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IRREDUCIBLE CONVEX PAVING FOR DECOMPOSITION OF
MULTIDIMENSIONAL MARTINGALE TRANSPORT PLANS1

BY HADRIEN DE MARCH AND NIZAR TOUZI

École Polytechnique

Martingale transport plans on the line are known from Beiglböck and
Juillet (Ann. Probab. 44 (2016) 42–106) to have an irreducible decomposi-
tion on a (at most) countable union of intervals. We provide an extension of
this decomposition for martingale transport plans in Rd , d ≥ 1. Our decom-
position is a partition of Rd consisting of a possibly uncountable family of
relatively open convex components, with the required measurability so that
the disintegration is well defined. We justify the relevance of our decompo-
sition by proving the existence of a martingale transport plan filling these
components. We also deduce from this decomposition a characterization of
the structure of polar sets with respect to all martingale transport plans.

1. Introduction. The problem of martingale optimal transport was introduced
as the dual of the problem of robust (model-free) superhedging of exotic deriva-
tives in financial mathematics, see Beiglböck, Henry-Labordère and Penkner [2]
in discrete time, and Galichon, Henry-Labordère and Touzi [10] in continuous-
time. The robust superhedging problem was introduced by Hobson [18], and was
addressing specific examples of exotic derivatives by means of corresponding so-
lutions of the Skorokhod embedding problem; see [6, 16, 17], and the survey [15].

Given two probability measures μ,ν on Rd , with finite first-order moment,
martingale optimal transport differs from standard optimal transport in that the
set of all coupling probability measures P(μ, ν) on the product space is reduced
to the subset M(μ, ν) restricted by the martingale condition. We recall from
Strassen [22] that M(μ, ν) �= ∅ if and only if μ � ν in the convex order, that is,
μ(f ) ≤ ν(f ) for all convex functions f . Notice that the inequality μ(f ) ≤ ν(f )

is a direct consequence of the Jensen inequality; the reverse implication follows
from the Hahn–Banach theorem.

This paper focuses on the critical observation by Beiglböck and Juillet [3] that,
in the one-dimensional setting d = 1, any such martingale interpolating probability
measure P has a canonical decomposition P = ∑

k≥0 Pk , where Pk ∈ M(μk, νk)

and μk is the restriction of μ to the so-called irreducible components Ik , and
νk := ∫

x∈Ik
P(dx, ·), supported in Jk , k ≥ 0, is independent of the choice of Pk .
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Here, (Ik)k≥1 are open intervals, I0 := R \ (
⋃

k≥1 Ik), and Jk is an augmenta-
tion of Ik by the inclusion of either one of the endpoints of Ik , depending on
whether they are charged by the distribution Pk . Remarkably, the irreducible com-
ponents (Ik, Jk)k≥0 are independent of the choice of P ∈ M(μ, ν). To understand
this decomposition, notice that convex functions in one dimension are generated
by the family fx0(x) := |x − x0|, x0 ∈ R. Then, in terms of the potential functions
Uμ(x0) := μ(fx0), and Uν(x0) := ν(fx0), x0 ∈ R, we have μ � ν if and only if
Uμ ≤ Uν and μ,ν have same mean. Then, at any contact points x0, of the po-
tential functions, Uμ(x0) = Uν(x0), we have equality in the underlying Jensen’s
equality, which means that the singularity x0 of the underlying function fx0 is not
seen by the measure. In other words, the point x0 acts as a barrier for the mass
transfer in the sense that martingale transport maps do not cross the barrier x0.
Such contact points are precisely the endpoints of the intervals Ik , k ≥ 1.

The decomposition into irreducible components plays a crucial role for the
quasi-sure formulation introduced by Beiglböck, Nutz and Touzi [4], and repre-
sents an important difference between martingale transport and standard transport.
Indeed, while the martingale transport problem is affected by the quasi-sure for-
mulation, the standard optimal transport problem is not changed. We also refer to
Ekren and Soner [9] for further functional analytic aspects of this duality.

Our objective in this paper is to extend the last decomposition to an arbitrary
d-dimensional setting, d ≥ 1. The main difficulty is that convex functions do not
have anymore such a simple generating family. Therefore, all of our analysis is
based on the set of convex functions. A first extension of the last decomposition
to the multidimensional case was achieved by Ghoussoub, Kim and Lim [11].
Motivated by the martingale monotonicity principle of Beiglböck and Juillet [3]
(see also Zaev [24] for higher dimension and general linear constraints), their
strategy is to find a monotone set � ⊂ Rd × Rd , where the robust superhedging
holds with equality, as a support of the optimal martingale transport in M(μ, ν).
Denoting �x := {y : (x, y) ∈ �}, this naturally induces the relation x Rel x′ if
x ∈ ri conv(�x′), which is then completed to an equivalence relation ∼. The corre-
sponding equivalence classes define their notion of irreducible components.

Our subsequent results differ from [11] from two perspectives. First, unlike [11],
our decomposition is universal in the sense that it is not relative to any particular
martingale measure in M(μ, ν) (see example 2.2). Second, our construction of
the irreducible convex paving allows to prove the required measurability property,
thus justifying completely the existence of a disintegration of martingale plans.

Finally, during the final stage of writing the present paper, we learned about
the parallel work by Jan Obłój and Pietro Siorpaes [20]. Although the results are
close, our approach is different from theirs. We are grateful to them for pointing
to us the notions of “convex face” and “Wijsmann topology” and the relative ref-
erences, which allowed us to streamline our presentation. In an earlier version of
this work, we used instead a topology that we called the compacted Hausdorff
distance, defined as the topology generated by the countable restrictions of the
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space to the closed balls centered in the origin with integer radii; the two are in
our case the same topologies, as the Wijsman topology is locally equivalent to the
Hausdorff topology in a locally compact set. We also owe Jan and Pietro special
thanks for their useful remarks and comments on a first draft of this paper privately
exchanged with them.

The paper is organized as follows. Section 2 contains the main results of the
paper, namely our decomposition into irreducible convex paving, and shows the
identity with the Beiglböck and Juillet [3] notion in the one-dimensional setting.
Section 3 collects the main technical ingredients needed for the statement of our
main results, and gives the structure of polar sets. In particular, we introduce the
new notions of relative face and tangent convex functions, together with the re-
quired topology on the set of such functions. The remaining sections contain the
proofs of these results. In particular, the measurability of our irreducible convex
paving is proved in Section 7.

Notation. We denote by R := R∪ {−∞,∞} the completed real line, and sim-
ilarly denote R+ := R+ ∪ {∞}. We fix an integer d ≥ 1. For x ∈ Rd and r ≥ 0,
we denote Br(x) the closed ball for the Euclidean distance, centered in x with ra-
dius r . We denote for simplicity Br := Br(0). If x ∈ X , and A ⊂ X , where (X ,d)

is a metric space, dist(x,A) := infa∈A d(x, a). In all this paper, Rd is endowed
with the Euclidean distance.

If V is a topological affine space and A ⊂ V is a subset of V , intA is the interior
of A, clA is the closure of A, affA is the smallest affine subspace of V containing
A, convA is the convex hull of A, dim(A) := dim(affA) and riA is the relative
interior of A, which is the interior of A in the topology of affA induced by the
topology of V . We also denote by ∂A := clA\ riA the relative boundary of A, and
by λA the Lebesgue measure of affA.

The set K of all closed subsets of Rd is a Polish space when endowed with the
Wijsman topology2 (see Beer [1]). As Rd is separable, it follows from a theorem
of Hess [12] that a function F : Rd −→ K is Borel measurable with respect to the
Wijsman topology if and only if its associated multifunction is Borel measurable,
that is,

F−(V ) := {
x ∈ Rd : F(x) ∩ V �= ∅

}
is Borel measurable

for all open subset V ⊂ Rd .

The subset
�

K ⊂ K of all the convex closed subsets of Rd is closed in K for the Wi-
jsman topology and, therefore, inherits its Polish structure. Clearly,

�

K is isomor-
phic to ri

�

K := {riK : K ∈ �

K} (with reciprocal isomorphism cl). We shall identify

2The Wijsman topology on the collection of all closed subsets of a metric space (X ,d) is the weak
topology generated by {dist(x, ·) : x ∈X }.
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these two isomorphic sets in the rest of this text, when there is no possible confu-
sion.

We denote � := Rd ×Rd and define the two canonical maps

X : (x, y) ∈ � �−→ x ∈ Rd and Y : (x, y) ∈ � �−→ y ∈ Rd .

For ϕ,ψ :Rd −→ R̄, and h :Rd −→Rd , we denote

ϕ ⊕ ψ := ϕ(X) + ψ(Y ), and h⊗ := h(X) · (Y − X),

with the convention ∞ − ∞ = ∞.
For a Polish space X , we denote by B(X ) the collection of Borel subsets of X ,

and P(X ) the set of all probability measures on (X ,B(X )). For P ∈ P(X ), we
denote by NP the collection of all P-null sets, suppP the smallest closed support
of P, and

�
suppP := cl conv suppP the smallest convex closed support of P. For a

measurable function f : X −→ R, we denote domf := {|f | < ∞}, and we use
again the convention ∞ − ∞ = ∞ to define its integral, and denote

P[f ] := EP[f ] =
∫
X

f dP =
∫
X

f (x)P(dx) for all P ∈ P(X ).

Let Y be another Polish space, and P ∈P(X ×Y). The corresponding conditional
kernel3 Px is defined μ-a.e. by

P(dx, dy) = μ(dx) ⊗ Px(dy) where μ := P ◦ X−1.

We denote by L0(X ,Y) the set of Borel measurable maps from X to Y . We de-
note for simplicity L0(X ) := L0(X , R̄) and L0+(X ) := L0(X , R̄+). Let A be a
σ -algebra of X , we denote by LA(X ,Y) the set of A-measurable maps from X
to Y . For a measure m on X , we denote L1(X ,m) := {f ∈ L0(X ) : m[|f |] < ∞}.
We also denote simply L1(m) := L1(R̄,m) and L1+(m) := L1+(R̄+,m).

We denote by C the collection of all finite convex functions f : Rd −→ R.
We denote by ∂f (x) the corresponding subgradient at any point x ∈ Rd . We also
introduce the collection of all measurable selections in the subgradient, which is
nonempty by Lemma 9.2,

∂f := {
p ∈ L0(Rd,Rd) : p(x) ∈ ∂f (x) for all x ∈ Rd}.

We finally denote f ∞ := lim infn→∞ fn, for any sequence (fn)n≥1 of real num-
bers, or of real-valued functions.

3The usual definition of a kernel requires that the map x �→ Px [B] is Borel measurable for all

Borel set B ∈ B(Rd). In this paper, we only require this map to be analytically measurable.
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2. Main results. Throughout this paper, we consider two probability mea-
sures μ and ν on Rd with finite first-order moment, and μ � ν in the convex order,
that is, ν(f ) ≥ μ(f ) for all f ∈ C. Using the convention ∞ − ∞ = ∞, we may
define (ν − μ)(f ) ∈ [0,∞] for all f ∈ C.

We denote by M(μ, ν) the collection of all probability measures on Rd × Rd

with marginals P ◦ X−1 = μ and P ◦ Y−1 = ν. Notice that M(μ, ν) �= ∅ by
Strassen [22].

An M(μ, ν)-polar set is an element of
⋂

P∈M(μ,ν)NP. A property is said to
hold M(μ, ν)-quasi surely (abbreviated as q.s.) if it holds on the complement of
an M(μ, ν)-polar set.

2.1. The irreducible convex paving. The next first result shows the existence
of a maximum support martingale transport plan, that is, a martingale interpolating
measure P̂ whose disintegration P̂x has a maximum convex hull of supports among
all measures in M(μ, ν).

THEOREM 2.1. There exists P̂ ∈M(μ, ν) such that

for all P ∈M(μ, ν),
�

suppPX ⊂ �
suppP̂X, μ-a.s.(2.1)

Furthermore
�

suppP̂X is μ-a.s. unique, and we may choose this kernel so that:

(i) x �−→ �
suppP̂x is analytically measurable4 Rd −→ �

K,
(ii) x ∈ I (x) := ri

�
suppP̂x , for all x ∈ Rd , and {I (x), x ∈ Rd} is a partition of

Rd .

This theorem will be proved in Section 6.3. The (μ-a.s. unique) set valued map
I (X) paves Rd by its image by (ii) of Theorem 2.1. By (2.1), this paving is stable
by all P ∈M(μ, ν):

Y ∈ cl I (X), M(μ, ν)-q.s.(2.2)

Finally, the measurability of the map I in the Polish space
�

K allows to see it
as a random variable, which allows to condition probabilistic events to X ∈ I ,
even when these components are all μ-negligible when considered apart from the
others. Under the conditions of Theorem 2.1, we call such I (X) the irreducible
convex paving associated to (μ, ν).

Now we provide an important counterexample proving that for some (μ, ν)

in dimension larger than 1, particular couplings in M(μ, ν) may define different
pavings.

4Analytically measurable means measurable with respect to the smallest σ -algebra containing the
analytic sets. All Borel sets are analytic and all analytic sets are universally measurable, that is,
measurable with respect to all Borel measures (see Proposition 7.41 and Corollary 7.42.1 in [5]).
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EXAMPLE 2.2. In R2, we introduce x0 := (0,0), x1 := (1,0), y0 := x0,
y−1 := (0,−1), y1 := (0,1) and y2 := (2,0). Then we set μ := 1

2(δx0 + δx1) and
ν := 1

8(4δy0 +δy−1 +δy1 +2δy2). We can show easily that M(μ, ν) is the nonempty
convex hull of P1 and P2 where

P1 := 1

8
(4δx0,y0 + 2δx1,y2 + δx1,y1 + δx1,y−1)

and

P2 := 1

8
(2δx0,y0 + δx0,y1 + δx0,y−1 + 2δx1,y0 + 2δx1,y2).

(i) The Ghoussoub–Kim–Lim [11] (GKL, hereafter) irreducible convex paving.
Let c1 = 1{X=Y }, c2 = 1 − c1 = 1{X �=Y }, and notice that Pi is the unique optimal
martingale transport plan for ci , i = 1,2. Then it follows that the corresponding
Pi -irreducible convex paving according to the definition of [11] are given by

CP1(x0) = {x0}, CP1(x1) = ri conv{y1, y−1, y2},
and CP2(x0) = ri conv{y1, y−1}, CP2(x1) = ri conv{y0, y2}.

Figure 1 shows the extreme probabilities P1 and P2, and their associated irre-
ducible convex pavings map CP1 and CP2 .

(ii) Our irreducible convex paving. The irreducible components are given by

I (x0) = ri conv(y1, y−1) and I (x1) = ri conv(y1, y−1, y2).

FIG. 1. The extreme probabilities and associated irreducible paving.



1732 H. DE MARCH AND N. TOUZI

To see this, we use the characterization of Proposition 2.4. Indeed, as M(μ,

ν) = conv(P1,P2), for any P ∈ M(μ, ν), P � P̂ := P1+P2
2 , and suppPx ⊂

conv(supp P̂x) for x = x0, x1. Then I (x) = ri conv(supp P̂x) for x = x0, x1 (i.e.,
μ-a.s.) by Proposition 2.4.

REMARK 2.3. In the one-dimensional case, a convex paving which is invari-
ant with respect to some P ∈M(μ, ν) is automatically invariant with respect to all
P ∈ M(μ, ν). Given a particular coupling P ∈ M(μ, ν), the finest convex paving
which is P-invariant roughly corresponds to the GKL convex paving constructed
in [11]. Then Example 2.2 shows that this does not hold any more in dimension
greater than one.

Furthermore, in dimension one the “restriction” νI := ∫
I P(dx, ·) does not de-

pend on the choice of the coupling P ∈ M(μ, ν). Once again Example 2.2 shows
that it does not hold in higher dimension. Conditions guaranteeing that this prop-
erty still holds in higher dimension will be investigated in [7].

2.2. Behavior on the boundary of the components. For a probability measure
P on a topological space, and a Borel subset A, P|A := P[· ∩A] denotes its restric-
tion to A.

PROPOSITION 2.4. We may choose P̂ ∈ M(μ, ν) in Theorem 2.1 so that for
all P ∈ M(μ, ν) and y ∈ Rd ,

μ
[
PX

[{y}] > 0
] ≤ μ

[
P̂X

[{y}] > 0
]
,

and supp(PX|∂I (X)) ⊂ �
supp(P̂X|∂I (X)), μ-a.s.

(i) The set-valued maps J (X) := I (X) ∪ {y ∈ Rd : ν[y] > 0,and P̂X[{y}] >

0}, and J̄ (X) := I (X) ∪ �
suppP̂X|∂I (X) are μ-a.s. independent of the choice of P̂,

and Y ∈ J̄ (X), M(μ, ν)-q.s.
(ii) We may chose the kernel P̂X so that the map J̄ is convex valued, I ⊂ J ⊂

J̄ ⊂ cl I , and both J and J̄ are constant on I (x), for all x ∈ Rd .

The proof is reported in Section 6.3.

2.3. Structure of polar sets. Here, we state the structure of polar sets that will
be made more precise by Theorem 3.18.

THEOREM 2.5. A Borel set N ∈ B(�) is M(μ, ν)-polar if and only if

N ⊂ {X ∈ Nμ} ∪ {Y ∈ Nν} ∪ {
Y /∈ J (X)

}
,

for some (Nμ,Nν) ∈ Nμ × Nν and a set valued map J such that J ⊂ J ⊂ J̄ , the
map J is constant on I (x) for all x ∈ Rd , I (X) ⊂ conv(J (X) \ N ′

ν), μ-a.s. for all
N ′

ν ∈Nν , and Y ∈ J (X), M(μ, ν)-q.s.
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2.4. The one-dimensional setting. In the one-dimensional case, the decompo-
sition into irreducible components and the structure of M(μ, ν)-polar sets were
introduced in Beiglböck and Juillet [3] and Beiglböck, Nutz and Touzi [4], respec-
tively.

Let us see how the results of this paper reduce to the known concepts in the one-
dimensional case. First, in the one-dimensional setting, I (x) consists of open in-
tervals (at most countable number) or single points. Following [3], Proposition 2.3,
we denote the full dimension components (Ik)k≥1.

We also have J = J̄ (see Proposition 2.6 below), therefore, Theorem 2.5 is
equivalent to Theorem 3.2 in [4]. Similar to (Ik)k≥1, we introduce the corre-
sponding sequence (Jk)k≥1, as defined in [4]. Similar to [3], we denote by μk

the restriction of μ to Ik , and νk := ∫
x∈Ik

P[dx, ·] is independent of the choice of
P ∈ M(μ, ν). We define the Beiglböck and Juillet (BJ)-irreducible components

(
IBJ, J BJ) : x �→

⎧⎪⎨
⎪⎩

(Ik, Jk) if x ∈ Ik, for some k ≥ 1,({x}, {x}) if x /∈ ⋃
k

Ik.

PROPOSITION 2.6. Let d = 1. Then I = IBJ, and J̄ = J = J BJ, μ-a.s.

PROOF. By Proposition 2.4(i)–(ii), we may find P̂ ∈ M(μ, ν) such that
�

suppP̂X = cl I (X), and
�

suppP̂X|∂I (X) = J̄ (X), μ-a.s. Notice that as J̄ \ I (R) only
consists of a countable set of points, we have J = J̄ . By Theorem 3.2 in [4],
we have Y ∈ J BJ(X), M(μ, ν)-q.s. Therefore, Y ∈ J BJ(X), P̂-a.s. and we have
J̄ (X) ⊂ J BJ(X), μ-a.s.

