
The Annals of Probability
2018, Vol. 46, No. 2, 1004–1041
https://doi.org/10.1214/17-AOP1199
© Institute of Mathematical Statistics, 2018

FIRST-PASSAGE PERCOLATION ON CARTESIAN
POWER GRAPHS1

BY ANDERS MARTINSSON

Chalmers University of Technology and University of Gothenburg

We consider first-passage percolation on the class of “high-dimensional”
graphs that can be written as an iterated Cartesian product G�G� . . .�G

of some base graph G as the number of factors tends to infinity. We pro-
pose a natural asymptotic lower bound on the first-passage time between
(v, v, . . . , v) and (w,w, . . . ,w) as n, the number of factors, tends to infin-
ity, which we call the critical time t∗G(v,w). Our main result characterizes
when this lower bound is sharp as n → ∞. As a corollary, we are able to
determine the limit of the so-called diagonal time-constant in Zn as n → ∞
for a large class of distributions of passage times.

1. Introduction. For any pair of graphs H1 = (V1,E1) and H2 = (V2,E2),
their Cartesian graph product, denoted by H1�H2, is defined as the graph with
vertex set equal to the Cartesian product V1 × V2 = {(v1, v2) : v1 ∈ V1, v2 ∈ V2}
and edge set equal to the disjoint union (E1 × V2) � (V1 × E2), where an edge of
the form (v, e) or (e, v) is interpreted as an edge between (v,w1) and (v,w2) or
between (w1, v) and (w2, v) respectively, where w1 and w2 denote the end-points
of e. Furthermore, this edge has the same type (undirected, directed, loop) as e.
We remark that this product is associative up to graph isomorphisms.

First-passage percolation on a graph H = (V ,E) is defined in the follow-
ing way: For each edge e in H , we assign an independent nonnegative random
weight called its passage time, denoted by T F

H (e), according to some nonnega-
tive random distribution F . For each path γ in H we define its passage time as
T F

H (γ ) = ∑
e∈γ T F

H (e). Furthermore, for each pair of vertices v,w in H we define
the first-passage time from v to w as T F

H (v,w) = infγ from v to w T F
H (γ ). Unless

states otherwise, we will assume the passage times have standard exponential dis-
tribution. For this choice of passage times, we suppress the superscript and write
TH (·) and TH (·, ·).

In the standard exponential case, first-passage percolation is closely related to
the Richardson model, see, for instance, Section 3 of [4]. This is the continuous-
time Markov chain with state space {0,1}V . Each vertex in H is assigned either
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of the states healthy, represented by a 0, or infected, represented by a 1. A healthy
vertex becomes infected at rate equal to its number of infected neighbors, and an
infected vertex stays infected forever. It is well known that if the Richardson model
is started with v as the only infected vertex, then it is possible to couple this model
to first-passage percolation on H such that w is infected a time t if TH (v,w) ≤ t .

In the classical setting of first-passage percolation, H is assumed to be the d-
dimensional integer lattice Zd with the nearest neighbour graph structure for some
d ≥ 2. Despite much research on this topic, there are still many central properties
of first-passage percolation on Zd which are poorly understood. One avenue to
obtain quantitative results in this model has been to consider the limiting behaviour
in high dimensions. In [12] (see Chapter 8), Kesten gave estimates for the time
constants in Zd in directions (1,0,0, . . . ,0) and (1,1, . . . ,1) as d → ∞ and used
this to show that, for a large class of distributions of passage times, the limit shape
is not the Euclidean ball in sufficiently high dimension. In the case of Exp(1)

passage times more precise estimates were given by [6, 8, 9]. A recent paper [3]
extends this to more general distributions. In [10], Fill and Pemantle proposed the
n-dimensional hypercube as an alternative high-dimensional graph, and this was
subsequently studied in [1, 5, 10, 15].

In this paper, we will consider first-passage percolation on a generalized class
of “high-dimensional” graphs, namely sequences of graphs {Gn}∞n=1 where Gn is
the n:th Cartesian power G� . . .�G of some fixed base graph G. For any vertex
v ∈ G we let v̄ = (v, v, . . . , v) ∈ Gn. Here we allow G to have either a finite or
(countably) infinite vertex set, it may have a mixture of directed and undirected
edges and it may have multiple edges between the same pair of vertices. In order
for sums in our analysis to converge, we will always assume that G has bounded
degree. As loops do not affect first-passage times, all graphs considered in this
paper are, without loss of generality, assumed to be loopless.

For graphs of the form Gn, there is a natural lower bound on the first-passage
time between two vertices. Let us for now assume that edge passage times are
Exp(1) distributed. This be generalized later. For any graph H , and any pair of
vertices v,w ∈ H , let �H(v,w) denote the set of not necessarily self-avoiding
paths from v to w in G, and let �sa

G (v,w) denote the subset consisting of all self-
avoiding paths. Here we consider the sequence {v} to be a self-avoiding path from
v to itself of length 0. Then, for any t ≥ 0 we have the union bound

(1.1) P
(
TH (v,w) ≤ t

) ≤ ∑
γ∈�sa

H (v,w)

P
(
TH (γ ) ≤ t

)
.

The following estimate for the distribution of sums of independent exponential
random variables is well known. A short proof will be given in Section 2.

PROPOSITION 1.1. Let Sn be a sum of n independent Exp(1) random vari-
ables. Then, for any t ≥ 0,

(1.2) e−t t
n

n! ≤ P(Sn ≤ t) ≤ tn

n! .



1006 A. MARTINSSON

Using Proposition 1.1 to bound the right-hand side of (1.1), it is easily seen that

(1.3) P
(
TH (v,w) ≤ t

) ≤ mH(v,w, t) := ∑
γ∈�H (v,w)

t |γ |

|γ |! ,

where |γ | denotes the length of γ , that is, the number of edges in γ counted with
multiplicity. Note that this sum now goes over all paths from v to w and not just
the self-avoiding ones. For v = w, we interpret the term t0

0! as 1 also for t = 0.
We will below refer to this function as the generating function of the graph H . It
can be noted that mH(v,w, t) is the vw:th element of etAH where AH denotes the
adjacency matrix of H .

When H is a Cartesian product, the generating function can be simplified by
the following observation. Again, this will be proven in Section 2.

PROPOSITION 1.2. Let H1 and H2 be two graphs with vertices v1,w1 ∈ H1
and v2,w2 ∈ H2. Then

(1.4) mH1�H2

(
(v1, v2), (w1,w2), t

) = mH1(v1,w1, t)mH2(v2,w2, t).

Letting H = Gn, it follows that

(1.5) P
(
TGn

(
(v1, . . . , vn), (w1, . . . ,wn)

) ≤ t
) ≤

n∏
i=1

mG(vi,wi, t).

In particular, if we focus on the first-passage time between vertices of the form v̄

and w̄, we obtain the bound

(1.6) P
(
TGn(v̄, w̄) ≤ t

) ≤ mG(v,w, t)n.

As a consequence of this, the critical value of t , t∗ = t∗G(v,w), given by the solu-
tion to mG(v,w, t) = 1, is an asymptotic lower bound on TGn(v̄, w̄) in the sense
that

(1.7) P
(
TGn(v̄, w̄) ≤ t∗ − ε

) → 0 as n → ∞
for any fixed ε > 0. It is clear that t∗G(v,w) exists whenever there is a path from v

to w in G. Otherwise we consider the critical time to be infinite.
Given this lower bound, it is natural to ask what can be said further about the

asymptotics of TGn(v̄, w̄). In particular, under which assumptions on G, v and w

is it true that TGn(v̄, w̄) converges to t∗G(v,w) in some sense as n → ∞? Indeed,
convergence in this way has previously been shown for oriented and unoriented
versions of the hypercube (see Section 1.2). Moreover, it follows from Proposi-
tions 1.1 and 5.3 below that mGn(v̄, w̄, t∗) = 1 is only a constant factor away from
the expected number of self-avoiding paths from v̄ to w̄ in Gn with passage time
at most t∗. Nevertheless, it turns out that the question of convergence depends
nontrivially on G, v and w.
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While the above analysis is stated for standard exponential weights, heuristi-
cally, optimal paths in high dimensional first-passage percolation typically consist
of edges with short passage times. Therefore, one would expect that only the den-
sity of the distribution near zero ultimately matters for the large n limit of the
first-passage time. For any ρ ∈ [0,∞], we define

(1.8) C(ρ) :=
{
F nonnegative distribution : lim

x↓0
F(x)/x = ρ

}
,

and

(1.9) CL1(ρ) :=
{
F ∈ C(ρ) :

∫ ∞
0

x dF(x) < ∞
}
.

The main result of this paper is a necessary and sufficient condition for for
T F

Gn(v̄, w̄) to converge to t∗G(v,w)/ρ as n → ∞ for any F ∈ C(ρ) for ρ ∈ (0,∞).
For a given G, v and w such that t∗G(v,w) < ∞, we define the function

f vw
G (s, t)

(1.10)
= ∑

x,y∈G

mG(v, x, s)mG(x, y, t)mG

(
y,w, t∗ − s − t

)
ln
(
mG(x, y, t)

)

whose domain is the set of all pairs s, t ≥ 0 such that s + t ≤ t∗. Here we inter-
pret any term of the form 0 ln 0 as 0. One can show, see Proposition 2.3, that this
sum is uniformly convergent on the domain of f vw

G for any fixed graph G. As a
consequence, this function is continuous. Further, one can note that f vw

G (0, t∗) =
f vw

G (s,0) = 0 for any 0 ≤ s ≤ t∗.

THEOREM 1.3. Let ρ ∈ (0,∞) and F ∈ C(ρ). Let G be a bounded degree
graph, and let v and w be vertices in G such that there exists a path from v to w

in G. If f vw
G (s, t) ≤ 0 for all s, t ≥ 0 such that s + t ≤ t∗ = t∗G(v,w), then

T F
Gn(v̄, w̄) → t∗

ρ
in probability as n → ∞.

Moreover, if F ∈ CL1(ρ), then convergence holds also in L1. On the other hand, if
f vw

G (s, t) > 0 for some such s and t , then there exists a c = c(G,v,w) > 0 such
that

P
(
T F

Gn(v̄, w̄) >
t∗ + c

ρ

)
→ 1 as n → ∞.

We remind the reader that G in the above theorem is allowed to have either
finite or infinite vertex sets. It may have multiple edges between the same pair of
vertices, and may have a mixture of directed and undirected edges, but is, without
loss of generality, assumed to be loopless.

We will prove Theorem 1.3 in two steps. We first show the above results in
the case where F = Exp(1). The following result immediately extends this to all
F ∈ C(ρ).
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THEOREM 1.4. Let ρ ∈ (0,∞) and F ∈ C(ρ). Let {Hn}∞n=1 be a sequence
of bounded-degree graphs (not necessarily uniformly bounded), and let vn,wn be
vertices on Hn. If

THn(vn,wn) → t in probability as n → ∞,

then

T F
Hn

(vn,wn) → t

ρ
in probability as n → ∞.

Moreover, if F ∈ CL1(ρ), the same statement holds for convergence in L1. On the
other hand if P(THn(vn,wn) < t) → 0 as n → ∞, then P(T F

Hn
(vn,wn) < t/ρ −

o(1)) → 0 for all F ∈ C(ρ).

For any explicit graph G and vertices v,w ∈ G, we can at least in principle
compute f vw

G (s, t) in order to check whether or not the criterion in Theorem 1.3
holds. Unfortunately, these calculations are often intractable by hand, and one has
to resort to numerical computations.

