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SUBOPTIMALITY OF LOCAL ALGORITHMS FOR A CLASS OF
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We show that in random K-uniform hypergraphs of constant average
degree, for even K ≥ 4, local algorithms defined as factors of i.i.d. can not
find nearly maximal cuts, when the average degree is sufficiently large. These
algorithms have been used frequently to obtain lower bounds for the max-
cut problem on random graphs, but it was not known whether they could be
successful in finding nearly maximal cuts. This result follows from the fact
that the overlap of any two nearly maximal cuts in such hypergraphs does not
take values in a certain nontrivial interval—a phenomenon referred to as the
overlap gap property—which is proved by comparing diluted models with
large average degree with appropriate fully connected spin glass models and
showing the overlap gap property in the latter setting.

1. Introduction. This paper considers the problem of algorithmically finding
nearly optimal spin configurations in the diluted K-spin model. We specifically
focus on local algorithms defined as factors of i.i.d., the formal definition of which
is provided in Section 2. The diluted K-spin model is also known as the max-cut
problem for K-uniform Erdős–Rényi hypergraphs of constant average degree, and
also as the random K-XORSAT model. The problem is only interesting for even K

and we prove that, for even K ≥ 4, local algorithms fail to find the nearly optimal
spin configurations (maximal cuts) once the average degree is large enough.

The proof is based on finding a structural constraint for the overlap of any two
nearly optimal spin configurations—the overlap gap property—that goes against
certain properties of local algorithms. For K = 2, the overlap gap property is not
expected to hold, which is why this case is excluded. The structural constraint is
derived from recent results on the mean field K-spin spin glass models, in particu-
lar, the Parisi formula and the Guerra–Talagrand replica symmetry breaking bound
at zero temperature. We begin with a discussion of the model and the notion of al-
gorithms that we use.
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The K-spin model. The set of ±1 spin configurations on N vertices will be
denoted by

�N = {−1,1}N.

Given any K-uniform hypergraph G = ([N ],E(G)) on N vertices, a spin configu-
ration σ ∈ �N and an edge e = (v1, . . . , vK) ∈ E(G), let us introduce the notation

(1.1) θ(σ, e) = −σv1 · · ·σvK
.

The K-spin Hamiltonian of G is the function HG : �N →R defined by

(1.2) HG(σ) = ∑
e∈E(G)

θ(σ, e).

The cut density of σ is HG(σ)/N . We consider directed hypergraphs and allow
the same edge to appear multiple times, as well as a vertex to appear in an edge
multiple times. However, in the case of the sparse Erdős–Rényi hypergraph that
will be our main concern, this will happen only for an order one number of edges
and vertices with high probability as the graph size tends to infinity.

The objective of the K-spin model for a given graph G is to maximize the cut
density over all spin configurations and to find the maximizers or near maximizers.
When edges consist of distinct vertices, this objective is trivial if K is odd with the
maximum being achieved by the all (−1)-valued spin configuration. Therefore,
throughout the paper we will assume that the parameter K is an even integer.

The diluted K-spin model. The K-uniform Erdős–Rényi hypergraph on N

vertices with connectivity λ, denoted as ER(K,λ,N), is sampled as follows.
First, sample a random number |E| ∼ Poisson(λN). Then for each 1 ≤ i ≤ |E|,
sample an edge ei ∈ [N ]K uniformly at random, where [N ] = {1, . . . ,N}. The
graph GN ∼ ER(K,λ,N) has vertex set V (GN) = [N ] and edge set E(GN) =
{e1, . . . , e|E|}.

Let us consider the K-spin Hamiltonian for the graph ER(K,λ,N),

(1.3) Hλ,N(σ ) � HGN
(σ ) = ∑

e∈E(G)

θ(σ, e).

This is the Hamiltonian of the so-called diluted K-spin model. Using Azuma’s
inequality, it is easy to show that the maximum of Hλ,N(σ )/N over all σ ∈ �N is
concentrated around its expectation as N increases. Moreover, the limit

M(K,λ) � lim
N→∞E max

σ∈�N

Hλ,N(σ )

N
(1.4)

exists. This is proved for K = 2 in [7]. For general even K ≥ 2, the existence of
this limit follows from the same argument as in [13], which proves (for a differ-
ent model) the existence of the thermodynamic limit of the free energy at positive
temperature as a consequence of subadditivity obtained using an analogue of the
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Guerra–Toninelli interpolation [23], which of course implies the existence of the
limit at zero temperature. Computation of M(K,λ) is challenging and, as we will
discuss below, the appropriate large λ limit of M(K,λ) recovers the famous Parisi
formula, which expresses the ground state energy of the K-spin Sherrington–
Kirkpatrick model.

Local algorithms. There is a considerable interest in devising algorithms that
generate spin configurations with provably high cut density for general diluted
models. Hatami et al. [25] conjectured that nearly optimal solutions to many such
problems can be devised through local decision rules in the sense of factor of i.i.d.
processes, as we explain below. Much effort has been made to address this question
for problems such as perfect matchings (dimer covers), independent sets (hardcore
model), max-cut (spin model), graph colouring (Potts model), etc.; see [6, 15, 16,
24, 26, 30, 31, 39] and references therein.

However, this conjecture was disproved in [19] for the independent set model
by using an approach based on the overlap gap property for independent sets with
sufficiently large cardinality, similar to the approach used in this paper. The tightest
possible result for the same problem was obtained in [40] for half-optimal inde-
pendent sets by looking at overlaps of many independents sets and establishing a
multidimensional variant of the overlap gap property. The tightness of the result
stems from the fact that less than half-optimal independent sets can be constructed
by local algorithms [26]. Suboptimality of a sequential version of a local algorithm
was established for the random NAE-K-SAT model in [20], also by establishing
the overlap gap property for multi-overlaps. The conjecture has remained open for
the diluted K-spin model, and, in this paper, we prove that for K ≥ 4 and all large
enough λ, local algorithms defined as factors of i.i.d. cannot find spin configura-
tions whose cut density on ER(K,λ,N) is arbitrarily close to M(K,λ).

Let us explain what we mean by local algorithms, specifically, algorithms de-
fined as factors of i.i.d. A formal definition is provided in the next section. A local
algorithm takes as input a graph G and decorates the vertices of G with i.i.d.
random variables X(v) for v ∈ V (G). The algorithm then generates a spin con-
figuration σ by deciding, for each vertex v, the value σv as a function (factor) of
the randomly decorated r-neighborhood of v for some radius r that is independent
of the size of G (hence the term “local”). The decision rule is the same for every
vertex and is applied in parallel to all the vertices. The output of the algorithm is
then a stochastic process over G.

Local algorithms are essentially randomized, distributed algorithms on graphs.
They originate from ergodic theory where they are called factor of i.i.d. processes.
Examples include continuous time Glauber dynamics run for a bounded time in-
terval [5] and the Belief Propagation and Survey Propagation based algorithms
run for a bounded number of iterations. Another well-known example is the Rödl
nibble method for the packing problem. Interest in local algorithms arose partly be-
cause any stationary stochastic process over the Cayley graph of a finite generated
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amenable group, such as Z
d , can be approximated in distribution by local algo-

rithms over the graph; see [30] for a discussion and references. On the other hand,
there is a developing theory for processes that can be modeled by local algorithms
over nonamenable graphs and expander graph sequences, such as random regu-
lar graphs or sparse Erdős–Rényi graphs with large enough connectivity (which
behave like expanders in many ways due to the giant component). In this setting,
local algorithms can generate various graph structures as previously indicated, and
those constructions provide the best lower bounds to date for many optimization
problems over sparse random graphs. Local algorithms can also approximate (in
distribution) the local statistics of eigenvectors of random regular graphs [4, 24]
and certain stationary Gaussian processes over transitive graphs [6].

Main result. Our main result about suboptimality of local algorithms is stated
informally in Theorem 1 below and then precisely in Theorem 4, after appropriate
terminology is introduced in Section 2. We now discuss the main result.

The mean field, or fully connected, K-spin Hamiltonian is the random function
HN : �N →R given by

(1.5) HN(σ) = 1

N(K−1)/2

∑
(i1,...,iK)∈[N]K

gi1,...,iK σi1 · · ·σiK ,

where the gi1,...,iK are i.i.d. standard Gaussian random variables. Guerra and
Toninelli proved in [22] that

(1.6) lim
N→∞E max

σ∈�N

HN(σ)

N
� P(K)

exists, and the precise description of this limit, given by the so called Parisi for-
mula at zero temperature, will be discussed below and used crucially in the proof
of the key results. Using another interpolation of Guerra and Toninelli from [23]
that compares diluted models with large connectivity and fully connected models,
Dembo et al. [14] (for K = 2) and Sen [41] showed that

(1.7) M(K,λ) = P(K)λ1/2 + O
(
λ1/3)

as λ → ∞.

In other words, the leading contribution to M(K,λ) for large λ is P(K)λ1/2. We
show the following informal hardness of approximation result for M(K,λ), which
will be made more formal in Theorem 4 below.

THEOREM 1 (Informal). For any even K ≥ 4, there exists η > 0 such that
the following holds for all large enough λ. Suppose A is a local algorithm con-
structed as a factor of i.i.d. that generates spin configurations on K-uniform hy-
pergraphs and let σA ∈ �N be its output on the graph ER(K,λ,N). Then for all
large enough N ,

E
Hλ,N(σA)

N
≤ (

P(K) − η
)
λ1/2.



