : k = k(m) for some m ∈

[
n(A − ε/2)

A − δ
, n

]}∣∣∣∣.
By (30), for all n large enough, the right-hand side above can be bounded below
by

n(ε/2−δ)
A−δ

1 + 2δn
A−δ

≥ (ε/2 − δ)

3δ
.

Since δ can be taken arbitrarily small, this implies that |Jn| → ∞ as n → ∞,
completing the proof of (28). �

We now have all the ingredients to prove convergence in probability of the nor-
malized counting measure of the zeros for random orthonormal polynomials.

THEOREM 5.3. Let K ⊂ C be a regular, compact set and let μK be the equi-
librium measure of K (see (17) and (18)). Let ξ0, ξ1, . . . be a sequence of non-
degenerate i.i.d. complex random variables satisfying (13). Consider the random
polynomials

Hn(z) :=
n∑

j=0

ξiqj (z),

where {qj (z)} are the orthonormal polynomials with respect to a measure on K

satisfying the Bernstein–Markov property defined in Section 3.
Then ZHn converges in probability to μK in the weak* topology on probability

measures on C.
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PROOF. By (11), Lemma 3.4 is satisfied with ai = qi(z) and A = VK(z) at all
points z where no qi(z) = 0, and thus at all but countably many points in the plane.
Therefore, Theorem 5.2 applies and we have the convergence in probability

1

n
log

∣∣Hn(z,ω)
∣∣ → VK(z)

at all but at most countably many points in the plane. Applying Theorem 4.2, the
result follows. �

REMARK 5.4. In [12], Ibragimov and Zaporozhets showed that the condition

(31) E log
(
1 + |ξ0|) < ∞

is equivalent to the weak* almost sure convergence of ZHn → 1
2π

dθ in the Kac
ensemble case when qj (z) = zi (see Theorem [12], Theorem 1).

Motivated by this and theorems of a similar flavour in [18], Pritsker and Ra-
machandran (Conjecture 2.5, [18]) asked if there exists a measure τ on the unit
circle {z = 1} and a sequence of i.i.d. random variables {ξi}i∈N such that (31)
does not hold, and such that for the basis of orthogonal polynomials {qn(z)}n∈N
constructed with respect to τ , a subsequence {ZHni

} of the normalized counting
measures of the zeros of the polynomials

Hn(z) =
n∑

i=0

ξiqi(z)

still converges weak* almost surely to 1
2π

dθ .
Theorem 5.3 shows that for any sequence of i.i.d. random variables {ξi}i∈N such

that

E log
(
1 + |ξ0|) = ∞ and P

(|ξ0| > e|z|) = o
(|z|−1)

,

and any sequence of orthonormal polynomials {qn(z)}n∈N constructed with respect
to a Bernstein–Markov measure τ on {|z| = 1}, that ZHn → 1

2π
dθ in probability,

and hence any subsequence {ZHni
} has a further subsequence which converges

almost surely. This resolves Pritsker and Ramachandran’s conjecture.

We now show that Theorem 5.3 is the best possible result for general orthogonal
ensembles, by showing that condition (13) is both necessary and sufficient for the
Kac ensemble. To do this, we first need a lemma about random variables.

LEMMA 5.5. Let X be a nonnegative real random variable. Suppose that

(32) lim sup
x→∞

xP(X > x) > 0.

Then there exists a function f : [0,∞) → [0,∞) such that:
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(i) C(f ) := lim supn→∞ nP(X > f (n)) ∈ (0,∞). Here, the limsup is taken
over n ∈ N, hence the use of n instead of x.

(ii) For every x, y ∈ [0,∞), we have that f (x) + y ≤ f (x + y).

PROOF. In the case when lim supn→∞ nP(X > 2n) ∈ (0,∞), then the func-
tion f (x) = 2x works. Therefore, noting that this limsup is positive by (32), we
can assume that

(33) lim sup
n→∞

nP(X > 2n) = ∞.

Define a function g : {0,1, . . .} → [0,∞) so that g(0) = 0, and for n ≥ 1,

(34) P
(
X > g(n)

) ≤ 1

n
and P

(
X ≥ g(n)

) ≥ 1

n
.