On the other hand, let k ≥ 1. By the fact that uν − uμ > 0 on Ik , together with
the fact that Jk \Ik is constituted with atoms of ν, for any Nν ∈Nν , Jk ⊂ conv(Jk \
Nν). As μ = ν outside of the components,

J BJ(X) ⊂ conv
(
J BJ(X) \ Nν

)
, μ-a.s.(2.3)

Then by Theorem 3.2 in [4], as {Y /∈ J̄ (X)} is polar, we may find Nν ∈ Nν such
that J BJ(X) \ Nν ⊂ J̄ (X), μ-a.s. The convex hull of this inclusion, together with
(2.3) gives the remaining inclusion J BJ(X) ⊂ J̄ (X), μ-a.s.

The equality I (X) = IBJ(X), μ-a.s. follows from the relative interior taken on
the previous equality. �

3. Preliminaries. The proof of these results needs some preparation involving
convex analysis tools.

3.1. Relative face of a set. For a subset A ⊂ Rd and a ∈ Rd , we introduce the
face of A relative to a (also denoted a-relative face of A):

(3.1) rfa A := {
y ∈ A : (a − ε(y − a), y + ε(y − a)

) ⊂ A, for some ε > 0
}
.
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FIG. 2. Examples of relative faces.

Figure 2 illustrates examples of relative faces of a square S, relative to some points.
For later use, we list some properties whose proofs are reported in Section 9.5

PROPOSITION 3.1. (i) For A,A′ ⊂ Rd , we have rfa(A ∩ A′) = rfa(A) ∩
rfa(A′), and rfa A ⊂ rfa A′ whenever A ⊂ A′. Moreover, rfa A �= ∅ iff a ∈ rfa A

iff a ∈ A.
(ii) For a convex A, rfa A = riA �= ∅ iff a ∈ riA. Moreover, rfa A is convex

relatively open, A \ cl rfa A is convex, and if x0 ∈ A \ cl rfa A and y0 ∈ A, then
[x0, y0) ⊂ A \ cl rfa A. Furthermore, if a ∈ A, then dim(rfa clA) = dim(A) if and
only if a ∈ riA. In this case, we have cl rfa clA = cl ri clA = clA = cl rfa A.

3.2. Tangent convex functions. Recall the notation (3.1), and denote for all
θ : � → R̄:

domx θ := rfx conv dom θ(x, ·).
For θ1, θ2 : � −→ R, we say that θ1 = θ2, μ⊗pw, if

domX θ1 = domX θ2, and θ1(X, ·) = θ2(X, ·) on domX θ1,μ-a.s.

The crucial ingredient for our main result is the following.

DEFINITION 3.2. A measurable function θ : � → R+ is a tangent convex
function if

θ(x, ·) is convex, and θ(x, x) = 0 for all x ∈ Rd .

We denote by � the set of tangent convex functions, and we define

�μ := {
θ ∈ L0(�,R+) : θ = θ ′,μ⊗pw, and θ ≥ θ ′, for some θ ′ ∈ �

}
.

In order to introduce our main example of such functions, let

Tpf (x, y) := f (y) − f (x) − p⊗(x, y) ≥ 0 for all f ∈ C, and p ∈ ∂f.

Then, T(C) := {Tpf : f ∈ C,p ∈ ∂f } ⊂ � ⊂ �μ.

5rfa A is equal to the only relative interior of face of A containing a, where we extend the notion
of face to nonconvex sets. A face F of A is a nonempty subset of A such that for all [a, b] ⊂ A,
with (a, b) ∩ F �= ∅, we have [a, b] ⊂ F . It is discussed in Hiriart–Urruty–Lemaréchal [14] as an
extension of Proposition 2.3.7 that when A is convex, the relative interior of the faces of A form a
partition of A; see also Theorem 18.2 in Rockafellar [21].
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EXAMPLE 3.3. The second inclusion is strict. Indeed, let d = 1, and consider
the convex function f := ∞1(−∞,0). Then θ ′ := f (Y − X) ∈ �. Now let θ = θ ′ +√|Y − X|. Notice that since domX θ ′ = domX θ = {X}, we have θ ′ = θ , μ⊗pw
for any measure μ, and θ ≥ θ ′, therefore, θ ∈ �μ. However, for all x ∈ Rd , θ(x, ·)
is not convex and, therefore, θ /∈ �.

In higher dimension, we may even have X ∈ ri dom θ(X, ·), and θ(X, ·) is not
convex. Indeed, for d = 2, let f : (y1, y2) �−→ ∞(1{|y1|>1} + 1{|y2|>1}), so that
θ := f (Y −X) ∈ �. Let x0 := (1,0) and θ := θ ′+1{Y=X+x0}. Then, θ = θ ′, μ⊗pw
for any measure μ, and θ ≥ θ ′. Therefore, θ ∈ �μ. However, θ /∈ � as θ(x, ·) is
not convex for all x ∈Rd .

PROPOSITION 3.4. (i) Let θ ∈ �μ, then domX θ = rfX dom θ(X, ·) ⊂
dom θ(X, ·), μ-a.s.

(ii) Let θ1, θ2 ∈ �μ, then domX(θ1 + θ2) = domX θ1 ∩ domX θ2, μ-a.s.
(iii) �μ is a convex cone.

PROOF. (i) It follows immediately from the fact that on domX θ , we have
that θ(X, ·) is convex and finite, μ-a.s. by definition of �μ. Then domX θ ⊂
rfX dom θ(X, ·). On the other hand, as dom θ(X, ·) ⊂ conv dom θ(X, ·), the
monotony of rfx gives the other inclusion: rfX dom θ(X, ·) ⊂ domX θ .

(ii) As θ1, θ2 ≥ 0, dom(θ1 + θ2) = dom θ1 ∩ dom θ2. Then, for x ∈ Rd ,
conv dom(θ1(x, ·)+ θ2(x, ·)) ⊂ conv dom θ1(x, ·)∩ conv dom θ2(x, ·). By Proposi-
tion 3.1(i),

domx(θ1 + θ2) ⊂ domx θ1 ∩ domx θ2 for all x ∈Rd .

As for the reverse inclusion, notice that (i) implies that domX θ1 ∩ domX θ2 ⊂
dom θ1(X, ·) ∩ dom θ2(X, ·) = dom(θ1(X, ·) + θ2(X, ·)) ⊂ conv dom(θ1(X, ·) +
θ2(X, ·)), μ-a.s. Observe that domx θ1 ∩ domx θ2 is convex, relatively open, and
contains x. Then

domX θ1 ∩ domX θ2 = rfX(domX θ1 ∩ domX θ2)

⊂ rfX
(
conv dom

(
θ1(X, ·) + θ2(X, ·)))

= domX(θ1 + θ2) μ-a.s.

(iii) Given (ii), this follows from direct verification. �

DEFINITION 3.5. A sequence (θn)n≥1 ⊂ L0(�) converges μ⊗pw to some
θ ∈ L0(�) if

domX(θ∞) = domX θ and θn(X, ·) −→ θ(X, ·)
pointwise on domX θ,μ-a.s.
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Notice that the μ⊗pw-limit is μ⊗pw unique. In particular, if θn converges to θ ,
μ⊗pw, it converges as well to θ∞.

PROPOSITION 3.6. Let (θn)n≥1 ⊂ �μ, and θ : � −→ R̄+, such that
θn −→n→∞ θ , μ⊗pw:

(i) domX θ ⊂ lim infn→∞ domX θn, μ-a.s.
(ii) If θ ′

n = θn, μ⊗pw and θ ′
n ≥ θn, then θ ′

n −→n→∞ θ , μ⊗pw;
(iii) θ∞ ∈ �μ.

PROOF. (i) Let x ∈ Rd , such that θn(x, ·) converges on domx θ to θ(x, ·).
Let y ∈ domx θ , let y′ ∈ domx θ such that y′ = x − ε(y − x), for some ε > 0.
As θn(x, y) −→n→∞ θ(x, y), and θn(x, y′) −→n→∞ θ(x, y′), then for n large
enough, both are finite, and y ∈ domx θn. y ∈ lim infn→∞ domx θn, and domx θ ⊂
lim infn→∞ domx θn. The inclusion is true for μ-a.e. x ∈ Rd , which gives the re-
sult.

(ii) By (i), we have domX θ ⊂ lim infn→∞ domX θn = lim infn→∞ domX θ ′
n,

μ-a.s. As θn ≤ θ ′
n, domX θ ′∞ ⊂ domX θ∞ ⊂ lim infn→∞ domX θn, μ-a.s. We

denote Nμ ∈ Nμ, the set on which θn(X, ·) does not converge to θ(X, ·) on
domX θ(X, ·). For x /∈ Nμ, for y ∈ domx θ , θn(x, y) = θ ′

n(x, y), for n large enough,
and θ ′

n(x, y) −→n→∞ θ(x, y) < ∞. Then domX θ = domX θ ′∞, and θ ′
n(X, ·) con-

verges to θ(X, ·), on domX θ , μ-a.s. We proved that θ ′
n −→n→∞ θ , μ⊗pw.

(iii) Has its proof reported in Section 8.2 due to its length and technicality. �

The next result shows the relevance of this notion of convergence for our setting.

PROPOSITION 3.7. Let (θn)n≥1 ⊂ �μ. Then we may find a sequence θ̂n ∈
conv(θk, k ≥ n), and θ̂∞ ∈ �μ such that θ̂n −→ θ̂∞, μ⊗pw as n → ∞.

The proof is reported in Section 8.2.

DEFINITION 3.8. (i) A subset T ⊂ �μ is μ⊗pw-Fatou closed if θ∞ ∈ T for
all (θn)n≥1 ⊂ T converging μ⊗pw (in particular, �μ is μ⊗pw-Fatou closed by
Proposition 3.6(iii)).

(ii) The μ⊗pw-Fatou closure of a subset A ⊂ �μ is the smallest μ⊗pw-Fatou
closed set containing A:

Â := ⋂{T ⊂ �μ : A ⊂ T , and T μ⊗pw-Fatou closed}.
We next introduce for a ≥ 0 the set Ca := {f ∈ C : (ν − μ)(f ) ≤ a}, and

T̂ (μ, ν) := ⋃
a≥0

T̂a where T̂a := T̂(Ca), and

T(Ca) := {Tpf : f ∈ Ca,p ∈ ∂f }.
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PROPOSITION 3.9. T̂ (μ, ν) is a convex cone.

PROOF. We first prove that T̂ (μ, ν) is a cone. We consider λ,a > 0, as we
have λCa = Cλa , and as convex combinations and inferior limit commute with the
multiplication by λ, we have λT̂a = T̂λa . Then T̂ (μ, ν) = cone(T̂1) and, therefore,
it is a cone.

We next prove that T̂a is convex for all a ≥ 0, which induces the required con-
vexity of T̂ (μ, ν) by the nondecrease of the family {T̂a, a ≥ 0}. Fix 0 ≤ λ ≤ 1,
a ≥ 0, θ0 ∈ T̂a , and denote T (θ0) := {θ ∈ T̂a : λθ0 + (1 − λ)θ ∈ T̂a}. In order to
complete the proof, we now verify that T (θ0) ⊃ T(Ca) and is μ⊗pw-Fatou closed,
so that T (θ0) = T̂a .

To see that T (θ0) is Fatou-closed, let (θn)n≥1 ⊂ T (θ0), converging μ⊗pw. By
definition of T (θ0), we have λθ0 + (1 − λ)θn ∈ T̂a for all n. Then λθ0 + (1 −
λ)θn −→ lim infn→∞ λθ0 + (1 − λ)θn, μ⊗pw and, therefore, λθ0 + (1 − λ)θ∞ ∈
T̂a , which shows that θ∞ ∈ T (θ0).

We finally verify that T (θ0) ⊃ T(Ca). First, for θ0 ∈ T(Ca), this inclusion fol-
lows directly from the convexity of T(Ca), implying that T (θ0) = T̂a in this case.
For general θ0 ∈ T̂a , the last equality implies that T(Ca) ⊂ T (θ0), thus completing
the proof. �

Notice that even though T(Ca) ⊂ �, the functions in T̂ (μ, ν) may not be in �

as they may not be convex in y on (domx θ)c for some x ∈ Rd (see Example 3.3).
The following result shows that some convexity is still preserved.

PROPOSITION 3.10. For all θ ∈ T̂ (μ, ν), we may find Nμ ∈ Nμ such that for
x1, x2 /∈ Nμ, y1, y2 ∈ Rd , and λ ∈ [0,1] with ȳ := λy1 + (1 − λ)y2 ∈ domx1 θ ∩
domx2 θ , we have

λθ(x1, y1) + (1 − λ)θ(x1, y2) − θ(x1, ȳ)

= λθ(x2, y1) + (1 − λ)θ(x2, y2) − θ(x2, ȳ) ≥ 0.

The proof of this claim is reported in Section 8.1. We observe that the statement
also holds true for a finite number of points y1, . . . , yk .6

3.3. Extended integral. We now introduce the extended (ν − μ)-integral:

ν�̂μ[θ ] := inf{a ≥ 0 : θ ∈ T̂a} for θ ∈ T̂ (μ, ν).

PROPOSITION 3.11. (i) P[θ ] ≤ ν�̂μ[θ ] < ∞ for all θ ∈ T̂ (μ, ν) and P ∈
M(μ, ν).

(ii) ν�̂μ[Tpf ] = (ν − μ)[f ] for f ∈ C∩L1(ν) and p ∈ ∂f .
(iii) ν�̂μ is homogeneous and convex.

6This is not a direct consequence of Proposition 3.10, as the barycenter ȳ has to be in domx1 θ ∩
domx2 θ .
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PROOF. (i) For a > ν�̂μ[θ ], set Sa := {F ∈ �μ : P[F ] ≤ a for all P ∈
M(μ, ν)}. Notice that Sa is μ⊗pw-Fatou closed by Fatou’s lemma, and con-
tains T(Ca), as for f ∈ C ∩ L1(ν) and p ∈ ∂f , P[Tpf ] = (ν − μ)[f ] for all
P ∈ M(μ, ν). Then Sa contains T̂a as well, which contains θ . Hence, θ ∈ Sa and
P[θ ] ≤ a for all P ∈ M(μ, ν). The required result follows from the arbitrariness
of a > ν�̂μ[θ ].

(ii) Let P ∈ M(μ, ν). For p ∈ ∂f , notice that Tpf ∈ T(Ca) ⊂ T̂a for some a =
(ν − μ)[f ] and, therefore, (ν − μ)[f ] ≥ ν�̂μ[Tpf ]. Then the result follows from
the inequality (ν − μ)[f ] = P[Tpf ] ≤ ν�̂μ[Tpf ].

(iii) Similar to the proof of Proposition 3.9, we have λT̂a = T̂λa , for all λ,a > 0.
Then with the definition of ν�̂μ we have easily the homogeneity.

To see that the convexity holds, let 0 < λ < 1, and θ, θ ′ ∈ T̂ (μ, ν) with a >

ν�̂μ[θ ], a′ > ν�̂μ[θ ′], for some a, a′ > 0. By homogeneity and convexity of T̂1,
λθ + (1 − λ)θ ′ ∈ T̂λa+(1−λ)a′ , so that ν�̂μ[λθ + (1 − λ)θ ′] ≤ λa + (1 − λ)a′. The
required convexity property now follows from arbitrariness of a > ν�̂μ[θ ] and
a′ > ν�̂μ[θ ′]. �

The following compactness result plays a crucial role.

LEMMA 3.12. Let (θn)n≥1 ⊂ T̂ (μ, ν) be such that supn≥1 ν�̂μ(θn) < ∞.
Then we can find a sequence θ̂n ∈ conv(θk, k ≥ n) such that

θ̂∞ ∈ T̂ (μ, ν), θ̂n −→ θ̂∞, μ⊗pw, and

ν�̂μ(θ̂∞) ≤ lim inf
n→∞ ν�̂μ(θn).

PROOF. By possibly passing to a subsequence, we may assume that
limn→∞(ν�̂μ)(θn) exists. The boundedness of ν�̂μ(θn) ensures that this limit
is finite. We next introduce the sequence θ̂n of Proposition 3.7. Then θ̂n −→ θ̂∞,
μ ⊗ pw and, therefore, θ̂∞ ∈ T̂ (μ, ν), because of the convergence θ̂n −→ θ̂∞,
μ⊗pw. As (ν�̂μ)(θ̂n) ≤ supk≥n(ν�̂μ)(θk) by Proposition 3.11(iii), we have
∞ > limn→∞(ν�̂μ)(θn) = limn→∞ supk≥n(ν�̂μ)(θk) ≥ lim supn→∞(ν�̂μ)(θ̂n).
Set l := lim supn→∞ ν�̂μ(θ̂n). For ε > 0, we consider n0 ∈ N such that
supk≥n0

ν�̂μ(θ̂k) ≤ l + ε. Then for k ≥ n0, θ̂k ∈ T̂l+2ε(μ, ν) and, therefore,
θ̂∞ = lim infk≥n0 θ̂k ∈ T̂l+2ε(μ, ν), implying ν�̂μ(θ̂) ≤ l + 2ε −→ l, as ε → 0.
Finally, lim infn→∞(ν�̂μ)(θn) ≥ ν�̂μ(θ̂∞). �

3.4. The dual irreducible convex paving. Our final ingredient is the following
measurement of subsets K ⊂Rd :

(3.2) G(K) := dim(K) + gK(K) where gK(dx) := e− 1
2 |x|2

(2π)
1
2 dimK

λK(dx).
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Notice that 0 ≤ G ≤ d + 1 and, for any convex subsets C1 ⊂ C2 of Rd , we have

G(C1) = G(C2) iff riC1 = riC2 iff clC1 = clC2.(3.3)

For θ ∈ L0+(�), A ∈ B(Rd), we introduce the following map from Rd to the set
�

K
of all relatively open convex subsets of Rd :

Kθ,A(x) := rfx conv
(
dom θ(x, ·) \ A

) = domX(θ + ∞1Rd×A),(3.4)

for all x ∈Rd . We recall that a function is universally measurable if it is measurable
with respect to every complete probability measure that measures all Borel subsets.

LEMMA 3.13. For θ ∈ L0+(�) and A ∈ B(Rd), we have:

(i) cl conv dom θ(X, ·) :Rd �−→ �

K, domX θ : Rd �−→ ri
�

K, and Kθ,A :Rd �−→
ri

�

K are universally measurable;
(ii) G : �

K −→ R is Borel measurable;
(iii) if A ∈ Nν , and θ ∈ T̂ (μ, ν), then up to a modification on a μ-null set,

Kθ,A(Rd) ⊂ ri
�

K is a partition of Rd with x ∈ Kθ,A(x) for all x ∈ Rd .

The proof is reported in Sections 4.2 for (iii), 7.1 for (ii), and 7.2 for (i). The
following property is a key-ingredient for our dual decomposition into irreducible
convex paving.

PROPOSITION 3.14. For all (θ,Nν) ∈ T̂ (μ, ν) × Nν , we have the inclusion
Y ∈ clKθ,Nν (X), M(μ, ν)-q.s.