By brute-force searching through small graphs, it seems to be fairly common
for f vw

G (s, t) to be nonpositive for all s, t . The smallest example of a simple graph
where f vw

G has a positive global maximum is the paw graph as shown in Figure 1,
with v and w as indicated in the figure. It can be noted that the maximum is very
close to 0 (≈ 0.0008) in this case, but we believe that this is still sufficiently large
not to be an artefact of numerical error. Another noteworthy example is if we take
G to be a path graph of length k, that is Gn is the n-dimensional (k + 1)-ary

FIG. 1. The smallest example of a simple graph G and vertices v, w such that TGn(v̄, w̄) � t∗.
In this case we have t∗ ≈ 1.03. The plot on the right shows f vw

G (s, t) as a function of t for different
values of s. At first glance this function seems nonpositive, but upon more careful inspection one sees
it attains positive values for small s and t close to t∗.
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hypercube, with v and w as opposite endpoints. Then, we can see numerically that
f vw

G (s, t) is nonpositive for k = 1, . . . ,5, and appears to attain positive maxima for
all k ≥ 6.

Given the number of spurious graphs for which convergence to t∗ holds respec-
tively does not hold, it seems unlikely that the condition in Theorem 1.3 has some
natural reformulation in terms of standard graph properties. Slightly less ambi-
tiously, one might ask if there is some simple sufficient condition on G, v and w

for convergence. Indeed, at the time of writing, all counter-examples the author has
found consist of nonregular graphs. While it remains an open problem whether or
not regularity or transitivity is sufficient, we have the following result to this end.

PROPOSITION 1.5. Let G be a graph with bounded degree, and let v and w

be fixed vertices in G such that t∗(v,w) < ∞. Suppose there is a permutation σ

of the vertices of G such that, for all vertices x ∈ G, we have

(v, x) ∼= (
σ(x),w

)
and (x,w) ∼= (

v,σ (x)
)
,

where (v1, v2) ∼= (w1,w2) denotes that G has a graph automorphism ϕ such that
ϕ(v1) = w1 and ϕ(v2) = w2. Then f vw

G (s, t) ≤ 0 for all s, t .

COROLLARY 1.6. Let G be a connected graph with bounded degree, and let
F ∈ C(ρ) for ρ ∈ (0,∞). Each of the following conditions on G is sufficient for
T F

Gn(v̄, w̄) → t∗G(v,w)/ρ in probability, and assuming F ∈ CL1(ρ) also in L1, as
n → ∞ for all v,w ∈ G:

(i) G is a Cayley graph of a group G generated by a finite normal set S, that is
|S| < ∞ and gSg−1 = S ∀g ∈ G. In particular, this always holds for Cayley
graphs of finitely generated Abelian groups.

(ii) For any pair of vertices x, y ∈ G, we have (x, y) ∼= (y, x).

PROOF. For (i), take σ(x) = vx−1w. Observe that multiplication by a group
element from the left and right both induce graph automorphisms. Hence, (v, x) ∼=
(vx−1w,xx−1w) = (σ (x),w) and (x,w) ∼= (vx−1x, vx−1w) = (v, σ (x)). For (ii)
we can take σ equal to an automorphism that swaps v and w. Then, (v, x) ∼=
(σ (v), σ (x)) = (w,σ (x)) ∼= (σ (x),w) and (x,w) ∼= (σ (x), σ (w)) = (σ (x), v) ∼=
(v, σ (x)). �

1.1. Application: The high-dimensional integer lattice. Probably the most im-
portant case of a Cartesian power graph the n-dimensional integer lattice itself.
This can be seen to be the n:th Cartesian power of Z with nearest neighbour graph
structure. Note that the Cartesian power Zn coincides with the usual meaning of
this notation.

Studies of first-passage percolation on the high-dimensional integer lattice have
focused on estimating the so-called time constant along a coordinate axis, and
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along a diagonal. Let F be a nonnegative distribution with finite expectation. It is
well known, see, for instance, Section 2.2 of [4], that for any such F and any n ≥ 1
there exist constants μ(F,n) and μ∗(F,n) such that

μ(F,n) = lim
k→∞

TZn(0̄, k 
e1)

k
,(1.11)

μ∗(F,n) = lim
k→∞

TZn(0̄, k̄)

k
,(1.12)

almost surely and in L1, where 
e1 = (1,0,0, . . . ,0).
These two quantities were first considered by Kesten (Chapter 8 of [12], see

also [7]), who showed that for a large class of distributions F with density ρ near
zero, including exponential (where ρ = 1), we have μ(F,n) = �(lnn/(ρ ·n)) and
μ∗(F,n) = �(1/ρ). As a consequence of this, the limit shape is not the Euclidean
ball for any such distribution when n is sufficiently large.

In the case of Exp(1) passage times, the estimate for the time constant along an
axis was improved by Dhar [8], who showed that

(1.13) μ
(
Exp(1), n

) ∼ lnn

2n
as n → ∞.

In another, seemingly less known, paper [9], Dhar gives a lower bound on the di-
agonal time constant. This was more recently rediscovered by Couronné, Enriquez
and Gerin [6]. For any dimension n ≥ 1, we have

(1.14) μ∗(Exp(1), n
) ≥ 1

2

√
α2∗ − 1 ≈ 0.3313 . . . ,

where α∗ is the unique positive solution to cothα = α.
In a recent paper by Auffinger and Tang [3], this was generalized to other dis-

tributions. Suppose F ∈ C(ρ) for some ρ ∈ [0,∞] exists. Then

(1.15) lim
n→∞

nμ(F,n)

lnn
= 1

2ρ
,

and

(1.16) lim inf
n→∞ μ∗(F,n) ≥ 1

2ρ

√
α2∗ − 1,

where ρ = 0 and ρ = ∞ correspond to that the limits are ∞ and 0 respectively.
We remark that these results are stated with the technical condition that F(x)/x =
ρ + O(1/| lnx|) for some neighbourhood x ∈ [0, ε0], but this can be overcome
by stochastically sandwiching F between distributions F1 and F2 with constant
density ρ + ε and ρ − ε respectively near 0.

We now apply ideas from this paper to show that the bound on the diagonal
time constant above is sharp asymptotically in high dimension. By considering the
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number of paths from 0 to k in Z that take precisely i steps to the left, we see that
the generating function equals

(1.17) mZ(0, k, t) =
∞∑
i=0

(
k + 2i

i

)
tk+2i

(k + 2i)! =
∞∑
i=0

tk+2i

i!(k + i)! .

Incidentally, this is equal to Ik(2t), where Iα(x) is the modified Bessel function of
the first kind. By Corollary 1.6, we have that for any F ∈ CL1(ρ) where ρ ∈ (0,∞),
T F
Zn(0̄, k̄) → t∗Z(0, k)/ρ in probability and L1 as n → ∞.

THEOREM 1.7. Let F ∈ CL1(ρ) where ρ ∈ (0,∞). Then

lim
n→∞μ∗(F,n) = 1

2ρ

√
α2∗ − 1.

PROOF. We start by proving that t∗Z(0, k) ∼ 1
2

√
α2∗ − 1 · k as k → ∞. Let αi =

k+2i
k

. It follows by Stirling’s formula that for any i ≥ 1, we have

(1.18)
tk+2i

i!(k + i)! = �(1)√
i(k + i)

(
2et/k

g(αi)

)k+2i

,

where

(1.19) g(α) = (α + 1)
1
2 (1+ 1

α
)(α − 1)

1
2 (1− 1

α
) = exp

(
ln

√
α2 − 1 + 1

α
coth−1 α

)
.

Moreover, if we continuously extend this function to α = 1 by letting g(1) = 2, it
follows that (1.18) also holds for i = 0.

The function g(α) has derivative

(1.20) g′(α) = g(α)
1

α2

(
α − coth−1 α

)
,

and thus attains its global minimum of e
√

α2∗ − 1 at α = α∗.2 Hence, by (1.17) and
(1.18) we have that

(1.21) mZ(0, k, ak) →

⎧⎪⎪⎨
⎪⎪⎩

0 if a <
1

2

√
α2∗ − 1,

∞ if a >
1

2

√
α2∗ − 1,

as k → ∞, proving t∗Z(0, k) ∼ 1
2

√
α2∗ − 1 · k.

For any fixed k, we have by subadditivity

(1.22) μ∗(F,n) ≤ ETZn(0̄, k̄)/k = t∗Z(0, k)/(ρk) + o(1).

2Due to a small misprint in [6], this point is incorrectly stated to be the global maximum rather
than the global minimum.
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If we take the lim sup of both sides as n → ∞, and then the limit as k → ∞, it
follows that

(1.23) lim sup
n→∞

μ∗(F,n) ≤ lim
k→∞ t∗Z(0, k)/(ρk) = 1

2ρ

√
α2∗ − 1.

The corresponding lower bound is already given by (1.16). �

REMARK 1.8. Cox and Durrett [7] considered an oriented version of the di-
agonal time constant where the base graph Z is replaced by the doubly infinite
directed chain 
Z. They prove that for Exp(1) weights this time constant converges
to a value γ ∈ [e−1,2−1] as the dimension tends to infinity, and conjecture that the
limit is e−1. The author has been unable to find any further work on this problem.
To end this subsection, we note that one can prove γ = e−1 in the same way as
Theorem 1.7. Sharpness of the critical time follows by applying Proposition 1.5 to
f 0k


Z with σ(x) = k − x.

1.2. Application: The first-passage time between non-antipodal vertices in the
hypercube. The absolutely simplest example of a Cartesian power graph is the
n-dimensional directed binary hypercube. This is the graph whose vertices are the
binary n-tuples {0,1}n, and where two vertices are connected by a directed edge
if they differ at exactly one position, where the edge is directed towards the vertex
with the extra “1”. This can be obtained as a power graph P n by letting P be the
graph on two vertices 0 and 1 together with a directed edge from 0 to 1.

In this case, we have mP (0,1, t) = t . This implies that for any t ≥ 0,

(1.24) P
(
TP n(0̄, 1̄) ≤ t

) ≤ tn,

and so the critical time t∗P (0,1) = 1 is an asymptotic lower bound on TP n(0̄, 1̄) as
n → ∞. This bound was first observed by Aldous [1] and it was shown by Fill and
Pemantle in [10] that

(1.25) TP n(0̄, 1̄) → 1 in probability as n → ∞
by a rather technical second moment argument.

In order to strengthen this result using techniques from this paper, it suffices to
observe that f 01

P (s, t) = t ln t which is clearly nonpositive for 0 ≤ t ≤ 1. Hence, by
Theorem 1.3, we have

(1.26) T F
P n(0̄, 1̄) → 1/ρ

in probability for any F ∈ C(ρ) and in L1 for any F ∈ CL1(ρ) as n → ∞.
As an aside, one can use this to show a constant upper bound on T F

Gn(v̄, w̄) even
when f is positive somewhere. Let G be any graph containing vertices v,w such
that there exists a path from v to w, and let F ∈ C(ρ) for some ρ ∈ (0,∞). Then,
we have

(1.27) T F
Gn(v̄, w̄) ≤

l∑
i=1

T F
Gn(v̄i−1, v̄i) ≤ distG(v,w)/ρ + o(1),
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with probability tending to 1 as n → ∞, where the last inequality follows from
bounding T F

Gn(v̄i−1, v̄i) by T F
P n(0̄, 1̄)

As a slightly more complicated example, we have the n-dimensional undirected
binary hypercube. This is defined in the same way as above, but without assigning
directions to the edges. This graph is the n:th Cartesian power of K2, the complete
graph on two vertices. Let us again denote these vertices by 0 and 1.