Now, for each x ∈ [0,∞), define

f (x) = max
{
g(n) + x − n : n ∈ {

0, . . . , �x
}}.
We check that f satisfies the conditions of the lemma. First, fix x < y ∈ [0,∞).
For some n ∈ {0, . . . , �x
}, we have that f (x) = g(n)+ x −n. By the definition of
f (y), we have that f (y) ≥ g(n) + y − n = f (x) + y − x. Thus f satisfies (i).

Now, there must be infinitely many values of n ∈ N such that f (n) = g(n). To
see this, note that if there are only finitely many such values, then there exists
an m ∈ N such that for all x ≥ m, we have that f (x) = g(m) + x − m. Hence
g(n) ≤ f (n) ≤ 2n for all large enough n, and so by the first inequality in (34),

lim sup
n→∞

nP(X > 2n) ≤ lim sup
n→∞

nP
(
X > g(n)

) ≤ 1.

This contradicts (33). Now let {ni ∈N} be a subsequence so that f (ni) = g(ni) for
all i. Note that f (ni −1) < f (ni) = g(ni) since f is strictly increasing. Therefore,
we have that

(35) lim
ni→∞(ni − 1)P

(
X > f (ni − 1)

) ≥ lim
ni→∞(ni − 1)P

(
X ≥ g(ni)

) ≥ 1.

The final inequality follows from (34). Moreover, since f (n) ≥ g(n) for all n ∈ N,
we also have that

lim sup
n→∞

nP
(
X > f (n)

) ≤ lim sup
n→∞

nP
(
X > g(n)

) = 1.

Here, the last inequality again follows from (34). Combining this with (35) implies
that C(f ) = 1. �

THEOREM 5.6. Consider the random polynomials

Hn(z) :=
n∑

i=0

ξiz
i,

where ξ0, ξ1, . . . is a sequence nondegenerate i.i.d. complex-valued random vari-
ables. Then ZHn converges weak∗ in probability to 1

2π
dθ if and only if the random

variables ξi satisfy (13).
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PROOF. The “if” statement is a consequence of Theorem 5.3, with K = {z :
|z| = 1} and τ = 1

2π
dθ (see Example 2.1). Now suppose that the random variables

ξi fail to satisfy (13).
Recall that ZHn is a random variable on the space M of probability measures

on C with the weak* topology. To show that ZHn does not converge in probability
to 1

2π
dθ , it suffices to find an open set U ⊂ M that contains 1

2π
dθ , and such that

(36) lim inf
n→∞ P(ZHn ∈ U) < 1.

Let

O = {
z ∈ C : 1/2 < |z| < 3/2

}
and let U = {

μ ∈ M : μ(O) > 1/2
}
.

U is open in M by the Portmanteau theorem, and contains 1
2π

dθ . We will show
that

(37) lim sup
n→∞

P
(
ZHn(O) = 0

)
> 0,

which in turn proves (36), showing that ZHn does not converge in probability to
1

2π
dθ . To prove (37), we show that

lim sup
n→∞

P
(
There exists m ∈ {0, . . . , n} such that

|ξm| ≥ en|ξj | for all j ∈ {0, . . . , n}, j �= m
)
> 0.

(38)

To see why this is sufficient, observe that on the event in (38), for all large enough
n, we have that

|ξm‖z|m >
∑

j∈[0,n]
j �=m

|ξj‖z|j ≥
∣∣∣∣ ∑
j∈[0,n]
j �=m

ξj z
j

∣∣∣∣

for all z ∈ O. Therefore, Hn has no zeroes in O on this event. We now prove (38).
For a function f : [0,∞) → [0,∞) and n ∈ N, define

Dn(f ) := nP
(|ξ0| > f (n)

)
and D(f ) := lim sup

n→∞
Dn(f ).

Since (13) is not satisfied by the ξi , we can apply Lemma 5.5 to the random variable
log |ξ0| getting a function f satisfying properties (i) and (ii) of that lemma. Letting
g = ef , we then have that:

(i) D(g) ∈ (0,∞).
(ii) For every x, y ∈ [0,∞), we have that g(x + y) ≥ eyg(x).

For α ∈ (0,∞), define gα(x) := g(αx). Observe that αD(gα) = D(g). Now define

Bn,α = ∣∣{i ≤ n : |ξi | > gα(n)
}∣∣.
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For each α, Bn,α is a binomial random variable with n trials and mean Dn(gα).
Now for any α > 1, there exists a subsequence {ni} such that

lim
ni→∞EBni,α = D(g)

α
whereas lim sup

ni→∞
EBni,α−1 ≤ D(g)

α − 1
.