PROOF. For an arbitrary P ∈ M(μ, ν), we have by Proposition 3.11 that
P[θ ] < ∞. Then, P[dom θ \ (Rd × Nν)] = 1, that is, P[Y ∈ DX] = 1 where
Dx := conv(dom θ(x, ·) \ Nν). By the martingale property of P, we deduce that

X = EP[Y1Y∈DX
|X] = (1 − �)EK + �ED, μ-a.s.,

where � := PX[Y ∈ DX \ clKθ,Nν (X)], ED := EPX [Y |Y ∈ DX \ clKθ,Nν (X)],
EK := EPX [Y |Y ∈ clKθ,Nν (X)], and PX is the conditional kernel to X of P. We
have EK ∈ cl rfX DX ⊂ DX and ED ∈ DX \ cl rfX DX because of the convexity
of DX \ cl rfX DX given by Proposition 3.1(ii) (DX is convex). The lemma also
gives that if � �= 0, then EP[Y |X] = �ED + (1−�)EK ∈ DX \ clKθ,Nν (X). This
implies that

{� �= 0} ⊂ {
EP[Y |X] ∈ DX \ clKθ,Nν (X)

} ⊂ {
EP[Y |X] /∈ Kθ,Nν (X)

}
⊂ {

EP[Y |X] �= X
}
.

Then P[� �= 0] = 0 and, therefore, P[Y ∈ DX \ clKθ,Nν (X)] = 0. Since P[Y ∈
DX] = 1, this shows that P[Y ∈ clKθ,Nν (X)] = 1. �
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In view of Proposition 3.14 and Lemma 3.13(iii), we introduce the following
optimization problem which will generate our irreducible convex paving decom-
position:

inf
(θ,Nν)∈T̂ (μ,ν)×Nν

μ
[
G(Kθ,Nν )

]
.(3.5)

The following result gives another possible definition for the irreducible paving.

PROPOSITION 3.15. (i) We may find a μ-a.s. unique universally measurable
minimizer K̂ := Kθ̂,N̂ν

: Rd → �

K of (3.5), for some (θ̂ , N̂ν) ∈ T̂ (μ, ν) ×Nν ;
(ii) for all θ ∈ T̂ (μ, ν) and Nν ∈ Nν , we have K̂(X) ⊂ Kθ,Nν (X), μ-a.s.;
(iii) we have the equality K̂(X) = I (X), μ-a.s.

In item (i), the measurability of K̂ is induced by Lemma 3.13(i). Existence
and uniqueness, together with (ii), are proved in Section 4.1. Finally, the proof
of (iii) is reported in Section 6.3, and is a consequence of Theorem 3.18 below.
Proposition 3.15 provides a characterization of the irreducible convex paving by
means of an optimality criterion on (T̂ (μ, ν),Nν).

REMARK 3.16. We illustrate how to get the components from optimization
problem (3.5) in the case of Example 2.2. A T̂ (μ, ν) function minimizing this
problem (with Nν := ∅ ∈ Nν) is θ̂ := lim infn→∞ Tpnfn, where fn := nf , pn :=
np for some p ∈ ∂f , and

f (x) := dist
(
x, aff(y1, y−1)

)+ dist
(
x, aff(y1, y2)

)+ dist
(
x, aff(y2, y−1)

)
.

One can easily check that μ[f ] = ν[f ] for any n ≥ 1: f,fn ∈ C0. These functions
separate I (x0), I (x1) and (I (x0) ∪ I (x1))

c.
Notice that in this example, we may as well take θ := 0, and Nν := {y−1, y0,

y1, y2}c, which minimizes the optimization problem as well.

3.5. Structure of polar sets. Let θ ∈ T̂ (μ, ν), we denote the set valued map
Jθ (X) := dom θ(X, ·) ∩ J̄ (X), where J̄ is introduced in Proposition 2.4.

REMARK 3.17. Let θ ∈ T̂ (μ, ν), up to a modification on a μ-null set, we have

Y ∈ Jθ (X), M(μ, ν)-q.s., J ⊂ Jθ ⊂ J̄,

and Jθ constant on I (x) for all x ∈ Rd .

These claims are a consequence of Proposition 6.2 together with Lemma 6.6.

Our second main result shows the importance of these set-valued maps.
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THEOREM 3.18. A Borel set N ∈ B(�) is M(μ, ν)-polar if and only if

N ⊂ {X ∈ Nμ} ∪ {Y ∈ Nν} ∪ {
Y /∈ Jθ (X)

}
,

for some (Nμ,Nν) ∈ Nμ ×Nν and θ ∈ T̂ (μ, ν).

The proof is reported in Section 6.3. This theorem is an extension of the one-
dimensional characterization of polar sets given by Theorem 3.2 in [4], indeed
in dimension one J = Jθ = J̄ by Proposition 2.6, together with the inclusion in
Remark 3.17.

We conclude this section by reporting a duality result which will be used for the
proof of Theorem 3.18. We emphasize that the primal objective of the accompa-
nying paper De March [7] is to push further this duality result so as to be suitable
for the robust superhedging problem in financial mathematics.

Let c : Rd × Rd −→ R+, and consider the martingale optimal transport prob-
lem:

Sμ,ν(c) := sup
P∈M(μ,ν)

P[c].(3.6)

Notice from Proposition 3.11 (i) that Sμ,ν(θ) ≤ ν�̂μ(θ) for all θ ∈ T̂ .
We denote by Dmod

μ,ν (c) the collection of all (ϕ,ψ,h, θ) in L1+(μ) × L1+(ν) ×
L0(Rd,Rd) × T̂ (μ, ν) such that

Sμ,ν(θ) = ν�̂μ(θ), and

ϕ ⊕ ψ + h⊗ + θ ≥ c on
{
Y ∈ affKθ,{ψ=∞}(X)

}
.

The last inequality is an instance of the so-called robust superhedging property.
The dual problem is defined by

Imod
μ,ν (c) := inf

(ϕ,ψ,h,θ)∈Dmod
μ,ν (c)

μ[ϕ] + ν[ψ] + ν�̂μ(θ).

Notice that for any measurable function c : � −→ R+, any P ∈ M(μ, ν), and any
(ϕ,ψ,h, θ) ∈ Dmod

μ,ν (c), we have P[c] ≤ μ[ϕ] + ν[ψ] + P[θ ] ≤ μ[ϕ] + ν[ψ] +
Sμ,ν(θ), as a consequence of the above robust superhedging inequality, together
with the fact that Y ∈ affKθ,{ψ=∞}(X), M(μ, ν)-q.s. by Proposition 3.14 This
provides the weak duality:

Sμ,ν(c) ≤ Imod
μ,ν (c).(3.7)

The following result states that the strong duality holds for upper semianalytic
functions. We recall that a function f :Rd →R is upper semianalytic if {f ≥ a} is
an analytic set for any a ∈ R. In particular, a Borel function is upper semianalytic.

THEOREM 3.19. Let c : � → R+ be upper semianalytic. Then we have:

(i) Sμ,ν(c) = Imod
μ,ν (c);
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(ii) If in addition Sμ,ν(c) < ∞, then existence holds for the dual problem
Imod
μ,ν (c).

REMARK 3.20. By allowing h to be infinite in some directions, orthogonal to
affKθ,{ψ=∞}(X), together with the convention ∞−∞ = ∞, we may reformulate
the robust superhedging inequality in the dual set as ϕ⊕ψ +h⊗ +θ ≥ c pointwise.

3.6. One-dimensional tangent convex functions. For an interval J ⊂ R, we
denote C(K) the set of convex functions on K .

PROPOSITION 3.21. Let d = 1, then

T̂ (μ, ν) =
{∑

k

1{X∈Ik}Tpk
fk : fk ∈ C(Jk),pk ∈ ∂fk,

∑
k

(νk − μk)[fk] < ∞
}
,

M(μ, ν)-q.s. Furthermore, for all such θ ∈ T̂ (μ, ν) and its corresponding (fk)k ,
we have ν�̂μ(θ) = ∑

k(νk − μk)[fk].

PROOF. As all functions we consider are null on the diagonal, equality on⋃
k Ik × Jk implies M(μ, ν)-q.s. equality by Theorem 3.2 in [4]. Let L be the set

on the right-hand side.
Step 1: We first show ⊂, for a ≥ 0, we denote La := {θ ∈ L : ∑k(νk −μk)[fk] ≤

a}. Notice that La contains T(Ca) modulo M(μ, ν)-q.s. equality. We intend to
prove that La is μ⊗pw-Fatou closed, so as to conclude that T̂a ⊂ La and, therefore,
T̂ (μ, ν) ⊂ L by the arbitrariness of a ≥ 0.

Let θn = ∑
k 1{X∈Ik}Tpkn f

n
k ∈ La converging μ⊗pw. By Proposition 3.6,

θn −→ θ := θ∞, μ⊗pw. For k ≥ 1, let xk ∈ Ik be such that θn(xk, ·) −→ θ(xk, ·)
on domxk

θ , and set fk := θ(xk, ·). By Proposition 5.5 in [4], fk is convex on Ik ,
finite on Jk , and we may find pk ∈ ∂fk such that for x ∈ Ik , θ(x, ·) = Tpk

fk(x, ·).
Hence, θ = ∑

k 1{X∈Ik}Tpk
fk , and

∑
k(νk −μk)[fk] ≤ a by Fatou’s lemma, imply-

ing that θ ∈ La , as required.
Step 2: To prove the reverse inclusion ⊃, let θ = ∑

k 1{X∈Ik}Tpk
fk ∈ L. Let f ε

k

be a convex function defined by f ε
k := fk on J ε

k = Jk ∩ {x ∈ Jk : dist(x, J c
k ) ≥ ε},

and f ε
k affine on R\J ε

k . Set εn := n−1, f̄n = ∑n
k=1 f

εn

k , and define the correspond-
ing subgradient in ∂f̄n:

p̄n := pk + ∇(
f̄n − f

εn

k

)
on J

εn

k , k ≥ 1, and

p̄n := ∇f̄n on R \
(⋃

k

J
εn

k

)
.

We have (ν − μ)[f̄n] = ∑n
k=1(νk − μk)[f εn

k ] ≤ ∑
k(νk − μk)[fk] < ∞. By defi-

nition, we see that Tp̄n f̄n converges to θ pointwise on
⋃

k(Ik)
2 and to θ∗(x, y) :=

lim infȳ→y θ(x, ȳ) on
⋃

k Ik × cl Ik where, using the convention ∞ − ∞ = ∞,
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θ ′ := θ − θ∗ ≥ 0, and θ ′ = 0 on
⋃

k(Ik)
2. For k ≥ 1, set �l

k := θ ′(xk, lk), and
�r

k := θ ′(xk, lk) where Ik = (lk, rk), and we fix some xk ∈ Ik . For positive ε <
rk−lk

2 , and M ≥ 0, consider the piecewise affine function g
ε,M
k with break points

lk + ε and rk − ε, and

g
ε,M
k (lk) = M ∧ �l

k, g
ε,M
k (rk) = M ∧ �r

k,

g
ε,M
k (lk + ε) = 0, and g

ε,M
k (rk − ε) = 0.

Notice that g
ε,M
k is convex, and converges pointwise to gM

k := M ∧ θ ′( lk+rk
2 , ·) on

Jk , as ε → 0, with

(νk − μk)
(
gM

k

) = νk

[{lk}](M ∧ �l
k

)+ νk[rk](M ∧ �r
k

)
≤ (νk − μk)[fk] − (νk − μk)

[
(fk)∗

] ≤ (νk − μk)[fk],
where (fk)∗ is the lower semicontinuous envelop of fk . Then by the dominated
convergence theorem, we may find positive ε

n,M
k < rk−lk

2n
such that

(νk − μk)
(
g

ε
n,M
k ,M

k

) ≤ (νk − μk)[fk] + 2−k/n.

Now let ḡn = ∑n
k=1 g

ε
n,n
k ,n

k , and p̄′
n ∈ ∂ḡn. Notice that Tp̄′

n
gn −→ θ ′ pointwise

on
⋃

k Ik × Jk . Furthermore, (ν − μ)(ḡn) ≤ ∑
k(νk − μk)[fk] + 1/n ≤ ∑

k(νk −
μk)[fk] + 1 < ∞.

Then we have θn := Tp̄n f̄n +Tp̄′
n
ḡn converges to θ pointwise on

⋃
k Ik ×Jk and,

therefore, M(μ, ν)-q.s. by Theorem 3.2 in [4]. Since (ν −μ)(f̄n + ḡn) is bounded,
we see that (θn)n≥1 ⊂ T(Ca) for some a ≥ 0. Notice that θn may fail to converge
μ⊗pw. However, we may use Proposition 3.7 to get a sequence θ̂n ∈ conv(θk, k ≥
n), and θ̂∞ ∈ �μ such that θ̂n −→ θ̂∞, μ⊗pw as n → ∞, and satisfies the same
M(μ, ν)-q.s. convergence properties than θn. Then θ̂∞ ∈ T̂ (μ, ν), and θ̂∞ = θ ,
M(μ, ν)-q.s. �

4. The irreducible convex paving.

4.1. Existence and uniqueness.

PROOF OF PROPOSITION 3.15. (i) The measurability follows from Lem-
ma 3.13. We first prove the existence of a minimizer for the problem (3.5). Let m

denote the infimum in (3.5), and consider a minimizing sequence (θn,N
n
ν )n∈N ⊂

T̂ (μ, ν) ×Nν with μ[G(Kθn,Nn
ν
)] ≤ m + 1/n. By possibly normalizing the func-

tions θn, we may assume that ν�̂μ(θn) ≤ 1. Set

θ̂ := ∑
n≥1

2−nθn and N̂ν := ⋃
n≥1

Nn
ν ∈ Nν.
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Notice that θ̂ is well defined as the pointwise limit of a sequence of the nonnegative
functions θ̂N := ∑

n≤N 2−nθn. Since ν�̂μ[θ̂N ] ≤ ∑
n≥1 2−n < ∞ by convexity of

ν�̂μ, θ̂N −→ θ̂ , pointwise, and θ̂ ∈ T̂ (μ, ν) by Lemma 3.12, since any convex
extraction of (θ̂n)n≥1 still converges to θ̂ . Since θ−1

n ({∞}) ⊂ θ̂−1({∞}), it follows
from the definition of N̂ν that m + 1/n ≥ μ[G(Kθn,Nn

ν
)] ≥ μ[G(Kθ̂,N̂ν

)], hence
μ[G(Kθ̂,N̂ν

)] = m as θ̂ ∈ T̂ (μ, ν), and N̂ν ∈Nν .
(ii) For an arbitrary (θ,Nν) ∈ T̂ (μ, ν) × Nν , we define θ̄ := θ + θ̂ ∈ T̂ (μ, ν)

and N̄ν := N̂ν ∪ Nν , so that Kθ̄,N̄ν
⊂ Kθ̂,N̂ν

. By the nonnegativity of θ and θ̂ , we
have m ≤ μ[G(Kθ̄,N̄ν

)] ≤ μ[G(Kθ̂,N̂ν
)] = m. Then G(Kθ̄,N̄ν

) = G(Kθ̂,N̂ν
), μ-a.s.

By (3.3), we see that, μ-a.s. Kθ̄,N̄ν
= Kθ̂,N̂ν

and Kθ̄,N̄ν
= Kθ̂,N̂ν

= K̂ . This shows
that K̂ ⊂ Kθ,Nν , μ-a.s. �

4.2. Partition of the space in convex components. This section is dedicated
to the proof of Lemma 3.13(iii), which is an immediate consequence of Proposi-
tion 4.1(ii).

PROPOSITION 4.1. Let θ ∈ T̂ (μ, ν), and A ∈ B(Rd). We may find Nμ ∈ Nμ

such that:

(i) for all x1, x2 /∈ Nμ with Kθ,A(x1) ∩ Kθ,A(x2) �= ∅, we have Kθ,A(x1) =
Kθ,A(x2);

(ii) if A ∈ Nν , then x ∈ Kθ,A(x) for x /∈ Nμ, and up to a modification of Kθ,A

on Nμ, Kθ,A(Rd) is a partition of Rd such that x ∈ Kθ,A(x) for all x ∈ Rd .

PROOF. (i) Let Nμ be the μ-null set given by Proposition 3.10 for θ . For
x1, x2 /∈ Nμ, we suppose that we may find ȳ ∈ Kθ,A(x1) ∩ Kθ,A(x2). Consider
y ∈ clKθ,A(x1). As Kθ,A(x1) is open in its affine span, y′ := ȳ + ε

1−ε
(ȳ − y) ∈

Kθ,A(x1) for 0 < ε < 1 small enough. Then ȳ = εy + (1 − ε)y′, and by Proposi-
tion 3.10, we get

εθ(x1, y) + (1 − ε)θ
(
x1, y

′)− θ(x1, ȳ) = εθ(x2, y) + (1 − ε)θ
(
x2, y

′)− θ(x2, ȳ).

By convexity of domxi
θ , Kθ,A(xi) ⊂ domxi

θ ⊂ dom θ(xi, ·). Then θ(x1, y
′),

θ(x1, ȳ), θ(x2, y
′), and θ(x2, ȳ) are finite and

θ(x1, y) < ∞ if and only if θ(x2, y) < ∞.

Therefore, clKθ,A(x1) ∩ dom θ(x1, ·) ⊂ dom θ(x2, ·). We also have obviously the
inclusion clKθ,A(x2) ∩ dom θ(x2, ·) ⊂ dom θ(x2, ·). Subtracting A, we get(

clKθ,A(x1) ∩ dom θ(x1, ·) \ A
)∪ (

clKθ,A(x2) ∩ dom θ(x2, ·) \ A
)

⊂ dom θ(x2, ·) \ A.

Taking the convex hull and using the fact that the relative face of a set is included
in itself, we see that conv(Kθ,A(x1) ∪ Kθ,A(x2)) ⊂ conv(dom θ(x2, ·) \ A). No-
tice that, as Kθ,A(x2) is defined as the x2-relative face of some set, either x2 ∈
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riKθ,A(x) or Kθ,A(x) = ∅ by the properties of rfx2 . The second case is excluded as
we assumed that Kθ,A(x1) ∩ Kθ,A(x2) �=∅. Therefore, as Kθ,A(x1) and Kθ,A(x2)

are convex sets intersecting in relative interior points and x2 ∈ riKθ,A(x2), it fol-
lows from Lemma 9.1 that x2 ∈ ri conv(Kθ,A(x1) ∪ Kθ,A(x2)). Then by Proposi-
tion 3.1(ii),

rfx2 conv
(
Kθ,A(x1) ∪ Kθ,A(x2)

) = ri conv
(
Kθ,A(x1) ∪ Kθ,A(x2)

)
= conv

(
Kθ,A(x1) ∪ Kθ,A(x2)

)
.

Then we have conv(Kθ,A(x1) ∪ Kθ,A(x2)) ⊂ rfx2 conv(dom θ(x2, ·) \ A)

= Kθ,A(x2), as rfx2 is increasing. Therefore, Kθ,A(x1) ⊂ Kθ,A(x2) and by sym-
metry between x1 and x2, Kθ,A(x1) = Kθ,A(x2).

