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CHARACTERISTIC FUNCTIONS OF MEASURES ON
GEOMETRIC ROUGH PATHS
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We define a characteristic function for probability measures on the sig-
natures of geometric rough paths. We determine sufficient conditions under
which a random variable is uniquely determined by its expected signature,
thus partially solving the analogue of the moment problem. We furthermore
study analyticity properties of the characteristic function and prove a method
of moments for weak convergence of random variables. We apply our results
to signature arising from Lévy, Gaussian and Markovian rough paths.

1. Introduction. Paths serve as a natural description of an ordered progres-
sion of events and are abundant throughout mathematics. Furthermore, measures
on paths are almost as common in nature as paths. Considering the flow of infinites-
imal elements, one sees that any system involving rigid motions can be represented
as a measure on paths; the same can be said of a gas or fluid flow. For this reason,
the ability to characterize paths, and measures on them, becomes of value.

It was first shown by Chen [7] that an irreducible piecewise regular continuous
path in Euclidean space (which includes all paths that are smooth when parameter-
ized at unit speed) may be faithfully represented, up to reparametrization, by the
collection of its iterated integrals known as the signature. The representation of a
path through its signature has been recently explored in much greater detail due
to its connection with rough paths theory [31]. The exact geometric equivalence
of paths of bounded variation possessing the same signature was first described by
Hambly and Lyons [19], and recently extended to all geometric rough paths [2].
Methods to recover information encoded by the signature have also been explored
and, in general, pose a difficult problem [30].

The signature may be viewed concretely as the universal solution to the ex-
ponential differential equation dS(X); = S(X); ® dX;, and serves as the fully
non-commutative analogue of the classical exponential function for points in R.
Its importance is further emphasized when one considers a general differential
equation

(1.1) dY, = M(Y,)dX,,
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since the solution Y; is invariant under reparametrizations of the driving signal X,.
This relationship is most evident in the case of linear differential equations, where
X; €V and Y; € W lie in Banach spaces, and M : V +— L(W) is a continuous
linear map. In this case, the extension of M to an algebra homomorphism M :
T (V) +— L(W), when applied to the signature of X;, provides a series converging
rapidly to the flow of (1.1) [31]. In particular, when M takes values in a Lie algebra,
the flow of (1.1) corresponds to the Cartan development of X; in the corresponding
Lie group, thus naturally inducing a representation of the group of signatures.

In the case of a one-dimensional path X; in R, the signature takes the sim-
ple form (1, X; — Xo, (X; — X0)2/2!, ...). When X; is a random variable, the se-
quence of expectations (1, E[X; — Xo], E[(X; — XO)Z/Z!], ...), whenever it exists,
describes precisely the moments of X; — X¢. Thus, for a stochastic process X;, the
expectations of its iterated integrals, termed the expected signature, naturally form
the generalization of the moments of the process.

The expected signature has been exploited in high order approximation
schemes [24] and is explicitly known for certain stochastic processes [14, 27].
Moreover, the fundamental property that every polynomial function on signatures
may be realized as a linear functional implies that the expected signature distin-
guishes any two random variables of compact support [10] and implicitly demon-
strates the potential of the path signature in applications to numerical analysis and
machine learning [26, 29].

The moments of a random variable are of course closely related to the character-
istic function ¢y (1) = E[¢/*X]. For a topological group G, a classical extension of
the characteristic function to a G-valued random variable X is ¢px (M) = E[M (X)]
where M is a unitary representation of G [21]. Under suitable conditions, par-
ticularly the existence of sufficiently many unitary representations, ¢y uniquely
determines the law of X.

This paper aims to study the characteristic function ¢y (M) = E[M (X)] where
X is arandom signature and M is a unitary representation arising from a linear map
M :V +— uinto a unitary Lie algebra. Our main result asserts that ¢x uniquely
determines every random variable X and greatly extends the analogous result for
the expected signature beyond the case of compact support.

We now briefly outline the structure of the paper. Section 2 studies a universal
topological algebra E(V) in which we embed the group of signatures. Roughly
speaking, the induced topology is such that a sequence of signatures converges
if and only if the solution to (1.1) converges for every continuous linear map
M : V — L(W). In Section 3, we derive important properties of probability mea-
sures on the set G(V) of group-like elements of E(V). In Section 4, we study
representations of E (V). Our first main result is Theorem 4.8, which describes
explicitly a family of representations of E(R?) which preserves unitary elements
and separates the points. An immediate consequence is that one is able to define
a meaningful characteristic function for G (R%)-valued random variables (Corol-
lary 4.12). Though our results for uniqueness of random variables are restricted
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to the case V = R, we mostly work in the general setting of Banach spaces and
make precise whenever finite dimensionality is required.

In Section 5, we recall elements of rough paths theory and show that the sig-
natures of geometric rough paths form a topological subgroup of G (R¢). In Sec-
tion 6, we describe applications of our results to stochastic rough paths, particularly
in connection with the expected signature. We split Section 6 into three parts.

In Section 6.1, we study the analogue of the moment problem. Proposition 6.1
provides a general criterion under which a G(R?)-valued random variable is
uniquely determined by its expected signature. In turn, Theorem 6.3 provides a
method to verify this criterion without explicit knowledge of the expected signa-
ture itself. We demonstrate applications of these results to the Lévy—Khintchine
formula derived in [14] and to families of Gaussian and Markovian rough paths
studied in [4] and [5].

In Section 6.2, we study analyticity properties of the characteristic function. The
main result is Theorem 6.13 (and its Corollaries 6.17 and 6.18), which provides a
criterion to establish analyticity of the characteristic function and solve the mo-
ment problem within a restricted family of random variables. We demonstrate an
application to Markovian rough paths stopped upon exiting a domain.

In Section 6.3, we conclude with Theorem 6.31, which demonstrates a method
of moments for weak convergence of G (R?)-valued random variables.

2. Universal locally m-convex algebra. Throughout the paper, all vector
spaces are assumed real and all algebras are assumed unital. For topological vector
spaces V, W, let L(V, W) be the space of continuous linear maps from V to W,
and denote L(V) =L(V, V) and V' = L(V, R). For terminology and basic prop-
erties of topological algebras we refer to [32].

For a topological vector space V, a topological algebra A, and a topology on
T(V) =@~ V&, consider the statement:

(2.1) Forall M e L(V, A), the extension M : T (V) — A is continuous.

One may then topologize T (V') by requiring that (2.1) holds for all topological
algebras A of a given category. In this paper, we consider the category of locally
m-convex algebras.

DEFINITION 2.1. Let V be a locally convex space. Let E, (V) =T (V)
equipped with the coarsest topology such that (2.1) holds for all locally m-convex
algebras A (or equivalently, all normed algebras A). Denote by E (V) the comple-
tion of E, (V).

Thus for any normed algebra A, the set of continuous algebra homomorphisms
Hom(E,, A) is in bijection with L(V, A). For any M € L(V, A), we shall usually
denote by the same letter M the corresponding element in Hom(E,, A), but shall
write Mg € Hom(E,, A) whenever a clear distinction is needed.
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Though in most parts of the paper we shall assume that V is normed, most
results in this section are more easily understood for locally convex spaces and so
unless stated otherwise, we only assume V is locally convex.

In most of our notation, we shall drop the reference to V when it is clear from
the context. It holds that £, and E are locally m-convex algebra ([32], pages 14
and 22). While most results in this section are stated for E, it is easy to verify
which remain valid for E,.

This method to obtain a universal topological algebra of a specific category is
very natural, and we note that this construction is not new; the same construction
(and essentially Proposition 2.3 below) appeared in [8] in relation to cyclic coho-
mology, while analogous constructions were investigated for locally convex alge-
bras with continuous multiplication in [37] and for commutative locally m-convex
algebras (particularly in relation to nuclear spaces) in [9] Section 6.4.

REMARK 2.2. If we start with V as a general topological vector space, an
easy verification shows that we arrive at the same space E, as when we equip V
with the finest locally convex topology coarser than its original.

A family of semi-norms W on V is called fundamental if for every semi-norm &
on V, there exist ¥y € ¥ and ¢ > 0 such that ¢§ < y (note that by a semi-norm we
always mean a continuous semi-norm). For any collection of semi-norms W on V,
define V*={ny |n>1,y € ¥}.