Poisson convergence for binomial random variables implies that

lim inf
ni→∞ P(Bni,α = 1) − P(Bni,α−1 ≥ 2) ≥ P(YD(g)/α = 1) − P(YD(g)/(α−1) ≥ 2),

where the random variables Yz are Poisson with mean z. For large enough α, the
right-hand side above is strictly positive. By property (ii) of the function g, this
implies (38). �

6. Almost sure convergence. In this section, we consider almost sure conver-
gence of zeros for random polynomial ensembles. The types of random polynomial
ensembles that we consider are slightly different from the random orthogonal poly-
nomial ensembles considered in Section 5, but all the tools that we have developed
so far are still applicable in this setting.

Our main tool for proving almost sure convergence is a small ball probability
theorem of Nguyen and Vu ([16], Corollary 2.10). In [16], this theorem is stated
for real-valued random variables ξ satisfying the condition

P
(
1 ≤ |ξ1 − ξ2| ≤ C

) ≥ 1/2

for some value of C, where ξ1, ξ2 are independent copies of ξ . However, the proof
can easily be extended to all nondegenerate real random variables, which satisfy

P
(
b1 ≤ |ξ1 − ξ2| ≤ b2

)
> 0

for some b1, b2 > 0 at the expense of changing some of the constants (this version
of their theorem is stated in [17]). The proof can also be extended to accommodate
complex-valued random variables by making a few other minor modifications.

The result we state and use here is weaker than the result from [16], since we do
not need to use information about the arithmetic structure of the coefficient set A.

THEOREM 6.1. Let 0 < ε < 1, C > 0 be arbitrary constants, and β > 0 a pa-
rameter that may depend on n. Suppose that A = {a0, a1, a2, . . . , an} is a (multi)-
subset of C such that

∑n
i=0 |ai |2 = 1, and let ξ0, ξ1, . . . , ξn be i.i.d. nondegenerate

complex random variables. Suppose additionally that

Q
(

n∑
i=0

ξiai;β
)

≥ n−C.

Then there exists a constant D depending only on ξ0 and ε such that for any
number n′ ∈ (nε, n), at least n − n′ elements of A can be covered by a union

of max(DnC√
n′ ,1) balls of radius β .
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We translate this into a lemma that can be applied to prove almost sure conver-
gence of random polynomial zeros.

LEMMA 6.2. Let {an,i : 0 ≤ i ≤ n, i, n ∈ {0,1, . . .}} be a triangular array of
complex numbers such that

(39) lim
n→∞

1

2n
log

(
n∑

i=0

|an,i |2
)

= A.

Let ‖a(n)‖ be the Euclidean norm of (a0,n, . . . , an,n), and let wn,i = an,i/‖a(n)‖.
Suppose that for any ε > 0, there exists a δ > 0 such that for all large enough n,
the set

Wn = {wn,i : 0 ≤ i ≤ n}
cannot be covered by a union of n2/3+δ balls of radius e−εn. If {ξ0, ξ1, . . .} is a
sequence of nondegenerate i.i.d. complex random variables, then

lim inf
n→∞

1

n
log

∣∣∣∣∣
n∑

i=0

ξian,i

∣∣∣∣∣ ≥ A almost surely.

PROOF. For any ε > 0, we have that

P

(
1

n
log

∣∣∣∣∣
n∑

i=0

ξian,i

∣∣∣∣∣ < A − 2ε

)
≤ Q

(
n∑

i=0

ξian,i; en(A−2ε)

)
.

Therefore, by the Borel–Cantelli lemma, to prove the lemma it is enough to show
that for every ε > 0, we have

(40)
∞∑
i=0

Q
(

n∑
i=0

ξian,i; en(A−2ε)

)
< ∞.

For all large enough n, (39) guarantees that(
n∑

i=0

|an,i |2
)1/2

∈ [
en(A−ε), en(A+ε)].

Therefore, for such n, the rescaling property of Q (equation (23)) implies that

(41) Q
(

n∑
i=0

ξian,i; en(A−2ε)

)
≤ Q

(
n∑

i=0

ξiwn,i; e−εn

)
.