SUBOPTIMALITY OF LOCAL ALGORITHMS 1591

A summary of the proof. We informally describe the key steps in establishing
this result. For η > 0, call a spin configuration σ ∈ �N to be η-optimal if the cut
density Hλ,N(σ )/N is at least (P (K) − η)λ1/2. A key ingredient in the proof of
the main result is the overlap gap property. It is the existence, when K ≥ 4, of an
η1 > 0 and a positive-length interval [a, b] ⊂ [0,1] such that the absolute value of
the overlap, defined in (1.9), of any two η1-optimal spin configurations does not
take values in [a, b] with high probability (w.h.p.) as N → ∞, provided that the
connectivity λ is also sufficiently large. This is the content of Theorem 2.

For technical reasons, we need a strengthened version of the overlap gap prop-
erty, namely, the overlap gap property for coupled diluted K-spin models. Specif-
ically, we consider two coupled copies Gj

N,t ∼ ER(K,λ,N), j = 1,2, where
t ∈ [0,1] is a fixed parameter indicating some fraction of common edges in the
two graphs. The two graphs are identical when t = 1 and are independent when
t = 0. The details of the construction are given in Section 3.2. We establish the
overlap gap property for this coupled model for the interval [a, b]. Namely, there
exists an η2 > 0 such that for all sufficiently large λ and for all t ∈ [0,1] the follow-
ing holds: for every η2-optimal solution σ1 in G1

N,t and every η2-optimal solution
σ2 in G2

N,t , the absolute value of the overlap between σ1 and σ2 does not take value
in [a, b] w.h.p. as N → ∞. This is the content of Theorem 5.

The overlap gap property for the coupled model discussed above is derived as a
corollary of a similar overlap gap property, with the same interval [a, b] as above,
for the mean field K-spin model (1.5). The overlap gap property of the latter model
is stated as Theorem 3 and the proof uses the Parisi formula at zero temperature
for this model. The connection between the overlap gap property for the graph
model of interest and the overlap gap property for the mean field model above
is established via an interpolation technique that connects their respective nearly
optimal spin configurations. The interpolation technique is also used in [12, 14,
27, 35, 41]. This is the content of Section 4.

Finally, the overlap gap property for the coupled model is used to establish
limits on the largest cut achievable by local algorithms (defined as factors of i.i.d.).
The proof is by contradiction, assuming that a local algorithm exists that provides
a spin configuration achieving some η-optimal cut value in expectation. Standard
concentration results can be used to show that this construction leads to an η-
optimal cut w.h.p. as N → ∞. Then we proceed by constructing two η-optimal
and coupled spin configurations σ 1 and σ 2, based on factors of i.i.d., on the two
t-coupled graphs G1

N,t and G2
N,t , respectively. Here, we use t-coupled sources of

i.i.d. decorations on the nodes of the coupled graph. In particular, when t = 0, the
decorations are independent, and, since the graphs are independent as well, σ 1 and
σ 2 are uncorrelated and have near zero asymptotical overlap. For this part, we also
establish that every nearly optimal spin configuration is nearly balanced w.h.p.; see
Lemma 3.3.

Next we show that the overlap of σ 1 and σ 2 is a continuous function of t . When
t = 1, not only are the graphs identical but the spin configurations are as well since
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they are based on the same set of i.i.d. decorations. Therefore, their overlap is 1
when t = 1. The continuity in t along with the endpoint values implies that for
some t the overlap of σ 1 and σ 2 falls into the interval [a, b]. Thus, the cut values
of σ 1 and σ 2 will not be η-optimal with the η referenced in Theorem 5. This is the
contradiction.

Let us explain why we needed to establish the overlap gap property for the cou-
pled model. If we proceeded with the same idea of t-coupled i.i.d. decorations
on the same graph, we could not necessarily argue that the resulting spin con-
figurations σ 1 and σ 2 have a small overlap when t = 0 since they would not be
uncorrelated. In principle, they could have a nontrivial overlap due to the inher-
ent randomness of neighborhood structures of a typical vertex in the ER(K,λ,N)

model.
To conclude, we remark that the properties of local algorithms that were utilized

in the proof of the main theorem are the following. First, concentration of the cut
density and magnetization of spin configurations generated by any local algorithm
f . Second, concentration of the overlap, RN(f, t), of the t-coupled spin config-
urations σ 1 and σ 2 generated from f via our construction. Third, the property
that t → ERN(f, t) fills out a sufficiently dense subset of [0,1] for large N . Any
class of algorithms that satisfy these properties will be suboptimal in the sense of
Theorem 4 (or the informal Theorem 1).

1.1. Overlap gap property. The magnetization of a spin configuration σ ∈ �N

is defined as

(1.8) m(σ) = 1

N

∑
i∈[N]

σi.

The overlap of two spin configurations σ 1, σ 2 ∈ �N is defined as

(1.9) R1,2 = 1

N

N∑
i=1

σ 1
i σ 2

i = σ 1 · σ 2

N
.

As mentioned earlier, we need a statement of the aforementioned overlap gap
property for coupled copies of the diluted K-spin model, which is Theorem 5
below. An already interesting illustration is the following special case. Here,
GN ∼ ER(K,λ,N) and Hλ,N is its Hamiltonian as defined in (1.3).

THEOREM 2. For any even K ≥ 4, there exist 0 < a < b < 1, η0 > 0, λ0 > 0
and N0 ≥ 1 such that, for λ ≥ λ0 and N ≥ N0, the following holds with probability
at least 1 − Le−N/L for some L = L(η0): for any two spin configurations σ 1, σ 2

that satisfy

Hλ,N(σ �)

N
≥ √

λ
(
P(K) − η0

)
, � = 1,2,

the absolute value of their overlap satisfies |R1,2| /∈ [a, b].
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The proof of Theorem 2 (or more general Theorem 5 below) will based on
approximating the diluted model in terms of the fully connected mean field model.
The following theorem establishes the overlap gap property for the mean field K-
spin Hamiltonian HN in (1.5). Its proof is the most technical part of the paper.

THEOREM 3. For even K ≥ 4, there exist 0 < a < b < 1 and η > 0 such that,
for large enough N ,

(1.10)
1

N
E max

σ 1,σ 2∈�N :
|R1,2|∈[a,b]

(
HN

(
σ 1) + HN

(
σ 2)) ≤ 2

N
E max

σ∈�N
HN(σ) − η.

The proof of Theorem 3 will utilize the zero temperature Parisi formula re-
cently established by Auffinger and Chen in [2], and the Guerra–Talagrand replica
symmetry breaking bound at zero temperature, which is an extension of the corre-
sponding bound at positive temperature used earlier by Guerra and Talagrand [21,
42–44] to study the mean field K-spin model. Similar techniques have recently
been used in [8] to study the questions of dynamics at positive temperature. For
K = 2, the case of ordinary graphs, the overlap gap property (1.10) is not expected
to hold. See [3] for a discussion and recent rigorous results on the overlap structure
of mean field spin models.

Outline of the paper. Local algorithms are formally defined in Section 2 and
the main result is stated in Theorem 4 following the necessary definitions. Sec-
tion 3 contains the proof of Theorem 4. Section 4 contains the proof of Theorem 2
and Theorem 5, assuming the validity of Theorem 3. The proof of Theorem 3 is in
Section 5.

2. Definitions and main result. We begin with some definitions. Formal
statement of the main theorem, Theorem 4, is at the end of the section.

Hypergraphs and local algorithms. A K-uniform (directed) hypergraph is a
pair G = (V ,E) where V is the set of vertices and E ⊆ V K are the edges, each
edge being a K-tuple of vertices. We write v ∈ e (v lies in e) if the edge e contains
v as a coordinate. Two vertices are said to be connected if they lie in a common
edge. The degree of a vertex is the number of edges that contain it, counted with
multiplicity as a vertex may lie in an edge more than once. The distance between
two vertices v �= w is the minimal integer d ≥ 1 such that there exists a sequence
of vertices v1, . . . , vd+1 with v = v1 and w = vd+1 and with any two consecutive
vj , vj+1 for 1 ≤ j ≤ d belonging to the same edge. Distance from v to itself is
zero. The r-neighborhood of v, denoted Br(G,v), is the subgraph of G induced
by all vertices within distance r of v.
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A rooted K-uniform hypergraph (G,v) is a K-uniform hypergraph with a dis-
tinguished vertex v ∈ V (G) called the root. If r is the smallest integer such that
Br(G,v) = G then we say (G,v) has radius r . Let

Gr = {
(G,v) | (G,v) is a finite, connected,

K-uniform rooted hypergraphs with radius at most r
}
.

(2.1)

Two rooted hypergraphs (G,v) and (G′, v′) are isomorphic, denoted (G,v) ∼=
(G′, v′), if there is a bijection φ : V (G) → V (G′) such that φ(v) = v′ and
e ∈ E(G) if and only if φ(e) ∈ E(G′), where φ acts on edges coordinatewise.
From now on, when we talk about hypergraphs, one can assume that we already
picked a particular representative of an isomorphism class and think of isomor-
phisms as automorphisms of these representatives. In particular, we can redefine
Gr as

(2.2) Gr = {
representatives of isomorphism classes of (2.1)

}
.