(ii) We suppose that A ∈ Nν . First, notice that, as Kθ,A(X) is defined as the
X-relative face of some set, either x ∈ Kθ,A(x) or Kθ,A(x) = ∅ for x ∈ Rd

by the properties of rfx . Consider P ∈ M(μ, ν). By Proposition 3.14, P[Y ∈
clKθ,A(X)] = 1. As supp(PX) ⊂ clKθ,A(X), μ-a.s., Kθ,A(X) is nonempty, which
implies that x ∈ Kθ,A(x). Hence, {X ∈ Kθ,A(X)} holds outside the set N0

μ :=
{supp(PX) �⊂ clKθ,A(X)} ∈ Nμ. Then we just need to have this property to re-
place Nμ by Nμ ∪ N0

μ ∈ Nμ.
Finally, to get a partition of Rd , we just need to redefine Kθ,A on Nμ. If

x ∈ ⋃
x′ /∈Nμ

Kθ,A(x′) then by definition of Nμ, the set Kθ,A(x′) is independent
of the choice of x′ /∈ Nμ such that x ∈ Kθ,A(x′): indeed, if x′

1, x
′
2 /∈ Nμ satisfy

x ∈ Kθ,A(x′
1) ∩ Kθ,A(x′

2), then in particular Kθ,A(x′
1) ∩ Kθ,A(x′

2) is nonempty
and, therefore, Kθ,A(x′

1) = Kθ,A(x′
2) by (i). We set Kθ,A(x) := Kθ,A(x′). Other-

wise, if x /∈ ⋃
x′ /∈Nμ

Kθ,A(x′), we set Kθ,A(x) := {x} which is trivially convex and

relatively open. With this definition, Kθ,A(Rd) is a partition of Rd . �

5. Proof of the duality. For simplicity, we denote Val(ξ) := μ[ϕ] + ν[ψ] +
ν�̂μ(θ), for ξ := (ϕ,ψ,h, θ) ∈ Dmod

μ,ν (c).

5.1. Existence of a dual optimizer.

LEMMA 5.1. Let c, cn : � −→ R+, and ξn ∈ Dmod
μ,ν (cn), n ∈ N, be such that

cn −→ c pointwise, and Val(ξn) −→ Sμ,ν(c) < ∞ as n → ∞.

Then there exists ξ ∈ Dmod
μ,ν (c) such that Val(ξn) −→ Val(ξ) as n → ∞.

PROOF. Denote ξn := (ϕn,ψn,hn, θn), and observe that the convergence of
Val(ξn) implies that the sequence (μ(ϕn), ν(ψn), ν�̂μ(θn))n is bounded, by the
nonnegativity of ϕn,ψn and ν�̂μ(θn). We also recall the robust superhedging in-
equality

ϕn ⊕ ψn + h⊗
n + θn ≥ cn on

{
Y ∈ affKθn,{ψn=∞}(X)

}
, n ≥ 1.(5.1)



1746 H. DE MARCH AND N. TOUZI

Step 1. By Komlòs lemma together with Lemma 3.12, we may find a sequence
(ϕ̂n, ψ̂n, θ̂n) ∈ conv{(ϕk,ψk, θk), k ≥ n} such that

ϕ̂n −→ ϕ := ϕ̂∞, μ-a.s., ψ̂n −→ ψ := ψ̂∞, ν-a.s., and

θ̂n −→ θ̃ := θ̂∞ ∈ T̂ (μ, ν), μ ⊗ pw.

Set ϕ := ∞ and ψ := ∞ on the corresponding nonconvergence sets, and observe
that μ[ϕ] + ν[ψ] < ∞, by the Fatou lemma and, therefore, Nμ := {ϕ = ∞} ∈ Nμ

and Nν := {ψ = ∞} ∈ Nν . We denote by (ĥn, ĉn) the same convex extractions
from {(hk, ck), k ≥ n}, so that the sequence ξ̂n := (ϕ̂n, ψ̂n, ĥn, θ̂n) inherits from
(5.1) the robust superhedging property, as for θ1, θ2 ∈ T̂ (μ, ν), ψ1,ψ2 ∈ L1+(Rd),
and 0 < λ < 1, we have affKλθ1+(1−λ)θ2,{λψ1+(1−λ)ψ2=∞} ⊂ affKθ1,{ψ1=∞} ∩
affKθ2,{ψ2=∞}:

ϕ̂n ⊕ ψ̂n + θ̂n + ĥ⊗
n ≥ ĉn ≥ 0 pointwise on affKθ̂n,{ψ̂n=∞}(X).(5.2)

Step 2. Next, notice that ln := (ĥ⊗
n )− := max(−ĥ⊗

n ,0) ∈ � for all n ∈ N.
By the convergence Proposition 3.7, we may find convex combinations l̂n :=∑

k≥n λn
k lk −→ l := l̂∞, μ⊗pw. Updating the definition of ϕ by setting ϕ := ∞ on

the zero μ-measure set on which the last convergence does not hold on (∂x dom l)c,
it follows from (5.2), and the fact that affKθ̄,{ψ=∞} ⊂ lim infn→∞ affKθ̂n,{ψ̂n=∞},
that

l = l̂∞ ≤ lim inf
n

∑
k≥n

λn
k(ϕ̂k ⊕ ψ̂k + θ̂k) ≤ ϕ ⊕ ψ + θ̄

pointwise on
{
Y ∈ affKθ̄,{ψ=∞}(X)

}
,

where θ̄ := lim infn
∑

k≥n λn
k θ̂k ∈ T̂ (μ, ν). As {ϕ = ∞} ∈ Nμ, by possibly enlarg-

ing Nμ, we assume without loss of generality that {ϕ = ∞} ⊂ Nμ, we see that
dom l ⊃ (Nc

μ × Nc
ν ) ∩ dom θ̄ ∩ {Y ∈ affKθ̄,{ψ=∞}(X)} and, therefore,

(5.3) Kθ̄,{ψ=∞}(X) ⊂ domX l′ ⊂ dom l′(X, ·), μ-a.s.

Step 3. Let ̂̂hn := ∑
k≥n λn

k ĥk . Then bn := ̂̂h⊗
n + l̂n = ∑

k≥n λn
k(ĥ

⊗
k )+ defines

a nonnegative sequence in �. By Proposition 3.7, we may find a sequence b̂n =:
h̃⊗

n + l̃n ∈ conv(bk, k ≥ n) such that b̂n −→ b := b̂∞, μ⊗pw, where b takes values
in [0,∞]. b̂n(X, ·) −→ b(X, ·) pointwise on domX b, μ-a.s. Combining with (5.3),
this shows that

h̃⊗
n (X, ·) −→ (b − l)(X, ·) pointwise on domX b ∩ Kθ̄,{ψ=∞}(X),μ-a.s.

(b − l)(X, ·) = lim infn h̃⊗
n (X, ·), pointwise on Kθ̄,{ψ=∞}(X) (where l is a limit

of ln), μ-a.s. Clearly, on the last convergence set, (b − l)(X, ·) > −∞ on
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Kθ̄,{ψ=∞}(X), and we now argue that (b − l)(X, ·) < ∞ on Kθ̄,{ψ=∞}(X), there-
fore, Kθ̄,{ψ=∞}(X) ⊂ domX b, so that we deduce from the structure of h̃⊗

n that the
last convergence holds also on affKθ̄,{ψ=∞}(X):

h̃⊗
n (X, ·) −→ (b − l)(X, ·) =: h⊗(X, ·),

pointwise on Kθ̄,{ψ=∞}(X), μ-a.s.
(5.4)

Indeed, let x be an arbitrary point of the last convergence set, and consider
an arbitrary y ∈ Kθ̄,{ψ=∞}(x). By the definition of Kθ̄,{ψ=∞}, we have x ∈
riKθ̄,{ψ=∞}(x), and we may therefore find y′ ∈ Kθ̄,{ψ=∞}(x) with x = py +
(1 − p)y′ for some p ∈ (0,1). Then ph̃⊗

n (x, y) + (1 − p)h̃⊗
n (x, y′) = 0. Send-

ing n → ∞, by concavity of the lim inf, this provides p(b− l)(x, y)+ (1−p)(b−
l)(x, y′) ≤ 0, so that (b − l)(x, y′) > −∞ implies that (b − l)(x, y) < ∞.

Step 4. Notice that by dual reflexivity of finite dimensional vector spaces,
(5.4) defines a unique h(X) in the vector space affKθ̄,{ψ=∞}(X) − X, such that
(b − l)(X, ·) = h⊗(X, ·) on affKθ̄,{ψ=∞}(X). At this point, we have proceeded to
a finite number of convex combinations which induce a final convex combination
with coefficients (λ̄k

n)k≥n≥1. Denote ξ̄n := ∑
k≥n λ̄k

nξk , and set θ := θ̄∞. Then, ap-
plying this convex combination to the robust superhedging inequality (5.1), we ob-
tain by sending n → ∞ that (ϕ⊕ψ +h⊗ +θ)(X, ·) ≥ c(X, ·) on affKθ̄,{ψ=∞}(X),
μ-a.s. and ϕ ⊕ ψ + h⊗ + θ = ∞ on the complement μ null-set. As θ is the liminf
of a convex extraction of (θ̂n), we have θ ≥ θ̂∞ = θ̄ and, therefore, affKθ,{ψ=∞} ⊂
affKθ̄,{ψ=∞}. This shows that the limit point ξ := (ϕ,ψ,h, θ) satisfies the point-
wise robust superhedging inequality

ϕ ⊕ ψ + θ + h⊗ ≥ c on
{
Y ∈ affKθ,{ψ=∞}(X)

}
.(5.5)

Step 5. By Fatou’s lemma and Lemma 3.12, we have

(5.6) μ[ϕ] + ν[ψ] + ν�̂μ[θ ] ≤ lim inf
n

μ[ϕn] + ν[ψn] + ν�̂μ[θn] = Sμ,ν(c).

By (5.5), we have μ[ϕ] + ν[ψ] + P[θ ] ≥ P[c] for all P ∈ M(μ, ν). Then μ[ϕ] +
ν[ψ]+Sμ,ν[θ ] ≥ Sμ,ν[c]. By Proposition 3.11(i), we have Sμ,ν[θ ] ≤ ν�̂μ[θ ] and,
therefore,

Sμ,ν[c] ≤ μ[ϕ] + ν[ψ] + Sμ,ν[θ ] ≤ μ[ϕ] + ν[ψ] + ν�̂μ[θ ] ≤ Sμ,ν(c),

by (5.6). Then we have Val(ξ) = μ[ϕ]+ ν[ψ]+ ν�̂μ[θ ] = Sμ,ν(c) and Sμ,ν[θ ] =
ν�̂μ[θ ], so that ξ ∈ Dmod

μ,ν (c). �

5.2. Duality result. We first prove the duality in the lattice USCb of bounded
upper semicontinuous functions � −→ R+. This is a classical result using the
Hahn–Banach theorem; the proof is reported for completeness.

LEMMA 5.2. Let f ∈ USCb, then Sμ,ν(f ) = Imod
μ,ν (f ).
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PROOF. We have Sμ,ν(f ) ≤ Imod
μ,ν (f ) by weak duality (3.7). Let us now show

the converse inequality Sμ,ν(f ) ≥ Imod
μ,ν (f ). By the standard approximation tech-

nique, it suffices to prove the result for bounded continuous f . We denote by
Cl(Rd) the set of continuous mappings Rd → R with linear growth at infinity,
and by Cb(Rd,Rd) the set of continuous bounded mappings Rd −→Rd . Define

D(f ) := {
(ϕ̄, ψ̄, h̄) ∈ Cl

(
Rd)× Cl

(
Rd)× Cb

(
Rd,Rd) : ϕ̄ ⊕ ψ̄ + h̄⊗ ≥ f

}
,

and the associated Iμ,ν(f ) := inf(ϕ̄,ψ̄,h̄)∈D(f ) μ(ϕ̄) + ν(ψ̄). By Theorem 2.1 in
Zaev [24], and Lemma 5.3 below, we have

Sμ,ν(f ) = Iμ,ν(f ) = inf
(ϕ̄,ψ̄,h̄)∈D(f )

μ(ϕ̄) + ν(ψ̄) ≥ Imod
μ,ν (f ),

which provides the required result. �

PROOF OF THEOREM 3.19. The existence of a dual optimizer follows from
a direct application of the compactness Lemma 5.1 to a minimizing sequence of
robust superhedging strategies.

As for the extension of duality result of Lemma 5.2 to nonnegative upper semi-
analytic functions, we shall use the capacitability theorem of Choquet, similar to
[19] and [4]. Let [0,∞]� denote the set of all nonnegative functions � → [0,∞],
and USA+ the sublattice of upper semianalytic functions. Note that USCb is stable
by infimum.

Recall that a USCb-capacity is a monotone map C : [0,∞]� −→ [0,∞], se-
quentially continuous upward on [0,∞]�, and sequentially continuous downward
on USCb. The Choquet capacitability theorem states that a USCb-capacity C ex-
tends to USA+ by

C(f ) = sup
{
C(g) : g ∈ USCb and g ≤ f

}
for all f ∈ USA+.

In order to prove the required result, it suffices to verify that Sμ,ν and Imod
μ,ν are

USCb-capacities. As M(μ, ν) is weakly compact, it follows from similar argu-
ment as in Proposition 1.21, and Proposition 1.26 in Kellerer [19] that Sμ,ν is a
USCb-capacity. We next verify that Imod

μ,ν is a USCb-capacity. Indeed, the upward
continuity is inherited from Sμ,ν together with the compactness Lemma 5.1, and
the downward continuity follows from the downward continuity of Sμ,ν together
with the duality result on USCb of Lemma 5.2. �

LEMMA 5.3. Let c : � → R+, and (ϕ̄, ψ̄, h̄) ∈ D(c). Then we may find ξ ∈
Dmod

μ,ν (c) such that Val(ξ) = μ[ϕ̄] + ν[ψ̄].

PROOF. Let us consider (ϕ̄, ψ̄, h̄) ∈ D(c). Then ϕ̄ ⊕ ψ̄ + h̄⊗ ≥ c ≥ 0 and,
therefore,

ψ̄(y) ≥ f (y) := sup
x∈Rd

−ϕ̄(x) − h̄(x) · (y − x).
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Clearly, f is convex, and f (x) ≥ −ϕ̄(x) by taking value x = y in the supremum.
Hence ψ̄ − f ≥ 0 and ϕ̄ + f ≥ 0, implying in particular that f is finite on Rd . As
ϕ̄ and ψ̄ have linear growth at infinity, f is in L1(ν) ∩ L1(μ). We have f ∈ Ca

for a = ν[f ] − μ[f ] ≥ 0. Then we consider p ∈ ∂f and denote θ := Tpf . θ ∈
T(Ca) ⊂ T̂ (μ, ν). Then denoting ϕ := ϕ̄ + f , ψ := ψ̄ − f , and h := h̄ + p, we
have ξ := (ϕ,ψ,h, θ) ∈ Dmod

μ,ν (c) and

μ[ϕ̄] + ν[ψ̄] = μ[ϕ] + ν[ψ] + (ν − μ)[f ] = μ[ϕ] + ν[ψ] + ν�̂μ[θ ] = Val(ξ).

�

6. Polar sets and maximum support martingale plan.

6.1. Boundary of the dual paving. Consider the optimization problems:

inf
(θ,Nν)∈T̂ (μ,ν)×Nν

μ
[
G(Rθ,Nν )

]
,(6.1)

with Rθ,Nν := cl conv(dom θ(X, ·) ∩ ∂K̂(X) ∩ Nc
ν ), and for y ∈ Rd we consider

inf
(θ,Nν)∈T̂ (μ,ν)×Nν

μ
[
y ∈ ∂K̂(X) ∩ dom θ(X, ·) ∩ Nc

ν

]
.(6.2)

These problems are well defined by the following measurability result, whose
proof is reported in Section 7.2.

LEMMA 6.1. Let F : Rd −→ K, γ -measurable. Then we may find Nγ ∈ Nγ

such that 1Y∈F(X)1X/∈Nγ is Borel measurable, and if X ∈ riF(X) convex, γ -a.s.,
then 1Y∈∂F (X)1X/∈Nγ is Borel measurable as well.

By the same argument than that of the proof of existence and uniqueness in
Proposition 3.15, we see that the problem (6.1) (resp., (6.2) for y ∈ Rd ) has an
optimizer (θ∗,N∗

ν ) ∈ T̂ (μ, ν) × Nν (resp., (θ∗
y ,N∗

ν,y) ∈ T̂ (μ, ν) × Nν). Further-
more, we have that the map D := Rθ∗,N∗

ν
(resp., Dy(x) := {y} if y ∈ ∂K̂(x) ∩

dom θ∗
y (x, ·) ∩ N∗

ν,y , and ∅ otherwise, for x ∈ Rd ) does not depend on the choice
of (θ∗,N∗

ν ) (resp., θ∗
y ) up to a μ-negligible modification.

We define K̄ := D ∪ K̂ , and Kθ(X) := dom θ(X, ·) ∩ K̄(X) for θ ∈ T̂ (μ, ν).
Notice that if y ∈ Rd is not an atom of ν, we may chose Nν,y containing y, which
means that Problem (6.2) is nontrivial only if y is an atom of ν. We denote atom(ν),
the (at most countable) atoms of ν, and define the mapping K := (

⋃
y∈atom(ν) Dy)∪

K̂ ,

PROPOSITION 6.2. Let θ ∈ T̂ (μ, ν). Up to a modification on a μ-null set, we
have:

(i) K̄ is convex valued, moreover Y ∈ K̄(X), and Y ∈ Kθ(X), M(μ, ν)-q.s.
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(ii) K̂ ⊂ K ⊂ Kθ ⊂ K̄ ⊂ cl K̂ ,
(iii) K , Kθ and K̄ are constant on K̂(x), for all x ∈ Rd .

PROOF. (i) For x ∈ Rd , K̄(x) = D(x) ∪ K̂(x). Let y1, y2 ∈ K̄(x), λ ∈ (0,1),
and set y := λy1 + (1 − λ)y2. If y1, y2 ∈ K̂(x), or y1, y2 ∈ D(x), we get y ∈ K̄(x)

by convexity of K̂(x), or D(x). Now, up to switching the indices, we may assume
that y1 ∈ K̂(x), and y2 ∈ D(x) \ K̂(x). As D(x) \ K̂(x) ⊂ ∂K̂(x), y ∈ K̂(x), as
λ > 0. Then y ∈ K̄(x). Hence, K̄ is convex valued.

Since (dom θ∗(X, ·) \ N∗
ν ) ∩ ((cl K̂) \ K̂) ⊂ Rθ∗,N∗

ν
, we have the inclusion

(dom θ∗(X, ·) \ N∗
ν ) ∩ cl K̂ ⊂ Rθ∗,N∗

ν
∪ K̂ = K̄ . Then, as Y ∈ dom θ∗(X, ·) \ N∗

ν ,
and Y ∈ cl K̂(X), Y ∈ K̄(X), M(μ, ν)-q.s.

Let θ ∈ T̂ (μ, ν), then Y ∈ dom θ(X, ·), M(μ, ν)-q.s. Finally, we get Y ∈
dom θ(X, ·) ∩ K̄(X) = Kθ(X), M(μ, ν)-q.s.