Since K2 has one path from 0 to 1 of length 1, one of length 3 and so on, we get

(1.28) mK2(0,1, t) = t + t3

3! + t5

5! + · · · = sinh t.

Hence, for any t ≥ 0,

(1.29) P
(
TKn

2
(0̄, 1̄) ≤ t

) ≤ (sinh t)n,

and t∗K2
(0,1) = sinh−1(1) = ln(1 + √

2). This bound was first observed by Fill
and Pemantle in [10] by coupling first-passage percolation to a certain branching
process, called the branching translation process, and it was shown by the author
in [15] that

(1.30) TKn
2
(0̄, 1̄) → ln(1 + √

2)

in probability and Lp norm for any p ∈ [1,∞) as n → ∞ by considering the same
process. Using Corollary 1.6, we can immediately extend this result to that

(1.31) T F
Kn

2
(0̄, 1̄) → ln(1 + √

2)/ρ

in probability for any F ∈ C(ρ) and in L1 for any F ∈ CL1(ρ) as n → ∞.
A generalization of this that appears not to have been studied in this setting

before is the Hamming graphs. These are defined as the Cartesian powers Kn
q for

some q ≥ 2, where Kq is the complete graph on q vertices. We denote the vertices
of Kq by 0,1, . . . , q − 1. In this case we get

(1.32) mKq (0,1, t) = 1

q

(
e(q−1)t − e−t ).

This can be seen by computing the matrix exponential

(1.33) et(E−I ) = etE · e−tI =
(
I + E + q

2!E + q2

3! E + · · ·
)

· e−t ,

where E denotes the all ones matrix and I the identity matrix each of size q ×
q . We note that ln(q)/(q − 1) ≤ t∗Kq

(0,1) ≤ ln(q + 1)/(q − 1), and in particular

t∗Kq
(0,1) ∼ ln(q)/q as q → ∞. Again, by Corollary 1.6, T F

Kn
q
(0̄, 1̄) → t∗Kq

(0,1)/ρ

in probability for F ∈ C(ρ) and in L1 for F ∈ CL1(ρ) as n → ∞.
So far we have only considered the first-passage time between diagonal vertices

v̄ and w̄. We will now show a large n limit for the first-passage time between
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two general vertices in the case of the undirected hypercube. By symmetry of the
hypercube, the distribution of the first-passage time between two vertices depends
only on their Hamming distance. Hence, for any 0 ≤ k ≤ n, we let T F (n, k) denote
the first-passage time between two vertices at Hamming distance k in Kn

2 with
respect to distribution F . As before, we let T (n, k) = T Exp(1)(n, k). As we noted
above, we have mK2(0,1, t) = mK2(1,0, t) = sinh t . In the same way, we can see
that mK2(0,0, t) = mK2(1,1, t) = cosh t . Hence, by (1.5), we have

(1.34) P
(
T (n, k) < t

) ≤ (sinh t)k(cosh t)n−k,

for any t ≥ 0.
For any 0 ≤ x ≤ 1, let ϑ(x) denote the nonnegative solution to

(1.35) (sinhϑ)x(coshϑ)1−x = 1.

It can be seen that ϑ(x) is continuous and increasing with respect to x. We further
have ϑ(0) = 0, and ϑ(1) = sinh−1 1 = ln(1 + √

2).

THEOREM 1.9. Let ρ ∈ (0,∞). For any sequence of integers {kn}∞n=1 where
0 ≤ kn ≤ n, we have that

T F (n, kn) − 1

ρ
ϑ

(
kn

n

)
→ 0

in probability for any F ∈ C(ρ) and in L1 for any F ∈ CL1(ρ) as n → ∞.

We remark that similar statements for related processes have been shown in [13,
14].

LEMMA 1.10. We have the following:

(i) ET (n,1) = O(n−1/3).
(ii) T (n, k) is stochastically decreasing in n.

(iii) For any integers a > 0 and 0 ≤ b ≤ a, we have T (an, bn) → ϑ(b
a
) in proba-

bility and L1-norm as n → ∞.

PROOF. (i) For vertices v and w at distance one in Kn
2 there is a collection of

n edge disjoint paths between v and w of length at most three. Hence, T (n,1) is
stochastically smaller than the minimum of n independent �(3,1) variables. (ii)
Consider Kn

2 as a subgraph of Kn+1
2 . Then first-passage times in Kn

2 dominate
those in Kn+1

2 . (iii) This follows from Corollary 1.6 by using Ka
n as the base graph

and choosing v and w such that distKa
2
(v,w) = b. �

PROOF OF THEOREM 1.9. Assume the statement is false for some F and
some sequence {kn}∞n=1. Then there exists a subsequence {kni

}∞i=1 such that

(1.36) T F (ni, kni
) − 1

ρ
ϑ

(
kni

ni

)
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does not tend to 0 in the appropriate sense,
kni

ni
→ r ∈ [0,1] and kni

is either
bounded or tending to infinity. In order to prove that this cannot happen, it suf-
fices by Theorem 1.4 to prove that, for any such sequence,

(1.37) E
∣∣T (ni, kni

) − ϑ(r)
∣∣ → 0 as i → ∞,

with standard exponential passage times.
Assume r > 0. For any 0 < t < ϑ(r), we have by (1.34)

P
(
T (ni, kni

) ≤ t
) ≤ (

sinh(t)kni
/ni cosh(t)1−kni

/ni
)ni .

As i → ∞, the base in the right-hand side tends to sinh(t)r cosh(t)1−r < 1, hence
the right-hand side tends to 0. As this holds for t arbitrarily close to ϑ(r), we
conclude that

(1.38) P
(
T (ni, kni

) ≥ ϑ(r) − o(1)
) → 1 as i → ∞.

Note that as T (ni, kni
) is nonnegative, this holds trivially for r = 0.

Let a > 0 by a large integer and let b be the smallest integer such that b
a

≥ kni

ni

for all but finitely many i. Note that b ≤ a. Then, by subadditivity we have

ET (ni, kni
) ≤ ET

(
ni, b

⌊
kni

b

⌋)
+ET

(
ni, b

(
kni

b
−

⌊
kni

b

⌋))
.

As 0 ≤ b(
kni

b
−� kni

b
�) ≤ b, it follows by Lemma 1.10(i) that the second term in the

right-hand side is at most bET (ni,1) = O(an
−1/3
i ) which tends to 0 as i → ∞.

By the choice of b, we know that a� kni

b
� ≤ ni for i sufficiently large, hence by

Lemma 1.10(ii),

ET

(
ni, b

⌊
kni

b

⌋)
≤ ET

(
a

⌊
kni

b

⌋
, b

⌊
kni

b

⌋)
.

Assuming kni
→ ∞ as i → ∞, Lemma 1.10(iii) implies that the right-hand side

tends to ϑ(b
a
) as i → ∞. As b

a
can be made arbitrarily close to r by taking a

sufficiently large, we conclude that

(1.39) lim sup
i→∞

ET (ni, kni
) ≤ ϑ(r).

Note that by Lemma 1.10(i) this also holds for kni
bounded.

By combining (1.38) and (1.39), we conclude that T (ni, kni
) tends to ϑ(r) in

L1-norm, as desired. �

1.3. Reading instructions. The remainder of the paper is structured as follows:
In Section 2, we will show some properties of the generating function, including
Propositions 1.1 and 1.2, and introduce a conditioned random walk, which will
be useful in later sections. The proofs of Theorem 1.3 in the case of standard
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exponential distribution and Proposition 1.5 are divided between Sections 3, 4,
and 5, which may be read independently of each other.

In Section 3, we prove Proposition 1.5. Section 4 proves that the critical time
is not a sharp bound on the first-passage time if f vw

G (s, t) > 0 for some s, t in
its domain. The proof that TGn(v̄, w̄) → t∗ if f vw

G ≤ 0 is given in Section 5. Fi-
nally, Section 6 gives a self-sufficient proof of Theorem 1.4, which implies that
Theorem 1.3 holds for general distributions.

2. Proofs of basic properties.

PROOF OF PROPOSITION 1.1. We have

P(Sn ≤ t) =
∫

· · ·
∫

t1,...,tn≥0

1t1+···+tn≤t e
−t1−···−tn dt1 · · · dtn

≤
∫

· · ·
∫

t1,...,tn≥0

1t1+···+tn≤t dt1 · · · dtn

=
∫

· · ·
∫

0≤s1≤···≤sn≤t

ds1 · · · dsn

= tn

n! ,
where, in the second last step, we used the substitution si = t1 + · · · + ti for 1 ≤
i ≤ n. Similarly, we obtain the lower bound

P(Sn ≤ t) ≥ e−t
∫

· · ·
∫

t1,...,tn≥0

1t1+···+tn≤t dt1 · · · dtn = e−t t
n

n! . �

PROOF OF PROPOSITION 1.2. For any path γ ∈ �H1�H2((v1, v2), (w1,w2)),
we can note that its projections on the first and second coordinate respectively form
paths γ1 ∈ �H1(v1,w1) and γ2 ∈ �H2(v2,w2). Moreover, for each pair γ1, γ2 there
are

(|γ1|+|γ2||γ1|
)

such paths γ in H1�H2. This implies that

mH1�H2

(
(v1, v2), (w1,w2), t

)
= ∑

γ∈�H1�H2
((v1,v2),(w1,w2))

t |γ |

|γ |!

= ∑
γ1∈�H1 (v1,w1)

∑
γ2∈�H2 (v2,w2)

(|γ1| + |γ2|)!
|γ1|!|γ2|!

t |γ1|+|γ2|

(|γ1| + |γ2|)!
= mH1(v1,w1, t)mH2(v2,w2, t). �
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PROPOSITION 2.1. For any graph H and any vertices v, w we have

(2.1)
∑
x∈H

mH(v, x, s)mH(x,w, t) = mH(v,w, s + t).

PROOF. Note that the concatenation of any path γ1 from v to a vertex x, and
any path γ2 from x to w forms a path in �H(v,w). Using this, we have

∑
x∈H

mH(v, x, s)mH(x,w, t) = ∑
γ∈�H (v,w)

∑
γ1+γ2=γ

s|γ1|

|γ1|!
t |γ2|

|γ2|!

= ∑
γ∈�H (v,w)

|γ |∑
k=0

skt |γ |−k

k!(|γ | − k)!

= ∑
γ∈�H (v,w)

1

|γ |!
|γ |∑
k=0

(|γ |
k

)
skt |γ |−k

= ∑
γ∈�H (v,w)

(s + t)|γ |

|γ |! .
�

LEMMA 2.2. Let H be a fixed graph and let � = �(H) denote the max-
imal degree of any vertex in H . Then, for any vertex v ∈ H and any t ≥ 0,∑

x∈H mH(v, x, t) and
∑

x∈H mH(x, v, t) are at most e�t . Furthermore,

(2.2) mH(v,w, t) =
{
O(t) if v �= w,

1 + O
(
t2) if v = w,

uniformly over all vertices v,w and 0 ≤ t ≤ M for any M > 0.