For semi-norms y, & on locally convex spaces V, W, respectively, let y ® &
denote the projective semi-norm on V ® W. Denote by V ®, W the projective
tensor product and V®W its completion. For a normed space F,and M € L(V, F)
denote y (M) = SUpP,, (y)=1 |Mv]| (possibly infinite).

Define the projective extension of a semi-norm y on V as the semi-norm
exp(y) =2 k>0 y® on E,. Remark that exp(y) is a sub-multiplicative semi-norm
on E,. Moreover for any normed algebra A, M € L(V, A), and a semi-norm y on
V such that y (M) < 1, it holds that exp(y)(MEg) < 1. We thus readily obtain the
following.

PROPOSITION 2.3. Let W be a family of semi-norms on V. Then V is a funda-
mental family of semi-norms on V if and only if exp(W*) is a fundamental family
of semi-norms on E.

COROLLARY 2.4. The space E is Hausdorff (resp., metrizable, separable) if
and only if V is Hausdorff (resp., metrizable, separable).

Whenever we speak of a topological space, we shall henceforth always assume
it is Hausdorff. The following result identifies E with a subspace of P(V) :=
[Ti=o0 V@K For x € P, we write x* for the projection of x onto V®*, so that x =

(xo,xl,xz,...).
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COROLLARY 2.5. Let \V be a fundamental family of semi-norms on V. Then
E={xeP|VyeV¥* 3 Y& (xF) < o0).

By noting the identification P®2 = [Ti j0 V", where V' = VOU+)) | the
same considerations show that

E®? = {x e p®2 |Vy ew*, > y @D (x4 < oo}.
i,j>0
Let pX 1 E V& denote the projection pX(x) = x¥. The following result shall
also be useful later and is another consequence of Proposition 2.3.

COROLLARY 2.6. The operators T" := Y k=0 pX . E — E converge uni-
formly on bounded sets to the identity operator on E.

When V is a normed space, we always equip V®* with the projective norm
unless stated otherwise. For an element x € P define its radius of convergence
R(x) as the radius of convergence of the series ) ;g | x*||A%. Corollary 2.5 then
implies that x € E if and only if R(x) = oo. N

We now come to a more interesting permanence property. For a semi-normed
space (W, y) denote the quotient normed space W,, = (W/Ker(y), y) and Wy
its completion. For a locally convex space W and a Banach space A, amap M €
L(W, A) is called compact (resp., nuclear) if there exists a semi-norm y on W
such that the y (M) < oo and the induced map M, : W), — A is compact (resp.,
nuclear). Recall that W is called Schwartz (resp., nuclear) if every M € L(W, A)
is compact (resp., nuclear) for every Banach space A.

PROPOSITION 2.7. The space E is Schwartz (resp., nuclear) if and only if V
is Schwartz (resp., nuclear).

We note that the case when V is simply Schwartz shall not be used later in the
paper and is recorded simply for completeness. Moreover, nuclearity of E shall
only be applied in Section 6.3 to the case V = R¢. However the equivalent state-
ment for V = R? uses essentially the same proof and thus we record the result in
full generality.

Let W be a fundamental family of sub-multiplicative semi-norms of a locally
m-convex algebra F. Equipping W* with its natural partial order, (f},)yeq,* is
a projective system of Banach algebras and one obtains a dense topological al-
gebra embedding F' < yﬂlye\ll*ﬁy known as the Arens—Michael decomposition
(see [32], Chapter III). As compact (resp., nuclear) operators form an operator
ideal, we obtain the following.

LEMMA 2.8. Let F be alocally m-convex algebra. Then F is Schwartz (resp.,
nuclear) if and only if every continuous algebra homomorphism M : F +— A is
compact (resp., nuclear) for every Banach algebra A.
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For a normed space V and Banach space W, denote by N (V, W) the Banach
space of nuclear operators from V to W with the nuclear norm || - || v.

LEMMA 2.9. Let (V,y) be a normed space and A a Banach algebra. Let M €
N(V, A) with |M||ny < 1. Equip T (V) with the norm exp(y). Then the extension
Mg :T(V) > A isnuclear and |Mg||n < (1 — |M||y)" .

PROOF. It holds that product map M®* : V®=k s A®xk ig nuclear with nu-
clear norm bounded by ||M ||’,‘\, ([22] Theorem 3.7—the bound is clear from the
proof therein), and the multiplication map A®7¥ > A has unit operator norm. It
follows that M®F : V®7k 1 A is nuclear with nuclear norm at most || M ||, ([18],

page 84). The conclusion follows since Mg =3 o M ®k is an absolutely conver-
gent series in V(T (V), A). O

For a semi-norm y on V, let B, ={v € V | y(v) < 1}, and for a subset BC V,
let I'(B) be the absolutely convex hull of B.

PROOF OF PROPOSITION 2.7. The “only if” direction is clear. Let A be a
Banach algebra, M € L(V, A), and let ¥ be a fundamental family of semi-norms
on V. For a semi-norm y on V, recall that B, e = F(Bf’k) C Vek,

Suppose V is Schwartz. Take y € W* such that M (B, ) C A is relatively com-
pact and y (M) < 1. It follows that M (By®k) is relatively compact in A ([36]
Proposition 7.11). Since the unit ball Bexp(y) is given by I'(Ug=0 By®k), we ob-
tain that M (Bexp(y)) is totally bounded in A. Thus E is Schwartz by Lemma 2.8.

Suppose V' is moreover nuclear. Take y € W* such that the induced map
M, :V, — Aisnuclear with | M, ||y < 1. As (V®”k)y®k and (V,)®* are isomet-
rically isomorphic ([18], page 38), we have the natural identification 7' (V)exp(,) =
(T (Vy),exp(y)). It follows that Mg : T (V )exp(y) +> A is nuclear by Lemma 2.9.
Thus, E is nuclear again by Lemma 2.8. [

One may also ask when the extension map -g : L(V, A) = Hom(E, A) is con-
tinuous under certain topologies. In the case of the strong topology when V is
normed, we obtain a homeomorphism by the following proposition. First, remark
that if |lx;|| <c and |lx; — y;|l <& for x1,..., X4, ¥1,..., yn € A, where A is a
normed algebra, then

n

22) ||x1---xn—y1---yn||sZ(’;)sfc"—f=<c+e)”—c”.
j=1

PROPOSITION 2.10. Let V be a normed space and A a Banach algebra. The
extension map ‘g : M — Mg from L.(V, A) to Hom(E, A) is continuous (and thus
a homeomorphism) when one equips both sides with the strong topology.
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PROOF. Let (M;)j>1 — M in L(V, A). Let y be a norm on V such that
y(M)<1land y(M;) <1forall j >1.

Remark that for any bounded set B C E and ¢ > 0, there exists k, > 1 such
that sup, . y®k (x¥) < &* for all k > k. [if not, then take a sequence x, € B such
that y®"(x") > &". Then exp(cy)(x,) > c"¢&" for any ¢ > 1 and n > 1, which is
implies that exp(cy) is not bounded on B for some ¢ > 1 which is a contradiction].

Remark that every bounded set in V®* is contained in T(B; ® --- ® By) for
bounded sets By, ..., By C V, and that the supremum of a convex function on a
set is equal to its supremum on the set’s convex hull. Together with (2.2), this
implies that for any fixed n,

sup Z }|Ml®k(xk) — M®k(xk)|| — 0.

X€Bo<k<n
Hence,
sup|Mj(x) = M) <sup D [ME(F) = M ()| +25up Yy Sat
xeB xX€EB 0<k<n X€B -,

can be made arbitrarily small with sufficiently large » and j. [

REMARK 2.11. If we assume only that V is locally convex and M € L(V, A),
where A is areal (resp., complex) Banach algebra, applying the above proposition
to the semi-norm y (x) := ||M(x)| on V implies in particular that the map A —
(AM) g is continuous from R (resp., C) to Hom(E, A), where the latter is equipped
with the strong topology.

3. Group-like elements. We recall that 7 (V) is a Hopf algebra with coprod-
uct Av=1® v+ v® 1 forall veV and antipode o (vy---vg) = (= Dk ---v;
for all v; - - - v € V®* ([33] Proposition 1.10).

Consider now V alocally convex space. Since E®? is itself a locally m-convex
algebra ([32], page 378), and since A € L(V, E®72), the extension A : E > E®?
is continuous by the universal property of E. Moreover, the antipode o« extends to a
continuous linear map « : E +— E. This endows E with an “almost” Hopf algebra
structure (“almost” since E is not mapped to E®? under the coproduct A as for
Hopf algebras, but to its completion E ®2).