(ii) As Rθ,Nν (X) ⊂ cl conv ∂K̂(X) = cl K̂(X), K̄ ⊂ cl K̂ . By definition, Kθ ⊂
K̄ and K̂ ⊂ K . For y ∈ atom(ν), and θ0 ∈ T̂ (μ, ν), by minimality,

Dy(X) ⊂ dom θ0(X, ·) ∩ ∂K̂(X), μ-a.s.(6.3)

Applying (6.3) for θ0 = θ , we get Dy ⊂ dom θ(X, ·), and for θ0 = θ∗, Dy(X) ⊂
K̄(X), μ-a.s. Taking the countable union: K ⊂ Kθ , μ-a.s. (This is the only inclu-
sion that is not pointwise). Then we change K to K̂ on this set to get this inclusion
pointwise.

(iii) For θ0 ∈ T̂ (μ, ν), let Nμ ∈ Nμ from Proposition 3.10. Let x ∈ Nc
μ, y ∈

∂K̂(x), and y′ := x+y
2 ∈ K̂(x). Then for any other x′ ∈ K̂(x) ∩ Nc

μ, 1
2θ0(x, y) −

θ0(x, y′) = 1
2θ0(x

′, x)+ 1
2θ0(x

′, y)−θ0(x
′, y′), in particular, y ∈ dom θ(x, ·) if and

only if y ∈ dom θ(x′, ·). Applying this result to θ , θ∗, and θ∗
y for all y ∈ atom(ν),

we get Nμ such that for any x ∈Rd , K̄ , Kθ and K are constant on K̂(x) ∩ Nc
μ. To

get it pointwise, we redefine these mappings to this constant value on K̂(x) ∩ Nμ,
or to K̂(x), if K̂(x) ∩ Nc

μ = ∅. The previous properties are preserved. �

6.2. Structure of polar sets.

PROPOSITION 6.3. A Borel set N ∈ B(�) is M(μ, ν)-polar if and only if for
some (Nμ,Nν) ∈ Nμ ×Nν and θ ∈ T̂ (μ, ν), we have

N ⊂ {X ∈ Nμ} ∪ {Y ∈ Nν} ∪ {
Y /∈ Kθ(X)

}
.

PROOF. One implication is trivial as Y ∈ Kθ(X), M(μ, ν)-q.s. for all θ ∈
T̂ (μ, ν), by Proposition 6.2. We only focus on the nontrivial implication. For
an M(μ, ν)-polar set N , we have Sμ,ν(∞1N) = 0, and it follows from the
dual formulation of Theorem 3.19 that 0 = Val(ξ) for some ξ = (ϕ,ψ,h, θ) ∈
Dmod

μ,ν (∞1N). Then

ϕ < ∞, μ-a.s., ψ < ∞, ν-a.s. and θ ∈ T̂ (μ, ν).
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As h is finite valued, and ϕ,ψ are nonnegative functions, the superhedging
inequality ϕ ⊕ ψ + θ + h⊗ ≥ ∞1N on {Y ∈ affKθ,{ψ=∞}(X)} implies that

1{ϕ=∞} ⊕ 1{ψ=∞} + 1{(dom θ)c} ≥ 1N on
{
Y ∈ affKθ,{ψ=∞}(X)

}
.(6.4)

By Proposition 3.15(ii), we have K̂(X) ⊂ Kθ,{ψ=∞}(X), μ-a.s. Then K̄(X) ⊂
aff K̂(X) ⊂ affKθ,{ψ=∞}(X), which implies that

(6.5)
Kθ(X) := dom θ(X, ·) ∩ K̄(X)

⊂ dom θ(X, ·) ∩ affKθ,{ψ=∞}(X), μ-a.s.

We denote Nμ := {ϕ = ∞} ∪ {Kθ(X) �⊂ dom θ(X, ·) ∩ affKθ,{ψ=∞}(X)} ∈ Nμ,
and Nν := {ψ = ∞} ∈ Nν . Then by (6.4), 1N = 0 on ({ϕ = ∞}c × {ψ = ∞}c) ∩
{Y ∈ dom θ(X, ·) ∩ affKθ,{ψ=∞}(X)} and, therefore, by (6.5), N ⊂ {X ∈ Nμ} ∪
{Y ∈ Nν} ∪ {Y /∈ Kθ(X)}. �

6.3. The maximal support probability. In order to prove the existence of a
maximum support martingale transport plan, we introduce the maximization prob-
lem,

M := sup
P∈M(μ,ν)

μ
[
G(

�
suppPX)

]
,(6.6)

where we rely on the following measurability result whose proof is reported in
Section 7.2.

LEMMA 6.4. For P ∈ P(�), the map
�

suppPX is analytically measurable, and
the map

�
supp(PX|∂K̂(X)) is μ-measurable.

Now we prove a first lemma about the existence of a maximal support probabil-
ity.

LEMMA 6.5. There exists P̂ ∈ M(μ, ν) such that for all P ∈ M(μ, ν) we
have the inclusion

�
suppPX ⊂ �

suppP̂X , μ-a.s.

PROOF. We proceed in two steps:
Step 1: We first prove existence for the problem (6.6). Let (Pn)n≥1 ⊂ M(μ, ν)

be a maximizing sequence. Then the measure P̂ := ∑
n≥1 2−nPn ∈ M(μ, ν),

and satisfies
�

suppPn
X ⊂ �

suppP̂X for all n ≥ 1. Consequently, μ[G(
�

suppXP
n
X)] ≤

μ[G(
�

suppP̂X)] and, therefore, M = μ[G(
�

suppP̂X)].
Step 2: We next prove that

�
suppPX ⊂ �

suppP̂X , μ-a.s. for all P ∈ M(μ, ν).
Indeed, the measure P := P̂+P

2 ∈ M(μ, ν) satisfies M ≥ μ[G(
�

suppPX)] ≥
μ[G(

�
suppP̂X)] = M , implying that G(

�
suppPX) = G(

�
suppP̂X), μ-a.s. The re-

quired result now follows from the inclusion
�

suppP̂X ⊂ �
suppPX . �
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PROOF OF PROPOSITION 3.15(III). Let P̂ ∈ M(μ, ν) from Lemma 6.5, if we
denote S(X) := �

suppP̂X , then we have supp(PX) ⊂ S(X), μ-a.s. Then {Y /∈ S(X)}
is M(μ, ν)-polar. By Lemma 6.1, {Y /∈ S(X)}∪ {X /∈ N ′

μ} is Borel for some N ′
μ ∈

Nμ. By Theorem 3.18, we see that {Y /∈ S(X)} ⊂ {Y /∈ S(X)} ∪ {X /∈ N ′
μ} ⊂ {X ∈

Nμ} ∪ {Y ∈ Nν} ∪ {Y /∈ Kθ(X)} and, therefore,{
Y ∈ S(X)

} ⊃ {X /∈ Nμ} ∩ {
Y ∈ Kθ(X) \ Nν

}
,

for some Nμ ∈ Nμ, Nν ∈ Nν , and θ ∈ T̂ (μ, ν). The last inclusion implies
that Kθ(X) \ Nν ⊂ S(X), μ-a.s. However, by Proposition 3.15(ii), K̂(X) ⊂
conv(dom θ(X, ·) \ Nν), μ-a.s. Then, since S(X) is closed and convex, we see
that cl K̂(X) ⊂ S(X).

To obtain the reverse inclusion, we recall from Proposition 3.15(i) that {Y ∈
cl K̂(X)}, M(μ, ν)-q.s. In particular, P̂[Y ∈ cl K̂(X)] = 1, implying that S(X) ⊂
cl K̂(X), μ-a.s. as cl K̂(X) is closed convex. Finally, recall that by definition I :=
riS and, therefore, K̂(X) = cl I (X), μ-a.s. �

LEMMA 6.6. We may choose P̂ ∈ M(μ, ν) in Theorem 2.1 so that for all
P ∈M(μ, ν) and y ∈ Rd ,

μ
[
PX

[{y}] > 0
] ≤ μ

[
P̂X

[{y}] > 0
]
,

and suppPX|∂I (X) ⊂ �
suppP̂X|∂I (X), μ-a.s.

In this case, the maps J (X) := I (X) ∪ {y ∈ Rd : ν[y] > 0 and P̂X[{y}] > 0}, and
J̄ (X) := I (X) ∪ �

suppP̂X|∂I (X) are unique μ-a.s. Furthermore, J (X) = K(X),
J̄ (X) = K̄(X) and Jθ (X) = Kθ(X), μ-a.s. for all θ ∈ T̂ (μ, ν).

PROOF. Step 1: By the same argument as in the proof of Lemma 6.5, we may
find P̂′ ∈ M(μ, ν) such that

M ′ := sup
P∈M(μ,ν)

μ
[
G
( �
supp(PX|∂K̂(X))

)]
= μ

[
G
( �
supp

(
P̂′

X|∂K̂(X)

))]
.

(6.7)

We also have similarly that
�

supp(PX|∂K̂(X)) ⊂ �
supp(P̂′

X|∂K̂(X)), μ-a.s. for all P ∈
M(μ, ν). Then we prove similarly that S′(X) := �

supp(P̂′
X|∂K̂(X)) = D(X), μ-a.s.,

where recall that D is the optimizer for (6.1). Indeed, by the previous step, we have
�

supp(PX|∂K̂(X)) ⊂ S′(X), μ-a.s. Then we have {Y /∈ S′(X) ∪ K̂(X)} is M(μ, ν)-
polar. By Theorem 3.18, we see that {Y /∈ S′(X) ∪ K̂(X)} ⊂ {X ∈ Nμ} ∪ {Y ∈
Nν} ∪ {Y /∈ Kθ(X) ∪ K̂(X)}, or equivalently{

Y ∈ S′(X) ∪ K̂(X)
} ⊃ {X /∈ Nμ} ∩ {

Y ∈ Kθ(X) \ Nν

}
,(6.8)

for some Nμ ∈ Nμ, Nν ∈ Nν , and θ ∈ T̂ (μ, ν). Similar to the previous analysis,
we have Kθ(X) \ Nν \ K̂(X) ⊂ S′(X), μ-a.s. Then, since S′(X) is closed and
convex, we see that D(X) ⊂ S′(X).
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To obtain the reverse inclusion, we recall from Proposition 6.2 that {Y ∈
K̄(X)}, M(μ, ν)-q.s. In particular, P̂′[Y ∈ K̂(X) ∪ D(X)] = 1, implying that
S′(X) ⊂ D(X), μ-a.s. By Proposition 3.15(iii), we have J̄ (X) = (I ∪ S′)(X) =
(K̂ ∪ D)(X) = K̄(X), μ-a.s.

Finally, P̂+P̂′
2 is optimal for both problems (6.6) and (6.7). By definition, the

equality Jθ (X) = Kθ(X), μ-a.s. for θ ∈ T̂ (μ, ν) immediately follows.
Step 2: Let y ∈ atom(ν), if y is an atom of γ1 ∈ P(Rd) and γ2 ∈ P(Rd), then

y in an atom of λγ1 + (1 − λ)γ2 for all 0 < λ < 1. By the same argument as in
Step 1, we may find P̂y ∈ M(μ, ν) such that

My := sup
P∈M(μ,ν)

μ
[
PX

[{y} ∩ cl K̂(X)
]
> 0

]
= μ

[
P̂

y
X

[{y} ∩ cl K̂(X)
]
> 0

]
.

(6.9)

We denote Sy(X) := supp P̂y
X|aff K̂(X)∩{y}. Recall that Dy is the notation for

the optimizer of problem (6.2). We consider the set N := {Y /∈ (cl K̂(X) \ {y}) ∪
Sy(X)}. N is polar as Y ∈ cl K̂(X), q.s., and by definition of Sy . Then N ⊂ {X ∈
Nμ} ∪ {Y ∈ Nν} ∪ {Y /∈ Kθ(X)}, or equivalently,{

Y /∈ (
cl K̂(X) \ {y})∪ Sy(X)

} ⊃ {X /∈ Nμ} ∩ {
Y ∈ Kθ(X) \ Nν

}
,(6.10)

for some Nμ ∈ Nμ, Nν ∈ Nν , and θ ∈ T̂ (μ, ν). Then Dy(X) ⊂ Kθ(X) \ Nν ⊂
cl K̂(X) \ {y} ∪ Sy(X), μ-a.s. Finally, Dy(X) ⊂ Sy(X), μ-a.s.

On the other hand, Sy ⊂ Dy , μ-a.s., as if P̂y
X[{y}] > 0, we have θ(X,y) < ∞,

μ-a.s. at the corresponding points. Hence, Dy(X) = Sy(X), μ-a.s. Now if we sum
up the countable optimizers for y ∈ atom(ν), with the previous optimizers, then
the probability P̂ we get is an optimizer for (6.6), (6.7) and (6.9), for all y ∈ Rd

(the optimum is 0 if it is not an atom of ν). Furthermore, the μ-a.e. equality of the
maps Sy and Dy for these countable y ∈ atom(ν) is preserved by this countable
union, then together with Proposition 3.15(iii), we get J = K , μ-a.s. �

As a preparation to prove the main Theorem 2.1, we need the following lemma,
which will be proved in Section 7.2.

LEMMA 6.7. Let F : Rd −→ ri
�

K be a γ -measurable function for some γ ∈
P(Rd), such that x ∈ F(x) for all x ∈ Rd , and {F(x) : x ∈ Rd} is a partition of
Rd . Then up to a modification on a γ -null set, F can be chosen in addition to be
analytically measurable.

PROOF OF THEOREM 2.1. Existence holds by Lemma 6.5 above, (i) is a con-
sequence of Lemma 6.4, and (ii) directly stems from Lemma 3.13(iii) together
with Proposition 3.15(iii). Now we need to deal with the measurability issue.
Lemma 6.7 allows to modify ri

�
suppP̂X to get (ii) while preserving its analytic

measurability, we denote I its modification. However, we need to modify P̂X to
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get the result. As
�

suppP̂X is analytically measurable by Lemma 6.4, the set of
modification Nμ := { �

suppP̂X �= cl I (X)} ∈ Nμ is analytically measurable. Then
we may redefine P̂X on Nμ, so as to preserve a kernel for P̂. By the same argu-
ments than the proof of Lemma 3.13(ii), the measure-valued map κX := gI (X) is a
kernel thanks to the analytic measurability of I ; recall the definition of gK given
by (3.2). Furthermore,

�
suppκX = I (X) pointwise by definition. Then a suitable

kernel modification from which the result follows is given by

P̂′
X := 1{X∈Nμ}κX + 1{X/∈Nμ}P̂X. �

PROOF OF PROPOSITION 2.4. The existence and the uniqueness are given by
Lemma 6.6 and the other properties follow from the identity between the J maps
and the K maps, also given by the lemma, together with Proposition 6.2. �

PROOF OF THEOREM 3.18. We simply apply Lemma 6.6 to replace Kθ by Jθ

in Proposition 6.3. �

7. Measurability of the irreducible components.

7.1. Measurability of G.

PROOF OF LEMMA 3.13(II). As Rd is locally compact, the Wijsman topology
is locally equivalent to the Hausdorff topology,7 that is, as n → ∞, Kn −→ K for
the Wijsman topology if and only if Kn ∩ BM −→ K ∩ BM for the Hausdorff
topology, for all M ≥ 0.

We first prove that K �−→ dim affK is a lower semicontinuous map K → R.
Let (Kn)n≥1 ⊂ K with dimension dn ≤ d ′ ≤ d converging to K . We consider
An := affKn. As An is a sequence of affine spaces, it is homeomorphic to a d + 1-
uplet. Observe that the convergence of Kn allow us to chose this d + 1-uplet to
be bounded. Then up to taking a subsequence, we may suppose that An converges
to an affine subspace A of dimension less than d ′. By continuity of the inclusion
under the Wijsman topology, K ⊂ A and dimK ≤ dimA ≤ d ′.

We next prove that the mapping K �→ gK(K) is continuous on {dimK = d ′}
for 0 ≤ d ′ ≤ d , which implies the required measurability. Let (Kn)n≥1 ⊂ K be a
sequence with constant dimension d ′, converging to a d ′-dimensional subset, K

in K. Define An := affKn and A := affK , An converges to A as for any accumu-
lation set A′ of An, K ⊂ A′ and dimA′ = dimA, implying that A′ = A. Now we
consider the map φn : An → A, x �→ projA(x). For all M > 0, it follows from
the compactness of the closed ball BM that φn converges uniformly to identity
as n → ∞ on BM . Then φn(Kn) ∩ BM −→ K ∩ BM as n → ∞ and, therefore,

7The Haussdorff distance on the collection of all compact subsets of a compact metric space (X ,d)

is defined by dH (K1,K2) = supx∈X |dist(x,K1) − dist(x,K2)|, for K1,K2 ⊂X , compact subsets.
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λA[φn(Kn ∩BM) \K]+ λA[K \φn(Kn)∩BM ] −→ 0. As the Gaussian density is
bounded, we also have

gA

[
φn(Kn ∩ BM)

] −→ gA[K ∩ BM ].
We next compare gA[φn(Kn ∩ BM)] to gKn(Kn ∩ BM). As (φn) is a sequence
of linear functions that converges uniformly to identity, we may assume that φn

is a C1-diffeomorphism. Furthermore, its constant Jacobian Jn converges to 1 as
n → ∞. Then∫

Kn∩BM

e−|φn(x)|2/2

(2π)d
′/2

λKn(dx) =
∫
φn(Kn∩BM)

e−|y|2/2J−1
n

(2π)d
′/2

λA(dy)

= J−1
n gA

[
φn(Kn ∩ BM)

]
.

As the Gaussian distribution function is 1-Lipschitz, we have

∣∣∣∣
∫
Kn∩BM

e−|φn(x)|2/2

(2π)d
′/2

λKn(dx) − gKn(Kn ∩ BM)

∣∣∣∣ ≤ λKn[Kn ∩ BM ]|φn − IdA|∞,

where | · |∞ is taken on Kn ∩ BM . Now for arbitrary ε > 0, by choosing M suf-
ficiently large so that gV [V \ BM ] ≤ ε for any d ′-dimensional subspace V , we
have∣∣gKn[Kn] − gK [K]∣∣ ≤ ∣∣gKn[Kn ∩ BM ] − gA[K ∩ BM ]∣∣+ 2ε

≤
∣∣∣∣gKn[Kn ∩ BM ] −

∫
Kn∩BM

C exp
(−|φn(x)|2

2

)
λKn(dx)

∣∣∣∣
+ ∣∣J−1

n gA

[
φn(Kn ∩ BM)

]− gA[K ∩ BM ]∣∣+ 2ε

≤ 4ε,

for n sufficiently large, by the previously proved convergence. Hence Gd ′ :=
G|dim−1{d ′} is continuous, implying that G : K �−→ ∑d

d ′=0 1dim−1{d ′}(K)Gd ′(K)

is Borel-measurable. �

7.2. Further measurability of set-valued maps. This subsection is dedicated to
the proof of Lemmas 3.13(i), 6.1 and 6.4. In preparation for the proofs, we start by
giving some lemmas on measurability of set-valued maps. Let A be a σ -algebra of
Rd . In practice we will always consider either the σ -algebra of Borel sets, the σ -
algebra of analytically measurable sets, or the σ -algebra of universally measurable
sets.

LEMMA 7.1. Let (Fn)n≥1 ⊂ LA(Rd,K). Then cl
⋃

n≥1 Fn and
⋂

n≥1 Fn are
A-measurable.
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PROOF. The measurability of the union is a consequence of Propositions 2.3
and 2.6 in Himmelberg [13]. The measurability of the intersection follows from
the fact that Rd is σ -compact, together with Corollary 4.2 in [13]. �

LEMMA 7.2. Let F ∈ LA(Rd,K). Then cl convF , affF and cl rfX cl convF

are A-measurable.