For a sequence of random rooted hypergraphs (GN,vN), we define the sequence
to convergence in distribution in a natural way as convergence of the probabili-
ties P[Br(GN,vN) ∼= (G,v)] for every r and every (G,v) ∈ Gr . In this case, some
elementary measure theoretic and topological arguments imply that there is a ran-
dom rooted graph (G∞, v∞) such that the aforementioned probabilities converge
to P[Br(G∞, v∞) ∼= (G,v)]. This notion of convergence is often called local weak
convergence of graphs or also Benjamini–Schramm convergence; see [25] and ref-
erences therein.

Factors on rooted, labeled hypergraphs. Let 	r denote the collection of all
[0,1]-labeled hypergraphs of radius at most r , that is, the collection of all triples
(G,v, x), where:

1. (G,v) ∈ Gr defined in (2.2).
2. x ∈ [0,1]V (G) is a labeling of vertices of G.

Two rooted [0,1]-labeled hypergraphs (G,v, x) and (G′, v′, x′) are isomorphic if
there is a bijection φ : V (G) → V (G′), which is an isomorphism of (G,v) and
(G′, v′), and such that

x′ = x ◦ φ−1.

A function f : 	r → {−1,1} is called a factor of radius r , denoted f ∈ Fr , if it is
measurable and

f (G,v, x) = f
(
G′, v′, x′)

for all isomorphic (G,v, x) and (G′, v′, x′) in 	r . In other words, f is constant on
isomorphism classes of 	r .
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Local algorithms for K-uniform hypergraphs. A local algorithm A for K-
uniform hypergraphs comes with an associated factor f : 	r → {−1,1}. The input
to A is a finite K-uniform hypergraph G and a random labeling X = (X(u))u∈V (G)

of V (G) such that the X(u)’s are i.i.d. uniform random variables on [0,1].
The output of the algorithm is a {−1,1}-valued stochastic process σ(f,X) =
(σ (f,X)(u))u∈V (G) defined by

(2.3) σ(f,X)(u) = f
(
Br(G,u),u,

(
X(w)

)
w∈Br(G,u)

)
.

For simplicity of notation, when we write w ∈ Br(G,u) we really mean w ∈
V (Br(G,u)). Notice that the radius of Br(G,u) can be smaller than r , which is
why a factor f of radius r was defined on hypergraphs of radius less than or equal
to r .

One obvious property of factors that we will use implicitly throughout the paper
is the following. Suppose a factor f ∈ Fr outputs the spin configuration σ(f,X)

when run on a K-uniform hypergraph G. Then for any subgraph G′ ⊆ G, the
distribution of the restriction of σ(X,f ) onto G′ depends only on the isomorphism
class of the r-neighborhood of G′ in G, that is, on the subgraph of G induced by⋃

v∈V (G′) Br(G,v). Below, we will use the same property for coupled hypergraph
models without mentioning it.

Main result. As above, GN
d= ER(K,λ,N) and Hλ,N was defined in (1.3).

Recall the definition of the quantity P(K) from (1.6).

THEOREM 4. Local algorithms defined as factors of i.i.d. cannot find spin
configurations in ER(K,λ,N) that are nearly optimal in the following sense.
There exists η > 0 such that

(2.4) lim sup
λ→∞

sup
r

sup
f ∈Fr

lim sup
N→∞

E
Hλ,N(σ (f,X))√

λN
≤ P(K) − η.

The result establishes that, for large enough λ, the performance of any local
algorithm is bounded away from the optimal value P(K) by some additive gap η

regardless of the choice of the factor f and its depth r . By the concentration result
in Lemma 3.1 below, the same holds with high probability rather than on average.

3. Proof of the main result.

3.1. Concentration of cut density and magnetization. We begin by establish-
ing a concentration of the cut density achievable by local algorithms.

LEMMA 3.1. For every λ, r, f ∈ Fr and ε > 0,

lim
N→∞P

(∣∣HGN

(
σ(f,X)

) −EHGN

(
σ(f,X)

)∣∣ ≥ εN
) = 0.
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PROOF. For each node v ∈ [N], let N�(v) denote the set of edges e containing
v in the �th position of the edge, for � = 1,2, . . . ,K . Let

HGN ,v

(
σ(f,X)

) = 1

K

∑
1≤�≤K

∑
e∈N�(v)

θ
(
σ(f,X), e

)
.

Observe that HGN
(σ (f,X)) = ∑

v∈[N] HGN,v(σ (f,X)), since every edge e ap-
pears in exactly K terms. Let us expand the variance of HGN

(σ (f,X)) in terms of
HGN,v(σ (f,X)) for v ∈ [N]. We obtain

E
(
HGN

(
σ(f,X)

) −EHGN

(
σ(f,X)

))2

= ∑
v,u∈[N]

E
(
HGN ,v

(
σ(f,X)

) −EHGN ,v

(
σ(f,X)

))

× (
HGN ,u

(
σ(f,X)

) −EHGN,u

(
σ(f,X)

))
.

Let us fix any two distinct vertices u and v in [N], for instance, u = 1 and v = 2.
A classical fact from the theory of random graph states that for every fixed r and
λ, as N → ∞, Br+1(GN,u) ∩ Br+1(GN,v) = ∅ with high probability and the
pair (Br+1(GN,u),Br+1(GN,v)) converges in distribution to a pair of indepen-
dent Galton–Watson processes both truncated at r + 1 generations. In this limiting
Galton–Watson process (hypertree), for each vertex, the number of offsprings (i.e.,
hyperedges which contain this vertex and K − 1 new distinct vertices that belong
to the next generation) has Poisson(λK) distribution. Note that for every vertex
v the value HGN,v(σ (f,X)) is determined by Br+1(GN,v) and the i.i.d. label-
ing of the vertices in Br+1(GN,v). Therefore, we conclude that the random vari-
ables HGN,v(σ (f,X)) and HGN ,u(σ (f,X)) are also asymptotically independent as
N → ∞. Both of these random variables are uniformly exponentially integrable
in N , that is, for every t > 0, supN E[exp(tHGN,v(σ (f,X)))] < ∞. Thus,

lim
N→∞E

(
HGN ,v

(
σ(f,X)

) −EHGN,v

(
σ(f,X)

))
× (

HGN ,u

(
σ(f,X)

) −EHGN,u

(
σ(f,X)

)) = 0.

Notice that, by symmetry, this expectation is the same for all pairs of distinct ver-
tices u and v, and we conclude that the variance of HGN

(σ (f,X)) satisfies

E
(
HGN

(
σ(f,X)

) −EHGN

(
σ(f,X)

))2 = o
(
N2)

as N → ∞. Applying Chebyshev’s inequality, we obtain the result. �

The identical proof also gives concentration of the magnetization.

LEMMA 3.2. For every λ, r, f ∈ Fr and ε > 0,

lim
N→∞P

(∣∣m(
σ(f,X)

) −Em
(
σ(f,X)

)∣∣ ≥ εN
) = 0.
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Notice also that, by symmetry, Em(σ(f,X)) = Eσ1(f,X), where σ1 is the first
coordinate of σ . In the proof of Theorem 4, we will need one more property of
magnetization that we discuss next.

The proof of Theorem 4 below will proceed by contradiction, assuming that, for
any η > 0, we can find arbitrarily large λ for which there exists a factor f ∈ Fr for
some r such that

(3.1) E
HGN

(σ (f,X))

N
>

√
λ
(
P(K) − η

)
for some arbitrarily large N . The concentration inequality in Lemma 3.1 then im-
plies that, we can find arbitrarily large N for which, with high probability,

(3.2)
HGN

(σ (f,X))

N
>

√
λ
(
P(K) − η

)
.

It will be important to know that the magnetization m(σ(f,X)) of the output
σ(f,X) of the algorithm is small for large λ, with high probability. For this, as
a byproduct of the interpolation technique in Section 4, we will prove the follow-
ing.

LEMMA 3.3. For any η0 > 0, there exist λ0 and N0 such that for any λ ≥ λ0
and N ≥ N0, the following event holds with probability at least 1 − Le−N/L for
some L = L(η): Whenever σ satisfies

HGN
(σ )

N
>

√
λ
(
P(K) − η0

)
,

it must also satisfy |m(σ)| < λ−1/(2K)(4η0)
1/K .

Take η0 = 1/8 in the above. In (3.1) and (3.2), we can assume that η ≤ 1/8,
λ ≥ λ0 and N ≥ N0 and, as a result, with high probability we get that the ab-
solute magnetization |m(σ(f,X))| < λ−1/(2K)2−1/K . Lemma 3.2 implies that
|Em(σ(f,X))| ≤ λ−1/(2K), although the condition of how large N should be can
now depend on f and λ. To summarize, we have the following.

LEMMA 3.4. There exists λ0 such that, for λ ≥ λ0, if (3.1) holds then
|Em(σ(f,X))| ≤ λ−1/(2K), for all large enough N .

3.2. The coupled graph model and its properties. The key idea in the proof of
Theorem 4 will be running the local algorithm on a pair of coupled hypergraphs

(3.3) G1
N,t and G2

N,t

defined on the same set of N vertices and indexed by the coupling parameter t ∈
[0,1]. The construction is as follows. Generate three independent random variables

|Et | d= Poisson(tλN) and |Et,1|, |Et,2| d= Poisson
(
(1 − t)λN

)
.
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The somewhat unusual choice of notation |E·| is motivated by having E· denote
sets of edges in graphs constructed below, where |E·| are the cardinalities of these
sets.

1. For each 1 ≤ i ≤ |Et |, generate an edge ei ∈ [N ]K uniformly at random, inde-
pendently for all i. The set of these edges is denoted by Et .

