Open Access
March 2017 Extremal cuts of sparse random graphs
Amir Dembo, Andrea Montanari, Subhabrata Sen
Ann. Probab. 45(2): 1190-1217 (March 2017). DOI: 10.1214/15-AOP1084

Abstract

For Erdős–Rényi random graphs with average degree $\gamma$, and uniformly random $\gamma$-regular graph on $n$ vertices, we prove that with high probability the size of both the Max-Cut and maximum bisection are $n(\frac{\gamma}{4}+\mathsf{P}_{*}\sqrt{\frac{\gamma}{4}}+o(\sqrt{\gamma}))+o(n)$ while the size of the minimum bisection is $n(\frac{\gamma}{4}-\mathsf{P}_{*}\sqrt{\frac{\gamma}{4}}+o(\sqrt{\gamma}))+o(n)$. Our derivation relates the free energy of the anti-ferromagnetic Ising model on such graphs to that of the Sherrington–Kirkpatrick model, with $\mathsf{P}_{*}\approx0.7632$ standing for the ground state energy of the latter, expressed analytically via Parisi’s formula.

Citation

Download Citation

Amir Dembo. Andrea Montanari. Subhabrata Sen. "Extremal cuts of sparse random graphs." Ann. Probab. 45 (2) 1190 - 1217, March 2017. https://doi.org/10.1214/15-AOP1084

Information

Received: 1 March 2015; Revised: 1 August 2015; Published: March 2017
First available in Project Euclid: 31 March 2017

zbMATH: 1372.05196
MathSciNet: MR3630296
Digital Object Identifier: 10.1214/15-AOP1084

Subjects:
Primary: 05C80 , 68R10 , 82B44

Keywords: bisection , Erdős–Rényi graph , Ising model , Max-cut , Parisi formula , Regular graph , Spin glass

Rights: Copyright © 2017 Institute of Mathematical Statistics

Vol.45 • No. 2 • March 2017
Back to Top