Denote by U(V) ={g € E | a(g) = g_l} and G(V) ={ge E| A(g) =
g ® g, g # 0} the groups of unitary elements and group-like elements of E, re-
spectively. Note that since multiplication and inversion in E are continuous (and
indeed in every locally m-convex algebra; [32], pages 5 and 52), U and G are topo-
logical groups when endowed with the subspace topology. Moreover, U is closed
in E since the map ¢ : x — (x(x)x,xa(x)) from E into E x E is continuous
and U = ¢~ {(1, 1)}. Likewise, G is closed in E since g” =1 for all g € G and
G = ¥~ 10} \ {0} for the continuous map ¥ : x = x ® x — A(x) from E into E®?.
Finally, note the inclusion G C U.
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In this section, we collect several results concerning measures on G. While
these results shall later be applied mostly to the case V = R?, we find making this
assumption does not simplify the proofs, and thus make most statements in full
generality.

All measures (resp., random variables) are assumed to be Borel. Denote by P(S)
the space of probability measures on a topological space S endowed with the topol-
ogy of weak convergence on Cp(S, C).

Recall that for a locally convex space F, an F-valued random variable X is
weakly (Gelfand—Pettis) integrable, or that E[ X] exists, if f(X) is integrable for
all f € F’ and if there exists E[X] := x € F such that E[ f(X)] = f(x). Letting
u be the probability measure associated with X, we denote by u* = E[X] its
barycenter. Unless stated otherwise, we shall always assume that u is the measure
associated to X and that integrals are taken in the weak sense.

DEFINITION 3.1. For an E-valued random variable X, we call the sequence

ESig(X) := (E[X°], E[X'],...) e P =[] V&
k>0

the expected signature of X whenever X* is integrable for all k > 0.
When V is normed, define r{(X) as the radius of convergence of the series

D E[x*[120

k>0

[setting r1 (X) = 0 whenever X kis not norm-integrable for some k > 0], and 2 (X)
as the radius of convergence of the series

> IELX A%,

k=0

[setting r2(X) = 0 whenever X ks not integrable for some k > 0].

Note that r(X) = R(ESig(X)). Remark also that r;(X) < r2(X) and that
Proposition 3.4 provides a partial converse when V =R? and X is G (R?)-valued.

Note that ESig(X) exists whenever X is integrable as an E-valued random vari-
able. The following proposition now provides a converse when X is G-valued.
Recall that we identify E as a subspace of P (Corollary 2.5).

PROPOSITION 3.2. Let X be a G-valued random variable. Then X is weakly
integrable if and only if ESig(X) exists and lies in E. In this case E[X] = ESig(X).

In the case that V is normed, note that in order to conclude that a G-valued ran-
dom variable X is (weakly) integrable (as an E-valued random variable), Proposi-
tion 3.2 implies that one only needs to check that each projection X* is (weakly)
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integrable and that |E[X*]|| decays sufficiently fast as k — co. Remark that this
is certainly not true for an arbitrary E-valued random variable.

We observe that for any f € E’, it holds that f®? o A € E’ and f(g)* =
F®2(Ag) for all g € G. In particular, for all & € P(G), we have

3.1 n(1F1) < () = Ju(ro2 0 ).

This simple observation allows for very easy control of a measure through its
barycenter. For example, whenever u € P(G) and E[ X] exists, it follows immedi-
ately that for all f € E’, the real random variable f(X) has finite moments of all
orders.

The main idea behind the proof of Proposition 3.2 is that given the existence
of E[X*] for all k£ > 0, we wish to approximate E[ f(X)] by ZZ:OIE[f(Xk)].
Using the estimate (3.1) and the grading of the coproduct A, we apply dominated
convergence to obtain E[ f(X)] =) ;>0 E[ £ (X")].

PROOF OF PROPOSITION 3.2. The “only if” direction is clear. Assume that
ESig(X) exists and ESig(X) € E. As usual, let ;& be the measure on G associated
to X. We are required to show that f is p-integrable and that w( ) = (f, ESig(X))
forall f € E'.

Recall the projection ,o L E > VO, Treating VO a5 a subspace of E, for all
f € E' denote f*:= f o pk € E’. Furthermore, we canonically embed (V®k)’ into
E’ by f > fopkforall f e (V&) . Observe that forall f € E’, by Corollary 2.6,
> k=0 f* converges uniformly on bounded sets (and a fortiori pointwise) to f.

Remark that for any f € E’, f € (V®k)’ if and only if f = f*. Recall that A
is a graded linear map from 7'(V) to T(V)®2. In particular, for all f] € (V®k)/
fr e (V®m) and x € T(V), it holds that

(3.2) (1 ® f)AX) = (fi ® H)AET™).

As T (V) isdensein E, (3.2) holds for all x € E, from which it follows that ( f; ®
fr)oA€ (V®(k+m))

Let f € E’ and note that /L(fk) = (fk, E[X¥]) forall k > 0. Since p has support
on G, it follows from (3.1) and (3.2) that

63 w(TIr) = LVl 0 8) = X () aBx]

k=0 k=0 k>0

Without loss of generality, we can assume that | f (1)| < 1. Let y be a semi-norm
on V such that exp(y) > | f| and &£ a semi-norm on E such that £ > exp(y)®2 o A.
It follows that exp(y) > | f¥| for all k > 0, and thus £ > |(f*)®% 0 A| for all k > 0.

Since ESig(X) € E, it follows from Corollary 2.5 that Zkzo,/E(E[Xk]) is fi-
nite, and hence (3.3) is finite. By dominated convergence, we obtain

u(f) =nlgrrgou<z fk>-
k=0
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It then follows that w( f) = (f, ESig(X)) as desired since

(3 ) = i U7 B = 1 ESig o),
k=0

g

COROLLARY 3.3. Let V be a normed space and X a G-valued random vari-
able. Then E[X] € E exists if and only if ry(X) = 00, that is, ESig(X) exists and
has an infinite radius of convergence. In this case E[ X] = ESig(X).

We are moreover able to show explicit bounds between rq(X) and r»(X) when
V =R<. Suppose first that V is a normed space. Remark that || Av|| = 2||v]| for all
v € V, from which it follows that |A |}, & || = 2 and thus

(3.4) |axk| <2k|x¥|  forall x € E.
Let V =R4 equipped with the ¢! norm from its standard basis e, ..., e4, and
denote e; =¢;,---¢;, € V@ for a word I = i -+ -1 in the alphabet {1,...,d}.

Then the grading of A gives
2
2 2
Bl P) =2 (X ler, ¥4)) | < a'B] 3 fer, x47]
=k 1=k

=d" Y PPAE[X*]
|1|=k

< d*[ AE[X*]]

’

where the last inequality follows since (e; ® e;)|7j=|s|=k is an £! basis for V®*.

Using (3.4), we now obtain the following.

PROPOSITION 3.4. Let X be a G(R?)-valued random variable. It follows that
E[X*)?] < d* 22| E[X?*]).. In particular, ri(X) < ry(X) < 2d'?r (X).

4. Representations. Recall that for any Hopf algebra, one may define the
tensor product and dual of representations via the coproduct and antipode by
M, @ My(x) := (M ® My)A(x) and M*(x) := M(a(x))*. By virtue of conti-
nuity of A and o, we observe that the family of continuous representations of E
over finite dimensional Hilbert spaces is closed under tensor products and duals.

DEFINITION 4.1. Denote by A(V) the family of finite dimensional represen-
tations of E which arise from extensions of all linear maps M € L(V,u(Hy)),
where Hjs ranges over all finite dimensional complex Hilbert spaces and u(Hpy)
denotes the Lie algebra of the anti-Hermitian operators on Hys. Denote by C(V)
the set of corresponding matrix coefficients, that is, the set of linear functionals
M, , e L(E,C), My ,(x) = (M (x)u,v) forall M € Aand u,v € Hy.
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The family 4 possesses the desirable property that it is closed under taking
tensor products and duals of representations. Moreover, we see that A contains
exactly those finite dimensional representations of E which preserve involution,
that is, M(ax) = M (x)* for all x € E. It follows that every M € A is a unitary
representation of the group U, and thus of G.

Observe that the tensor product M| ® M, (of any representations M, M, of E)
coincides on G with the usual group-theoretic tensor product of representations.
Moreover, the dual representation M* of M € A can be identified on U with the
conjugate representation of M on U. It follows that C |g forms a *-subalgebra of
Cp(G,C).