PROOF. Since the degree of any vertex in H is at most �, then there are at
most �k paths of length k starting at v or ending at v respectively. This implies

the bound 1+�t + �2t2

2 +· · · = e�t for both
∑

x mH (v, x, t) and
∑

x mH(x, v, t).
Since there are no paths of length 0 from v to w if v �= w, we get mH(v,w, t) ≤
e�t − 1 = O(t). Similarly, since there are no paths from v to v of length 1, 1 ≤
mH(v, v, t) ≤ e�t − �t = 1 + O(t2). �

PROPOSITION 2.3. For a graph H with distinct vertices v and w such that
t∗H (v,w) < ∞, we have, for any M > 0 and ε > 0, that the sum

(2.3) gvw
H (s, t, u,α) = ∑

x,y∈H

mH(v, x, s)mH(x, y, t)1+αmH(y,w,u)

together with all its term-wise α-derivatives converges uniformly for 0 ≤ s, t, u ≤
M and −1 + ε ≤ α ≤ M . In particular, f vw

H (s, t) = ∂gvw
H

∂α
(s, t, t∗ − s − t,0) is



1018 A. MARTINSSON

continuous, and

(2.4) gvw
H

(
s, t, t∗ − s − t, α

) = 1 + αf vw
H (s, t) + O

((
t∗ − t

)
α2),

for any s, t ≥ 0 such that s + t ≤ t∗ and 1 − ε ≤ α ≤ M .

PROOF. As mH(x, y, t) is uniformly bounded over all x, y and 0 ≤ t ≤ M , it
follows that, for any fixed n ≥ 0, we have

∂n

∂αn
mH(x, y, t)1+α = mH(x, y, t)1+α(lnmH(x, y, t)

)n
,

bounded in absolute value by a constant Cn = Cn(M) > 0 for 0 ≤ t ≤ M and −1+
ε ≤ α ≤ M . Hence, by Lemma 2.2 the sum for ∂n

∂αn gvw
H (s, t, u,α) is dominated by∑

x,y∈H

mH(v, x,M)CnmH(y,w,M) ≤ Cne
2�M,

thus, we have uniform convergence.
As for (2.4), it remains to show that

∂2

∂α2 gvw
H

(
s, t, t∗ − s − t, α

)
= ∑

x,y∈H

mH(v, x, s)mH(x, y, t)1+α(lnmH(x, y, t)
)2

mH

(
y,w, t∗ − s − t

)

is O(t∗ − t). When x = v and y = w, the summand is bounded by a constant times
(lnmH(v,w, t))2. By Taylor expanding mH(v,w, t) around t = t∗, we see that the
this is O((t∗ − t)2). Using Lemma 2.2, the sum of the remaining terms is bounded
from above by

C2
∑

x �=v or y �=w

mH(v, x, s)mH

(
y,w, t∗ − s − t

)

= C2
∑

x,y∈H

mH(v, x, s)mH

(
y,w, t∗ − s − t

)

− C2mH(v, v, s)mH

(
w,w, t∗ − s − t

)
≤ C2

(
e�se�(t∗−s−t) − (

1 + O
(
s2))(1 + O

((
t∗ − s − t

)2)))
= O

(
t∗ − t

)
. �

We will now introduce a kind of random walk that will simplify the proofs of
Proposition 1.5 and the case in Theorem 1.3 where TGn(v̄, w̄) → t∗. Let H be a
graph, and let v,w be vertices in H . Let �o = �o(H) denote the maximal out-
degree of any vertex in H . Let {X̃t }∞t=0 be the continuous-time random walk on H

defined as follows: Initially we have X̃ = v. After this, the random walker takes
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steps at rate �o(H). Whenever it takes a step, the walker randomly chooses an
outgoing edge from X̃, each with probability 1/�o(H), and moves to the opposite
end-point of that edge. Note that if the out-degree of X̃ is strictly less than �o(H),
then there is a positive probability of no edge being chosen. If this occurs, we
move the walker to an absorbing fail state. Equivalently, we can imagine that we
have added directed edges from the vertices of H to a sink so that all vertices have
out-degree equal to �o. We define the conditioned random walk from v to w on
H in time s, {Xt }st=0, as the conditioned process {X̃t }st=0 given X̃s = w.

One important observation to make about this process is that if {Xt }st=0 is the
conditioned random walk from (v1, v2) to (w1,w2) on H1�H2 in time s, then
its coordinates form two independent conditioned random walks from v1 to w1
on H1 and from v2 to w2 on H2 respectively, in time s. This follows from the
coordinate-wise independence of the corresponding process {X̃t }st=0. More pre-
cisely, in this case the coordinates of {X̃t }st=0 take steps independently at rates
�o(H1) and �o(H2) respectively, and the walk fails whenever one of the coordi-
nates fails.

LEMMA 2.4. For any path γ in H starting at v, the probability that X̃ traces
γ during [0, s] is

P
(
Poiss(�0s) = |γ |) × 1

�
|γ |
o

= e−�os
s|γ |

|γ |! .

Moreover, for t∗ = t∗H (v,w), we have

P(X̃t∗ = w) = e−�ot
∗
.

PROOF. In order for X̃ to trace γ during [0, s] it must take precisely |γ | steps
during this time, and these steps must be the successive edges of γ , which implies
the first statement. Letting s = t∗ and summing this over all γ ∈ �H(v,w), we get

P(X̃t∗ = w) = e−�ot
∗
mH

(
v,w, t∗

) = e−�ot
∗
. �

The following simple consequence of this lemma is useful in considering the
conditioned random walk.

PROPOSITION 2.5. Let {Xt }t∗t=0 be the conditioned random walk from v to
w on H in time t∗, and let {X̃t }t∗t=0 be the corresponding unconditioned process.
Then

P(X ∈ ·) ≤ e�ot
∗
P(X̃ ∈ ·),

that is, the probability of any event for X is at most a constant times the corre-
sponding event for X̃.
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PROOF. P(X ∈ ·) = P(X̃ ∈ · | X̃t∗ = w) = P(X̃∈·∧X̃t∗=w)

P(X̃t∗=w)
= e�ot

∗
P(X̃ ∈ · ∧

X̃t∗ = w) ≤ e�ot
∗
P(X̃ ∈ ·). �

PROPOSITION 2.6. Let {Xt }t∗t=0 be as above and let γ ∈ �H(v,w). Then,

(2.5) P(X traces γ ) = (t∗)|γ |

|γ |! .

Furthermore, for any 0 < t1 < · · · < t|γ | < t∗, the probability that X traces γ and
takes its steps during [t1, t1 + dt1), [t2, t2 + dt2), . . . and so on is dt1 dt2 · · · dt|γ |.

PROOF. For any γ ∈ �H(v,w), we have by Lemma 2.4 that

P(X traces γ ) = P
(
X̃ traces γ during

[
0, t∗

])
/P(X̃t∗ = w) = (t∗)|γ |

|γ |! .

Furthermore, if we condition on X tracing γ , then the step times are distributed as a
Poisson process with rate �o conditioned on the number of arrivals in [0, t∗] being
equal to |γ |, that is as the order statistics of a |γ |-sample following the uniform law
on [0, t∗]. Hence, the probability for the steps to occur during the above intervals
is |γ |!(t∗)−|γ | dt1 dt2 · · · dt|γ |. �

Finally, we show a useful connection between the conditioned random walks
and certain sums containing the generating function. One can observe that, by
Proposition 2.1, for any 0 ≤ t1 ≤ · · · ≤ tk ≤ t∗ = t∗H (v,w), we have

∑
x1,...,xk∈H

mH(v, x1, t1)mH (x1, x2, t2 − t1) · · · · · mH

(
xk,w, t∗ − tk

)

= mH

(
v,w, t∗

) = 1,

hence this sum defines a probability distribution on x1, . . . , xk .

PROPOSITION 2.7. Let {Xt }t∗t=0 be as above, and let 0 ≤ t1 ≤ · · · ≤ tk ≤ t∗
and x1, . . . , xk ∈ H . Then

P(Xti = xi for 1 ≤ i ≤ k)

= mH(v, x1, t1)mH (x1, x2, t2 − t1) · · · · · mH

(
xk,w, t∗ − tk

)
.

(2.6)

As a consequence,

(2.7) f vw
H (s, t) = E lnmH(Xs,Xs+t , t).
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PROOF. Let us, to simplify notation, write x0 = v, xk+1 = w, t0 = 0 and
tk+1 = t∗. For any 0 ≤ i ≤ k, we have

P(X̃ti+1 = xi+1 | X̃ti = xi) = ∑
γ∈�H (xi ,xi+1)

e−�o(H)(ti+1−ti )
(ti+1 − ti)

|γ |

|γ |!
= e−�o(H)(ti+1−ti )mH (xi, xi+1, ti+1 − ti).

The proposition follows by multiplying these and using Lemma 2.4. �

3. Proof of Proposition 1.5. Throughout this section, G denotes a graph con-
taining distinct vertices v and w such that t∗ = t∗G(v,w) < ∞. We assume that
there exists a permutation σ of the (possibly countably infinite) vertex set of G

such that (v, x) ∼= (σ (x),w) and (x,w) ∼= (v, σ (x)) for all x ∈ G.

LEMMA 3.1. For any G, v and w as above, the function f vw
G (s, t) as defined

in (1.10) does not depend on s.

PROOF. Writing x′ = σ(x) and y′ = σ(y), we have by the second isomor-
phism that, for any x ∈ G,∑

y∈G

mG(x, y, t) lnmG(x, y, t)mG

(
y,w, t∗ − s − t

)

= ∑
y′∈G

mG

(
v, y′, t

)
lnmG

(
v, y′, t

)
mG

(
y′, x′, t∗ − s − t

)
.

Hence,

f vw
G (s, t) = ∑

x′,y′∈G

mG

(
v, y′, t

)
lnmG

(
v, y′, t

)
mG

(
y′, x′, t∗ − s − t

)
mG

(
x′,w, s

)

= ∑
y′∈G

mG

(
v, y′, t

)
lnmG

(
v, y′, t

)
mG

(
y′,w, t∗ − t

)
,

where the last step follows from Proposition 2.1. �

As f vw
G (s, t) does not depend on s, we now write f vw

G (t). What remains to
show is that independence of s implies that f vw

G (t) is convex in t . As f vw
G (0) =

f vw
G (t∗) = 0, this will imply that f vw

G ≤ 0, as desired. We do this by interpreting
this function in terms of entropy of the conditioned random walk. For a random
variable X taking values in a finite or countable set, its entropy is given by

(3.1) H(X) = −∑
x

P(X = x) lnP(X = x).

Furthermore, if Y is another random variable defined on the same probability space
as X, the conditional entropy of X given Y is

(3.2) H(X | Y) = H(X,Y ) −H(Y ),
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where H(X,Y ) is the entropy of the joint random variable (X,Y ). See for instance
Lemma 15.7.1 in [2] for proofs of standard properties of entropy.

Let {Xt }t∗t=0 be the conditioned random walk on G from v to w in time t∗ as
defined in Section 2. By Proposition 2.7, we have for any 0 ≤ a ≤ b ≤ t∗ that

(3.3) H(Xb | Xa) = f vw
G

(
t∗ − a

) − f vw
G (b − a) − f vw

G

(
t∗ − b

)
.

As the conditioned random walk is Markovian, H(Xb | Xa) is decreasing in a for
a ≤ b and b fixed. Hence, for any t, δ ≥ 0 such that 0 ≤ t − δ ≤ t + δ ≤ t∗, we have

0 ≤H(Xt∗−δ | Xt∗−t−δ) −H(Xt∗−δ | Xt∗−t )

= f vw
G (t − δ) + f vw

G (t + δ) − 2f vw
G (t).

It follows that f vw
G (t) is midpoint-convex, hence, as it is continuous, it is convex,

as desired.