Now let δ be as in the statement of the lemma for the above value of ε. Take n′ =
n2/3 in Theorem 6.1. By that theorem, there exists a constant D independent of n

such that if the right-hand side of (41) is greater than n−1−δ/2, then at least n−n2/3

elements of Wn = (w0,n, . . .wn,n) can be covered by a union of Dn2/3+δ/2 balls
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of radius e−εn. This implies that all elements of Wn can be covered by a union of
(1 + D)n2/3+δ/2 balls of radius e−εn. By the assumption on the array {wn,i}, this
can only occur for finitely many n.

Therefore, the right-hand side side of (41) is less than n−1−δ/2 for all large
enough n, and so it is summable in n; hence so is the left-hand side, proving (40).

�

We can now check that certain sequences of random polynomials satisfy the
conditions of Lemma 6.2 for almost every value of z. The setting is as follows.
Consider coefficients{

fn,k ∈ C : k ∈ {0, . . . , n}, n ∈ {0,1, . . .}}
satisfying the following two conditions:

(i) There exists a continuous function V : C → R such that for every z ∈ C,
we have that

(42) lim
n→∞

1

n
log

(
n∑

k=0

|fn,k||z|k
)

= V (z).

Moreover, this convergence is locally uniform. We assume that V (z) is subhar-
monic, and that V (z) − log(|z|) is bounded as z → ∞. This growth condition
ensures that 1

2π
�V (z) is a probability measure.

(ii) There exists a set D ⊂ C whose complement has Lebesgue measure zero,
such that for every z ∈ D, the following holds. For any ε > 0, there exists an
n0(ε, z) ∈ N and δ(ε, z) > 0 such that for all n ≥ n0(ε, z), we have that

(43)
∣∣{k ∈ [0, n] : |fn,k||z|k ≥ en(V (z)−ε)}∣∣ ≥ n2/3+δ(ε,z).

Now consider a sequence of i.i.d. nondegenerate complex-valued random vari-
ables {ξ0, ξ1, . . .} with E log(1 + |ξ0|) < ∞, and define the random polynomials

(44) Gn(z,ω) =
n∑

k=0

ξkfn,kz
k.

Then we have the following theorem. Again, we let (
,F,P) be the probability
space on which the random variables ξi are defined.

THEOREM 6.3. Under conditions (i) and (ii) above and condition (16), the
following statements hold:

(I) For almost every ω ∈ 
, the sequence { 1
n

log |Gn| : n ∈ N} is locally
bounded above, and

(45) lim sup
n→∞

1

n
log

∣∣Gn(z,ω)
∣∣ ≤ V (z) for every z ∈ C.
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(II) For a countable dense set of points {zi}i∈N ⊂ C, we have that

lim
n→∞

1

n
log

∣∣Gn(zi,ω)
∣∣ = V (zi) for almost every ω ∈ 
.

To prove the above theorem, we need a simple lemma bounding the Lebesgue
measure of the set where a polynomial can take small values. Here and throughout
the remainder of this section, m is Lebesgue measure in C.

LEMMA 6.4. Let Pn be a degree n polynomial with leading coefficient c. Then
for any r > 0,

m
{
z : ∣∣Pn(z)

∣∣ ≤ rn} ≤ πnr2|c|−2/n.

PROOF. Let z1, . . . , zn be the roots of Pn and let B(zi, r) be the closed ball of
radius r around z. For any r > 0, if z /∈ B(zi, r|c|−1/n) for all i ∈ {1, . . . , n}, then
|Pn(z)| > rn. The measure of

⋃n
i=1 B̄(zi, r) is at most πnr2|c|−2/n. �

Note that the factor of n in Lemma 6.4 can be improved upon by Cartan’s esti-
mate (see [15], Lecture 11). We do not need this level of precision here.

PROOF OF THEOREM 6.3. Conclusion (I) holds by Lemma 3.3. We now prove
(II). We will in fact show that for almost every z ∈ C, we have

lim inf
n→∞

1

n
log

∣∣Gn(z)
∣∣ ≥ V (z) almost surely.(46)

Together with (I) this suffices to prove the result. We want to apply Lemma 6.2 to
prove (46). Fix ε > 0, let z0 ∈ D, and define

Jn(z0, ε) = {
k ∈ [0, n] : en(V (z0)−ε) ≤ |fn,k||z0|k ≤ en(V (z0)+ε)}.

By condition (ii) on the coefficients fn,k , there exists a δ > 0 such that for all large
enough n, the lower bound above holds for at least n2/3+δ values of k. Moreover,
for large enough n, the upper bound holds for all k by condition (i). Therefore,
|Jn(z0, ε)| ≥ n2/3+δ for large enough n.