Let S be a topological space and F a separating *-subalgebra of Cj (S, C). Re-
call that for Radon measures u and v on S (see [3], Definition 7.1.1), it follows
from the Stone—Weierstrass theorem that = v if and only if u(f) = v(f) for
all f € F ([3] Exercise 7.14.79). We now obtain the following from the above
discussion.

LEMMA 4.2. Assume that A separates the points of G. Then for tight Borel
measures (,v on G, u = v if and only if u(f) =v(f) for all f € C, or equiva-
lently, w(M) =v(M) forall M € A.

We show in Theorem 4.8 that in fact A(R?) separates the points of E (R9).

4.1. Separation of points. We investigate conditions under which algebra ho-
momorphisms of E separate points. Though ultimately we apply the theory to the
case V = R¢, the arguments used in the general case are exactly the same and we
provide them here.

For a Banach algebra A and M € L(V, A), let (AM) denote the algebra ho-
momorphism on E induced by AM € L(V, A) (A possibly complex if A is
over C). For . € R, let §, : E — E denote the dilation operator §;, 0 x1, .. =
(AOx9 Alx!,...) [note that (\M) = M$;, for A € R].

LEMMA 4.3. Let V be locally convex, A a Banach algebraand M € L(V, A).
Let x € E such that M (x*) # 0 for some k > 0. Then there exists ¢ > 0 sufficiently
small such that (eM)(x) # 0.

PROOF. Since [[M(x)| is a semi-norm on E, ;- | M (x*)|| converges by
Corollary 2.5, from which the conclusion follows. [J

Let FF be a field and A an F-algebra. A polynomial identity over I on a subset
0O C A is a polynomial in non-commuting indeterminates xi, ..., xx, with coeffi-
cients in IF, which is non-zero (i.e., not every coefficient is zero) and which van-
ishes under all substitutions of variables xi, ..., x; € Q. We refer to Giambruno
and Zaicev [17] for further details.
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Let V be a vector space with Hamel basis ©. Then the set of pure tensors @®F =
{vi-- v |v; €O, 1 < j <k} is a Hamel basis for V®*. Thus for every x € V&
define ®, as the finite set of vectors in ® which appear in the representation of
x in the basis @®*. Define fx@) the canonical formal non-commuting polynomial
in indeterminates ®, associated with x. As ® is a finite set, the following is a
consequence of the Hahn—-Banach theorem.

LEMMA 4.4. Let V be a locally convex space with Hamel basis ®, A an
algebra which is a topological vector space, and Q C A a subset. Let k > 0 and
x € VO The following two assertions are equivalent.

@) fx(") is not a polynomial identity over R on Q.
(i1) There exists a continuous linear map M : V +— span(Q) such that M (x) is
non-zero and M (v) is in Q for all v € O.

REMARK 4.5. If one is not interested in the topological aspects, the same
statement holds if one replaces R by a field F, V by a vector space over F, A by
an [F-algebra, and drops the continuity assumption in (ii).

4.2. Polynomial identities over Lie algebras. From Lemmas 4.3 and 4.4, it is
clear that to study how representations in A(R?) separate the points of E(R%),
we must look at polynomial identities in unitary Lie algebras. Let m > 1 be an
integer and denote by -* the symplectic involution on My, (C), which we recall is
an involution of the first kind (see [16]).

Recall the real Lie algebra sp(m) = {u € u(C*") | u® 4+ u = 0} [sp(m) is the
Lie algebra of the compact symplectic group Sp(m)]. A closely related complex
Lie subalgebra of gl(C*™) is sp(m, C) = {u € M2,,(C) | u* + u = 0}. It holds that
sp(m, C) is the complexification of sp(m).

We now illustrate our interest in the Lie algebras sp(m) and sp(m, C). From the
remark that sp(m, C) = {u — u® | u € My,,(C)}, we may reformulate a result due
to Giambruno and Valenti as follows.

THEOREM 4.6 ([16] Theorem 6). Let m > 2 and f(x1,...,Xr) a polynomial
identity over C on sp(m, C) C M2, (C). Then deg(f) > 3m.

The following is a slight generalization of [17] Theorem 1.3.2 and follows from
exactly the same inductive proof.

LEMMA 4.7. Let F be an infinite field, A an F-algebra and Q a linear
subspace of A. If f is a polynomial identity over F on Q, then every multi-
homogeneous component of f is a polynomial identity over F on Q.
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We remark that every multi-homogeneous polynomial identity over C (and a
fortiori over R) on sp(m) C My, (C) is also a polynomial identity over C on its
complexification sp(m, C). Thus if f is a polynomial identity over R on sp(m) for
m > 2, then by Theorem 4.6 and Lemma 4.7, every multi-homogeneous compo-
nent of f has degree greater than 3m. Together with Lemmas 4.3 and 4.4, we have
the following result.

THEOREM 4.8. Let x € E(R?) such that x* # 0 for some k > 0. Then for any
integer m > max{2, k/3} there exists M € L(]Rd,ﬁp(m)) such that M(x) #0. In
particular, A(R?) separates the points of E(RY).

REMARK 4.9. The necessity that V = R? only came into the above argument
to ensure that V®k = V@K _If one was able to find an analogue of Lemma 4.4
for elements x € V®¥, or an analogue of Theorem 4.6 for appropriate series of
polynomials of bounded degree but an unbounded number of indeterminates, then
one could readily extend Theorem 4.8 to the case when V is infinite dimensional.

COROLLARY 4.10. The group U(R?) is maximally almost periodic.

REMARK 4.11. For d > 2, the topological group G(R?) [and thus U (R?)]
is not locally compact. To observe this, let V =R¢ and L(V) be the smallest Lie
algebra in T (V) containing V. Since every £ € L(V) satisfies A(() = 1 Q£+ (R 1
([33] Theorem 1.4), a direct calculation shows that exp(£) € G.

Let u,v € V be linearly independent elements and W = span(u, v). Observe
that L(W) contains a non-zero element in W®* for every k > 1. In light of Propo-
sition 2.3, for any neighborhood of zero B of L(W) one can construct a sequence
(£n)n>1 € B such that y (exp(¢;) —exp(£;)) > 1 forall i # j and some semi-norm
y on E. Since exp : L(W) — G is continuous ([1] Theorem 3), it follows that no
neighborhood of the identity in G is contained in a sequentially compact set (the
same argument more generally applies whenever V is metrizable).

It follows from Corollary 2.4 that E is Polish whenever V is metrizable and
separable, and thus G, as a closed subset of E, is also Polish. By Lemma 4.2 and
Theorem 4.8, we have the following.

COROLLARY 4.12.  For Borel probability measures . and v on G(R?), it
holds that = v if and only if u(f) = v(f) for all f € C(RY), or equivalently,
w(M) =v(M) for all M € A(R?).

For a Borel probability measure i on G(R%), with associated random vari-
able X, we are thus able to define its characteristic function (or Fourier transform)
by ¢x = it := | 4, which uniquely characterizes .
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5. Signatures of paths. We now discuss the space E in the setting of rough
paths theory. The main connection is that the signature of any geometric rough
path in RY lies in G(RY). We treat rough paths in the sense of Lyons and refer
to [15] and [28] for details and terminology.

Let V be a Banach space, p > 1,7 >0, and Ajo, 71 ={(s,) |0 <s <t <T}.
Let w denote a control function and 7" (V) = Po<x<n V& the truncated tensor
algebra. We recall that the space of p-rough paths €2,(V) is the collection of all
continuous multiplicative maps x : A7) > TP} with p-variation controlled by
some control w, that is:

(a) X(s),t =1and x; ;X =Xs, forall0 <s <t <u <T,and
(b) for some control w one has

k
(5.1) sup  ((k/p)1Bp x5, )" <w(s.0). Vs, € Apr).
I<k=<|p]
where B, is a constant that only depends on p.
The map x may alternatively be viewed as a path x¢. : [0, T] — TPl X0, 1
of finite p-variation, that is,

Lp] ‘ 1/p
(52)  IxXllpvarfo.ry =Y sup (Z((k/p)!ﬁpuxi‘,,,mu)”/)

k=1DPCl0.T1 . ep

is finite, which completely characterizes x due to the multiplicative property (a)
(noting that x; ; = X(I;XO,[)-

Let x € ), satisfy (5.1) for some control w. A fundamental result of rough
paths theory is that for all n > | p] there exists a unique lift S, (x) : Ajo,r) = T"
such that (a) and (b) remain true for the same w and with sup 1<k<lp] replaced
by sup; i<, in (5.1) ([28] Theorem 3.1.2). Equivalently, there exists a unique lift
to the entire product space S(x) : Ajo,71— P =[li>0 V& such that (a) and (b)
remain true for the same w and with sup; ;| | replaced by sup; < in (5.1).