REMARK 3.2. For any G,v and w as above it can be noted that

(3.4) f vw
G

(
t∗

2

)
= −1

2
H(Xt∗

2
),

which is strictly negative as Xt∗
2

has nontrivial distribution. Combining this with

f vw
G (0) = f vw

G (t∗) = 0 and convexity it follows that f vw
G (t) ≤ −�(t(t∗ − t)) for

0 ≤ t ≤ t∗ in this case.

4. The critical time is not always sharp. The aim of this section is to prove
the second part of Theorem 1.3 in the case of the standard exponential distribution.
Our strategy will be based on the following observation.

PROPOSITION 4.1. Let H be a graph. For any vertices v,w ∈ H and s, t ≥ 0,
we have

(4.1) P
(
TH (v,w) ≤ s + t

) ≤ ∑
x∈H

P
(
TH (v, x) ≤ s

)
P
(
TH (x,w) ≤ t

)
.

Note that the event that TH (v,w) ≤ s + t is not contained in the event that there
exists an x such that TH (v, x) ≤ s and TH (x,w) ≤ t .

PROOF. Run the Richardson model with initial infected vertex v for s time.
Consider each existing infectious particle at this time as a distinct type, labelled
by its location, and run the model for additional time t . For each vertex x ∈ H ,
w has a type x infection at time s + t if x is infected at time s and if this in-
fection spreads to w during the remaining time t . The probability of the former
is clearly P(TH (v, x) ≤ s), and given the former the probability of the latter is at
most P(TH (x,w) ≤ t). Note the inequality, because now the infection competes
with other types. �
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As a direct consequence of Proposition 4.1, we have for any s, t, u ≥ 0 that

P
(
TGn(v̄, w̄) ≤ s + t + u

)
≤ ∑

x,y∈Gn

P
(
TGn(v̄, x) ≤ s

)
P
(
TGn(x, y) ≤ t

)
P
(
TGn(y, w̄) ≤ u

)
.

(4.2)

A natural way to bound this sum is to replace each factor in the right-hand side by
the corresponding value of the generating function according to (1.3), that is

(4.3) P
(
TGn(v̄, w̄) ≤ s + t + u

) ≤ ∑
x,y∈Gn

mGn(v̄, x, s)mGn(x, y, t)mGn(y, w̄, u).

However, according to Proposition 2.1, this is equal to mGn(v̄, w̄, s + t + u), so
this bound in itself gives no improvement on (1.6). On the other hand, what can
happen and which then allows us to derive a better bound on the first-passage time
is that for certain choices of G,v,w most of the contribution to the right-hand
side of (4.3) comes from terms where mGn(x, y, t) is much larger than one. This
motivates us to instead use the bound

P
(
TGn(x, y) ≤ t

) ≤ P
(
TGn(x, y) ≤ t

)1−α ≤ mGn(x, y, t)1−α

for α > 0 sufficiently small. By Proposition 1.2, this implies that

P
(
TGn(v̄, w̄) ≤ s + t + u

) ≤ ∑
x,y∈Gn

mGn(v̄, x, s)mGn(x, y, t)1−αmGn(y, w̄, u)

=
( ∑

x,y∈G

mG(v, x, s)mG(x, y, t)1−αmG(y,w,u)

)n

.

Pick s and t such that f vw
G (s, t) > 0 and let u = t∗ − s − t . By Proposition 2.3 and

in particular (2.4), we have∑
x,y∈G

mG(v, x, s)mG(x, y, t)1−αmG

(
y,w, t∗ − s − t

)
(4.4)

= 1 − αf vw
G (s, t) + O

(
α2).

Picking α sufficiently small so that this expression is strictly less than one it follows
by continuity of this sum, as shown in Proposition 2.3, that there exists a c > 0 such
that ∑

x,y∈G

mG(v, x, s)mG(x, y, t)1−αmG(y,w,u) < 1

for any t∗ − s − t ≤ u ≤ t∗ − s − t + c. Hence, P(TGn(v̄, w̄) ≤ t∗ + c) → 0 as
n → ∞.
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5. The case where the critical time is sharp. Let G be a graph with distinct
vertices v and w such that t∗ = t∗G(v,w) < ∞. The aim of this section is to prove
the first part of Theorem 1.3 in the case of the standard exponential distribution.

The proof strategy is divided into two steps. We first show that if f vw
G (s, t) ≤ 0

everywhere, then P(TGn(v̄, w̄) ≤ t∗ + o(1)) is bounded away from 0 as n → ∞.
Second, we show that if, for some t ≥ 0, P(TGn(v̄, w̄) ≤ t) is bounded away from
zero as n → ∞, then ETGn(v̄, w̄) ≤ t + o(1). As TGn(v̄, w̄) is nonnegative and
asymptotically almost surely at least t∗ − o(1), this implies that TGn(v̄, w̄) → t∗
in probability and L1 as n → ∞, as desired.

Section 5.1 shows the first step of this proof under the additional assumption
that f vw

G (s, t) = −�(t(t∗ − t)). As noted in Remark 3.2, this stronger assumption
holds for all G,v,w that satisfy Proposition 1.5 and hence also Corollary 1.6.
In Section 5.2, we present a bootstrap argument which shows the second step of
the proof. Finally, in Section 5.3 we show how the assumption of f vw

G (s, t) =
−�(t(t∗ − t)) in the first subsection can be relaxed to f vw

G ≤ 0 by considering a
generalization to certain weighted graphs.

5.1. A positive probability upper bound. We will begin by proving a lower
bound on the probability that TH (v,w) is at most t∗H(v,w) for any graph H and
vertices v and w in terms of the conditioned random walk on H .

PROPOSITION 5.1. Let H be a graph with distinct vertices v and w such that
t∗H(v,w) < ∞. Let {Xt }t∗t=0 be a conditioned random walk from v to w on H in
time t∗ = t∗H(v,w). Let L denote the number of steps the walker takes, and for any
1 ≤ i ≤ L, let Ti denote the time of the i:th jump. To simplify notation we write
T0 = 0. Let

(5.1) C(X) = ∑
0≤i<j≤L

mH(XTi
,XTj

, Tj − Ti).

Then,

(5.2) P
(
TH (v,w) ≤ t∗

) ≥ E
[
1X is self-avoidinge

−C(X)].
PROOF. A self-avoiding path γ from v to w in H is a geodesic if TH (γ ) =

TH (v,w). We say that γ is the unique geodesic from v to w if TH (γ ′) > TH (v,w)

for all γ ′ ∈ �as
H (v,w) \ {γ }.

Pick any γ ∈ �sa
H (v,w). We denote the vertices along γ by v = v0, v1, . . . ,

v|γ | = w and the edges by e1, . . . , e|γ |. Let t1, . . . , t|γ | ≥ 0 such that t1 +· · ·+ t|γ | ≤
t∗ and condition on the event that TH (ei) = ti for all 1 ≤ i ≤ |γ |. We derive a lower
bound on the probability that γ is the unique geodesic from v to w.

By some straight-forward combinatorial reasoning, one sees that if γ is not a
unique geodesic, then there must exist a shortcut γ ′ of γ , that is, a self-avoiding
path γ ′ from vi to vj for some i < j such that γ ′ shares no edges with γ and
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TH (γ ′) ≤ ti+1 +· · ·+ tj . Note that by this definition a shortcut need not be strictly
faster than the corresponding segment in γ , just as fast, though the probability
that equality holds for any γ ′ is clearly 0. The event that a certain path γ ′ is not
a shortcut is clearly increasing with respect to the passage times of edges in H

which are not in γ . Hence, by the FKG inequality, see Section 2.2 in [11],

P
(
γ unique geodesic | TH (ei) = ti ,1 ≤ i ≤ |γ |)

≥ ∏
γ ′

(
1 − P

(
γ ′ shortcut | TH (ei) = ti ,1 ≤ i ≤ |γ |)).(5.3)

We remark that [11] only states this inequality for finite collections of events, but
this immediately extends to countable collections as here by continuity of the prob-
ability measure.

Since mH(x, y, t) is an upper bound on the expected number of self-avoiding
paths from x to y with passage time at most t , it follows that∑

γ ′
P
(
γ ′ shortcut | TH (ei) = ti ,1 ≤ i ≤ |γ |)

≤ ∑
0≤i<j≤|γ |

mH(vi, vj , ti+1 + · · · + tj ) := CH(γ, t1, . . . , t|γ |).
(5.4)

Now, for any specific γ ′, it is easily seen that the probability of it being a short-
cut is at most the probability that an Exp(1) random variable is at most t∗, which

is 1 − e−t∗ . Using the elementary inequality 1 − p ≥ e
ln(1−ε)

ε
p for 0 ≤ p ≤ ε, it

follows from (5.3) and (5.4) that

P
(
γ unique geodesic | TH (ei) = ti ,1 ≤ i ≤ |γ |)

≥ exp
(
− t∗

1 − e−t∗ CH(γ, t1, . . . , t|γ |)
)
.

(5.5)

Taking the expected value over the passage times along γ and summing over all
self-avoiding paths from v to w, we obtain

P
(
TH (v,w) ≤ t∗

)
≥ ∑

γ∈�sa
H (v,w)

∫
· · ·

∫
∑

i ti≤t∗
e
− t∗

1−e−t∗ CH (γ,t1,...,t|γ |)−t1−···−t|γ |
dt1 · · ·dt|γ |.(5.6)

Let us now use a small trick in order to simplify this expression. Let k be a
large integer, and define H ′ as the graph with the same vertex set as H and which
contains k copies of each edge in H . It is easily seen that:

(i) TH (v,w) has the same distribution as kTH ′(v,w)

(ii) for each path γ in �H(x, y) there are k|γ | copies in �H ′(x, y)

(iii) mH(x, y, t) = mH ′(x, y, t/k)

(iv) t∗H ′(v,w) = t∗/k.
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Applying (5.6) to H ′, it follows that

P
(
TH (v,w) ≤ t∗

)
≥ ∑

γ∈�sa
H ′ (v,w)

∫
· · ·

∫
∑

i ti≤t∗/k

e
− t∗/k

1−e−t∗/k
CH ′ (γ,t1,...,t|γ |)−t1−···−t|γ |

dt1 · · ·dt|γ |

= ∑
γ∈�sa

H (v,w)

k|γ |
∫

· · ·
∫

∑
i ti≤t∗/k

e
− t∗/k

1−e−t∗/k
CH (γ,kt1,...,kt|γ |)−t1−···−t|γ |

dt1 · · ·dt|γ |

= ∑
γ∈�sa

H (v,w)

∫
· · ·

∫
∑

i ti≤t∗
e
− t∗/k

1−e−t∗/k
CH (γ,t1,··· ,t|γ |)−t1/k−···−t|γ |/k

dt1 · · ·dt|γ |.

Letting k → ∞, we obtain the final bound

(5.7) P
(
TH (v,w) ≤ t∗

) ≥ ∑
γ∈�sa

H (v,w)

∫
· · ·

∫
∑

i ti≤t∗
e−CH (γ,t1,...,t|γ |) dt1 · · ·dt|γ |.

The proposition follows from Proposition 2.6 by identifying the right-hand side in
terms of {Xt }t∗t=0. �

Pick any G,v and w such that t∗G(v,w) < ∞. Below, we let {Xt }t∗t=0 be the
conditioned random walk on Gn from v̄ to w̄ in time t∗ = t∗G(v,w). In accordance
with the above proposition, we let L denote the number of steps taken by Xt , let
T1, . . . , TL be the times of these steps, and let T0 = 0. We denote the coordinates of
Xt by X1

t , . . . ,X
n
t . Recall that each coordinate is an independent copy of {Yt }t∗t=0,

the conditioned random walk from v to w on G in time t∗. We begin by making
the following observation about Yt :

LEMMA 5.2. For s, t ≥ 0 such that s + t ≤ t∗ we have that

(5.8) P(Ys �= Ys+t ) = �(t),

hence P(Ys = Ys+t ) ≤ e−�(t).