2. For each � = 1,2 and each 1 ≤ i ≤ |Et,�| generate an edge ei ∈ [N ]K uniformly
at random, independently for all i, � and independently from the set Et . For a
given �, the set of these edges is denoted Et,�.

The hypergraph G�
N,t is defined by the edge set Et ∪ Et,� for � = 1,2. Both

G1
N,t and G2

N,t clearly have the same distribution ER(K,λ,N). When t = 0, the
two hypergraphs are sampled independently of each other and, when t = 1, the
two are identical.

The following overlap gap property for the coupled random graph model will
be crucial in the proof of Theorem 4. It will be proved in Section 4. The special
case corresponding to t = 1 was stated in Theorem 2 above.

THEOREM 5. For any even K ≥ 4, there exist 0 < a < b < 1, η0 > 0, λ0 > 0
and N0 ≥ 1 such that, for any t ∈ [0,1], λ ≥ λ0, N ≥ N0, the following holds
with probability at least 1 − Le−N/L for some L = L(η0): whenever two spin
configurations σ 1, σ 2 satisfy

HG�
N
(σ �)

N
≥ √

λ
(
P(K) − η0

)
then the absolute value of their overlap satisfies |R1,2| /∈ [a, b].

To run local algorithms on the pair of hypergraphs G1
N,t and G2

N,t defined above,
we need to define their labelings appropriately, as follows. Let us say that a vertex
v ∈ [N ] is shared if it is incident to some shared edge in Et , and nonshared other-
wise. Consider a pair of independent random labelings X1 and Y indexed by [N ].
Define a new random labeling X2 by

X2(v) =
{
X1(v) if v is shared,

Y (v) if v is nonshared.

Given a factor f ∈ Fr , let σ� = σ(f,X�) be its output on G�
N,t for � = 1,2 and let

(3.4) RN(f, t) = 1

N

N∑
i=1

σ 1
i σ 2

i

be their overlap.
In the proof of Lemma 3.1, we used a classical fact that a neighborhood of a

vertex in the Erdős–Rényi hypergraph converges to a Galton–Watson (hyper)tree
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and, for any two distinct vertices, their neighborhood configurations are asymp-
totically independent. Of course, the same result holds for coupled hypergraphs,
where in the limit we get coupled Galton–Watson processes defined as follows.

We start with a given vertex, call it a root, which is common to both trees. We
generate Poisson(tλK) number of “shared” offsprings, where offspring of a vertex
is a hyperedge containing this vertex and K − 1 new vertices, and we also gener-
ate two independent Poisson((1 − t)λK) sets of ‘nonshared’ offsprings for each
tree. The new vertices in “shared” edges are labeled “shared” and new vertices in
“nonshared” edges are labeled “nonshared.” The root itself is labeled “nonshared”
if Poisson(tλK) = 0, otherwise, it is labeled “shared” (this will be important for
the labeling process below). From the second generation on, any “nonshared” ver-
tex produces Poisson(λK) number of only “nonshared” edges, and any “shared”
vertex produces Poisson(tλK) number of “shared” edges and two independent
Poisson((1 − t)λK) sets of “nonshared” edges, one for each tree.

Notice that the term “shared” does not correspond to the edges Et in the
construction G1

N,t and G2
N,t above, but rather has a meaning of “disjoint” in a

local sense. Namely, for a given vertex v, its neighborhoods Br(G1
N,t , v) and

Br(G2
N,t , v) can have edges belonging to Et for any r . However, locally, for a

finite r , the vertices in these two neighborhood are disjoint with high probabil-
ity, unless they are all connected to v through edges in Et . In the sense of local
neighborhoods, in the limit “nonshared” corresponds to “disjoint” for finite N . In
particular, since disjoint vertices are labeled by independent i.i.d. labelings, the
labelings of two Galton–Watson trees will be the same for “shared” vertices and
independent for “nonshared” vertices.

First of all, since for any two distinct vertices u, v ∈ [N ], their neighborhoods
(Br(G1

N,t , v),Br(G2
N,t , v)) and (Br(G1

N,t , u),Br(G2
N,t , u)) are asymptotically in-

dependent labeled coupled Galton–Watson processes with r generation described
above, the proof identical to Lemma 3.1 gives the following.

LEMMA 3.5. For every λ, r, f ∈ Fr , t ∈ [0,1] and ε > 0,

lim
N→∞P

(∣∣RN(f, t) −ERN(f, t))
∣∣ ≥ ε

) = 0.

Next, if we write, by symmetry, ERN(f, t) = Eσ 1
1 σ 2

1 then the convergence of
(Br(G1

N,t ,1),Br(G2
N,t ,1)) with its labelings to labeled coupled Galton–Watson

process implies that

(3.5) lim
N→∞ERN(f, t) = Eσ 1σ 2 � R(f, t),

where σ 1 and σ 2 are outputs of the factor f at the root of these two Galton–Watson
trees. Since there are countably many configurations for this coupled tree process
and, obviously, the probability of each configuration is continuous in t , we have
the following.
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LEMMA 3.6. The function R(f, t) is continuous in t .

Notice that R(f,1) = 1, since for t = 1 the two trees are completely “shared”
with probability one, and R(f,0) = (Eσ 1)2, since for t = 0 the trees are com-
pletely independent, or “nonshared,” with probability one. Moreover, Eσ 1 is the
limit of magnetization,

(3.6) lim
N→∞Em

(
σ(f,X)

) = lim
N→∞Eσ1(f,X) = Eσ 1.

With this we are ready to prove Theorem 4.

3.3. Completing the proof of Theorem 4. Consider a, b, η0 defined in The-
orem 5 and let λ0 be the larger of the two values λ0 defined in Theorem 5 and
Lemma 3.4.

The proof of Theorem 4 below will proceed by contradiction. Assume that, for
η = η0/2, we can find

λ ≥ max
(
λ0, a

−K)
,

for which there exists a factor f ∈ Fr for some r such that

(3.7) E
HGN

(σ (f,X))

N
>

√
λ
(
P(K) − η

)
for arbitrarily large N . Lemma 3.4 together with (3.6) implies that |Eσ 1| ≤
λ−1/(2K) and, therefore,

R(f,0) = (
Eσ 1)2 ≤ λ−1/K < a.

Since R(f, t) in (3.5) is continuous, R(f,0) < a and R(f,1) = 1, there exists
t ∈ (0,1) such that R(f, t) = (a + b)/2. For this t , (3.5) and Lemma 3.5 imply
that, with high probability, the overlap RN(f, t) will belong to the interval (a, b)

for large enough N . On the other hand, (3.7) and Lemma 3.1 imply that

HG�
N
(σ �)

N
≥ √

λ
(
P(K) − η0

)
,

with probability going to one as N → ∞. By Theorem 5, with high probability we
must have that RN(f, t) does not belong to the interval [a, b], which is a contra-
diction.

4. Overlap gap in the diluted model. This section proves Theorem 5, as
well as Theorem 2 as a simpler illustration. In order to prove these results, we will
first use the Guerra–Toninelli interpolation from [23] to connect the diluted K-
spin model to the mean field K-spin model. This connection has been used several
times in the literature [12, 14, 27, 35, 41]. Theorem 2 will then be deduced from
the conclusion of Theorem 3.
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Before starting with the proof, we set some notation that will be used through-
out the remaining Sections 4 and 5. For λ > 0, let Hλ denote the Hamiltonian of
the diluted K-spin model with connectivity λ on N vertices, that is, the K-spin
Hamiltonian for the hypergraph ER(K,λ,N). Recall the Hamiltonians HG1

N,t
and

HG2
N,t

from (3.3). Denote them respectively by H 1
λ and H 2

λ (we keep the depen-

dence on the coupling parameter t implicit). We also denote by H the Hamiltonian
of the mean field, or fully connected, K-spin model on N vertices as defined in
(1.5). Let H ′ and H ′′ be independent copies of H . For t ∈ [0,1], set

H 1 = √
tH + √

1 − tH ′,

H 2 = √
tH + √

1 − tH ′′.
(4.1)

We will assume throughout that N is even and suppress the dependence on t and
N for clarity.

First we establish a key interpolation lemma. Let A ⊆ �N , S ⊆ [0,1], t ∈ [0,1]
and λ > 0 be fixed. For s ∈ [0,1], consider the interpolating Hamiltonian

(4.2) H
(
s, σ 1, σ 2) =

2∑
�=1

(
δH�

λ(1−s)

(
σ�) + √

sβH�(σ�)),
where the Hamiltonians H�

λ(1−s) correspond to the coupled diluted K-spin model
with the coupling parameter t and connectivity parameter λ(1−s). The parameters
δ > 0 and β > 0 will be chosen later. Let

(4.3) ϕ(s) = 1

N
E log

∑
σ 1,σ 2∈A:|R1,2|∈S

expH
(
s, σ 1, σ 2)

.

Let us denote by 〈·〉s the average with respect to the Gibbs’ measure

(4.4) Gs

(
σ 1, σ 2) = expH(s,σ 1, σ 2)∑

σ 1,σ 2∈A:|R1,2|∈S expH(s,σ 1, σ 2)

defined on {(σ 1, σ 2) ∈ A × A : |R1,2| ∈ S}. The following holds.