An immediate consequence of the factorial decay in (5.1) is that the lift S(x)
takes values in the space E for any p > 1 (see Corollary 2.5).

REMARK 5.1. While the value of B, does not affect the definition of the
space €2, its existence is crucial to ensure the factorial decay arising from the
lift. On this point, we mention the work of Hara and Hino [20] who have resolved
a conjecture on the optimal possible value of ).

We thus make a canonical extension of the space £2,.

DEFINITION 5.2. Define the space QE), as the set of maps x: Ajg,7]+— E
which satisfy (a) and (b) with sup, - k<lp) replaced by sup; . in (5.1).
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It follows that the lift S is a bijective map from €2, to QE,, with inverse provi-
ded naturally by the | p]th level truncation (X?’[, X;t, L) (X(S)’t, Xsl’,, ey Xst;J).
The element S(X)o,7 € E is called the signature of a rough path x € 2. For
1 <p <2, SX)o,r is precisely the sequence of iterated integrals of the path x . :

[0, T] — V taken in the sense of Young.

REMARK 5.3. The only property of the projective tensor norm used above
is that the projective extension provides a sub-multiplicative system of norms.
Completely analogous results hold true if one equips 7' (V) with any system of
sub-multiplicative norms and defines E as the completion of 7 (V) under scalar
dilations of these norms. Note that in the case V = R?, all these systems lead to
identical definitions and topologies on the space E.

The lift S moreover exhibits a natural continuity property with respect to the
p-variation topology on €2, which we briefly recall. For x, (x(n)),>1 € €2, acon-
trol w and a sequence of reals (a,),>1 with a, > 0, consider the statement

w controls the p-variation of x and x(n) for all n > 1, and
(5.3)

sup  ((k/p)'Bpan|xm)E, = x5 NP * <w(s, ), Vis,0) € Apr.
1<k<|p]

When (5.3) is satisfied for some control @ and a sequence (a,),>1 such that
an > 0 and lim,_, » @, = 00, we say that x(n) converges to X in the p-variation
topology of €2,. One makes the same definition for x, (x(n)),>1 € QE, with
SUp; <x<| p replaced by sup; o in (5.3).

The following is an immediate consequence of the continuity of the individual
lifts S, for n > | p] ([28] Theorem 3.1.3).

PROPOSITION 5.4.  IfX, (X(n)),>1 € Q) satisfy (5.3) for some w and (ap)n>1
with a, > 0, then S(x), (S(X(n))),>1 € QE, satisfy (5.3) for the same control w
and sequence (a)p>1.

In particular, S is continuous (and thus a homeomorphism) when Q, and QE

are equipped with their respective p-variation topologies.

We equip €2, with the p-variation topology and define the evaluation map Z,, :
Qp— E, x> S(X)o,71.

COROLLARY 5.5. The map 1L, is continuous.

Define the space of geometric p-rough paths G2, as the closure of §|,;(€21)
in Q.

DEFINITION 5.6. For p > 1, define R,(V) = {S(x)o,7 | x € GQp,} C E as
the set of signatures of all geometric p-rough paths.
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We equip R, with the subspace topology from E. Observe that R is dense in
R, as a consequence of Corollary 5.5.

Remark that R, is closed under multiplication in E and that for all x € G2,
the inverse of S(x)o,7 i8 S(¥)o,7 = «(S(X)o,7), where y € G2, is the reversal of
x and « is the antipode of E defined in Section 3 ([28] Theorem 3.3.3). Thus R,
is a subgroup of U ={g € E | a(g) =g~ '}.

5.1. Finite dimensional case. 1In this section, we consider V = R4, It follows
that P(RY) [resp., E (R9)] can be identified with the algebra of non-commuting
formal power series in d indeterminates (resp., with an infinite radius of conver-
gence).

We remark that the coproduct A of E(R?) is given by a locally finite formula
involving the shuffle product ([33] Proposition 1.8) and an element g € E (R7) is
in G(R?) precisely when (g°, g', ..., g") is in the free n-step nilpotent Lie group
G"(R?) forall n > 1 ([31] Lemma 2.24). Unless otherwise stated, we always equip
G"(R?) with the metric induced by the Carnot—Carathéodory norm.

A fundamental result of Chen [6] is that the signature of a bounded vari-
ation path in RY is a group-like element of E (R9) ([31] Section 2.2.5), and
thus R1(RY) ¢ G(R?). Since G is closed in E, we immediately obtain the in-
clusions R, (R c R (RY) € G(R?) forall p > 1.

A closely related set to G2, (RY) is the space WG 2 » RYH cQ » (R?) of weakly
geometric p-rough paths, that is, those p-rough paths x € Q p(Rd) which take
values in the free | p|-step nilpotent Lie group, that is,

0, x!,, ..., x") e glPI(RY), Y(s,1) € Ao,

Ss,1° s,

We note the strict inclusions
GQ,(RY) Cc WGR,(RY) € GR,y(RY)
for all p’ > p > 1 ([15] Section 8.5), and thus WRP(Rd) C Ry (R?), where
WR,(RY) =[S(x)0.7 | x€ WGR,(R?)}.

PROPOSITION 5.7. Let p > 1. Then WRp(]Rd) is o-compact in G(R?). In
particular, WR, (R?) is a Borel set ofG(Rd).

For the proof, we recall the (homogeneous) p-variation metric dp-yar 0n 2, (Rd )
under which (€2, RY), d p-var) 18 @ complete metric space with a coarser topology
than the p-variation topology, but for which convergence of a sequence in d-yar
implies the existence of a subsequence which converges in the p-variation topol-
ogy (see [15], Section 8, and [28], Proposition 3.3.3, but note the differing nota-
tions for homogeneous and inhomogeneous metrics in the two texts; we use the
notation of [15]).
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PROOF OF PROPOSITION 5.7. For r > 0, consider the set
Bj, = {x € WGQp(R’) | [X]l p-var:io.11 < 7}-

For every x € B), there exists y € B}, such that 7 — yo; is (1/p)-Hélder contin-
uous, with Holder coefficient depending only on » and p, and such that x is a
reparametrization of y (cf. [15] Proposition 5.14). In particular, [|X]|y-var;[0,7] =
¥l p-var;f0,77 and S(xX)o,7 = S(y)o,r. Let C;, C B; denote the set of all such y
associated with all x € B;.

Let p’ > p be such that | p’] = | p]. It follows from an interpolation estimate
and the Arzeld—Ascoli theorem ([15] Lemma 5.12, Proposition 8.17) that C ; is
compactin (G2 (R), d »'-var) and thus sequentially compact in G2 (R?) under
the p’-variation topology.

Since Z,y : G2 p/(]Rd) — WR pr(Rd) is continuous by Corollary 5.5, and since
Ipr(C;) = Ipr(B;), it follows that Ip/(B;) is sequentially compact in WR (RY),
and thus compact. Since WR,, (R = Ur>1 Zpr(B;), it follows that WR, (RY) is
o-compact in G(RY). O

We lastly record here a consequence of Theorem 4.8 and Theorem 4 of [19],
which strengthens Corollary 1.7 therein, and which was originally observed by
Prof. Thierry Lévy.

COROLLARY 5.8. A path of bounded variation in RY is tree-like if and only if
its Cartan development into every finite-dimensional compact Lie group is trivial.

6. Expected signature. Our main focus in this section is the expected sig-
nature of G-valued random variables and its connection with the characteristic
function defined at the end of Section 4.

6.1. Moment problem. In this section, we study the moment problem for
G (R%)-valued random variables, that is, conditions under which a G(R9)-valued
random variable is uniquely determined by its expected signature. We mention
here that a large part of the results in this section arose from discussions with Dr.
Ni Hao, and we hope to soon jointly expand on this material in a future paper.