PROOF. The measurability of cl convF is a direct application of Theorem 9.1
in [13].

We next verify that affF is measurable. Since the values of F are closed,
we deduce from Theorem 4.1 in Wagner [23], that we may find a measurable
x �−→ y(x), such that y(x) ∈ F(x) if F(x) �=∅, for all x ∈Rd . Then we may write
affF(x) = cl conv cl

⋃
q∈Q(y(x) + q(F (x) − y(x))) for all x ∈ Rd . The measura-

bility follows from Lemma 7.1, together with the first step of the present proof.
We finally justify that cl rfX cl convF is measurable. We may assume that F

takes convex values. By convexity, we may reduce the definition of rfx to a se-
quential form:

cl rfx F (x) = cl
⋃
n≥1

{
y ∈Rd, y + 1

n
(y − x) ∈ F(x) and x − 1

n
(y − x) ∈ F(x)

}

= cl
⋃
n≥1

[{
y ∈ Rd, y + 1

n
(y − x) ∈ F(x)

}

∩
{
y ∈Rd, x − 1

n
(y − x) ∈ F(x)

}]

= cl
⋃
n≥1

[(
1

n + 1
x + n

n + 1
F(x)

)
∩ (−(n + 1)x − nF(x)

)]
,

so that the required measurability follows from Lemma 7.1. �

We denote by S the set of finite sequences of positive integers, and � the set
of infinite sequences of positive integers. Let s ∈ S , and σ ∈ �. We shall denote
s < σ whenever s is a prefix of σ .

LEMMA 7.3. Let (Fs)s∈S be a family of universally measurable functions
Rd −→ K with convex image. Then the mapping cl conv(

⋃
σ∈�

⋂
s<σ Fs) is uni-

versally measurable.

PROOF. Let U the collection of universally measurable maps from Rd to K
with convex image. For an arbitrary γ ∈ P(Rd), and F : Rd −→ K, we introduce
the map

γG∗[F ] := inf
F⊂F ′∈U γG

[
F ′] where γG

[
F ′] := γ

[
G
(
F ′(X)

)]
for all F ′ ∈ U .
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Clearly, γG and γG∗ are nondecreasing, and it follows from the dominated con-
vergence theorem that γG, and thus γG∗, are upward continuous.

Step 1: In this step, we follow closely the line of argument in the proof of Propo-
sition 7.42 of Bertsekas and Shreve [5]. Set F := cl conv(

⋃
σ∈�

⋂
s<σ Fs), and let

(F̄n)n a minimizing sequence for γG∗[F ]. Notice that F ⊂ F̄ := ⋂
n≥1 F̄n ∈ U , by

Lemma 7.1. Then F̄ is a minimizer of γG∗[F ].
For s, s ′ ∈ S, we denote s ≤ s ′ if they have the same length |s| = |s′|, and si ≤ s′

i

for 1 ≤ i ≤ |s|. For s ∈ S, let

R(s) := cl conv
⋃
s′≤s

⋃
σ>s′

⋂
s′′<σ

Fs′′ and K(s) := cl conv
⋃
s′≤s

|s′|⋂
j=1

Fs′
1,...,s

′
j
.

Notice that K(s) is universally measurable, by Lemmas 7.1 and 7.2, and

R(s) ⊂ K(s), cl
⋃
s1≥1

R(s1) = F, and

cl
⋃
sk≥1

R(s1, . . . , sk) = R(s1, . . . , sk−1).

By the upward continuity of γG∗, we may find for all ε > 0 a sequence σε ∈ �

s.t.

γG∗[F ] ≤ γG∗[R(
σε

1
)]+ 2−1ε, and γG∗[R(σk−1)

] ≤ γG∗[R(σk)
]+ 2−kε,

for all k ≥ 1, with the notation σε
k := (σ ε

1 , . . . , σ ε
k ). Recall that the minimizer F and

K(s) are in U for all s ∈ S . We then define the sequence Kε
k := F ∩ K(σε

k) ∈ U ,
k ≥ 1, and we observe that(

Kε
k

)
k≥1 decreasing, F ε := ⋂

k≥1

Kε
k ⊂ F,

and γG
[
Kε

k

] ≥ γG∗[F ] − ε = γG[F ] − ε,

(7.1)

by the fact that R(σ ε
k) ⊂ Kε

k . We shall prove in Step 2 that, for an arbitrary α > 0,
we may find ε = ε(α) ≤ α such that (7.1) implies that

γG
[
Fε] ≥ inf

k≥1
γG

[
Kε

k

]− α ≥ γG[F ] − ε − α.(7.2)

Now let α = αn := n−1, εn := ε(αn), and notice that F := cl conv
⋃

n≥1 Fεn ∈ U ,
with Fεn ⊂ F ⊂ F ⊂ F , for all n ≥ 1. Then it follows from (7.2) that γG[F ] =
γG[F ] and, therefore, F = F = F , γ -a.s. In particular, F is γ -measurable, and
we conclude that F ∈ U by the arbitrariness of γ ∈P(Rd).

Step 2: It remains to prove that, for an arbitrary α > 0, we may find ε = ε(α) ≤
α such that (7.1) implies (7.2). This is the point where we have to deviate from the
argument of [5] because γG is not downward continuous, as the dimension can
jump down.
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Set An := {G(F(X)) − dimF(X) ≤ 1/n}, and notice that
⋂

n≥1 An = ∅. Let
n0 ≥ 1 such that γ [An0] ≤ 1

2
α

d+1 , and set ε := 1
2

1
n0

α
d+1 > 0. Then it follows from

(7.1) that

γ
[
inf
n

G
(
Kε

n

)− dimF ≤ 0
]
≤ γ

[
inf
n

G
(
Kε

n

)− G(F) ≤ n−1
0

]
+ γ

[
G(F) − dimF ≤ −n−1

0

]
≤ n0

(
γ
[
G(F)

]− γ
[
inf
n

G
(
Kε

n

)])+ γ [An0](7.3)

= n0

(
γ
[
G(F)

]− inf
n

γ
[
G
(
Kε

n

)])+ γ [An0]

≤ n0ε + 1

2

α

d + 1
= α

d + 1
,

where we used the Markov inequality and the monotone convergence theorem.
Then

γ
[
inf
n

G
(
Kε

n

)− G
(
Fε)] ≤ γ

[
1{infn G(Kε

n)−dimF≤0}
(
inf
n

G
(
Kε

n

)− G
(
Fε))

+ 1{infn G(Kε
n)−dimF>0}

(
inf
n

G
(
Kε

n

)− G
(
Fε))]

≤ γ
[
(d + 1)1{infn G(Kε

n)−dimF≤0}

+ 1{infn G(Kε
n)−dimF>0}

(
inf
n

G
(
Kε

n

)− G
(
Fε))].

We finally note that infn G(Kε
n)−G(Fε) = 0 on {infn G(Kε

n)− dimF > 0}. Then
(7.2) follows by substituting the estimate in (7.3). �

PROOF OF LEMMA 3.13(I). We consider the mappings θ : � → R̄+ such
that θ = ∑n

k=1 λk1C1
k ×C2

k
where n ∈ N, the λk are nonnegative numbers, and

the C1
k ,C2

k are closed convex subsets of Rd . We denote the collection of all
of these mappings F . Notice that clF for the pointwise limit topology con-
tains all L0+(�). Then for any θ ∈ L0+(�), we may find a family (θs)s∈� ⊂ F ,
such that θ = infσ∈� sups<σ θs . For θ ∈ L0+(�), and n ≥ 0, we denote Fθ :
x �−→ cl conv dom θ(x, ·), and Fθ,n : x �−→ cl conv θ(x, ·)−1([0, n]). Notice that
Fθ = cl

⋃
n≥1 Fθ,n. Notice as well that Fθ,n is Borel measurable for θ ∈ F ,

and n ≥ 0, as it takes values in a finite set, from a finite number of measur-
able sets. Let θ ∈ L0+(�), we consider the associated family (θs)s∈� ⊂ F , such
that θ = infσ∈� sups<σ θs . Notice that Fθ,n = cl conv(

⋃
σ∈�

⋂
s<σ Fθs,n) is uni-

versally measurable by Lemma 7.3, thus implying the universal measurability of
Fθ = cl dom θ(X, ·) by Lemma 7.1.

In order to justify the measurability of domX θ , we now define

F 0
θ := Fθ and Fk

θ := cl conv
(
dom θ(X, ·) ∩ aff rfX Fk−1

θ

)
, k ≥ 1.
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Note that Fk
θ = cl

⋃
n≥1(cl conv

⋃
σ∈�

⋂
s<σ Fθs,n ∩ aff rfx F k−1

θ ). Then, as F 0
θ is

universally measurable, we deduce that (F k
θ )k≥1 are universally measurable, by

Lemmas 7.2 and 7.3.
As domX θ is convex and relatively open, the required measurability follows

from the claim:

Fd
θ = cl domX θ.

To prove this identity, we start by observing that Fk
θ (x) ⊃ cl domx θ . Since the

dimension cannot decrease more than d times, we have aff rfx F d
θ (x) = affFd

θ (x)

and

Fd+1
θ (x) = cl conv

(
dom θ(x, ·) ∩ aff rfx F d

θ (x)
)

= cl conv
(
dom θ(x, ·) ∩ aff rfx F d−1

θ (x)
) = Fd

θ (x),

that is, (F d+1
θ )k is constant for k ≥ d . Consequently,

dim rfx conv
(
dom θ(x, ·) ∩ aff rfx F d

θ (x)
)

= dimFd
θ (x)

≥ dim conv
(
dom θ(x, ·) ∩ aff rfx F d

θ (x)
)
.

As dim conv(dom θ(x, ·) ∩ aff rfx F d
θ (x)) ≥ dim rfx conv(dom θ(x, ·) ∩

aff rfx F d
θ (x)), we have equality of the dimension of conv(dom θ(x, ·) ∩

aff rfx F d
θ (x)) with its rfx . Then it follows from Proposition 3.1(ii) that x ∈

ri conv(dom θ(x, ·) ∩ aff rfx F d
θ (x)) and, therefore,

Fd
θ (x) = cl conv

(
dom θ(x, ·) ∩ aff rfx F d

θ (x)
)

= cl ri conv
(
dom θ(x, ·) ∩ aff rfx F d

θ (x)
)

= cl rfx conv
(
dom θ(x, ·) ∩ aff rfx F d

θ (x)
) ⊂ cl domx θ.

Hence Fd
θ (x) = cl domx θ .

Finally, Kθ,A = domX(θ +∞1Rd×A) is universally measurable by the universal
measurability of domX . �

PROOF OF LEMMA 6.1. We may find (Fn)n≥1, Borel-measurable with finite
image, converging γ -a.s. to F . We denote Nγ ∈ Nγ , the set on which this conver-
gence does not hold. For ε > 0, we denote Fε

k (X) := {y ∈ Rd : dist(y,Fk(X)) ≤
ε}, so that

F(x) = ⋂
i≥1

lim inf
n→∞ F 1/i

n (x) for all x /∈ Nγ .

Then, as 1Y∈F(X)1X/∈Nγ = infi≥1 lim infn→∞ 1
Y∈F

1/i
n (X)

1X/∈Nγ , the Borel-measu-
rability of this function follows from the Borel-measurability of each 1

Y∈F
1/i
n (X)

.
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Now we suppose that X ∈ riF(X) convex, γ -a.s. Up to redefining Nγ , we
may suppose that this property holds on Nc

γ , then ∂F (x) = ⋂
n≥1 F(x) \ (x +

n
n+1(F (x) − x)), for x /∈ Nγ . We denote a := 1Y∈F(X)1X/∈Nγ . The result follows
from the identity 1Y∈∂F (X)1X/∈Nγ = a − supn≥1 a(X,X + n

n+1(Y − X)). �

PROOF OF LEMMA 6.4. Let KQ := {K = conv(x1, . . . , xn) : n ∈ N, (xi)i≤n ⊂
Qd}. Then

�
suppPx = cl

⋃
N≥1

∩{K ∈KQ : �
suppPx ∩ BN ⊂ K} = cl

⋃
N≥1

⋂
K∈KQ

FN
K (x),

where FN
K (x) := K if Px[BN ∩K] = Px[BN ], and FN

K (x) := Rd otherwise. As for
any K ∈ KQ and N ≥ 1, the map PX[BN ∩ K] − PX[BN ] is analytically measur-
able, then FN

K is analytically measurable. The required measurability result follows
from Lemma 7.1.

Now, in order to get the measurability of
�

supp(PX|∂I (X)), we have in the same
way

�
supp(PX|∂I (X)) = cl

⋃
n≥1

⋂
K∈KQ

F ′N
K (x),

where F ′N
K (x) := K if Px[∂I (x) ∩ BN ∩ K] = Px[∂I (x) ∩ BN ], and F ′N

K (x) :=
Rd otherwise. As PX[∂I (X) ∩ BN ∩ K] = PX[1Y∈∂I (X)1X/∈Nμ1Y /∈BN∩K ], μ-a.s.,
where Nμ ∈ Nμ is taken from Lemma 6.1, PX[∂I (X)∩BN ∩K] is μ-measurable,
as equal μ-a.s. to a Borel function. Then similarly, PX[∂I (X) ∩ BN ∩ K] −
PX[∂I (X)∩BN ] is μ-measurable and, therefore,

�
supp(PX|∂I (X)) is μ-measurable.

�

PROOF OF LEMMA 6.7. By γ -measurability of F , we may find a Borel func-
tion FB : Rd −→ ri

�

K such that F = FB , γ -a.s. Let a Borel Nγ ∈ Nγ such that

F = FB on Nc
γ . By the fact that ri

�

K is Polish, we may find a sequence (Fn)n≥1 of
Borel functions with finite image converging pointwise toward FB when n −→ ∞.
We will give an explicit expression for Fn that will be useful later in the proof. Let
(Kn)n≥1 ⊂ ri

�

K a dense sequence,

Fn(x) := argmin
K∈(Ki)i≤n

dist
(
FB(x),K

)
,(7.4)

where dist is the distance on ri
�

K that makes it Polish, and we chose the K with
the smallest index in case of equality.

We fix n ≥ 1, let K ∈ Fn(N
c
γ ), the image of Fn outside of Nγ , and AK :=

F−1
n ({K}). We will modify the image of Fn so that it is the same for all

x′ ∈ FB(x) = F(x), for all x ∈ Nc
γ ∩ AK . Then we consider the set A′

K :=⋃
x∈Nc

γ ∩AK
FB(x), we now prove that this set in analytic. By Theorem 4.2(b) in
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[23], GrFB := {Y ∈ clFB(X)} is a Borel set. Let λ > 0, we define the affine de-
formation fλ : � −→ � by fλ(X,Y ) := (X,X + λ(Y − X)). By the fact that for
k ≥ 1, f1−1/k(GrFB) is Borel together with the fact that x ∈ fB(x) for x /∈ Nγ ,
we have {

Y ∈ FB(X)
}∩ {X /∈ Nγ } = ⋃

k≥1

f1−1/k(GrFB) ∩ {X /∈ Nγ }.

Therefore, {Y ∈ FB(X)} ∩ {X /∈ Nγ } is Borel, and so is {Y ∈ FB(X)} ∩ {X ∈ Nc
γ ∩

AK}. Finally,

A′
K = Y

({
Y ∈ FB(X)

}∩ {
X ∈ Nc

γ ∩ AK

})
,

therefore, A′
K is the projection of a Borel set, which is one of the definitions of an

analytic set (see Proposition 7.41 in [5]). Now we define a suitable modification
of Fn by F ′

n(x) := K for all x ∈ A′
K , we do this redefinition for all K ∈ FB(Nc

γ ).
Notice that thanks to definition (7.4) and the fact that FB(x) = FB(x′) if x, x′ /∈
Nγ and x′ ∈ FB(x) = F(x), we have the inclusion A′

K ⊂ AK ∪ Nγ . Then the
redefinitions of Fn only hold outside of Nγ . Furthermore, for different K1,K2 ∈
Fn(N

c
γ ), A′

K1
∩A′

K2
=∅ as the value of Fn(x) only depends on the value of FB(x)

by (7.4). Notice that

N ′
γ :=

( ⋃
K∈Fn(Nc

γ )

A′
K

)c

=
( ⋃

x /∈Nγ

FB(x)

)c

⊂ Nγ ,(7.5)

is analytically measurable, as the complement of an analytic set, and does not
depend on n. For x ∈ N ′

γ , we define F ′
n(x) := {x}. Notice that F ′

n is analytically
measurable as the modification of a Borel function on analytically measurable sets.

Now we prove that F ′
n converges pointwise when n −→ ∞. For x ∈ N ′

γ , F ′
n(x)

is constant equal to {x}, if x /∈ N ′
γ , by (7.5) x ∈ ⋃

x /∈Nγ
FB(x) and, therefore,

F ′
n(x) = FB(x′) = F(x′) for some x ∈ Nc

γ , for all n ≥ 1. Then as F ′
n(x

′) con-
verges to F(x′), F ′

n(x) converges to F(x). Let F ′ be the pointwise limit of F ′
n.

The maps F ′
n are analytically measurable and, therefore, so does F ′. For all n ≥ 1,

F ′
n = Fn, γ -a.e. and, therefore, F ′ = FB = F , γ -a.e. Finally, F ′(Nc

γ ) = F(Nc
γ ),

and
⋃

F(Nc
γ ) = (N ′

γ )c. By property of F , F ′(Nc
γ ) is a partition of (N ′

γ )c such that
x ∈ F ′(x) for all x /∈ N ′

γ . On N ′
γ , this property is trivial as F ′(x) = {x} for all

x ∈ N ′
γ . �

8. Properties of tangent convex functions.

8.1. x-invariance of the y-convexity. We first report a convex analysis lemma.

LEMMA 8.1. Let f : Rd → R̄ be convex finite on some convex open subset
U ⊂ Rd . We denote f∗ : Rd → R̄ the lower-semicontinuous envelop of f on U ,
then

f∗(y) = lim
ε↘0

f
(
εx + (1 − ε)y

)
for all (x, y) ∈ U × clU.
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PROOF. f∗ is the lower semicontinuous envelop of f on U , that is, the lower
semicontinuous envelop of f ′ := f + ∞1Uc . Notice that f ′ is convex Rd −→
R ∪ {∞}. Then by Proposition 1.2.5 in Chapter IV of [14], we get the result as
f = f ′ on U . �

PROOF OF PROPOSITION 3.10. The result is obvious in T(C1), as the affine
part depending on x vanishes. We may use Nν = ∅. Now we denote T the set
of mappings in �μ such that the result from the proposition holds. Then we have
T(C1) ⊂ T .