Now, for z ∈ C, let ‖(f, z)n‖ be the Euclidean norm of the vector (fn,0, fn,1z,

. . . , fn,nz
n). Let

wn,k(z) = fn,kz
k

‖(f, z)n‖ and define Wn(z) = {
wn,k(z) : k ∈ {0,1, . . . , n}}.

Since z0 �= 0 (note that 0 /∈ D), if z ∈ B(z0, |z0|(1 − e−ε)), then

wn,k(z)

wn,k(z0)
= |fn,kz

k|
|fn,kz

k
0|

≥ e−εn
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for any k, n. Therefore, for large enough n, if k ∈ Jn(z0, ε) and z ∈ B(z0, |z0|(1 −
e−ε)), then |wn,k(z)| ≥ e−3εn. Here, we have estimated ‖(f, z)n‖ using condition
(i) and Lemma 3.4.

Now suppose that z ∈ B(z0, |z0|(1 − e−ε)) is such that Wn(z) can be covered
by n2/3+δ/2 balls of radius e−7εn. As long as n is large enough, there must exist
k1 < k2 ∈ Jn(z0, ε) such that |k1 −k2| ≤ n1−δ/2 and |wn,k1(z)−wn,k2(z)| ≤ e−6εn.
We can write ∣∣wn,k1(z) − wn,k2(z)

∣∣ = ∣∣wn,k1(z)
∣∣∣∣∣∣fn,k2

fn,k1

zk2−k1 − 1
∣∣∣∣

≥ e−3εn

∣∣∣∣fn,k2

fn,k1

zk2−k1 − 1
∣∣∣∣.

(47)

Since both k1, k2 ∈ Jn(z0, ε), we have that |fn,k2/fn,k1 | ≥ e−2εn|z0|k1−k2 . Using
this, we can apply Lemma 6.4 to (47) to get

m
{
z ∈ B

(
z0, |z0|(1 − e−ε)) : ∣∣wn,k1(z) − wn,k2(z)

∣∣ < e−6εn} ≤ πn|z0|2e−10εnδ/2
.

Therefore, by a union bound,

Ln := m
{
z ∈ B

(
z0, |z0|(1 − e−ε)) :

Wn(z) can be covered by n2/3+δ/2 balls of radius e−7εn}
is at most n3π |z0|2e−10εnδ/2

for all large enough n. The sequence Ln is summable
in n, so by the Borel–Cantelli lemma, there exists a δ > 0 such that for almost
every z ∈ B(z0, |z0|(1 − e−ε)), the set Wn(z) can be covered by n2/3+δ balls of
radius e−7εn for at most finitely many n.

This holds for every z0 ∈ D for some δ. Therefore, we can extend this result to
get that for almost every z ∈ C, there exists a δ > 0 such that the set Wn(z) can be
covered by n2/3+δ balls of radius e−7εn for at most finitely many n.

Since ε > 0 was arbitrary, this implies that for almost every z ∈ C, for every
ε > 0 there exists a δ > 0 such that the set Wn(z) can be covered by n2/3+δ balls
of radius e−7εn for at most finitely many n. By Lemma 6.2, this implies (46) for
almost every z ∈ C. �

We can now use Theorem 6.3 to prove almost sure convergence of the normal-
ized counting measure of the zeros for Gn.

THEOREM 6.5. Let Gn(z,ω) be as in (44), where the coefficients fn,k satisfy
conditions (i) and (ii). Let ZGn(ω) be the normalized counting measure of the zeros
of Gn. Then for almost every ω ∈ 
, we have that

ZGn(ω) → 1

2π
�V (z) in the weak* topology.
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PROOF. This follows immediately from Theorem 6.3 and Theorem 4.1 (note
that the limit V (z) in Theorem 6.3 is subharmonic). �

COROLLARY 6.6. Let Gn(z,ω) be as in (44), where the coefficients fn,k sat-
isfy conditions (i) and (ii). Suppose the ξk are nondegenerate i.i.d. complex valued
random variables satisfying (13). Then

ZGn(ω) → 1

2π
�V (z)

in probability in the weak* topology.