When V is a normed space, recall from Corollary 3.3 that if X is a G-valued
random variable such that ESig(X) exists and has an infinite radius of convergence,
then E[X] exists as an element of E and is equal to ESig(X). Thus E[ f(X)] is
completely determined by ESig(X) for all f € E’, and in particular for all M € A.
The following is now a consequence of the uniqueness of probability measures
from Corollary 4.12.

PROPOSITION 6.1. Let X and Y be G (R?)-valued random variables such that
ESig(X) = ESig(Y) and ESig(X) € E, that is, ESig(X) has an infinite radius of

convergence. Then X Dy .
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Recall from Corollary 5.5 that the evaluation map Z,, : 2, > E is continuous. It
follows that the signature S(X)o, 7 of any £2,-valued (resp., GS2)-valued) random
variable X is a well-defined (Borel) E-valued [resp., U-valued, or G (R%)-valued
in case V = R?] random variable.

EXAMPLE 6.2. We apply Proposition 6.1 to the Lévy—Khintchine formula es-
tablished in [14]. Recall that [14] Theorem 52 describes a class of Lévy processes
in G*(R?) which, by adding appropriate adjustments for jumps, may be treated as
GQ p(Rd)—Valued random variables for some 2 < p < 3 [which in particular in-
cludes all Lévy processes in R? lifted to G>(R¥) by solving the associated Marcus
stochastic differential equation].

Let (a, b, K) be the triplet of a Lévy process in G*(R?) satisfying the con-
ditions of [14] Theorem 52. Let X be the associated G2 p(Rd)—Valued random
variable for some 2 < p < 3, and X = S(X)o,7 its signature. It follows from [14]
Theorem 55 that whenever the measure 1)jo¢x|>1K(dx) integrates all powers of
|log x|, ESig(X) exists as an element of P(RY) = ]_[kZO(Rd)®k and is given by

| d ,
ESig(X) = exp[T(E Z a"/ejej + Zb‘ei + Zb”k[e_,-, ex]
i,j=1 i=1 <k

* /GZ(]Rd)[eXp(logx) —x1 ‘0gx|<‘]K(dX)>}’

where both appearances of exp are understood as exponentiation in P(R?). In
particular, defining the norm ||x |, = > x>0 A¥)1x¥| on E for A > 0, one can readily
see that ESig(X) € E whenever

(6.1) / lexp(log x) — x1j10gx<1 ], K(dx) <00 forall A > 0.
G2(R9)

Note that if X is the Marcus lift of a Lévy process in R? with triplet (a, b, K),
then (6.1) holds precisely when

/Rd(e*'xl —1 =1y <1Alx|)K (dx) <00  forall A > 0.

It follows by Proposition 6.1 that whenever (6.1) is satisfied, S(X)o,7 is uniquely
determined as a G (R?)-valued random variable by its expected signature.

Recall the radius of convergence r;(X) from Definition 3.1. Theorem 6.3 be-
low provides sufficient conditions to ensure that 71 (X) > 0 or r| (X) = oo without
explicit knowledge of ESig(X).

For a subset B C A of an algebra A and n > 1, define B" = {x1,...,x, |
X1,...,%X, € B}. For an element x € A, define B(x) =inf{n > 1| x € B"} [tak-
ing B(x)=ocifx ¢ B" foralln > 1].
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Note that for a topological algebra A with (jointly) continuous multiplication,
an A-valued random variable X, and a (Borel) measurable set B C A, B(X) is a
well-defined random variable in {1, 2, ...} U {oo}.

THEOREM 6.3. Let V be a normed space and X an E-valued random vari-
able. Suppose there exists a bounded, measurable set B C E such that B(X) has
an exponential tail, that is, E[e*8X)] < oo for some 1 > 0. Then ri(X) > 0. If
moreover E[e*BX)] < oo for all » > 0, then r1(X) = 00.

PROOF. Equip E with the projective extension of the norm on V. For any
r > 0and A > 0 such that sup, .5 |6, (x) || < ¢’ it holds that

©2 ) r*E[| X*|] =E[||8,(X)]] < E[*EX],

k>0
where the inequality follows from the fact that §,(X) = 6,(X1) --- 8, (X p(x)) for
some Xl""’XB(X) € B.

Suppose first that E[e*#X)] < oo for all A > 0. For any r > 0 let A > 0 be suf-
ficiently large such that sup, g |6, (x)| < e*. Then (6.2) implies that r(X) > r,
and thus 7 (X) = oo.

Suppose now that E[e*#X)] < oo for some A > 0. By Proposition 2.10, the
functions 3, converge strongly to dg as » — 0 and, in particular, uniformly on B.
Thus, there exists r > 0 such that sup,.p [|6,(x)]| < e*. Then (6.2) implies that
r1(X) >r > 0asdesired. [

We demonstrate how to apply Theorem 6.3 to random variables arising from
signatures of geometric rough paths.

Let V be a Banach space and p > 1. We note that for any x € 2, wx(s, 1) :=
||X||£_Var; [5.] defines a control for which (5.1) is satisfied. Thus for all k > 1, the
lift S(x) : Ajo,7) — E satisfies
w(0, THk/P

Bpk/p)!

|S)6.7 ] <

We hence define
K,= {x € E | sup B, (k/p)!x*| < 1}
k>0

and observe that S(x)o,r € K, for every x € 2, with ||X|| p-yar;j0,7] < 1. Observe
furthermore that K, is bounded and measurable in E.

For x € 2, define k, (x) = K, (S(X)o,7), that is, the minimum positive integer
k for which there exist x1, ..., xx € K, such that S(X)o,7 = x1, ..., X.

We briefly recall the construction of the greedy sequence and function
Ny 10,71, p(X) introduced in [4]. For « > 0, define the sequence of times 79 =0,

Tiv1 =infl{r > 7 |ox(tj, 1) =k} AT,
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so that wy(tj, 7j+1) =k forall 0 < j < N = Ny jo,7],,(X) :=sup{j >0 7; <
T} and wx(ty, Tn+1) < k (see [4], Definition 4.7, or [13], page 158). Note that
kp(x) < Nyjo,71,p(x) + 1.

REMARK 6.4. For any p,q > 1 and x € 4, note that the signature S(x)o, 7
exists and so k,(x) is meaningfully defined. Moreover, in case ¢ < p, X can
canonically be viewed as an element of €2, by its lift S|,/ x € €2, and we have
SX)o,r = S(SpX)o,T-

However, if ¢ < |p], and Ny jo,7],p(X) and the greedy sequence (‘L’j)?il are
defined in terms of x (not its lift S|, x), then Ny 0,7, p(X) does not yield a deter-
ministic bound on k, (x) since the individual signatures S(x); T will in general
fail to be elements of K.

To obtain a bound on &, (x), one needs to consider Ny (0,71, » (S| p)X) and (Tj)?il
defined in terms of S|, x € £2,. Then S(x)rjyrj+1 = S(SLpr)rj,,j+1 € K, for all
J=0,1,...,and so k,(X) < Ny 0,11, p(S|pXx) + 1.

Let K,(V) be the family of ,-valued random variables X such that
E[e**»X)] < 0o for all A > 0.

COROLLARY 6.5. Let V be a Banach space, p > 1 and X € K, (V). Then
ESig[S(X)o,7] has an infinite radius of convergence.

COROLLARY 6.6. Let p > 1 and X € K,(RY) such that X is GQ,(RY)-
valued. Then S(X)o,7 is the unique G (RY)-valued random variable whose ex-
pected signature is ESig[S(X)o,r].

We now demonstrate two important examples of G2 p(Rd)—Valued random
variables in ) (R?). Remark that a non-negative random variable Z satisfies
E[e*%] < oo for all A > 0 whenever Z? has a Gaussian tail for some 6 > 1 /2,
that is, P[Z? > 7] < C‘le_sz for all z > 0 and a constant C > 0. In both of the
following examples, [0, T'] is a fixed time interval.

EXAMPLE 6.7 (Gaussian rough paths). Recall that every centred continuous
Gaussian process in R? with independent components and covariance matrix of
finite 2D p-variation, p € [1, 2), admits a natural lifttoa GQ2 p(Rd)-Valued random
variable X for any p > 2p ([15] Theorem 15.33).