LEMMA 4.1. For any A ⊆ �N , S ⊆ [0,1], t ∈ [0,1] and λ > 0,

1

N
E max

σ 1,σ 2∈A:|R1,2|∈S

(
H 1

λ

(
σ 1) + H 2

λ

(
σ 2))

=
√

λ

N
E max

σ 1,σ 2∈A:|R1,2|∈S

(
H 1(

σ 1) + H 2(
σ 2))

− λ

∫ 1

0
E

〈
m

(
σ 1)K + m

(
σ 2)K 〉

s ds + O
(
λ1/3)

,

(4.5)

where O(λ1/3) ≤ Lλ1/3 for some L > 0 independent of N , A, S, t , λ.



1602 CHEN, GAMARNIK, PANCHENKO AND RAHMAN

PROOF. The proof will make use of the interpolating Hamiltonian (4.2) with
appropriate choices for β and δ in terms of λ. First let us compute the derivative
ϕ′(s) = I+ II as a sum of two terms coming from the Gaussian integration by parts
and Poisson integration by parts. Let us denote the i.i.d. samples (replicas) from
Gs by (σ j,1, σ j,2) for j ≥ 1, and denote the overlap

R
j,j ′
�,�′ = 1

N

N∑
i=1

σ
j,�
i σ

j ′,�′
i .

Taking the derivative in
√

s and using Gaussian integration by parts (see, e.g., [32],
Section 1.2) gives

I = β2

2

(
2 + 2tE

〈(
R

1,1
1,2

)K 〉
s −E

〈(
R

1,2
1,1

)K + (
R

1,2
2,2

)K + t
(
R

1,2
1,2

)K + t
(
R

1,2
2,1

)K 〉
s

)
.

The rest of the calculation below is as in the proof of the Franz–Leone upper bound
for the free energy in diluted models in [18, 36]. In order to differentiate ϕ(s) with
respect to the Poisson random variables involved, we use that

d

ds
Ef

(
Poisson(s)

) = Ef
(
Poisson(s) + 1

) −Ef
(
Poisson(s)

)
for a Poisson random variable Poisson(s) having mean s. If a function depends on
several independent Poisson random variables, by the product rule, the derivative
will be a sum of such differences, where +1 is added to one Poisson random
variable at a time. Hence, with the notation

∑ := ∑
σ 1,σ 2∈A:|R1,2|∈S ,

II = −tλ
(
E log

∑
expH+(

s, σ 1, σ 2) −E log
∑

expH
(
s, σ 1, σ 2))

− (1 − t)λ
(
E log

∑
expH+

1

(
s, σ 1, σ 2) −E log

∑
expH

(
s, σ 1, σ 2))

− (1 − t)λ
(
E log

∑
expH+

2

(
s, σ 1, σ 2) −E log

∑
expH

(
s, σ 1, σ 2))

,

where H+(s, σ 1, σ 2) includes one additional common edge (i1, . . . , iK) for both
configurations σ 1, σ 2 (this new edge is chosen independently and uniformly at ran-
dom), and H+

1 (s, σ 1, σ 2) and H+
2 (s, σ 1, σ 2) include an additional edge on either

the first or second configurations, respectively. That is,

H+(
s, σ 1, σ 2) = H

(
s, σ 1, σ 2) − δσ 1

i1
· · ·σ 1

iK
− δσ 2

i1
· · ·σ 2

iK
,

H+
1

(
s, σ 1, σ 2) = H

(
s, σ 1, σ 2) − δσ 1

i1
· · ·σ 1

iK
,

H+
2

(
s, σ 1, σ 2) = H

(
s, σ 1, σ 2) − δσ 2

i1
· · ·σ 2

iK
.

We can then rewrite the above as

II = −tλE log
〈
exp

(−δσ 1
i1

· · ·σ 1
iK

− δσ 2
i1

· · ·σ 2
iK

)〉
s

− (1 − t)λE log
〈
exp

(−δσ 1
i1

· · ·σ 1
iK

)〉
s − (1 − t)λE log

〈
exp

(−δσ 2
i1

· · ·σ 2
iK

)〉
s .
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Since the product of spins takes values ±1, we can represent

exp
(−δσ �

i1
· · ·σ�

iK

) = ch(δ)
(
1 − th(δ)σ �

i1
· · ·σ�

iK

)
and

exp
(−δσ 1

i1
· · ·σ 1

iK
− δσ 2

i1
· · ·σ 2

iK

) = ch(δ)2(
1 − th(δ)�

(
σ 1, σ 2))

with the notation

�
(
σ 1, σ 2) = σ 1

i1
· · ·σ 1

iK
+ σ 2

i1
· · ·σ 2

iK
− th(δ)σ 1

i1
· · ·σ 1

iK
σ 2

i1
· · ·σ 2

iK
,

where ch() and th() are hyperbolic cosine and tangent, respectively. Expressing
the logarithm by its Taylor series, we can rewrite

II = −2λ log ch δ + λ
∑
n≥1

th(δ)n

n

(
tE

〈
�

(
σ 1, σ 2)〉n

s + (1 − t)

2∑
�=1

E
〈
σ�

i1
· · ·σ�

iK

〉n
s

)
.

Using replicas, we can represent

E
〈
�

(
σ 1, σ 2)〉n

s = E

〈∏
j≤n

�
(
σ j,1, σ j,2)〉

s

= E

〈
E

′ ∏
j≤n

�
(
σ j,1, σ j,2)〉

s

,

where E
′ is the expectation with respect to the random indices i1, . . . , iK , which

are independent of the random variables in 〈·〉s . For n = 1,

E
′σ�

i1
· · ·σ�

iK
= m

(
σ�)K

and

E
′�

(
σ 1,1, σ 1,2) = m

(
σ 1,1)K + m

(
σ 1,2)K − th(δ)

(
R

1,1
1,2

)K
.

Therefore,

tE
〈
�

(
σ 1, σ 2)〉

s + (1 − t)E
〈
σ 1

i1
· · ·σ 1

iK

〉
s + (1 − t)E

〈
σ 2

i1
· · ·σ 2

iK

〉
s

= t
(
E

〈
m

(
σ 1,1)K + m

(
σ 1,2)K 〉

s − th(δ)E
〈(
R

1,1
1,2

)K 〉
s

)
+ (1 − t)E

〈
m

(
σ 1,1)K + m

(
σ 1,2)K 〉

s

= E
〈
m

(
σ 1,1)K + m

(
σ 1,2)K 〉

s − t th(δ)E
〈(
R

1,1
1,2

)K 〉
s .

For n = 2, we compute similarly

E
〈
�

(
σ 1, σ 2)〉2

s = E
〈(
R

1,2
1,1

)K + (
R

1,2
2,2

)K + (
R

1,2
1,2

)K + (
R

1,2
2,1

)K 〉
s + III1

and

2∑
�=1

E
〈
σ�

i1
· · ·σ�

iK

〉2
s = E

〈(
R

1,2
1,1

)K + (
R

1,2
2,2

)K 〉
s,
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where |III1| ≤ L th(δ). Finally, since |�(σ 1, σ 2)| ≤ 2 and |σ�
i1

· · ·σ�
iK

| = 1, we can
bound ∣∣∣∣tλ ∑

n≥3

th(δ)n

n
E

〈
�

(
σ 1, σ 2)〉n

s

∣∣∣∣ ≤ λ
∑
n≥3

(2 th(δ))n

n
≤ Lλδ3

and ∣∣∣∣∣(1 − t)λ
∑
n≥3

th(δ)n

n

2∑
�=1

E
〈
σ�

i1
· · ·σ�

iK

〉n
s

∣∣∣∣∣ ≤ Lλδ3

for small enough δ > 0, where L is a universal constant independent of everything.
Collecting all the terms,

II = − 2λ log ch δ + λ th(δ)E
〈
m

(
σ 1,1)K + m

(
σ 1,2)K 〉

s − tλ th(δ)2
E

〈(
R

1,1
1,2

)K 〉
s

+ λ th(δ)2

2
E

〈(
R

1,2
1,1

)K + (
R

1,2
2,2

)K + t
(
R

1,2
1,2

)K + t
(
R

1,2
2,1

)K 〉
s + O

(
λδ3)

.

Next, for a given λ and δ, we will define β by

(4.6) β = √
λ th(δ).

With this choice, all the terms in ϕ′(s) = I+ II containing the overlaps R
j,j ′
�,�′ cancel

out and we get

ϕ′(s) = I + II

= −2λ log ch δ + λ th(δ)E
〈
m

(
σ 1,1)K + m

(
σ 1,2)K 〉

s + λ th(δ)2 + O
(
λδ3)

.

One can check that −2 log ch δ + th(δ)2 = O(δ4) as δ → 0 and, therefore,

ϕ′(s) = λδE
〈
m

(
σ 1,1)K + m

(
σ 1,2)K 〉

s + O
(
λδ3)

.

Now, integrating between 0 and 1 and dividing both sides by δ,

1

δ
ϕ(1) − 1

δ
ϕ(0) = 1

δ

∫ 1

0
φ′(s) ds

= λ

∫ 1

0
E

〈
m

(
σ 1,1)K + m

(
σ 1,2)K 〉

s ds + O
(
λδ2)

.