PROOF. Let v = v0, v1, . . . , vl = w be a shortest path from v to w in G. Then

P(Ys �= Ys+t ) ≥
l−1∑
k=0

P(Ys = vk, Ys+t = vk+1)

=
l−1∑
k=0

mG(v, vk, s)mG(vk, vk+1, t)mG

(
vk+1, vl, t

∗ − s − t
)

≥
l−1∑
k=0

sk

k! t
(t∗ − s − t)l−k−1

(l − k − 1)! = t (t∗ − t)l−1

(l − 1)! .
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We further have

P(Ys �= Ys+t ) ≥ P(Ys = v,Ys+t = w)

= mG(v, v, s)mG(v,w, t)mG

(
w,w, t∗ − s − t

)
≥ mG(v,w, t).

The lemma follows by using the first bound for, say, t ≤ t∗/2, and the second for
t > t∗/2. �

Recall that �H(v,w) and �sa
H (v,w) denote the set of all paths from v to w in

H and the set of self-avoiding such paths, respectively.

PROPOSITION 5.3. We have

(5.9)
∑

γ∈�sa
Gn(v̄,w̄)

(t∗)|γ |

|γ |! = P(X self-avoiding) ≥ (
1 − O

(
n−1))e−(�ot

∗)2
,

where �o = �o(G) denotes the maximal out-degree of any vertex in G.

PROOF. Note that the first equality in (5.9) is a direct consequence of (2.5)
and Proposition 1.2.

We say that a path given by the vertex sequence v0, v1, . . . , vl is almost self-
avoiding if vi = vj only if |i −j | ≤ 2. We will start by showing that the probability
that Xt is almost self-avoiding tends to one as n → ∞.

Let v̄ = v0, v1, . . . , vL = w̄ denote the vertices along the path traced by Xt .
Suppose that this path is not almost self-avoiding, that is there exist i, j satisfying
j ≥ i + 3 such that vj = vi . As G contains no loops, there are only three possible
ways this can occur:

• The random walker changes the same coordinate at times Ti+1 and Tj , and this
coordinate has been changed at least once more during (Ti+1, Tj ). All other
coordinates are the same at times Ti+1 and Tj .

• The random walker changes the same coordinate at times Ti+1 and Tj , and there
is another coordinate that has been changed at least twice during (Ti+1, Tj ). All
other coordinates are the same at times Ti+1 and Tj .

• The random walker changes different coordinates at times Ti+1 and Tj , both of
which have changed at least once more during (Ti+1, Tj ). All other coordinates
are the same at times Ti+1 and Tj .

We start by considering the expected number of occurrences of the first case.
Clearly, this is the same as n times the expected number of occurrences corre-
sponding to the first coordinate. By Proposition 2.5, the probability that the first
coordinate changes during [s, s + ds), during [s + t, s + t + dt) and at least once
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more during (s, s + t) for s, t > 0 such that s + t < t∗ is O(t) ds dt . Hence, by
Lemma 5.2, we get the upper bound

n

∫ t∗

0

∫ t∗−t

0

(
n∏

k=2

P
(
Xk

s = Xk
s+t

))
O(t) ds dt

≤ n

∫ t∗

0

∫ t∗−t

0
O(t)e−(n−1)�(t) ds dt

≤ n

∫ ∞
0

O(t)e−(n−1)�(t) dt = O
(
n−1).

Analogously, both of the remaining cases result in bounds of the form

n(n − 1)

∫ t∗

0

∫ t∗−t

0

(
n∏

k=3

P
(
Xk

s = Xk
s+t

))
O

(
t2)ds dt

≤ n(n − 1)

∫ t∗

0

∫ t∗−t

0
e−(n−2)�(t)O

(
t2)ds dt

≤ n(n − 1)

∫ ∞
0

e−(n−2)�(t)O
(
t2)dt = O

(
n−1).

Hence, the probability that Xt is almost self-avoiding is 1 − O(n−1), as desired.
Let �asa

Gn (v̄, w̄) denote the set of almost self-avoiding paths from v̄ to w̄ in Gn.
By the argument above together with (2.5), we already know that

(5.10)
∑

γ∈�asa
Gn (v̄,w̄)

(t∗)|γ |

|γ |! = P(X almost self-avoiding) = 1 − O
(
n−1).

Now, if we represent paths as sequences of edges, then each not necessarily self-
avoiding path γ ′ ∈ �Gn(v̄, w̄) contains a self-avoiding path γ ∈ �sa

Gn(v̄, w̄) as a
subsequence. In particular, if γ ′ is almost self-avoiding, then it can be constructed
from γ by, at each vertex, either doing nothing or inserting a detour of length 2
before the subsequent edge in γ . As each detour of length 2 in Gn must change the
same coordinate twice, there are at most n�2

o possible detours at each location. It
follows that the contribution to (5.10) from extensions of γ is at most

|γ |+1∑
k=0

(|γ | + 1

k

)(
�2

on
)k (t∗)|γ |+2k

(|γ | + 2k)! ≤ (t∗)|γ |

|γ |!
∞∑

k=0

(�2
on)k(t∗)2k

k!|γ |k

= (t∗)|γ |

|γ |! exp
(

�2
on(t∗)2

|γ |
)

≤ (t∗)|γ |

|γ |! e(�ot
∗)2

,
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where, in the last step, we use that the distance between v̄ and w̄ is at least n.
Hence, by (5.10) we have

(5.11) 1 − O
(
n−1) ≤ e(�ot

∗)2 ∑
γ∈�sa

Gn(v̄,w̄)

(t∗)|γ |

|γ |! ,

as desired. �

We now turn to the problem of showing that C(X) is not too large on average. In
doing so, it turns out to be useful to treat the terms in C(X) separately depending
on the size of Tj − Ti . Let ε > 0 be sufficiently small. We define

C1(X) = ∑
0<Tj−Ti≤ε

mGn(XTi
,XTj

, Tj − Ti),(5.12)

C2(X) = ∑
Tj−Ti>ε

mGn(XTi
,XTj

, Tj − Ti).(5.13)

PROPOSITION 5.4. For any fixed sufficiently small ε > 0, we have EC1(X) =
O(1).

PROOF. For any 1 ≤ i ≤ L, let Ki denote the coordinate that is updated at
time Ti . We have three types of terms in (5.12): those where i = 0, where Ki = Kj ,
and where Ki �= Kj .

We proceed in a similar manner to the proof of Proposition 5.3. By Proposi-
tion 2.5, the probability that the random walk changes a given coordinate, say the
first one, for the first time during [t, t + dt) is O(1) dt . Similarly, the probability
that the coordinate changes during [t, t + dt) and at least once more before this
O(t) dt . Note that in case of the former, v = X1

0 and X1
t+dt are different and hence

mG(v,X1
t+dt , t) = O(t) by Lemma 2.2. By coordinate independence of X and the

multiplicativity of the generating function, it follows that, conditioned on one of
these events, the expected value of mGn(v̄,Xt+dt , t) is

O(t)

n∏
k=2

E
[
mG

(
v,Xk

t+dt , t
)]

and

O(1)

n∏
k=2

E
[
mG

(
v,Xk

t+dt , t
)]

respectively. It follows that

E
∑
Tj≤ε

mGn(v̄,XTj
, Tj ) = n

∫ ε

0

(
O(t)

n∏
k=2

E
[
mG

(
v,Xk

t , t
)])

O(1) dt

(5.14)

+ n

∫ ε

0

(
O(1)

n∏
k=2

E
[
mG

(
v,Xk

t , t
)])

O(t) dt.
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Turning to the case where Ki = Kj , again by Proposition 2.5, the probability
that a given coordinate changes during [s, s + ds) and during [s + t, s + t + dt) is
O(1) ds dt . Hence, in the same way as above, we see that

E
∑

0<Tj−Ti≤ε
Ki=Kj

mGn(XTi
,XTj

, Tj − Ti)

= n

∫ ε

0

∫ t∗−t

0

(
O(1)

n∏
k=2

E
[
mG

(
Xk

s ,X
k
s+t , t

)])
O(1) ds dt.

(5.15)

As for the case where Ki �= Kj , the probability that, say, the first coordinate
changes during [s, s + ds), the second coordinate changes during [s + t, s + t +
dt), and the second coordinate does not change during [s, s + t) is O(1) ds dt .
Similarly, the probability if the second coordinate is required to change during
[s, s + t) is O(t) ds dt . In the former case, X2

s and X2
s+t+dt are different, and

hence mG(X2
s ,X

2
s+t , t) = O(t). It follows that

E
∑

0<Tj−Ti<ε
Ki �=Kj

mGn(XTi
,XTj

, Tj − Ti)

= n(n − 1)

∫ ε

0

∫ t∗−t

0

(
O(t)

n∏
k=3

E
[
mG

(
Xk

s ,X
k
s+t , t

)])
O(1) ds dt

+ n(n − 1)

∫ ε

0

∫ t∗−t

0

(
O(1)

n∏
k=3

E
[
mG

(
Xk

s ,X
k
s+t , t

)])
O(t) ds dt.

(5.16)

It remains to consider the expected value of mG(Xk
s ,X

k
s+t , t). By Lemma 2.2,

we have

E
[
mG

(
Xk

s ,X
k
s+t , t

)] = P
(
Xk

s = Xk
s+t

)(
1 + O

(
t2)) + P

(
Xk

s �= Xk
s+t

)
O(t)

= 1 + O
(
t2) − P

(
Xk

s �= Xk
s+t

)(
1 − O(t)

)
.

It follows by Lemma 5.2 that for ε > 0 sufficiently small we have

E
[
mG

(
Xk

s ,X
k
s+t , t

)] = e−�(t),

for any 0 ≤ t ≤ ε. Plugging this into the bounds in (5.14), (5.15) and (5.16), we
see that the integrals evaluate to O(n−1), O(1) and O(1) respectively. �

PROPOSITION 5.5. Suppose f vw
G (s, t) ≤ −�(t(t∗ − t)). Then for any p < 1,

there exists a constant M , not depending on n, such that

(5.17) P
(
C(X) ≤ M

) ≥ p − o(1).
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PROOF. By Proposition 5.4, it only remains to check C2(X). Following the
argument in the proof of that proposition, it follows that for any fixed α > 0,

E
∑

Tj−Ti>ε

mGn(XTi
,XTj

, Tj − Ti)
α

= n

∫ t∗

ε

(
O(1)

n∏
k=2

E
[
mG

(
Xk

0,X
k
t , t

)α])
O(1) dt

+ n

∫ t∗

ε

∫ t∗−t

0

(
O(1)

n∏
k=2

E
[
mG

(
Xk

s ,X
k
s+t , t

)α])
O(1) ds dt

+ n2
∫ t∗

ε

∫ t∗−t

0

(
O(1)

n∏
k=3

E
[
mG

(
Xk

s ,X
k
s+t , t

)α])
O(1) ds dt.

(5.18)

By Propositions 2.7 and 2.3, we have

E
[
mG

(
Xk

s ,X
k
s+t , t

)α]
= ∑

x,y∈G

mG(v, x, s)mG(x, y, t)1+αmG

(
y,w, t∗ − s − t

)

= 1 + αf vw
G (s, t) + O

((
t∗ − t

)
α2).