We prove that T is μ⊗pw-Fatou closed. Let (θn)n be a sequence in T con-
verging μ⊗pw to θ ∈ �μ. Let n ≥ 1, we denote Nμ, the set in Nμ from the
proposition applied to θn, and let N0

μ ∈ Nμ corresponding to the μ⊗pw conver-
gence of θn to θ . We denote Nμ := ⋃

n∈N Nn
μ ∈ Nμ. Let x1, x2 /∈ Nμ and ȳ ∈

domx1 θ ∩ domx2 θ . Let y1, y2 ∈ domx1 θ , such that we have the convex combina-
tion ȳ = λy1 +(1−λ)y2, and 0 ≤ λ ≤ 1. Then for i = 1,2, θn(x1, yi) −→ θ(x1, yi)

and θn(x1, ȳ) −→ θ(x1, ȳ), as n → ∞. Using the fact that θn ∈ T , for all n, we
have

(8.1)
�n := λθn(xi, y1) + (1 − λ)θn(xi, y2) − θn(xi, ȳ) ≥ 0

and independent of i = 1,2.

Taking the limit n → ∞ gives that θ∞(x2, yi) < ∞, and yi ∈ dom θ∞(x2, ·). ȳ

is interior to domx1 θ , then for any y ∈ domx1 θ , y′ := ȳ + ε
1−ε

(ȳ − y) ∈ domx1 θ

for 0 < ε < 1 small enough. Then ȳ = εy + (1 − ε)y′. As we may chose any
y ∈ domx1 θ , we have domx1 θ ⊂ dom θ∞(x2, ·). Then we have

(8.2) rfx2 conv(domx1 θ ∪ domx2 θ) ⊂ rfx2 conv dom
(
θ∞(x2, ·)) = domx2 θ.

By Lemma 9.1, as domx1 θ ∩ domx2 θ �= ∅, conv(domx1 θ ∪ domx2 θ) =
ri conv(domx1 θ ∪ domx2 θ). In particular, conv(domx1 θ ∪ domx2 θ) is rela-
tively open and contains x2 and, therefore, rfx2 conv(domx1 θ ∪ domx2 θ) =
conv(domx1 θ ∪ domx2 θ). Finally, by (8.2), domx1 θ ⊂ domx2 θ . As there is a sym-
metry between x1, and x2, we have domx1 θ = domx2 θ . Then we may go to the
limit in equation (8.1):

�∞ := λθ(xi, y1) + (1 − λ)θ(xi, y2) − θ(xi, ȳ) ≥ 0,

and independent of i = 1,2.
(8.3)

Now, let y1, y2 ∈ Rd , such that we have the convex combination ȳ = λy1 + (1 −
λ)y2, and 0 ≤ λ ≤ 1. we have three cases to study.

Case 1: yi /∈ cl domx1 θ for some i = 1,2. Then, as the average ȳ of the
yi is in domx1 θ , by Proposition 3.1(ii), we may find i′ = 1,2 such that yi′ /∈
conv dom θ(x1, ·), thus implying that θ(x1, yi) = ∞. Then λθ(x1, y1) + (1 −
λ)θ(x1, y2) − θ(x1, ȳ) = ∞ ≥ 0. As domx1 θ = domx2 θ , we may apply the same
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reasoning to x2. We get λθ(x1, y1)+ (1 −λ)θ(x2, y2)− θ(x2, ȳ) = ∞ ≥ 0. We get
the result.

Case 2: y1, y2 ∈ domx1 θ . This case is (8.3).
Case 3: y1, y2 ∈ cl domx1 θ . The problem arises here if some yi is in the bound-

ary ∂ domx1 θ . Let x /∈ Nμ, we denote the lower semicontinuous envelop of θ(x, ·)
in cl domx θ , by θ∗(x, y) := limε↘0 θ(x, εx + (1 − ε)y′), for y ∈ cl domx θ , where
the latest equality follows from Lemma 8.1 together with that fact that θ(x, ·) is
convex on domx θ . Let y ∈ cl domx1 θ , for 1 ≥ ε > 0, yε := εx1 + (1 − ε)y ∈
domx1 θ . By (8.1), (1 − ε)θn(x1, y) − θn(x1, y

ε) = (1 − ε)θn(x2, y) − θn(x2, y
ε).

Taking the lim inf, we have (1 − ε)θ(x1, y) − θ(x1, y
ε) = (1 − ε)θ(x2, y) −

θ(x2, y
ε). Now taking ε ↘ 0, we have θ(x1, y)− θ∗(x1, y) = θ(x2, y)− θ∗(x2, y).

Then the jump of θ(x, ·) in y is independent of x = x1 or x2. Now for 1 ≥ ε > 0,
by (8.3),

λθ
(
x1, y

ε
1
)+ (1 − λ)θ

(
x1, y

ε
2
)− θ

(
x1, ȳ

ε)
= λθ

(
x2, y

ε
1
)+ (1 − λ)θ

(
x2, y

ε
2
)− θ

(
x2, ȳ

ε)
≥ 0.

By going to the limit ε ↘ 0, we get

λθ∗(x1, y1) + (1 − λ)θ∗(x1, y2) − θ∗(x1, ȳ)

= λθ∗(x2, y1) + (1 − λ)θ∗(x2, y2) − θ∗(x2, ȳ)

≥ 0.

As the (nonnegative) jumps do not depend on x = x1 or x2, we finally get

λθ(x1, y1) + (1 − λ)θ(x1, y2) − θ(x1, ȳ)

= λθ(x2, y1) + (1 − λ)θ(x2, y2) − θ(x2, ȳ)

≥ 0.

Finally, T is μ⊗pw-Fatou closed and convex, T̂1 ⊂ T . As the result is clearly in-
variant when the function is multiplied by a scalar, the result is proved on T̂ (μ, ν).

�

8.2. Compactness.

PROOF OF PROPOSITION 3.7. We first prove the result for θ = (θn)n≥1 ⊂ �.
Denote conv(θ) := {θ ′ ∈ �N : θ ′

n ∈ conv(θk, k ≥ n),n ∈ N}. Consider the mini-
mization problem:

m := inf
θ ′∈conv(θ)

μ
[
G
(
domX θ ′∞

)]
,(8.4)

where the measurability of G(domX θ ′∞) follows from Lemma 3.13.
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Step 1: We first prove the existence of a minimizer. Let (θ ′k)k∈N ∈ conv(θ)N be
a minimizing sequence, and define the sequence θ̂ ∈ conv(θ) by

θ̂n := (
1 − 2−n)−1

n∑
k=1

2−kθ ′k
n , n ≥ 1.

Then dom(θ̂∞) ⊂ ⋂
k≥1 dom(θ ′k∞) by the nonnegativity of θ ′, and we have the

inclusion {θ̂n −→n→∞ ∞} ⊂ {θ ′k
n −→n→∞ ∞ for some k ≥ 1}. Consequently,

domx θ̂∞ ⊂ conv
(⋂

k≥1

dom θ ′k∞(x, ·)
)

⊂ ⋂
k≥1

domx θ ′k∞ for all x ∈ Rd .

Since (θ ′k)k is a minimizing sequence, and θ̂ ∈ conv(θ), this implies that
μ[G(domX θ̂∞)] = m.

Step 2: We next prove that we may find a sequence (yi)i≥1 ⊂ L0(Rd,Rd) such
that

yi(X) ∈ aff(domX θ̂∞),

and
(
yi(X)

)
i≥1 dense in aff domX θ̂∞, μ-a.s.

(8.5)

Indeed, it follows from Lemmas 3.13 and 7.2 that the map x �→ aff(domx θ̂∞)

is universally measurable and, therefore, Borel-measurable up to a modification
on a μ-null set. Since its values are closed and nonempty, we deduce from the
implication (ii) =⇒ (ix) in Theorem 4.2 of the survey on measurable selection
[23] the existence of a sequence (yi)i≥1 satisfying (8.5).

Step 3: Let m(dx, dy) := μ(dx)⊗∑
i≥0 2−iδ{yi(x)}(dy). By the Komlòs lemma

(in the form of Lemma A1.1 in [8], similar to the one used in the proof
of Proposition 5.2 in [4]), we may find θ̃ ∈ conv(θ̂) such that θ̃n −→ θ̃∞ ∈
L0(�), m-a.s. Clearly, domx θ̃∞ ⊂ domx θ̂∞ and, therefore, μ[G(domX θ̃∞)] ≤
μ[G(domx θ̂∞)], for all x ∈ Rd . This shows that

G(domX θ̃∞) = G(domX θ̂∞), μ-a.s.(8.6)

so that θ̃ is also a solution of the minimization problem (8.4). Moreover, it follows
from (3.3) that

ri domX θ̃∞ = ri domX θ̂∞ and, therefore,

aff domX θ̃∞ = aff domX θ̂∞, μ-a.s.

Step 4: Notice that the values taken by θ̃∞ are only fixed on an m-full measure
set. By the convexity of elements of � in the y-variable, domX θ̃n has a nonempty
interior in aff(domX θ̃∞). Then as μ-a.s., θ̃n(X, ·) is convex, the following defini-
tion extends θ̃∞ to �:

θ̃∞(x, y) := sup
{
a · y + b : (a, b) ∈ Rd ×R, a · yn(x) + b ≤ θ̃∞

(
x, yn(x)

)
for all n ≥ 0

}
.
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This extension coincides with θ̃∞, in (x, yn(x)) for μ-a.e. x ∈ Rd , and all n ≥ 1
such that yn(x) /∈ ∂ domX θ̃k for some k ≥ 1 such that domx θ̃n has a nonempty
interior in aff(domx θ̃∞). As for k large enough, ∂ domX θ̃k is Lebesgue negligible
in aff(domx θ̃∞), the remaining yn(x) are still dense in aff(domx θ̃∞). Then, for

μ-a.e. x ∈ Rd , θ̃n(x, ·) converges to θ̃∞(x, ·) on a dense subset of aff(domx θ̃∞).
We shall prove in Step 6 below that

dom θ̃∞(X, ·) has nonempty interior in aff(domX θ̃∞), μ-a.s.(8.7)

Then, by Theorem 9.3, we have the convergence θ̃n(X, ·) −→ θ̃∞(X, ·), point-
wise on aff(domX θ̃∞) \ ∂ dom θ̃∞(X, ·), μ-a.s. Since domX θ∞ = domX θ∞, and
θ̃ converges to θ∞ on domX θ∞, μ-a.s., θ̃ converges to θ∞ ∈ �, μ⊗pw.

Step 5: Finally, for general (θn)n≥1 ⊂ �μ, we consider θ ′
n, equal to θn, μ⊗pw,

such that θ ′
n ≤ θn, for n ≥ 1, from the definition of �μ. Then we may find λk

n,
coefficients such that θ̂ ′

n := ∑
k≥n λk

nθ
′
k ∈ conv(θ ′) converges μ⊗pw to θ̂∞ ∈ �.

We denote θ̂n := ∑
k≥n λk

nθk ∈ conv(θ), θ̂n = θ̂ ′
n, μ⊗pw, and θ̂n ≥ θ̂ ′

n. By Proposi-
tion 3.6(iii), θ̂ converges to θ̂∞, μ⊗pw. The proposition is proved.

Step 6: In order to prove (8.7), suppose to the contrary that there is a set A

such that μ[A] > 0 and dom θ̃∞(x, ·) has an empty interior in aff(domx θ̃∞) for
all x ∈ A. Then, by the density of the sequence (yn(x))n≥1 stated in (8.5), we may
find for all x ∈ A an index i(x) ≥ 0 such that

ŷ(x) := yi(x)(x) ∈ ri domx θ̃∞, and θ̃∞
(
x, ŷ(x)

) = ∞.(8.8)

Moreover, since i(x) takes values in N, we may reduce to the case where i(x)

is a constant integer, by possibly shrinking the set A, thus guaranteeing that ŷ is
measurable. Define the measurable function on �:

θ0
n(x, y) := dist

(
y,Ln

x

)
,

with Ln
x := {

y ∈ Rd : θ̃n(x, y) < θ̃n

(
x, ŷ(x)

)}
.

(8.9)

Since Ln
x is convex, and contains x for n sufficiently large by (8.8), we see that

θ0
n is convex in y and θ0

n(x, y) ≤ |x − y| for all (x, y) ∈ �.(8.10)

In particular, this shows that θ0
n ∈ �. By Komlòs lemma, we may find

θ̂0
n := ∑

k≥n

λn
kθ

0
k ∈ conv

(
θ0) such that θ̂0

n −→ θ̂0∞, m-a.s.

for some nonnegative coefficients (λn
k, k ≥ n)n≥1 with

∑
k≥n λn

k = 1. By conve-
nient extension of this limit, we may assume that θ̂0∞ ∈ �. We claim that

(8.11) θ̂0∞ > 0 on Hx := {
h(x) · (y − ŷ(x)

)
> 0

}
, for some h(x) ∈ Rd .
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We defer the proof of this claim to Step 7 below and we continue in view of the
required contradiction. By definition of θ0

n together with (8.10), we compute that

θ1
n(x, y) := ∑

k≥n

λn
k θ̃k(x, y) ≥ ∑

k≥n

λn
k θ̃k

(
x, ŷ(x)

)
1{θ0

n>0}

≥ ∑
k≥n

λn
k θ̃k

(
x, ŷ(x)

)θ0
k (x, y)

|x − y|

≥ θ̂0
n(x, y)

|x − y| inf
k≥n

θ̃k

(
x, ŷ(x)

)
.

By (8.8) and (8.11), this shows that the sequence θ1 ∈ conv(θ) satisfies

θ1
n(x, ·) −→ ∞ on Hx for all x ∈ A.

We finally consider the sequence θ̃1 := 1
2(θ̃ + θ1) ∈ conv(θ). Clearly, dom θ̃

1
∞(X,

·) ⊂ dom θ̃∞(X, ·), and it follows from the last property of θ1 that dom θ̃
1
∞(x, ·) ⊂

Hc
x ∩ dom θ̃∞(x, ·) for all x ∈ A. Notice that ŷ(x) lies on the boundary of the half

space Hx and, by (8.8), ŷ(x) ∈ ri domx θ̃∞. Then G(domx θ̃
1
∞) < G(domx θ̃∞)

for all x ∈ A and, since μ[A] > 0, we deduce that μ[G(domX θ̃
1
∞)] <

μ[G(domX θ̃∞)], contradicting the optimality of θ̃ , by (8.6), for the minimiza-
tion problem (8.4).

Step 7: It remains to justify (8.11). Since θ̃n(x, ·) is convex, it follows from the
Hahn–Banach separation theorem that

θ̃n(x, ·) ≥ θ̃n

(
x, ŷ(x)

)
on Hn

x := {
y ∈Rd : hn(x) · (y − ŷ(x)

)
> 0

}
,

for some hn(x) ∈Rd , so that it follows from (8.9) that Ln
x ⊂ (Hn

x )c, and

θ0
n(x, y) ≥ dist

(
y,

(
Hn

x

)c) = [(
y − ŷ(x)

) · hn(x)
]+

.

Denote gx := gdomx θ̂∞ the Gaussian kernel restricted to the affine span of

domx θ̂∞, and Br(x0) the corresponding ball with radius r , centered at some point
x0. By (8.8), we may find rx so that Bx

r := Br(ŷ(x)) ⊂ ri domx θ̃∞ for all r ≤ rx ,
and ∫

Bx
r

θ0
n(x, y)gx(y) dy ≥

∫
Bx

r

[(
y − ŷ(x)

) · hn(x)
]+

gx(y) dy

≥ min
Bx

r

gx

∫
Br(0)

(y · e1)
+ dy =: br

x > 0,

where e1 is an arbitrary unit vector of the affine span of domx θ̂∞. Then
we have the inequality

∫
Bx

r
θ̂0
n(x, y)gx(y) dy ≥ br

x , and since θ̂0
n has linear

growth in y by (8.10), it follows from the dominated convergence theorem that∫
Br

x
θ̂0∞(x, y)g(dy) ≥ br

x > 0 and, therefore, θ̂0∞(x, yr
x) > 0 for some yr

x ∈ Br
x .
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From the arbitrariness of r ∈ (0, rx), We deduce (8.11) as a consequence of the
convexity of θ̂0(x, ·). �

PROOF OF PROPOSITION 3.6(III). We need to prove the existence of some

θ ′ ∈ � such that θ∞ = θ ′, μ⊗pw, and θ∞ ≥ θ ′.(8.12)

For simplicity, we denote θ := θ∞. Let

F 1 := cl conv dom θ(X, ·),
F k := cl conv

(
dom θ(X, ·) ∩ aff rfX Fk−1), k ≥ 2,

and F := ⋃
n≥1

(
Fn \ cl rfX Fn)∪ cl domX θ.

Fix some sequence εn ↘ 0, and denote θ∗ := lim infn→∞ θ(X, εnX + (1 − εn)Y ),
and

θ ′ := [∞1Y /∈F(X) + 1Y∈cl domX θθ∗]1X/∈Nμ,

where Nμ ∈ Nμ is chosen such that 1Y∈Fk(X)1X/∈Nμ are Borel measurable for all
k from Lemma 6.1, and θ(x, ·) (resp., θn(x, ·)) is convex finite on domx θ (resp.
domx θn), for x /∈ Nμ. Consequently, θ ′ is measurable. In the following steps, we
verify that θ ′ satisfies (8.12).

Step 1: We prove that θ ′ ∈ �. Indeed, θ ′ ∈ L0+(�), and θ ′(X,X) = 0. Now
we prove that θ ′(x, ·) is convex for all x ∈ Rd . For x ∈ Nμ, θ ′(x, ·) = 0. For
x /∈ Nμ, θ(x, ·) is convex finite on domx θ , then by the fact that domx θ is a con-
vex relatively open set containing x, it follows from Lemma 8.1 that θ∗(x, ·) =
limn→∞ θ(x, εnx + (1 − εn)·) is the lower semicontinuous envelop of θ(x, ·) on
cl domx θ . We now prove the convexity of θ ′(x, ·) on all Rd . We denote F̂ (x) :=
F(x) \ cl domx θ so that Rd = F(x)c ∪ F̂ (x) ∪ cl domx θ . Now, let y1, y2 ∈ Rd

and λ ∈ (0,1). If y1 ∈ F(x)c, the convexity inequality is verified as θ ′(x, y1) = ∞.
Moreover, θ ′(x, ·) is constant on F̂ (x), and convex on cl domx θ . We shall prove
in steps 4 and 5 below that

F(x) is convex, and rfx F (x) = domx θ.(8.13)

In view of Proposition 3.1(ii), this implies that the sets F̂ (x) and cl domx θ are
convex. Then we only need to consider the case when y1 ∈ F̂ (x), and y2 ∈
cl domx θ . By Proposition 3.1(ii) again, we have [y1, y2) ⊂ F̂ (x) and, therefore,
λy1 + (1 − λ)y2 ∈ F̂ (x), and θ ′(x, λy1 + (1 − λ)y2) = 0, which guarantees the
convexity inequality.

Step 2: We next prove that θ = θ ′, μ⊗pw. By the second claim in (8.13),
it follows that θ∗(X, ·) is convex finite on domX θ , μ-a.s. Then as a conse-
quence of Proposition 3.4(ii), we have domX θ ′ = domX(∞1Y /∈F(X))∩domX(θ∗ ×
1Y∈cl domX θ ), μ-a.s. The first term in this intersection is rfX F(X) = domX θ .
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The second contains domX θ , as it is the domX of a function which is finite on
domX θ , which is convex relatively open, containing X. Finally, we proved that
domX θ = domX θ ′, μ-a.s. Then θ ′(X, ·) is equal to θ∗(X, ·) on domX θ and, there-
fore, equal to θ(X, ·), μ-a.s. We proved that θ = θ ′, μ⊗pw.