Using the elementary estimates,

1

N
E max

σ 1,σ 2∈A:|R1,2|∈S
H

(
s, σ 1, σ 2) ≤ ϕ(s)

≤ 2 log 2 + 1

N
E max

σ 1,σ 2∈A:|R1,2|∈S
H

(
s, σ 1, σ 2)
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at s = 0 and s = 1, we infer from the above that∣∣∣∣ 1

N
E max

σ 1,σ 2∈A:|R1,2|∈S

(
H 1

λ

(
σ 1) + H 2

λ

(
σ 2)) − 1

δ
ϕ(0)

∣∣∣∣ ≤ 2 log 2

δ
,

∣∣∣∣βδ
1

N
E max

σ 1,σ 2∈A:|R1,2|∈S

(
H 1(

σ 1) + H 2(
σ 2)) − 1

δ
ϕ(1)

∣∣∣∣ ≤ 2 log 2

δ
.

By Taylor’s expansion and our choice of β ,

β

δ
=

√
λ th(δ)

δ
= √

λ + O
(√

λδ2)
and, therefore,

1

N
E max

σ 1,σ 2∈A:|R1,2|∈S

(
H 1

λ

(
σ 1) + H 2

λ

(
σ 2))

=
√

λ

N
E max

σ 1,σ 2∈A:|R1,2|∈S

(
H 1(

σ 1) + H 2(
σ 2))

− λ

∫ 1

0
E

〈
m

(
σ 1,1)K + m

(
σ 1,2)K 〉

s ds + O

(
1

δ
+ λδ2 + √

λδ2
)
.

Letting δ = λ−1/3 in the last equation completes our proof. �

Using the above interpolation and Theorem 3 (which will be proved in the fol-
lowing section), we are now ready to prove Theorem 5.

PROOF OF THEOREM 5. Set S = [a, b] as in Theorem 3 and define

f (t) := lim sup
N→∞

1

N
E max|R1,2|∈S

(
H 1(

σ 1) + H 2(
σ 2))

,

where H 1, H 2 were defined in (4.1). It is easy to see that f is a continuous function
of t . By Theorem 3 above and [12], Theorem 2 (used with ε = a/2 there), we have
that

f (t) < 2P(K) for all t ∈ [0,1].
[Remark: In fact, the case of K-spin model was established in Theorem 2 in

[11] and stated for t ∈ (0,1) in both [11, 12]. However, the case of t = 0 is implic-
itly included in the proof of Theorem 2 in [11] and is in fact the easiest case. One
should simply note that, in the notation of that paper, the derivative of the Guerra–
Talagrand upper bound for t = 0 with respect to the Lagrange multiplier λ equals
minus the overlap constraint −q , which results in energy penalty for nonzero over-
lap constraints.]

The continuity of f ensures that there exists some η0 > 0 such that f (t) <

2P(K) − 6η0 for all t ∈ [0,1]. Using Lemma 4.1 with A = �N and noting that
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the terms involving magnetization are negative, we see that, for any t ∈ [0,1] and
large enough N ≥ N0,

1

N
E max|R1,2|∈S

(
H 1

λ

(
σ 1) + H 2

λ

(
σ 2)) ≤

√
λ

N
E max|R1,2|∈S

(
H 1(

σ 1) + H 2(
σ 2)) + Lλ1/3

≤ √
λ
(
2P(K) − 6η0

) + Lλ1/3

and, thus, if λ ≥ λ0 = (Lη0)
−6 for some large enough L then

1

N
E max

σ 1,σ 2∈A:
|R1,2|∈S

(
H 1

λ

(
σ 1) + H 2

λ

(
σ 2)) ≤ 2

√
λ
(
P(K) − 2η0

)
.

By a standard concentration inequality for Poisson(λN) and Azuma’s concentra-
tion inequality, one can check that there exists L = L(η0) such that, with probabil-
ity at least 1 − Le−N/L,

1

N
max|R1,2|∈S

(
H 1

λ

(
σ 1) + H 2

λ

(
σ 2))

≤ 1

N
E max|R1,2|∈S

(
H 1

λ

(
σ 1) + H 2

λ

(
σ 2)) + η0

√
λ

≤ 2
√

λ
(
P(K) − η0

)
.

On this event, if σ 1, σ 2 satisfy

H�
λ(σ �)

N
>

√
λ
(
P(K) − η0

)
, � = 1,2,

then |R(σ 1, σ 2)| /∈ S = [a, b], which finishes the proof. �

Finally, we use the interpolation to prove Lemma 3.3, which shows that near
maximizers automatically have small magnetization.

PROOF OF LEMMA 3.3. Let c = (4η0)
1/Kλ−1/(2K). In the setting of Lem-

ma 4.1, let A = {σ ∈ �N : |m(σ)| ≥ c}, S = [0,1] and t = 1. In this case, H 1
λ =

H 2
λ = Hλ and H 1 = H 2 = H . Since

λ

∫ 1

0
E

〈
m

(
σ 1)K + m

(
σ 2)K 〉

s ds ≥ 2λcK = 8
√

λη0,

we have

1

N
Emax

σ∈A
Hλ(σ) ≤

√
λ

N
Emax

σ∈A
H(σ) − 4

√
λη0 + Lλ1/3
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and, thus, there exists N0 such that, for all N ≥ N0,

1

N
Emax

σ∈A
Hλ(σ) ≤

√
λ

N
E max

σ∈�N
H(σ) − 4

√
λη0 + O

(
λ1/3)

≤ √
λ
(
P(K) − 3η0

) + Lλ1/3.

Consequently, for N ≥ N0 and λ ≥ L6η−6
0 ,

1

N
Emax

σ∈A
Hλ(σ) ≤ √

λ
(
P(K) − 2η0

)
.

From standard concentration inequality for Poisson(λN) and Azuma’s concentra-
tion inequality, one can check that there exists L = L(η0) such that, with probabil-
ity at least 1 − Le−N/L,

1

N
max
σ∈A

Hλ(σ) ≤ 1

N
Emax

σ∈A
Hλ(σ) + √

λη0 ≤ √
λ
(
P(K) − η0

)
.

This means that, on this event, any σ satisfying

Hλ(σ)

N
>

√
λ
(
P(K) − η0

)
must also satisfy |m(σ)| < c = λ−1/(2K)(4η0)

1/K . �

5. Overlap gap in the mean field model. In this section, we prove Theo-
rem 3. As mentioned in the Introduction, it will be proved by means of the Guerra–
Talagrand (GT) replica symmetry breaking bound at zero temperature, which is ob-
tained from the positive temperature bound [21, 42–44] by an appropriate rescaling
procedure. We begin by recalling the analogue of the Parisi formula for the limit
of the normalized maximum of the Hamiltonian (1.5),

(5.1) MEN := 1

N
max

σ∈{−1,1}N
H(σ),

which was proved in [2], as well as the zero-temperature Guerra–Talagrand bound
for coupled copies.

5.1. The Parisi formula and Guerra–Talagrand bound. Let U be the set of all
nonnegative nondecreasing right-continuous functions γ on the interval [0,1) such
that

∫ 1
0 γ (s) ds < ∞. We equip the space U with the L1(dx) norm. Let

(5.2) ξ(s) = sK

and define the zero temperature analogue of the Parisi functional [37, 38] on U by

P(γ ) = �γ (0,0) − 1

2

∫ 1

0
sξ ′′(s)γ (s) ds,(5.3)
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where �γ (s, x) for (s, x) ∈ [0,1) ×R is the weak3 solution of the Parisi PDE

∂s�γ (s, x) = −ξ ′′(s)
2

(
∂xx�γ (s, x) + γ (s)

(
∂x�γ (s, x)

)2)
(5.4)

with the boundary condition �γ (1, x) = |x|. The existence, uniqueness and reg-
ularity properties of the solution �γ (s, x) were studied in [11], Appendix. The
Parisi formula for the maximum energy in [2] states

ME := lim
N→∞ MEN = inf

γ∈U P(γ ),(5.5)

where the limit of MEN exists almost surely. Indeed, (5.5) was established in [2]
for general mixed p-spin models by showing how the corresponding formulas at
positive temperature, first proved for mixed even p-spin models in [43] and for
general mixed p-spin models in [33, 34], are transformed in the zero-temperature
limit. The minimizer on the right-hand side exists and is unique, as was shown in
[11] building upon the ideas from [1]. We will denote this minimizer by γP and
call γP (ds) the Parisi measure.

We will now describe the Guerra–Talagrand bound for two coupled systems,
which is discussed in Section 3.1 of [11]. For any (λ,x) ∈ R×R

2, set

(5.6) g(λ,x) = max(x1 + x2 + λ,−x1 − x2 + λ,x1 − x2 − λ,−x1 + x2 − λ).

Fix γ ∈ U , q ∈ [0,1) and λ ∈ R. First we define �γ (λ, s,x) for (s,x) ∈ [q,1]×R
2

to be the weak solution of the following equation:

∂s�γ = −ξ ′′(s)
2

(
��γ + γ (s)〈∇�γ ,∇�γ 〉),(5.7)

with the boundary condition at s = 1 given by

�γ (λ,1,x) = g(λ,x).(5.8)

Here, ��γ is the Laplacian and ∇�γ is the gradient of �γ in x. The existence and
uniqueness of the weak solution to this PDE can be established in a similar way as
in the one-dimensional case (5.4) without essential changes; see [11] and also [8],
Appendix 1. Next, using �γ (q, x, x) as a boundary condition at s = q , we define
�γ (λ, s, x) for (s, x) ∈ [0, q] ×R to be the solution of

∂s�γ = −ξ ′′(s)
2

(
∂xx�γ + γ (s)(∂x�γ )2)

(5.9)

3Recall from [11, 28] that u is a weak solution to (5.4) if it has an essentially bounded weak deriva-

tive ∂xu and for every φ ∈ C∞
c ((0,1] × R),

∫ 1
0

∫
R

(−u∂tφ + ξ ′′(t)
2 (u∂xxφ + γ (s)(∂xu)2)) dx ds +∫

R
φ(1, x)|x|dx = 0.
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with the boundary condition �γ (λ, q, x) = �γ (λ, q, x, x). The existence and reg-
ularity properties of �γ and �γ were studied in [11] and will also be discussed in
the proof of Proposition 3 below. Finally, for all (λ, γ ) ∈ R× U , we define

Tq(λ, γ ) = �γ (λ,0,0) − λq

−
(∫ 1

0
sξ ′′(s)γ (s) ds +

∫ q

0
sξ ′′(s)γ (s) ds

)
.