Recall that [4] Theorem 6.3 provides conditions which lead to bounds on the
tail of Ny [0,71,p(X). In particular, due to [12] Theorem 1, the conditions of [4]
Theorem 6.3 are verified whenever the covariance matrix of X possesses finite
mixed (1, p)-variation for some p < 2, from which it follows that Ny [0, 7, p(X)9
has a Gaussian tail, where 0 = (2,0)_l + 1/2. We refer to [12] Section 2.3 for a
collection of examples satisfying the finite mixed (1, p)-variation condition, which
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in particular includes the natural lift of fractional Brownian motion with Hurst
parameter H > 1/4 and p = (2H)_1 ([12] Example 2.8).

Since k,(X) < Ny 0,71,p(X) + 1 as remarked before, it follows that whenever
the finite mixed (1, p)-variation condition is satisfied, X is a G2 p(Rd)—valued
random variable in /C ,,(Rd) for any p > 2p.

EXAMPLE 6.8 (Markovian rough paths). Consider V =R%, n > 1, and g =
g"(RY), which for convenience we identify with the Lie group G"(R?) via the
exponential map. Let X = X%* be a Markovian rough path constructed from a
Dirichlet form £4 on Lz(g) for a € 4(A), A > 1, and starting point Xg’x =
x € g (taking the natural lift when n = 1; see [15] Chapter 16 for definitions). The
sample paths of this process are almost surely geometric p-rough paths for any
p>2.

A recent result of Cass and Ogrodnik ([5] Theorem 5.3) implies that
Nij0,1, p(X)l_l/ P has a Gaussian tail for any p > 2 (moreover the constant de-
termining the tail bounds depends only on A, p,n,d and T'). It follows that X is a
GQ, (R?)-valued random variable in K » (R?) for all p > 2.

6.2. Analyticity. In this section, we investigate conditions under which the
characteristic function is analytic. We apply these results to situations where the
expected signature does not necessarily have an infinite radius of convergence.

DEFINITION 6.9. Let X be an E-valued random variable, H a finite dimen-
sional complex Hilbert space, and M € L(V,L(H)). For A € C, define ¢x p (1) =
E[(AM)(X)] whenever ||(AM)(X)|| is integrable.

The above definition of ¢x 3 does not introduce any new concept to the previ-
ously defined ¢x and simply makes the results in this section easier to state.

Recall that for a real random variable X, if E[|e*X|] < oo for all A € (—¢, ¢),
then ¢x (L) = E[¢/*X] is well defined and analytic on the strip |Im(z)| < &. This
property is known as the propagation of regularity (and similar results hold for C%*
regularity of ¢x on R; see, e.g., [25]).

We start by showing that the analogue of this property is not in general true for
G-valued random variables whenever dim(V) > 2. The propagation of regularity
for real [or equivalently G (R)-valued] random variables relies crucially on com-
mutativity in E(R), and we show how the lack of commutativity prevents the same
phenomenon from occurring when dim(V') > 2. Recall the radius of convergence
r1(X) from Definition 3.1.

EXAMPLE 6.10. Let V be a normed space with dim(V) > 2. We construct a
G-valued random variable X such that:

(1) r1(X) > 0, thus in particular, ESig(X) exists and ¢x j is analytic in a
neighbourhood of zero for all M € A,
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(2) there exists M € L(V, u(C?)) such that the set of A € C for which |A| > 1
and E[||(AM)(X)]||] = oo forms a dense subset of {z € C | |z| > 1}, and
(3) ¢x.m is nowhere differentiable on (1, c0).

Let e1, e2 be fixed linearly independent vectors in V of unit length, s a non-
negative real random variable, and N a random variable in N = {0, 1, 2, ...}
independent of s. Define the G-valued random variable X = exp(sfx), where
fv=let,[...,[e1,ez],...] with e; appearing N times.

Suppose there exists rg > 0 such that that E[¢""] < oo for all 0 < r < ry.
We claim this implies (1). Indeed, remark that || f,,]] < 2", and thus ||§, X]|| <
exp(2N rVs). Denote pn = P[N = n]. It follows that for r > O sufficiently small

E[18-X1] <> puE[exp(2"r"s)] < oo,

n>0

which implies r1 (X) > 0 as claimed.

Let su(2) be the special unitary Lie algebra of dimension 3 with the stan-
dard basis u1, un, u3 satistying [u1, uz] = u3, [uz, u3] = uy, [u3,u1] = uy. Let
M : V — su(2) defined by e; — u; for i = 1, 2 and arbitrary otherwise.

Suppose moreover that E[e"*] = oo for all r > r¢ and that N has unbounded
support. We claim this implies (2). Indeed, let v, = M(f,) (thus vo = uz, v =
U3, V) = —Up, V3 = —U3, V4 = Vg, ...). Denote A = ret? for r,0 > 0, so that
(AM)(X) = exp(sr¥e!NPvy). We obtain

E[|0M)(X)|] =" paE[|lexp(sr™e™v,)|]

n>1

=Y an[exp<%|sr” sin(n@)}):|,

n>1

where the last equality follows since i v, is Hermitian with eigenvalues :I:%.

Let D be any open subset of {z € C | |z] > 1}. We observe that there ex-
ists n > 1 sufficiently large and r > 1,6 > 0, such that p, > 0, re'? € D and
E[exp(%lsr” sin(n6)|)] = co. Thus, (2) holds as claimed.

Finally, we make specific choices for s and N to obtain (3). Observe by Fubini’s
theorem that for all r > 0

E[(rM)(X)] = Z pnE[exp(sruvy)].

n>1

Suppose p, > 0 only if n = 4m for some integer m. Since

eit/Z 0
exp(tusz) = ( 0 e_i’/2> ,

it follows that
- 4n
E[rM)(X)] =Y pan (exp(zro 5/2) 0 ) '

= exp(—ir's/2)
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It follows that ¢x_ps has the same regularity at r > 0as )_,,~o pan@®s (rtn /2), where
¢ 1s the characteristic function of s. -

It is now easy to find ¢; and p, such that the above series defines a nowhere
differentiable function on (1, 0o). For example, let ¢5(A) = (1 — ¢)(1 — qe“‘)_1
forany 0 < g < 1, that is, s is geometrically distributed with parameter 1 — g, and
let p, decay faster than any geometric sequence, that is, for any « € (0, 1) there
exists ny such that p, < «” for all n > n,. The statement of (3) then follows by
Dini’s general construction of a nowhere differentiable function ([23], page 24).

REMARK 6.11. The random variable X constructed above is the exponential
of a Lie polynomial of degree N. Thus, when V =R¢, X is the signature of a ran-
dom weakly geometric N-rough path ([15], Exercise 9.17), and thus of a random
geometric p-rough path for p > N. Moreover, as the decay of || X¥|| is exactly of
the order (k/N)!~!, there does not exist a fixed p > 1 such that X is almost surely
the signature of a random geometric p-rough path.

One can however approximate each sample of X by the signature S(X)o 7 of
a bounded variation path X¢.: [0, 7] — R in such as way that (1) and (2) in
Example 6.10 still hold for the G (R%)-valued random variable S (X)o,r with the
change that the stated A in (2) will be dense in the annulus {z € C | 1 < |z| < R}
for any fixed R > 1 (where the random variable X depends on R).

DEFINITION 6.12. Let V be a normed space. Denote by ® (V) the set of G-
valued random variables X which satisfy:

(P1) ri(X) >0, and
(P2) ¢x, u is (weakly) analytic on R for all M € A.

The importance of the set ® is that when V =R? and X, Y € ®(R?) such that

ESig(X) = ESig(Y), we have X 2y, To observe this, remark that for V normed
and X an E-valued random variable with r{(X) =: ¢ > 0, it follows by domi-
nated convergence that E[M(X)] = ;~o M®FE[X*] whenever || M| < &. Hence
for all M € A, ¢x (1) is completely determined by ESig(X) whenever |1 is
sufficiently small, and the claim follows by Corollary 4.12.

Theorem 6.13 is the main result of this section and provides a criterion to ensure
that X € ®.

THEOREM 6.13. Let V be a normed space and X a U -valued random vari-
able. Suppose there exists a bounded, measurable set B C U such that B(X) has
an exponential tail, that is, E[e*)] < oo for some A > 0. Then (P1) and (P2)
hold for X .

PROOF OF THEOREM 6.13, (P1). This follows immediately from Theo-
rem 6.3. [J

For the proof of (P2), we require the following two lemmas.
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LEMMA 6.14. Let F be a topological algebra, A a normed algebra, M €
Hom(F, A), B C F a bounded measurable set, and let c = sup,.p |[M(x)||. Let X

be an F-valued random variable such that ||M (X)|| and (¢ + &)8X) are integrable
for some ¢ > 0.
Then supyy e, |M'(X)|| is an integrable random variable, where

U= {M/ € Hom(F, A) | sup|M (x) — M'(x)| < s}
xeB
is an open subset of Hom(F, A) (under the strong topology).