Step 3: We finally prove that θ ′ ≤ θ pointwise. We shall prove in Step 6 below
that

dom θ(X, ·) ⊂ F.(8.14)

Then, ∞1Y /∈F(X)1X/∈Nμ ≤ θ , and it remains to prove that

θ(x, y) ≥ θ∗(x, y) for all y ∈ cl domx θ, x /∈ Nμ.

To see this, let x /∈ Nμ. By definition of Nμ, θn(x, ·) −→ θ(x, ·) on domx θ . Notice
that θ(x, ·) is convex on domx θ and, therefore, as a consequence of Lemma 8.1,

θ∗(x, y) = lim
ε↘0

θ
(
x, εx + (1 − ε)y

)
for all y ∈ cl domx θ.

Then yε := (1 − ε)y + εx ∈ domx θn, for ε ∈ (0,1], and n sufficiently large by (i)
of this proposition and, therefore, (1 − ε)θn(x, y) − θn(x, yε) ≥ (1 − ε)θ ′

n(x, y) −
θ ′
n(x, yε) ≥ 0, for θ ′

n ∈ � such that θ ′
n = θn, μ⊗pw, and θn ≥ θ ′

n. Taking the
lim inf as n → ∞, we get (1 − ε)θ(x, y) − θ(x, yε) ≥ 0, and finally θ(x, y) ≥
limε↘0 θ(x, εx + (1 − ε)y) = θ ′(x, y), by sending ε ↘ 0.

Step 4: (First claim in (8.13)) Let x0 ∈ Rd , let us prove that F(x0) is con-
vex. Indeed, let x, y ∈ F(x0), and 0 < λ < 1. Since cl domx θ is convex, and
Fn(x0) \ cl rfX Fn(x0) is convex by Proposition 3.1(ii), we only examine the fol-
lowing nonobvious cases:

• Suppose x ∈ Fn(x0) \ cl rfx0 Fn(x0), and y ∈ Fp(x0) \ cl rfx0 Fp(x0), with
n < p. Then as Fp(x0) \ cl rfx0 Fp(x0) ⊂ cl rfx0 Fn(x0), we have λx + (1 − λ)y ∈
Fn(x0) \ cl rfx0 Fn(x0) by Proposition 3.1(ii).

• Suppose x ∈ Fn(x0) \ cl rfx0 Fn(x0), and y ∈ cl domx0 θ , then as cl domx0 θ ⊂
cl rfx0 Fn(x0), this case is handled similar to previous case.

Step 5: (Second claim in (8.13)). We have domX θ ⊂ F(X) and, therefore,
domX θ ⊂ rfX F(X). Now we prove by induction on k ≥ 1 that rfX F(X) ⊂⋃

n≥k(F
n \ cl rfX Fn) ∪ cl domX θ . The inclusion is trivially true for k = 1. Let

k ≥ 1, we suppose that the inclusions holds for k, hence rfX F(X) ⊂ ⋃
n≥k(F

n \
cl rfX Fn) ∪ cl domX θ . As

⋃
n≥k(F

n \ cl rfX Fn) ∪ cl domX θ ⊂ Fk . Applying rfX
gives

rfX F(X) ⊂ rfX

[⋃
n≥k

(
Fn \ cl rfX Fn)∪ cl domX θ

]

= rfX

[
Fk ∩ ⋃

n≥k

(
Fn \ cl rfX Fn)∪ cl domX θ

]
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= rfX Fk ∩ rfX

[⋃
n≥k

(
Fn \ cl rfX Fn)∪ cl domX θ

]

⊂ cl rfX Fk ∩ ⋃
n≥k

(
Fn \ cl rfX Fn)∪ cl domX θ

⊂ ⋃
n≥k+1

(
Fn \ cl rfX Fn)∪ cl domX θ.

Then the result is proved for all k. In particular, we apply it for k = d + 1. Recall
from the proof of Lemma 3.13 that for n ≥ d + 1, Fn is stationary at the value
cl domX θ . Then

⋃
n≥d+1(F

n \ cl rfX Fn) = ∅, and rfX F(X) ⊂ rfX cl domX θ =
domX θ . The result is proved.

Step 6: We finally prove (8.14). Indeed, dom θ(X, ·) ⊂ F 1 by definition. Then

dom θ(X, ·) ⊂ F 1 \ affF 1 ∪
( ⋃

2≤k≤d+1

(
dom θ(X, ·) ∩ aff rfX Fk−1) \ affFk

)

∪ Fd+1

⊂ F 1 \ clF 1 ∪
(⋃

k≥2

cl conv
(
dom θ(X, ·) ∩ aff rfX Fk−1) \ clFk

)

∪ cl domX θ

= ⋃
k≥1

Fk \ clFk ∪ cl domX θ = F.
�

9. Some convex analysis results. As a preparation, we first report a result on
the union of intersecting relative interiors of convex subsets which was used in the
proof of Proposition 4.1. We shall use the following characterization of the relative
interior of a convex subset K of Rd :

riK = {
x ∈Rd : x − ε

(
x′ − x

) ∈ K for some ε > 0, for all x′ ∈ K
}

(9.1)

= {
x ∈Rd : x ∈ (x′, x0], for some x0 ∈ riK, and x′ ∈ K

}
.(9.2)

We start by proving the required properties of the notion of relative face.

PROOF OF PROPOSITION 3.1. (i) The proofs of the first properties raise no
difficulties and are left as an exercise for the reader. We only prove that rfa A =
riA �= ∅ iff a ∈ riA. We assume that rfa A = riA �= ∅. The nonemptiness implies
that a ∈ A and, therefore, a ∈ rfa A = riA. Now we suppose that a ∈ riA. Then
for x ∈ riA, [x, a − ε(x − a)] ⊂ riA ⊂ A, for some ε > 0 and, therefore, riA ⊂
rfa A. On the other hand, by (9.2), riA = {x ∈ Rd : x ∈ (x′, x0], for some x0 ∈
riA, and x′ ∈ A}. Taking x0 := a ∈ riA, we have the remaining inclusion rfa A ⊂
riA.
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(ii) We now assume that A is convex.
Step 1: We first prove that rfa A is convex. Let x, y ∈ rfa A and λ ∈ [0,1]. We

consider ε > 0 such that (a − ε(x − a), x + ε(x − a)) ⊂ A and (a − ε(y − a), y +
ε(y − a)) ⊂ A. Then if we write z = λx + (1 − λ)y, we have (a − ε(z − a), z +
ε(z − a)) ⊂ A by convexity of A, because a, x, y ∈ A.

Step 2: In order to prove that rfa A is relatively open, we consider x, y ∈ rfa A,
and we verify that (x − ε(y − x), y + ε(y − x)) ⊂ rfa A for some ε > 0. Consider
the two alternatives:

Case 1: If a, x, y are on a line. If a = x = y, then the required result is obvious.
Otherwise,(

a − ε(x − a), x + ε(x − a)
)∪ (

a − ε(y − a), y + ε(y − a)
) ⊂ rfa A.

This union is open in the line and x and y are interior to it. We can find ε′ > 0 such
that (x − ε′(y − x), y + ε′(y − x)) ⊂ rfa A.

Case 2: If a, x, y are not on a line, let ε > 0 be such that (a − 2ε(x − a), x +
2ε(x −a)) ⊂ A and (a−2ε(y −a), y +2ε(y −a)) ⊂ A. Then x +ε(x −a) ∈ rfa A

and a − ε(y − a) ∈ rfa A. Then, if we take λ := ε
1+2ε

,

λ
(
a −ε(y −a)

)+ (1−λ)
(
x +ε(x −a)

) = (1−λ)(1+ε)x −λεy = x +λε(x −y).

Then x +λε(x −y) ∈ rfa A and symmetrically, y +λε(y −x) ∈ rfa A by convexity
of rfa A. And still by convexity, we have that (x −ε′(y −x), y+ε′(y −x)) ⊂ rfa A,
for ε′ := ε2

1+2ε
> 0.

Step 3: Now we prove that A\ cl rfa A is convex, and that if x0 ∈ A\ cl rfa A and
y0 ∈ A, then [x0, y0) ⊂ A\cl rfa A. We will prove these two results by an induction
on the dimension of the space d . First, if d = 0, the results are trivial. Now we
suppose that the result is proved for any d ′ < d , let us prove it for dimension d .

Case 1: a ∈ riA. This case is trivial as rfa A = riA and A ⊂ cl riA = cl rfa A

because of the convexity of A. Finally, A \ cl rfa A = ∅ which makes it trivial.
Case 2: a /∈ riA. Then a ∈ ∂A and there exists a hyperplan support H to A in a

because of the convexity of A. We will write the equation of E, the corresponding
half-space containing A, E : c · x ≤ b with c ∈ Rd and b ∈R. As x ∈ rfa A implies
that [a−ε(x−a), x+ε(x−a)] ⊂ A for some ε > 0, we have (a−ε(x−a)) ·c ≤ b

and (x + ε(x − a)) · c ≤ b. These equations are equivalent using that a ∈ H and
thus a · c = b to −ε(x − a) · c ≤ 0 and (1 + ε)(x − a) · c ≤ 0. We finally have
(x − a) · c = 0 and x ∈ H . We proved that rfa A ⊂ H .

Now using (i) together with the fact that rfa A ⊂ H and a ∈ H affine, we have

rfa(A ∩ H) = rfa A ∩ rfa H = rfa A ∩ H = rfa A.

Then we can now have the induction hypothesis on A∩H because dimH = d − 1
and A ∩ H ⊂ H is convex. Then we have A ∩ H \ cl rfa A which is convex and if
x0 ∈ A ∩ H \ cl rfa(A ∩ H), y0 ∈ A ∩ H and if λ ∈ (0,1] then λx0 + (1 − λ)y0 ∈
A \ cl rfa(A ∩ H).
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First A \ cl rfa A = (A \ H) ∪ ((A ∩ H) \ cl rfa A), let us show that this set is
convex. The two sets in the union are convex (A \ H = A ∩ (E \ H)), so we need
to show that a nontrivial convex combination of elements coming from both sets
is still in the union. We consider x ∈ A \ H , y ∈ A ∩ H \ cl rfa A and λ > 0, let
us show that z := λx + (1 − λ)y ∈ (A \ H) ∪ (A ∩ H \ cl rfa A). As x, y ∈ A

(cl rfa A ⊂ A because A is closed), z ∈ A by convexity of A. We now prove z /∈ H ,

z · c = λx · c + (1 − λ)y · c = λx · c + (1 − λ)b < λb + (1 − λ)b = b.

Then z is in the strict half-space: z ∈ E \ H . Finally, z ∈ A \ H and A \ cl rfa A is
convex.

Let us now prove the second part: we consider x0 ∈ A \ cl rfa A, y0 ∈ cl rfa A

and λ ∈ (0,1] and write z0 := λx0 + (1 − λ)y0.
Case 2.1: x0, y0 ∈ H . We apply the induction hypothesis.
Case 2.2: x0, y0 ∈ A \ H . Impossible because rfa A ⊂ H and cl rfa A ⊂

clH = H . y0 ∈ H .
Case 2.3: x0 ∈ A\H and y0 ∈ H . Then by the same computation than in Step 1,

z0 ∈ A \ H ⊂ A \ cl rfa A.

Step 4: Now we prove that if a ∈ A, then dim(rfa clA) = dim(A) if and
only if a ∈ riA, and that in this case, we have cl rfa clA = cl ri clA = clA =
cl rfa A. We first assume that a ∈ riA. As by the convexity of A, riA = ri clA,
rfa clA = ri clA and, therefore, cl rfa clA = clA. Finally, taking the dimension,
we have dim(cl rfa clA) = dim(A). In this case, we proved as well that cl rfa clA =
cl ri clA = clA = cl rfa A, the last equality coming from the fact that riA = rfa A

as a ∈ riA.
Now we assume that a /∈ riA. Then a ∈ ∂ clA, and rfa clA ⊂ ∂ clA. Taking the

dimension (in the local sense this time), and by the fact that dim ∂ clA = dim ∂A <

dimA, we have dim(cl rfa clA) < dim(A) (as cl rfa clA is convex, the two notions
of dimension coincide). �

LEMMA 9.1. Let K1,K2 ⊂ Rd be convex with riK1 ∩ riK2 �= ∅. Then
conv(riK1 ∪ riK2) = ri conv(K1 ∪ K2).

PROOF. We fix y ∈ riK1 ∩ riK2.
Let x ∈ conv(riK1 ∪ riK2), we may write x = λx1 + (1 −λ)x2, with x1 ∈ riK1,

x2 ∈ riK2 and 0 ≤ λ ≤ 1. If λ is 0 or 1, we have trivially that x ∈ ri conv(K1 ∩K2).
Let us now treat the case 0 < λ < 1. Then for x′ ∈ conv(K1 ∪ K2), we may write
x′ = λ′x′

1 + (1 − λ′)x′
2, with x′

1 ∈ K1, x′
2 ∈ K2, and 0 ≤ λ′ ≤ 1. We will use y as

a center as it is in both the sets. For all the variables, we add a bar on it when
we subtract y, for example, x̄ := x − y. The geometric problem is the same when
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translated with y,

(9.3)
x̄ − ε

(
x̄′ − x̄

) = λ

(
x̄1 − ε

(
λ′

λ
x̄′

1 − x̄1

))

+ (1 − λ)

(
x̄2 − ε

(
1 − λ′

1 − λ
x̄′

2 − x̄2

))
.

However, as x̄1 and x̄′
1 are in K1 − y, as 0 is an interior point, ε(λ′

λ
x̄′

1 − x̄1) ∈
K1 − y for ε small enough. Then as x̄1 is interior to K1 − y as well, x̄1 − ε(λ′

λ
x̄′

1 −
x̄1) ∈ K1 − y as well. By the same reasoning, x̄2 − ε(1−λ′

1−λ
x̄′

2 − x̄2) ∈ K2 − y.
Finally, by (9.3), for ε small enough, x − ε(x′ − x) ∈ conv(K1 ∪ K2). By (9.1),
x ∈ ri conv(K1 ∪ K2).

Now let x ∈ ri conv(K1 ∪ K2). We use again y as an origin with the notation
x̄ := x −y. As x̄ is interior, we may find ε > 0 such that (1+ε)x̄ ∈ conv(K1 ∪K2).
We may write (1 + ε)x̄ = λx̄1 + (1 − λ)x̄2, with x̄1 ∈ K1 − y, x̄2 ∈ K2 − y and
0 ≤ λ ≤ 1. Then x̄ = λ 1

1+ε
x̄1 +(1−λ) 1

1+ε
x̄2. By (9.2), 1

1+ε
x̄1 ∈ riK1 and 1

1+ε
x̄2 ∈

riK2, x̄ ∈ conv(ri(K1 − y) ∪ ri(K2 − y)) and, therefore, x ∈ conv(riK1 ∪ riK2).
�

Now we use the measurable selection theory to establish the nonemptiness of
∂f .

LEMMA 9.2. For all f ∈ C, we have ∂f �= ∅.

PROOF. By the fact that f is continuous, we may write ∂f (x) = ⋂
n≥1 Fn(x)

for all x ∈ Rd , with Fn(x) := {p ∈ Rd : f (yn) − f (x) ≥ p · (yn − x)} where
(yn)n≥1 ⊂ Rd is some fixed dense sequence. All Fn are measurable by the conti-
nuity of (x,p) �−→ f (yn)−f (x)−p · (yn −x) together with Theorem 6.4 in [13].
Therefore, the mapping x �−→ ∂f (x) is measurable by Lemma 7.1. Moreover, the
fact that this mapping is closed nonempty-valued is a well-known property of the
subgradient of finite convex functions in finite dimension. Then the result holds by
Theorem 4.1 in [23]. �

We conclude this section with the following result which has been used in our
proof of Proposition 3.7. We believe that this is a standard convex analysis result,
but we could not find precise references. For this reason, we report the proof for
completeness.

THEOREM 9.3. Let fn,f : Rd → R̄ be convex functions with int domf �= ∅.
Then fn −→ f pointwise on Rd \ ∂ domf if and only if fn −→ f pointwise on
some dense subset A ⊂Rd \ ∂ domf .

PROOF. We prove the nontrivial implication “if.” We first prove the conver-
gence on int domf . fn converges to f on a dense set. The reasoning will con-
sist in proving that the fn are Lipschitz, it will give a uniform convergence and
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then a pointwise convergence. First, we consider K ⊂ int domf compact convex
with nonempty interior. We can find N ∈ N and x1, . . . , xN ∈ A ∩ (int domf \ K)

such that K ⊂ int conv(x1, . . . , xN). We use the pointwise convergence on A

to get that for n large enough, fn(x) ≤ M for x ∈ conv(x1, . . . , xN), M > 0
(take M = max1≤k≤N f (xk) + 1). Then we will prove that fn is bounded from
below on K . We consider a ∈ A ∩ K and δ0 := supx∈K |x − a|. For n large
enough, fn(a) ≥ m for any a ∈ A (take, e.g., m = f (a) − 1). We write δ1 :=
min(x,y)∈K×∂ conv(x1,...,xN ) |x − y|. Finally, we write δ2 := supx,y∈conv(x1,...,xN ) |x −
y|. Now, for x ∈ K , we consider the half-line x + R+(a − x), it will cut
∂ conv(x1, . . . , xN) in one only point y ∈ ∂ conv(x1, . . . , xN). Then a ∈ [x, y] and,
therefore, a = |a−y|

|x−y|x + |a−x|
|x−y|y. By the convex inequality, fn(a) ≤ |a−y|

|x−y|fn(x) +
|a−x|
|x−y|fn(y). Then fn(x) ≥ −|a−x|

|a−y|M + |x−y|
|a−y|m ≥ − δ0

δ1
M + δ2

δ1
m. Finally, if we write

m0 := − δ0
δ1

M + δ2
δ1

m,

M ≥ fn ≥ m0 on K.

This will prove that fn is M−m0
δ1

-Lipschitz. We consider x ∈ K and a unit direction

u ∈ Sd−1 and f ′
n ∈ ∂fn(x). For a unique λ > 0, y := x + λu ∈ ∂ conv(x1, . . . , xN).

As u is a unit vector, λ = |y − x| ≥ δ1. By the convex inequality, fn(y) ≥ fn(x) +
f ′

n(x) ·(y−x). Then M −m0 ≥ δ0|f ′
n ·u|, and finally, |f ′

n ·u| ≤ M−m0
δ1

as this bound

does not depend on u, |f ′
n| ≤ M−m0

δ1
for any such subgradient. For n large enough,

the fn are uniformly Lipschitz on K , and so in f . The convergence is uniform on
K , it is then pointwise on K . As this is true for any such K , the convergence is
pointwise on int domf .

Now let us consider x ∈ (cl domf )c. The set conv(x, int domf ) \ domf has
a nonempty interior because dist(x,domf ) > 0 and int domf �= ∅. As A is
dense, we can consider a ∈ A ∩ conv(x, int domf ) \ domf . By definition of
conv(x, int domf ), we can find y ∈ int domf such that a = λy + (1 − λ)x.
We have λ < 1 because a /∈ domf . If λ = 0, fn(x) = fn(a) −→n→∞ ∞. Oth-
erwise, by the convexity inequality, fn(a) ≤ λfn(y) + (1 − λ)fn(x). Then, as
fn(a) −→n→∞ ∞, and fn(y) −→n→∞ f (y) < ∞, we have fn(x) −→n→∞ ∞.

�
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