(5.10)

If for a subset A ⊂ [−1,1] we define the maximum coupled energy as

MCEN(A) = 1

N
max

R1,2∈A

(
H

(
σ 1) + H

(
σ 2))

(5.11)

and let SN = {R1,2 : σ 1, σ 2 ∈ {−1,+1}N } be the set of feasible overlap values for
a given N then, for any q ∈ SN ∩ [0,1],

EMCEN

({q}) ≤ Tq(λ, γ ).(5.12)

This zero temperature Guerra–Talagrand bound follows from the classical positive
temperature bound (see [43] or [42], Section 14.6) by the same rescaling argument
as in the setting of one system explained in Lemma 2 in [2]. By symmetry of the
model for even K , the same bound holds for EMCEN({−q}) as well. Our goal
now will be to show that the right-hand side can be made strictly less than twice
P(γP ) defined in (5.5) for all q in some nontrivial interval (a, b), and this will be
done by an appropriate choice of γ in (5.12) and slightly perturbing λ around zero.
The following subsection prepares needed auxiliary results.

5.2. Variational representations for �γ and �γ . Observe that both �γ and
�γ are special cases of the Hamilton–Jacobi–Bellman equation, induced by a lin-
ear problem of diffusion control. In these cases, it is well known that they can be
expressed as optimal stochastic control problems by means of dynamic program-
ming [17]. More precisely, denote by W = {W(w),Gw,0 ≤ w ≤ 1} a standard
Brownian motion, where the filtration (Gw)0≤w≤1 satisfies the usual conditions
(see Definition 2.25 in Chapter 1 of [29]). For 0 ≤ q ≤ 1, denote by D[q] the space
of all progressively measurable processes u with respect to (Gw)0≤w≤q satisfying
sup0≤w≤q |u(w)| ≤ 2. Endow the space D[q] with the norm

‖u‖q =
(
E

∫ q

0
u(w)2 dw

)1/2
.(5.13)

The following variational representation holds for �γ .

PROPOSITION 1. Let γ ∈ U . For any 0 ≤ s ≤ q ≤ 1 and x ∈ R,

�γ (s, x) = max
u∈D[q]E

[
�γ

(
q, x +

∫ q

s
ξ ′′γ udw +

∫ q

s

√
ξ ′′ dW

)

− 1

2

∫ q

s
ξ ′′γ u2 dw

]
.

(5.14)
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The maximum is attained on uγ (w) = ∂x�γ (w,Xγ (w)), where Xγ =
(Xγ (w))s≤w≤q is the solution to the following SDE:

dXγ = ξ ′′(w)γ (w)∂x�γ (w,Xγ )dw +
√

ξ ′′(w)dW,(5.15)

with the initial condition Xγ (s) = x.

Similarly, the functional �γ (λ,0,0) in (5.10) can be written via the following
optimal stochastic control problem. Recall that �γ (λ, q, x) = �γ (λ, q, x, x).

PROPOSITION 2. Let (λ, γ ) ∈ R× U . For any 0 ≤ s ≤ q ≤ 1 and x ∈ R,

�γ (λ, s, x) = max
u∈D[q]E

[
�γ

(
λ,q, x +

∫ q

s
ξ ′′γ udw +

∫ q

s

√
ξ ′′ dW

)

− 1

2

∫ q

s
ξ ′′γ u2 dw

]
.

(5.16)

The maximum is attained on uλ
γ (w) = ∂x�γ (λ,w,Xλ

γ (w)), where (Xλ
γ (w))s≤w≤q

is the solution of the following SDE:

dXλ
γ = ξ ′′(w)γ (w)∂x�γ

(
λ,w,Xλ

γ

)
dw +

√
ξ ′′(w)dW,(5.17)

with the initial condition Xλ
γ (s) = x.

Alternatively, both Propositions 1 and 2 can also be verified by a direct applica-
tion of Itô’s formula. For a detailed proof, we refer the reader to [10], Theorem 5.
Although the argument therein is for a different boundary condition and γ (1−) is
bounded, the same argument carries through with only minor modifications. Our
next result gives a representation of the derivative of �γ (λ,0,0) in λ when λ = 0.

PROPOSITION 3. For any 0 ≤ q < 1 and any γ ∈ U , the function λ �→
�γ (λ,0,0) is continuously differentiable and its derivative at zero can be writ-
ten as

∂λ�γ (0,0,0) = E∂x�γ

(
q,X0

γ (q)
)2

,(5.18)

where X0
γ is defined in (5.17) with λ = 0, s = 0 and x = 0.

The rest of this subsection is devoted to verifying this proposition. Note
that a direct computation gives ∂λ�γ (0,1,x) = �γ (1, x1) · ∂x2�γ (1, x2) for all
x1, x2 �= 0. From this, the validity of Proposition 3 follows immediately from the
Cole–Hopf transformation so long as γ ∈ U is a step function with finitely many
jumps. To handle the general situation, we need the following three key lemmas,
which relate the functionals in the Guerra–Talagrand bound and the Parisi formula
as well as describe their regularity properties. They are taken directly from [10]
and [11]. The first one is in Lemma 6 in [11].
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LEMMA 5.1. Fix 0 ≤ q < 1 and γ ∈ U . For any w ∈ [q,1) and x = (x1, x2) ∈
R

2,

�γ (0,w,x) = �γ (w,x1) + �γ (w,x2)(5.19)

and �γ (λ,w,x) is differentiable in λ in the classical sense with

∂λ�γ (0,w,x) = ∂x�γ (w,x1)∂x�γ (w,x2).(5.20)

The second one can be found in Lemma 2 in [10].

LEMMA 5.2. Let D be a metric space and I be an interval with right open
edge. Let f be a real-valued function on D × I and f0(λ) = supu∈D f (u,λ) for
λ ∈ I . Suppose that there exists a D-valued continuous function u(λ) on I such
that f0(λ) = f (u(λ), λ) and ∂λf is continuous on D × I . Then f0(λ) is right-
differentiable with the derivative given by ∂λf (u(λ), λ) for all λ ∈ I .

We will also need the following Lemma 10 in [11].

LEMMA 5.3. Let 0 < r0 < r1 < r2 < ∞. Suppose that κ1, κ2 ∈ L∞([r0, r2] ×
R) and g ∈ L∞(R) with ‖κi‖∞ ≤ Ci for i = 1,2 and ‖g‖∞ ≤ C0. Assume that u

is the classical solution to

∂ru(r, x) = ∂xxu(r, x) + κ1(r, x)∂xu(r, x) + k2(r, x) ∀(r, x) ∈ (r0, r2] ×R

with the initial condition u(r0, x) = g(x). Then there exists a nonnegative contin-
uous function F on [0,∞)3 depending only on r0, r2 such that

sup
(r,x)∈[r1,r2]×R

∣∣∂xu(r, x)
∣∣ ≤ F(C0,C1,C2).

The statement of this result in [11] also assumed the continuity of r �→
‖∂xu(r, ·)‖∞. To avoid this, we note that this assumption was used in [11] only
in the application of Gronwall’s inequality, which also holds without it, so this
result in [11] in fact did not need this assumption.

PROOF OF PROPOSITION 3. First we establish the differentiability of �γ (λ,0,0).
Again, recall that �γ (λ, q, x) = �γ (λ, q, x, x). If we denote

Fq
γ (λ,u) = E

[
�γ

(
λ,q,

∫ q

0
ξ ′′γ udw +

∫ q

0

√
ξ ′′dW

)
− 1

2

∫ q

0
ξ ′′udw

]
,

for u ∈ D[q] then, by Proposition 2,

�γ (λ,0,0) = max
u∈D[q]F

q
γ (λ,u).

