Abstract
For Erdős–Rényi random graphs with average degree $\gamma$, and uniformly random $\gamma$-regular graph on $n$ vertices, we prove that with high probability the size of both the Max-Cut and maximum bisection are $n(\frac{\gamma}{4}+\mathsf{P}_{*}\sqrt{\frac{\gamma}{4}}+o(\sqrt{\gamma}))+o(n)$ while the size of the minimum bisection is $n(\frac{\gamma}{4}-\mathsf{P}_{*}\sqrt{\frac{\gamma}{4}}+o(\sqrt{\gamma}))+o(n)$. Our derivation relates the free energy of the anti-ferromagnetic Ising model on such graphs to that of the Sherrington–Kirkpatrick model, with $\mathsf{P}_{*}\approx0.7632$ standing for the ground state energy of the latter, expressed analytically via Parisi’s formula.
Citation
Amir Dembo. Andrea Montanari. Subhabrata Sen. "Extremal cuts of sparse random graphs." Ann. Probab. 45 (2) 1190 - 1217, March 2017. https://doi.org/10.1214/15-AOP1084
Information