(5.19)

Under the assumption that f vw
G (s, t) = −�(t(t∗ − t)), it follows that for suffi-

ciently small α > 0 we have E[mG(Xk
s ,X

k
s+t , t)

α] ≤ e−�((t∗−t)α) for ε ≤ t ≤ t∗.
Plugging this into (5.18), it follows that

(5.20) E
∑

Tj−Ti>ε

mGn(XTi
,XTj

, Tj − Ti)
α = O(1) + O

(
n−1) + O(1).

The proposition follows by Markov’s inequality together with the elementary
inequality

C2(X) = ∑
Tj−Ti>ε

mGn(XTi
,XTj

, Tj − Ti)

≤
( ∑

Tj−Ti>ε

mGn(XTi
,XTj

, Tj − Ti)
α

)1/α

,

which holds for any 0 < α ≤ 1. �

In Proposition 5.5, we take p ≥ 1 − e−(�ot
∗)2

/2 so that by plugging Proposi-
tion 5.3 into the right-hand side of (5.2) with H = Gn we get

P
(
TGn(v̄, w̄) ≤ t∗

) ≥ E
[
1X s.a.e

−C(X)1C(X)≤M

]
≥ e−Me−(�ot

∗)2
/2 − O

(
n−1),(5.21)
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which is bounded away from zero uniformly in n. As we shall see in the next
subsection, this statement is sufficient to prove convergence by more direct means,
using the structure of power graphs.

5.2. An asymptotically almost sure upper bound. The argument given here is a
variation of the argument given in Section 5 of [15] which proves an asymptotically
almost sure upper bound on the first-passage time between antipodal vertices in the
hypercube. Let G be any graph, and let v and w be distinct vertices in G. We start
by deriving a recursive relation on TGn(v̄, w̄). Assume n ≥ 3. For each 1 ≤ i ≤ n,
let v̄i denote the vertex in Gn whose i:th coordinate is w and all other coordinates
are v. Similarly, let w̄i be the vertex in Gn whose i:th coordinate is v and all other
coordinates are w.

Let γ be a path from v to w in G of minimal length. For each 1 ≤ i ≤ n let
γi and γ ′

i be the paths from v̄ to v̄i and from w̄i to w̄, respectively whose i:th
projections are γ and whose j :th projections for all j �= i are trivial. Given the
passage times of these paths, pick distinct indices i1 and i2 that minimize

TGn(γi1) + TGn

(
γ ′
i1

) + TGn(γi2) + TGn

(
γ ′
i2

)
.

Without delving into any technical calculations, it is not too hard to convince one-
self that the expected value of this sum is o(1), as each TGn(γi) and TGn(γ ′

i ) is an
independent sum of a fixed number of independent Exp(1) random variables.

Given i1 and i2, we let H1 equal the subgraph of Gn consisting of all vertices
where the i1:th coordinate is w and the i2:th coordinate is v. Similarly, let H2 be
the induced subgraph where the i1:th coordinate is v and the i2:th coordinate is w.
Some observations are in order:

• H1 and H2 are vertex disjoint.
• H1 and H2 are both isomorphic to Gn−2.
• The only vertices that Hk , for k = 1,2, can have in common with any path γi

or γ ′
i are v̄ik and w̄i3−k . In particular, Hk has no edge in common with γi or γ ′

i

since n ≥ 3.

It follows that TH1(v̄
i1, w̄i2) and TH2(v̄

i2, w̄i1) are independent and have the
same distribution as TGn−2(v̄, w̄). By bounding TGn(v̄, w̄) by the minimum of

TGn(γi1) + TH1

(
v̄i1, w̄i2

) + TGn

(
γ ′
i2

)
and

TGn(γi2) + TH1

(
v̄i2, w̄i1

) + TGn

(
γ ′
i1

)
we have shown the following proposition.

PROPOSITION 5.6. Assume n ≥ 3. There exists a nonnegative random vari-
able ξn with expected value o(1) such that TGn(v̄, w̄) is stochastically dominated
by ξn plus the minimum of two independent copies of TGn−2(v̄, w̄).
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LEMMA 5.7. Let T and T ′ be independent identically distributed random
variables. Then for any real value C and any 0 ≤ p ≤ P (T ≤ C),

Emin
(
T ,T ′) ≤ pC + (1 − p)ET .

PROOF. The case where p = 0 is obvious. For p = P (T ≤ C), the inequal-
ity follows by taking the expected value of the bound min(T , T ′) ≤ C1T ≤C +
T ′1T >C . The general case is a convex combination of these. �

PROPOSITION 5.8. Let G be a graph with vertices v and w. Suppose there
exists a constant C > 0 such that

lim inf
n→∞ P

(
TGn(v̄, w̄) ≤ C

)
> 0,

then

ETGn(v̄, w̄) ≤ C + o(1),

as n → ∞.

PROOF. Fix an N and p > 0 such that P(TGn(v̄, w̄) ≤ C) ≥ p whenever n ≥
N . It follows by Proposition 5.6 and Lemma 5.7 that for any n ≥ N + 2, we have

(5.22) ETGn(v̄, w̄) − C ≤ o(1) + (1 − p)
(
ETGn−2(v̄, w̄) − C

)
.

As ETGN (v̄, w̄) and ETGN+1(v̄, w̄) are finite, this recursion implies that
ETGn(v̄, w̄) − C ≤ o(1), as desired. �

In particular, if the hypothesis in Proposition 5.8 holds for C = t∗, or at least
C = t∗ + ε for all ε > 0, this implies that ETGn(v̄, w̄) ≤ t∗ + o(1). As noted in
the beginning of the Section 5, this implies convergence in probability and L1, as
desired.

5.3. Generalization to weighted graphs. It remains to prove that TGn(v̄, w̄) ≤
t∗ + o(1) with probability bounded away from zero as n → ∞ in the case where
f vw

G (s, t) ≤ 0 everywhere, but f vw
G (s, t) � −�(t(t∗ − t)). In order to do so, we

need to generalize the argument in Section 5.1. Below, by a weighted graph we
mean a graph H = (V ,E) where each edge e is assigned a positive weight λ(e),
called its intensity. The Cartesian product of two weighted graphs is the weighted
version of H1�H2 where the edges (e, v) and (v, e) are given the same intensities
as the edge e in the respective factors. First-passage percolation is defined on such
graphs by independently assigning the passage time of each edge e according to
Exp(λ(e)) random variables.

The generating function of a weighted graph H is defined as

(5.23) mH(v,w, t) = ∑
γ∈�(v,w)

(∏
e∈γ

λ(e)

)
t |γ |

|γ |! ,
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where the factor λ(e) appears the same number of times that γ traverses e. One
can observe that the generating function for weighted graphs has the same basic
properties as for unweighted graphs.

PROPOSITION 5.9. Let H be a weighted graph, and let v,w be vertices in H .

(i) For any t ≥ 0, we have

P
(
TH (v,w) ≤ t

) ≤ mH(v,w, t).

(ii) For any s, t ≥ 0,∑
x∈H

mH(v, x, s)mH(x,w, t) = mH(v,w, s + t).

(iii) For any weighted graphs H1 and H2, and any vertices v1,w1 ∈ H1 and
v2,w2 ∈ H2, we have

mH1�H2

(
(v1, v2), (w1,w2), t

) = mH1(v1,w1, t)mH2(v2,w2, t).

The proofs of these properties are almost identical to the unweighted case, and
will not be repeated here.

Let G be a graph with distinct vertices v and w. We assume that f vw
G (s, t) ≤ 0

everywhere. We will consider G as a weighted graph with constant intensity 1.
Let l be the distance from v to w in G and let P be a graph with vertex set of
the form {v0, v1, . . . , vl} where there is a directed edge from vi to vi+1 for each
0 ≤ i < l. To simplify notation below, we also denote the end-points of P by v

and w, respectively. We make P into a weighted graph by assigning its edges a
common intensity λ such that t∗G(v,w) = t∗P (v,w), that is λ = l

√
l!/t∗G(v,w). The

key idea to prove the remaining part of Theorem 1.3 is to consider the first-passage
time from v̄ to w̄ in graphs of the form Gn−k�P k . Note that Gn−k�P k can be seen
as a subgraph of Gn, though as the intensities of edges going in the last k directions
may be higher in the former than the latter it is not clear if first-passage times in
one should dominate those in the other.

The definition of the conditioned random walk on a graph can be naturally ex-
tended to a weighted graph H by letting �o = �o(H) denote the maximal net in-
tensity of outgoing edges from any vertex x ∈ H and, whenever the walker tries to
take a step, picking each outgoing edge e with probability λ(e)/�o. Again, we can
note that if H is a Cartesian product graph, then the projections of a conditioned
random walk on H onto each factor are independent conditioned random walks.
Furthermore, for any path γ ∈ �Gn(v̄, w̄), the probability that the walker traces γ

and takes its steps during [t1, t1 +dt1), [t2, t2 +dt2) . . . for 0 < t1 < · · · < t|γ | < t∗
is (

∏
e∈γ λ(e)) dt1 · · ·dt|γ |. As before, we let L denote the number of steps taken

by the walker, let T0 = 0 and Ti for any 1 ≤ i ≤ L denote the time of the i:th step.
Using this generalization, one can see that the proof of Proposition 5.1 follows

through also for weighted graphs with bounded out-intensity if one revises the
upper bound on the probability that any fixed path is a shortcut, and is mindful of
the different intensities when integrating over t1, . . . , t|γ |.
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LEMMA 5.10. We have

f vw
P (s, t)

:= ∑
x,y∈P

mP (v, x, s)mP (x, y, t)mP

(
y,w, t∗ − s − t

)
ln
(
mP (x, y, t)

)
(5.24)

≤ −�
(
t
(
t∗ − t

))
.

This can be proven by a couple of lines of straight-forward but messy calcula-
tions by showing that f vw

P (s, t) does not depend on s and is convex in t . Alterna-
tively, this can be seen as an implication of Proposition 1.5 and Remark 3.2, by
considering P as a subgraph of the doubly infinite directed chain 
Z.

PROPOSITION 5.11. Let k = kn be a sequence of integers such that 0 ≤ kn ≤ n

and kn/n → r ∈ (0,1) as n → ∞. Let {Xt }t∗t=0 be the conditioned random walk
from v̄ to w̄ on Gn−k�P k in time t∗. Then, for any sufficiently small constant ε > 0
we have:

(i) With probability at least (1 − O(n−1))e−(�o(G)t∗)2
, X is self-avoiding.

(ii)

E
[ ∑
Ti<Tj<Ti+ε

mGn−k�P k (XTi
,XTj

, Tj − Ti)

]
= O(1).

(iii) For any sufficiently small fixed α > 0,

E
[ ∑
Tj≥Ti+ε

mGn−k�P k (XTi
,XTj

, Tj − Ti)
α

]
= O(1).

PROOF. (i) As P does not contain cycles, it is easy to see that X is self-
avoiding if the conditioned random walk on Gn−k formed by the first n − k coor-
dinates is so. The statement follows by Proposition 5.3. (ii) This can be shown in
the same way as Proposition 5.4. (iii) We can bound this expression analogously
to (5.18), except that now about rn factors of the form E[mG(Xi

s,X
i
s+t , t)

α] are
replaced by E[mP (Xi

s,X
i
s+t , t)

α]. The idea is that these factors will make the in-
tegrals stay small even when we do not have f vw

G (s, t) = −�(t(t∗ − t)).