To compute the derivative of this in λ, we would like to apply Lemma 5.2 with
I = R, the metric space D = (D[q],‖ · ‖q), and u(λ) = uλ

γ from Proposition 2.
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First of all, the proof of Lemma 6 in [11] shows that �γ (λ, q, x) = �γ (λ, q, x, x)

is differentiable in λ, the derivative ∂λ�γ (λ, q, x) is continuous in (λ, x), and
|∂λ�γ (λ, q, x)| ≤ 1. In particular, this implies that we can interchange the deriva-
tive and integral and write

∂λF
q
γ (λ,u) = E

[
∂λ�γ

(
λ,q,

∫ q

0
ξ ′′γ udw +

∫ q

0

√
ξ ′′ dW

)]
.(5.21)

For u(λ) = uλ
γ from Proposition 2 with x = 0 and s = 0,∫ q

0
ξ ′′γ uλ

γ dw +
∫ q

0

√
ξ ′′ dW = Xλ

γ (q)

and, therefore, if we can show that ∂λF
q
γ (λ,u) is continuous in (λ,u) and uλ

γ is
continuous in λ on D then Lemma 5.2 will imply that the right derivative

d

dλ
�γ (λ,0,0) = ∂λF

q
γ

(
λ,uλ

γ

) = E
[
∂λ�γ

(
λ,q,Xλ

γ (q)
)]

.(5.22)

Since ∂λ�γ is continuous in (λ, x) and |∂λ�γ | ≤ 1, (5.21) implies that ∂λF
q
γ is

continuous in (λ,u).
It remains to show that uλ

γ is continuous in λ on D. First we note that
�γ (λ, q, x, x) admits a similar expressions as Propositions 1 and 2, which can
be seen from Theorem 7 in [11] with (r, s) = (q,1) and t = 1. This representation
makes it clear how properties of the boundary condition g(λ,x) in (5.8) are prop-
agated to �γ (λ, q, x). For example, the fact that g(λ,x) is 1-Lipschitz in λ and
2-Lipschitz in x implies that |∂λ�γ (λ, q, x)| ≤ 1 and |∂x�γ (λ, q, x)| ≤ 2. Using
(5.16), we get |∂λ�γ (λ, s, x)| ≤ 1 and |∂x�γ (λ, s, x)| ≤ 2 for all s ∈ [0, q]. From
this, it can be shown that ∂x�γ (λ, s, x) is uniformly Lipschitz in (λ, x) over all
s ∈ [0, q], as follows.

If γ (ds) is an atomic measure with finitely many jumps then the solution �γ of
(5.9) can be explicitly found via the Cole–Hopf transformation. Moreover, A :=
∂x�γ or A := ∂λ�γ satisfies

∂t� = −ξ ′′

2

(
∂xx� + 2γ (∂x�γ )(∂x�)

)
on R × [0, q] × R with the boundary condition A(λ,q, x) = ∂x�γ (λ, q, x) or
∂λ�γ (λ, q, x). Since |A(λ,q, x)| ≤ 2 and |∂x�γ (λ, s, x)| ≤ 2 for s ∈ [0, q], one
may apply Lemma 5.3 to obtain

sup
(λ,s,x)∈R×[0,q]×R

∣∣∂xA(λ, s, x)
∣∣ ≤ F

(
γ (q)

)
,(5.23)

where F is some nonnegative continuous function on [0,∞). Therefore,
∂x�γ (λ, s, x) is F(γ (q))-Lipschitz in λ and x uniformly over s ∈ [0, q], for
atomic γ (ds). For arbitrary γ on [0, q], we define the solution �γ (λ, s, x) of (5.9)
with the boundary condition �γ (λ, q, x, x) via approximation of γ by atomic γn
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and ensuring, using the Arzela–Ascoli theorem and Cantor’s diagonalization pro-
cess, that �γn(λ, s, x) and all its partial derivatives in x and partial derivative in λ

converge to some �γ (λ, s, x) and its partial derivatives. The limiting �γ (λ, s, x)

is the solution of the equation (5.9) with the boundary condition �γ (λ, q, x, x) and
(5.23) still holds, that is, ∂x�γ (λ, s, x) is F(γ (q))-Lipschitz in λ and x uniformly
over s ∈ [0, q]. (The uniqueness of solutions follows from the same argument as
in [28].)

Finally, equation (5.17) with x = 0 and s = 0 and (5.23) imply that, for 0 ≤ w ≤
q ,

∣∣Xλ
γ (w) − Xλ′

γ (w)
∣∣ ≤ ξ ′′(q)γ (q)F

(
γ (q)

)(∣∣λ − λ′∣∣w +
∫ w

0

∣∣Xλ
γ (t) − Xλ′

γ (t)
∣∣dt

)
.

An application of Gronwall’s inequality shows that λ �→ Xλ
γ is continuous with re-

spect to the sup-norm, and (5.23) implies that λ �→ uλ
γ (w) = ∂x�γ (λ,w,Xλ

γ (w))

is also continuous with respect to the sup-norm and, therefore, the norm ‖ · ‖q de-
fined in (5.15). As a result, λ �→ (λ,uλ

γ ) is continuous and (5.22) holds. Note that
this right derivative is also continuous in λ. It is well known (see, e.g., [9]) that a
function with continuous right derivative on an open interval is continuously differ-
entiable on this interval. Thus, �γ (λ,0,0) is continuously differentiable. Finally,
the verification of (5.18) follows directly from (5.22) and (5.20). �

5.3. Proof of Theorem 3. We now turn to the main proof of Theorem 3 by
using the GT bound (5.12). First of all, from the optimality of the Parisi measure
γP , it is known that the points in the support of the Parisi measure must satisfy a
system of consistency equations (see [11], Proposition 3).

PROPOSITION 4. For any s ∈ suppγP (ds),

E
(
∂x�γP

(
s,XγP

(s)
))2 = s,(5.24)

ξ ′′(s)E
(
∂xx�γP

(
s,XγP

(s)
))2 ≤ 1,(5.25)

where XγP
= (XγP

(w))0≤w<1 is defined as in Proposition 1 with q = 1, s = 0 and
x = 0.

A key consequence of these equations is the following lemma where the condi-
tion K ≥ 4 is used.

LEMMA 5.4. For even K ≥ 4, there exists c ∈ (0,1) such that

E
(
∂x�γP

(
s,XγP

(s)
))2

< s

for all s ∈ (0, c).
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PROOF. Note that ξ(s) = sK . By Proposition 2(ii) in [11], for any 0 < q < 1,
there exists a nonnegative continuous function F on [0,∞) depending only on ξ

and q such that

sup
(s,x)∈[0,q]×R

∣∣∂xx�γP
(s, x)

∣∣ ≤ F
(
γP (q)

)
.

Since ξ ′′(0) = 0 for K ≥ 4, this and (5.25) imply that there exists some c ∈ (0,1)

such that

ξ ′′(s)E
(
∂xx�γP

(
s,XγP

(s)
))2

< 1(5.26)

for all s ∈ (0, c). It remains to appeal to the following well-known relationship
between the left-hand sides of the equations (5.24) and (5.24). By [11], Lemma 3,

∂x�γP

(
s,Xγ (s)

) − ∂x�γP

(
s′,Xγ

(
s′))

=
∫ s

s′
ξ ′′(w)1/2∂xx�γP

(
w,XγP

(w)
)
dW(w)

for all 0 < s′ < s < 1, and application of Itô’s formula yields

E
(
∂x�γP

(
s,XγP

(s)
))2 −E

(
∂x�γP

(
s′,XγP

(
s′)))2

=
∫ s

s′
ξ ′′(w)E

(
∂xx�γP

(
w,XγP

(w)
))2

dw.

In particular, letting s′ = 0 and using (5.26),

E
(
∂x�γP

(
s,XγP

(s)
))2

< s

for any s ∈ (0, c). This completes our proof. �

Let c be the constant obtained in Lemma 5.4. For any fixed q ∈ (0, c), we define

γq(s) = γP

2
1[0,q) + γP 1[q,1) ∈ U,

where 1A stands for the indicator function on the set A. The definition of the
boundary condition in (5.9), �γ (λ, q, x) = �γ (λ, q, x, x), together with (5.19)
yields

�γq (0, q, x) = �γq (0, q, x, x) = 2�γP
(q, x).

Since γq = γP /2 on the interval [0, q), comparing the equations (5.4) and (5.9) we
see that

�γq (0, s, x) = 2�γP
(s, x) for s ∈ [0, q].(5.27)

Moreover,∫ 1

0
sξ ′′(s)γq(s) ds +

∫ q

0
sξ ′′(s)γq(s) ds =

∫ 1

0
sξ ′′(s)γP (s) ds



SUBOPTIMALITY OF LOCAL ALGORITHMS 1615

and, as a result,

Tq(0, γq) = 2P(γP ) = 2ME.(5.28)

Next, recall Xγq from (5.15) and X0
γq

from (5.17) both with x = 0 and s = 0.
Since on the interval [0, q] we have γq = γP /2 and ∂x�γq (0, s, x) = 2∂x�γP

(s, x),
(5.17) becomes

dX0
γq

= ξ ′′γP ∂x�γq

(
s,X0

γq

)
ds +

√
ξ ′′ dW.

In other words, Xγq and X0
γq

are defined by the same equation on [0, q] and, by

the uniqueness of the strong SDE solution, we see that X0
γq

= XγP
. Consequently,

(5.18) implies

∂λ�γq (0,0,0) = E∂x�γP

(
q,XγP

(q)
)2

and, by Lemma 5.4,

∂λTq(0, γq) = ∂λ�γq (0,0,0) − q = E∂x�γP

(
q,XγP

(q)
)2 − q < 0.

This assures that, for all q ∈ (0, c),

inf
(λ,γ )∈R×U

Tq(λ, γ ) < 2ME.

Since Tq(λ, γ ) is continuous in q , the infimum on the left-hand side is an upper
semicontinuous function of q and, therefore, there exist 0 < a < b < c and η > 0
such that

inf
(λ,γ )∈R×U

Tq(λ, γ ) < 2ME − 2η

for all q ∈ [a, b]. Consequently, from (5.12) and the usual Gaussian concentration
of measure,

EMCEN

([a, b]) ≤ 2EMEN − η

for large enough N . Note that, since the Hamiltonian H(σ) is symmetric for even
K , that is, H(σ) = H(−σ), we see that this also implies that

EMCEN

([−b,−a] ∪ [a, b]) ≤ 2EMEN − η.

This completes our proof. �
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