PROOF. We want to apply Theorem 4.2 (or more precisely, Remark 4.3). We
just need to check the condition that for a countable dense set {zi}i∈N ⊂C, that

lim
n→∞

1

n
log

∣∣Gn(zi,ω)
∣∣ = V (zi)

in probability. The pointwise upper bound on the left-hand side above is estab-
lished analogously to (26). The lower bound follows from the proof of Theorem 6.3
(note that this bound only requires the nondegeneracy of the ξks). �

Special cases of Theorem 6.5. We can consider the following types of coeffi-
cients, first considered by Kabluchko and Zaporozhets in [13].

Assume that there is a function f : [0,1] → [0,∞) satisfying the following
conditions:

(i) f (t) is positive and continuous for all t .
(ii) limn→∞ supk∈[0,n] ||fn,k|1/n − f (k/n)| = 0.

It is easy to check that if the coefficients fn,k satisfy the above properties, then
they satisfy the conditions required for Theorem 6.3. This gives us the following
corollary.

COROLLARY 6.7. Let Gn(z) = ∑n
k=0 ξkfn,kz

k be the random polynomial
with coefficients fn,k as above, where the ξis are nondegenerate i.i.d. complex ran-
dom variables satisfying E log(1+|ξ0|) < ∞. Let ZGn be the normalized counting
measure of the zeros of Gn. For each z, the function V (z) of (42) is given by

V (z) = sup
t∈[0,1]

log |z|t f (t).

Then for almost every ω ∈ 
, we have that

ZGn(ω) → 1

2π
�V (z) in the weak* topology.
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We can also use Theorem 6.5 to look at the roots of certain random orthogonal
polynomial ensembles. Since Theorem 6.5 allows for an array of coefficients {fn,k}
rather than just a sequence {fn}, we can consider orthogonal polynomials with
respect to both a weight function and a measure. Random polynomial ensembles
of this form have been previously studied in [1, 2] and [5]. We give an example
where condition (ii) on the coefficients fn,k can be directly verified.

Let K ⊂ C be compact, and let S : K →R be a real-valued continuous function.
Define the weighted Green’s function

VK,S(z) = sup
{

1

deg(p)
log

∣∣p(z)
∣∣|

p is a nonconstant polynomial and
∥∥pe−nS

∥∥
K ≤ 1

}

= sup
{
u|u ∈ L(C), u ≤ S on K

}
.

We denote by V ∗
K,S the upper semicontinuous regularization of VK,S . The distri-

bution 1
2π

�V ∗
K,S is a probability measure on K .

We say that K is locally regular if for all a ∈ K and r > 0, the function
VK∩B(a,r) is continuous at a, where B(a, r) denotes the closed disk centred at a

with radius r . If K is locally regular and S is continuous, then VK,S is continuous,
and so VK,S = V ∗

K,S .
Let τ be a finite, positive, Borel measure on K . We say that τ satisfies the strong

Bernstein–Markov property if for all S continuous and ε > 0 there is a constant
C = C(S, ε) such that for every n, we have that

(48)
∥∥pe−nS

∥∥
K ≤ Ceεn‖p‖L2(e−2nSτ)

for all p ∈Pn.
Now consider a locally regular nonpolar compact set K , a continuous function

S, and a finite measure τ on K satisfying the strong Bernstein–Markov property.
For each n, we define orthonormal polynomials {q(n)

0 , . . . , q
(n)
n } by applying the

Gram–Schmidt procedure to the monomials {1, z, . . . , zn} in L2(e−2nSτ ). For ev-
ery z ∈ C, we have that

(49) VK,S(z) = lim
n→∞

1

2n
log

(
n∑

j=0

∣∣q(n)
j (z)

∣∣2)
,

where the convergence is uniform on compact subsets of C (see [5]).
We say that K is circularly symmetric if for every z ∈ C, we have that z ∈ K

if and only |z| ∈ K . S is circularly symmetric if S(z) = S(|z|), and τ is circularly
symmetric if for any rotation R, the pushforward measure R∗τ is equal to τ .

If K , τ and S are all circularly symmetric, then the polynomials q
(n)
j are of

the form fn,j z
j . In this case, we can apply Theorem 6.5 to random polynomials

formed from the set {q(n)
j }.
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COROLLARY 6.8. Suppose that K ⊂ C is a locally regular nonpolar compact
set, S is a continuous function on K , and τ is a finite measure on K satisfying the
strong Bernstein–Markov property. Suppose additionally that K , τ , and S are all
circularly symmetric, and let{

q
(n)
j : j ∈ {0,1, . . . , n}, n ∈ N

}
be as constructed above. Define

(50) Gn(z,ω) =
n∑

j=0

ξjq
(n)
j (z),

where {ξ0, ξ1, . . .} is a sequence of nondegenerate i.i.d. complex random variables
such that E log(1 +|ξ0|) < ∞. Let ZGn be the normalized counting measure of the
zeros of Gn. Then for almost every ω ∈ 
, we have that

ZGn → 1

2π
�VK,S in the weak* topology on probability measures on C.