As f vw
G (s, t) ≤ 0, we have by (5.19) that E[mG(Xi

s,X
i
s+t , t)

α] ≤ eO((t∗−t)α2)

for any 1 ≤ i ≤ n − k. Similarly, for any n − k + 1 ≤ i ≤ n, we have

E
[
mP

(
Xi

s,X
i
s+t , t

)α] = ∑
x,y∈P

mP (v, x, s)mP (x, y, t)1+αmP

(
y,w, t∗ − s − t

)

= 1 + αf vw
P (s, t) + O

((
t∗ − t

)
α2).
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By Lemma 5.10, this expression is at most e−�((t∗−t)α)+O((t∗−t)α2) for ε ≤ t ≤ t∗.
Hence, we have

E
[ ∑
Tj≥Ti+ε

mGn−k�P k (XTi
,XTj

, Tj − Ti)
α

]

≤ n

∫ t∗

ε
O(1)e−rn�((t∗−t)α)+nO((t∗−t)α2) dt

+ n2
∫ t∗

ε

∫ t∗−t

0
O(1)e−rn�((t∗−t)α)+nO((t∗−t)α2) ds dt,

which is order one provided α > 0 is sufficiently small so that the exponents in the
respective integrands are dominated by −rn�((t∗ − t)α). �

We have the following immediate consequence of Propositions 5.1 and 5.11.

PROPOSITION 5.12. For any k = kn such that k/n → r ∈ (0,1), we have

(5.25) lim inf
n→∞ P

(
TGn−k�P k (v̄, w̄) ≤ t∗

)
> 0.

LEMMA 5.13. For any integers 0 ≤ K ≤ N , any t > 0 and any subset I ⊆
{1, . . . ,N} of size K we have

(5.26)
N !
tN

∫
· · ·

∫
t1+···+tN≤t
t1,...,tN≥0

1∑
i∈I ti>2t K

N
dt1 · · ·dtN ≤ 2

K
.

PROOF. Note that the statement is trivially true unless 2K ≤ N . Let us,
without loss of generality assume that Iγ = {1,2, . . . , |Iγ |}. By the substitution
si = ∑i

j=1 ti/t , the left-hand side of (5.26) becomes

(5.27) N !
∫

· · ·
∫

0≤s1≤···≤sN≤1
1

sK>2 K
N

ds1 · · · dsN .

We can interpret this integral as the probability that, when given N independent
U(0,1) random variables, less than K of them have values less than 2K

N
. The

bound follows by Chebyshev’s inequality. �

PROPOSITION 5.14. Suppose k/n → r ∈ (0,1). With probability tending to
one as n → ∞, there are no self-avoiding paths γ from v̄ to w̄ in Gn−k�P k that
satisfy both of:

• TGn−k�P k (γ ) ≤ t∗
• the total passage time of edges going in the last k directions is at least 2t∗ k

n
.
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PROOF. For each path γ ∈ �Gn−k�P k (v̄, w̄), let Iγ denote the indices of
edges in γ going in the last k directions. Note that |Iγ | = k distG(v,w) and
|γ | ≥ ndistG(v,w) for any such γ . Using Lemma 5.13, the expected number of
paths with the proposed two properties is at most

∑
γ∈�

Gn−k�Pk (v̄,w̄)

(∏
e∈γ

λ(e)

) ∫
· · ·

∫
t1+···+t|γ |≤t∗
t1,...,t|γ |≥0

1∑
i∈Iγ

ti>2t∗ k distG(v,w)

|γ |
dt1 · · ·dt|γ |

≤ ∑
γ∈�

Gn−k�Pk (v̄,w̄)

(∏
e∈γ

λ(e)

)
2

k distG(v,w)

(t∗)|γ |

|γ |!

= 2

k distG(v,w)
mGn−k�P k

(
v̄, w̄, t∗

) = 2

k distG(v,w)
,

which tends to 0 as n → ∞. �

PROPOSITION 5.15. For any ε > 0, we have

(5.28) lim inf
n→∞ P

(
TGn(v̄, w̄) ≤ t∗ + ε

)
> 0.

PROOF. Let k = kn be a sequence of integers such that k/n → r ∈ (0,1).
Fix a suitable mapping of Gn−k�P k into Gn. We can couple TGn(v̄, w̄) and
TGn−k�P k (v̄, w̄) by using the same edge passage times, but weighting the passage
times of edges in the last k directions a factor λ higher in the former than in the
latter. By combining Propositions 5.12 and 5.14, it follows that

(5.29) lim inf
n→∞ P

(
TGn(v̄, w̄) ≤ t∗

(
1 + 2(λ − 1)

k

n

))
> 0.

The proposition follows by taking r < ε
2(λ−1)t∗ . �

Given this proposition, we can proceed as in Section 5.2 to prove convergence
in probability and L1 as n → ∞, which finishes the proof of Theorem 1.3 in the
case of standard exponential weights.

6. Proof of Theorem 1.4. To simplify notation we always assume that ρ = 1.
For F ∈ C(1), we couple THn(·, ·) to T F

Hn
(·, ·) by letting T F

Hn
(e) = h(THn(e)) for

all e ∈ Hn for some suitable increasing function h. In particular, we can take

(6.1) h(t) = inf
{
x ≥ 0 : F(x) ≥ 1 − e−t}.

One can check that limt→0 h(t)/t = 1. Throughout this section ε > 0 will denote
an arbitrarily small number, and δ > 0 a number such that (1 − ε)t ≤ h(t) ≤ (1 +
ε)t for all 0 ≤ t ≤ δ.
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An important tool in the coupling arguments below is to further consider
first-passage percolation on Hn with independent Exp(1 + λ) weights. We de-
note this by T λ

Hn
(·, ·). This is coupled to THn(·, ·) and T F

Hn
(·, ·) by, for each

edge e ∈ Hn, generating an independent Exp(λ) random variable τe, and let-
ting T λ

Hn
(e) = min(THn(e), τe). Note that T λ

Hn
(·, ·) has the same distribution as

1
1+λ

THn(·, ·).
LEMMA 6.1. For any fixed t, ε, λ > 0, we have that if

P
(
THn(vn,wn) < t

) → 0 as n → ∞,

then

P
(
T F

Hn
(vn,wn) <

1 − ε

1 + λ
t

)
→ 0 as n → ∞.

PROOF. Let s = 1
1+λ

t . As

P
(
THn(vn,wn) < t

)
= P

(
T λ

Hn
(vn,wn) < s

)
≥ P

(
T λ

Hn
(vn,wn) < s | T F

Hn
(vn,wn) < (1 − ε)s

)
P
(
T F

Hn
(vn,wn) < (1 − ε)s

)
,

it suffices to show that

(6.2) P
(
T λ

Hn
(vn,wn) < s | T F

Hn
(vn,wn) < (1 − ε)s

)
is bounded away from 0 as n → ∞.

Condition on the edge passage times {THn(e)}e∈Hn and {T F
Hn

(e)}e∈Hn . Suppose

there is a path γ from vn to wn such that T F
Hn

(γ ) < (1 − ε)s. Then, for any e ∈ γ

such that T F
Hn

(e) < h(δ) we have

(6.3) T λ
Hn

(e) ≤ THn(e) ≤ 1

1 − ε
h
(
THn(e)

) = 1

1 − ε
T F

Hn
(e).

As at most 1−ε
h(δ)

s edges in γ satisfy T F
Hn

(e) ≥ h(δ), the probability that τe ≤ h(δ)
1−ε

for all such edges is bounded away from zero. If this happens, we have T λ
Hn

(e) ≤
1

1−ε
T F

Hn
(e) for all e ∈ γ , and hence T λ

Hn
(vn,wn) ≤ T λ

Hn
(γ ) < s, as desired. �

As Hn has bounded degree, there are almost surely Exp(1)-geodesics from vn

to wn. One can for instance see this by noting that the number of self-avoiding
paths from vn to wn with passage time at most t is almost surely finite for any t ≥ 0.
Moreover, as the standard exponential distribution is continuous, almost surely no
two self-avoiding paths have the same passage time, which implies that such a
geodesic is almost surely unique. Below, we let �n denote this unique Exp(1)-
geodesic.
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LEMMA 6.2. Let ε and δ be as above. Assume THn(vn,wn) → t in probability
as n → ∞. Then, as n → ∞:

(i) P(THn(e) ≤ δ for all e ∈ �n) → 1.
(ii) T F

Hn
(vn,wn) → t in probability.

(iii) Suppose
∫ ∞

0 x dF(x) < ∞. If THn(vn,wn) converges in L1, then so does
T F

Hn
(vn,wn).

PROOF. (i) Condition on {THn(e)}e∈Hn . If there is an edge e ∈ �n such that

THn(e) > δ then with probability 1 − e−λδ/2 > 0 we have τe ≤ δ
2 and hence

(6.4) T λ
Hn

(vn,wn) < THn(vn,wn) − δ

2
.

But as T λ
Hn

(vn,wn)
p−→ t

1+λ
and THn(vn,wn)

p−→ t , the probability of (6.4) tends to
0 assuming λ is sufficiently small.

(ii) If THn(e) ≤ δ for all e ∈ �n, then

T F
Hn

(vn,wn) ≤ T F
Hn

(�n) = ∑
e∈�

h
(
THn(e)

)

≤ ∑
e∈�

(1 + ε)THn(e) = (1 + ε)THn(vn,wn).
(6.5)

By (i) this occurs with probability tending to 1. The corresponding lower bound
follows from Lemma 6.1.

(iii) As T F
Hn

(vn,wn) tends to t in probability and is nonnegative, it suffices to

show that ET F
Hn

(vn,wn) ≤ t +o(1). For any measurable map φ : [0,∞) → [0,∞),

let Tn(φ) = ∑
e∈�n

φ(THn(e)). Clearly, THn(vn,wn) = Tn(id) and T F
Hn

(vn,wn) ≤
Tn(h). We can rewrite the expectation of Tn(φ) as

E
∑

e∈Hn

1e∈�nφ
(
THn(e)

) = ∑
e∈Hn

∫ ∞
0

e−tφ(t)P
(
e ∈ �n | THn(e) = t

)
dt

=
∫ ∞

0
e−tφ(t)fn(t) dt,

(6.6)

where fn(t) = ∑
e∈Hn

P(e ∈ �n | THn(e) = t). As ETn(id) = t + o(1) < ∞, fn(t)

is finite almost everywhere. Moreover, a simple coupling argument shows that
P(e ∈ �n | THn(e) = t) is decreasing in t , hence so is fn(t).
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Now,

ETn(h) =
∫ ∞

0
e−th(t)fn(t) dt

≤ (1 + ε)

∫ δ

0
e−t tfn(t) dt + fn(δ)

∫ ∞
δ

e−th(t) dt

≤ (1 + ε)

∫ ∞
0

e−t tfn(t) dt + fn(δ)

∫ ∞
0

e−th(t) dt

= (1 + ε)ETn(id) + fn(δ)

∫ ∞
0

x dF(x).

(6.7)

It remains to show that fn(δ) → 0 as n → ∞ for any δ > 0. Let g(t) = 1t≤δ/2t .

By (i), and the fact that Tn(id)
p−→ t , we know that Tn(g) ≥ t − o(1) with probabil-

ity 1 − o(1). In particular ETn(g) ≥ t − o(1). Hence, o(1) ≥ ETn(id) −ETn(g) =∫ ∞
δ/2 e−t tfn(t) dt ≥ ∫ δ

δ/2 e−t tfn(t) dt ≥ fn(δ)
∫ δ
δ/2 e−t t dt , as desired. �
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