PROOF. As mentioned above, each of the polynomials q
(n)
j (z) is of the form

fn,j z
j for some real number fn,j . The coefficients fn,j satisfy condition (i) on the

coefficients in Theorem 6.3 by (49).
We now show that the weights fn,j satisfy condition (ii). For any j , we have

that

fn,j =
(∫

K
|z|2j e−2nS(z) dτ (z)

)−1/2
.

By this formula, we get that

f
1/n
n,0 → inf

z∈supp(τ )
eS(z) and f

1/n
n,1 → inf

z∈supp(τ )\{0} e
S(z) as n → ∞.

To prove this first formula, set S0 = infz∈supp(τ ) S(z). From the formula for fn,0,
for all n ∈ N and ε > 0, we have

enS0 ≤ fn,0 ≤ C−1
ε en(S0+ε),

where Cε = τ {z : S(z) ≤ S0 +ε}. The continuity of S guarantees that Cε > 0 for all
ε > 0. Hence raising the above inequality to the power of 1/n, and taking n → ∞
and ε → 0 shows the desired convergence. The second formula can be shown in a
similar fashion.

Therefore, for any ε > 0, there exists an n ∈ N such that for all n ≥ N , we have
that

fn,0 ≤ eεnfn,1,

so for any fixed z ∈ C \ {0} and ε > 0, for all large enough n we have that

(51) max
{
fn,j |z|j : j ∈ {0, . . . , n}} ≤ eεn max

{
fn,j |z|j : j ∈ {1, . . . , n}}.
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Therefore, to prove condition (ii) required for Theorem 6.3 it is enough to show
that for any ε > 0, there exists an N such that for all n ≥ N , if j1, j2 ∈ {1, . . . , n}
and |j1 − j2| ≤ n3/4, then

(52)
fn,j2

fn,j1

≥ e−εn.

Combined with (51), this shows that for any z ∈ C \ {0}, for all large enough n, at
least n3/4 values of fn,j |z|j are close to the maximum value, which must itself be
close to enV (z) by (49) and Lemma 3.4. This gives condition (ii). To prove (52), fix
ε > 0, and choose δ > 0 small enough so that

max
z,w∈B(0,δ)

∣∣S(z) − S(w)
∣∣ ≤ ε

4
.

Then for any n, j1, j2, we have that

e−εnM ≤ f 2
n,j2

f 2
n,j1

where

(53)

M =
∫
B(0,δ) |z|2j1e−2nS(0) dτ (z) + ∫

K\B(0,δ) |z|2j1e−2nS(z) dτ (z)∫
B(0,δ) |z|2j2e−2nS(0) dτ (z) + ∫

K\B(0,δ) |z|2j2e−2nS(z) dτ (z)
.

Now let R > 1 be large enough so that K ⊂ B(0,R). For all large enough n,
whenever |j1 − j2| ≤ n3/4, we have that

(54)

∫
K\B(0,δ) |z|2j1e−2nS(z) dτ (z)∫
K\B(0,δ) |z|2j2e−2nS(z) dτ (z)

≥ R−|j1−j2| ≥ e−εn.

If τ(B(0, δ) \ {0}) = 0, then this proves (52). If not, then there exists a γ > 0 such
that for every j ∈ {1,2, . . .}, we have that∫

B(0,δ)
|z|j dτ (z) ≤ 2

∫
B(0,δ)\B(0,γ )

|z|j dτ (z).

Therefore, as in (54), for all large enough n, whenever |j1 − j2| ≤ n3/4, we have
that

(55)

∫
B(0,δ) |z|2j1e−2nS(0) dτ (z)∫
B(0,δ) |z|2j2e−2nS(0) dτ (z)

≥
∫
B(0,δ) |z|2j1 dτ(z)

2
∫
B(0,δ)\B(0,γ ) |z|2j2 dτ(z)

≥ e−εn.

Combining this with (53) implies (52). �
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