PROOF. By definition of the strong topology, sup, .z || - (x)|| is a semi-norm
on L(F, A) and so U is indeed an open subset.

Moreover, x + sup, ., |M'(x)| is the supremum of a family of continuous
functions, thus lower semi-continuous, and thus measurable. The claim now fol-
lows by a direct application of (2.2). [

For a bounded complex domain D C C, denote by H (D) the space of continu-
ous functions on D which are analytic on D. Recall that Hy (D) equipped with the
uniform norm is a separable Banach space.

LEMMA 6.15. Let V be a normed space, A a separable Banach algebra and
M e L(V, A). Let X be an E-valued random variable. Assume that for a bounded
domain D C C, sup, .5 [((AM)(X)|| is an integrable random variable. Then for
every f € A, the map h +— E[{f, AM)(X))] is in Hy,(D).

PROOF. Let f € A’.Forx € E consider the map ¢p, s (x) : & +— (f, (AM)(x)),
which is an entire function on C.

We claim that the corresponding linear map ¢y s : E — H(C), where H(C)
is the space of entire functions on C, is bounded when we equip H (C) with the
compact-open topology. Indeed, since A — (AM) is a continuous map from C
into Hom(E, A) by Proposition 2.10, the collection of maps (AM);ck is strongly
bounded in Hom(E, A) for any bounded set K C C. Thus for every bounded set
L C E, it holds that

sup sup | (AM)(x)| < oc.

xeL reK
In particular, this implies that ¢y r(L) is a bounded subset of H(C) for every
bounded set L C E as claimed.

Since E is a Fréchet space (hence bornological), it follows moreover that ¢y, # :
E +— H(C) is continuous. Hence ¢y, r(X) |55 is a norm-integrable Hy,(D)-valued
random variable and thus possesses a barycenter 1 € Hy,(D).

Let A € D. Since the evaluation map (-, ) : x — x(X) is in the continuous dual
of Hy(D), it follows that

h() =E[{pum, r(X), M)] =E[(f, GM)XO))] = (£ E[AM)(X)]),
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where the last equality follows since (AM)(X) is a norm-integrable A-valued ran-
dom variable and is thus weakly integrable by the separability of A. As h is in
Hy (D), the conclusion follows. [

PROOF OF THEOREM 6.13, (P2). Let M € A. Since |M(g)| = 1 for all
g € U, one obtains from Proposition 2.10 and Lemma 6.14 that there exists a do-
main D containing 1 € C such that sup, .5 [[(AM)(X)]| is an integrable random
variable. The conclusion now follows by applying Lemma 6.15. [

Following the discussion at the end of Section 6.1, define
Ny=K,NU=|geU| 2ug,8p(k/p)!||gk|| <1},
>

We observe that S(x)o,7 € N, for every x € G2, with ||X]| p-var;j0,77 < 1. As with
K,, N, is bounded and measurable in E.

For x € GQ2), define n,(x) = N, (S(X)o,7), that is, the minimum positive inte-
ger n for which there exist g1, ..., g, € N), such that §(x)o,7 = g1 --- gn. Recall
the functions k, and Ny jo,7],p from Section 6.1 and note that k,(x) < n,(x) <

Nijo,7r1,px) + 1.

REMARK 6.16. Asin Remark 6.4, we mention again that for 1 < ¢ < p, every
x € G2, is canonically defined as an element of G2, via its lift §|,x € G2),.
However, one cannot bound 7, (x) in terms Nj [o,7],p(X) computed directly in
terms of x; instead one has n,(x) < Ny 0,17, p(S|pX) + 1.

Let \V, »(V) be the family of G2)-valued random variables X such that 7, (X)
has an exponential tail. Note that if X € K, and is GS2,-valued, then X € N,,.

COROLLARY 6.17. Let V be a Banach space. Then forall p > 1 and X € N,,,
the signature S(X)o, 7 is a U-valued random variable satisfying (P1) and (P2).

In the finite dimensional setting, we obtain a result analogous to Corollary 6.6
but with weaker assumptions and a weaker conclusion.

COROLLARY 6.18. Let p > 1 and X € N,(RY). Then S(X)o.r € ®(R?). In
particular, S(X)o, T is the unique G (RY-valued random variable in ® (R?) whose
expected signature is ESig[S(X)o,7].

REMARK 6.19. For a random variable X € ®(R%), we cannot exclude the
possibility that there exists a G (R¢)-valued random variable ¥ (which might arise
as the signature of a geometric rough path) such that ¥ ¢ ®(R?) and ESig(X) =
ESig(Y). Whether this is possible currently remains unknown.
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However, note that Corollaries 6.17 and 6.18 apply for all p > 1. Thus for any
p,q > 1 and random geometric rough paths X € \V,, RY) and Y € Gy ®RY), if
S(X)o,r and S(Y)o,r are not equal in law [as G (R%)-valued random variables]
and ESig(S(X)o,7) = ESig(S(Y)o,r), then the lift S|,/;Y cannot be in Nq/(Rd)
for any ¢’ > ¢.

EXAMPLE 6.20 (Markovian rough paths stopped upon exiting a domain). Re-
call the notation of Example 6.8 and the result of Cass and Ogrodnik [5] that
Nl,[o’l],p(X”*x)l_l/P has a Gaussian tail for any p > 2.

In this example, we shall replace the interval [0, 1] by [0, T'], where T is
the first exit time of X%* from a suitable set. In particular, we shall show that
N 10,71, p(X**) has an exponential tail and that this result is asymptotically sharp.

Throughout the example, we fix A > 1 and g = g"(R?). We first give a slight
extension of the support theorem [15] Theorem 16.33 in the Holder topology. Re-
call the Sobolev path space W;’z([s, t], g) with starting point x € g. In particular,
recall that for all h € W)-2([s, t], g) and « € [0, 1/2]

|-t [s.0] < (£ — 5)1/27¢

For 6 > 0 consider the ball
Wosx == {he W2([0, 11, @) | 1l 12,0017 < 0}

”h” Wl‘z;[s,t]‘

LEMMA 6.21. Forany o €[0,1/4), 0 > 0 and c > 0, there exists § > 0 such
that

P4* [dy-no1;0,11(X, h) < ¢] > 8
forall a € (M), starting points x € g, and h € Wo.x.

The proof is essentially the same as that in [15] and we defer it to the
end of the example. Recall now the greedy sequence (t j);?‘;l associated with
Nij0,11,p(X%*). For ease of notation, we shall not stop 7; at T for j > N :=
Nej0,11,p(X%*) (i.e., we do not necessarily have Ty = 7). Note this causes no
confusion since X{"* is defined for all times # > 0 as a diffusion in g.

Consider first X** : [0, 1] +— g. Taking h = x the trivial path, Lemma 6.21
implies that for any p > 4 and « > 0, there exists § > 0 such that

)icrelg]?a’x[”X“l/p-H('jl;[O,l] <Kk]=4.
It follows that
}Ielg]p“[fl >1]> )icfelgpu’x[”X”l/p—Hﬁl;[O,l] <k]=3,

so by the (strong) Markov property of X** and properties of conditional expecta-
tion

P [N po.17.p(X) > k] = P“* [ < 1] < (1 — §)F.
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That is, Ny [0,1],p(X*") has an exponential tail [moreover § does not depend on
xegoraec E"(A)].

While this argument yields a strictly weaker asymptotic bound than that in [5],
the advantage is that by choosing appropriate h in Lemma 6.21, a very similar
argument gives upper and lower bounds on the tail of Ny 0,1, p(X“*), where T
is now the first exit time of X%* from a suitable open set. We first show the lower
bound.

Recall that g is equipped with the (left-invariant) metric d induced by the
Carnot—Carathéodory norm (or any other symmetric sub-additive homogeneous
norm). For any r > 0 and x € g, define B, (x) ={yeg|d(x,y) <r}.

PROPOSITION 6.22. Let p > 4, k,r > 0. Define T = inf{t > 0 | X{"* ¢
B, (x)} the first exit time of X** from B, (x). Then there exists § > 0 such that

P [Ny j0.77.p(X) = k] > 8¢

foralla € 8™ (A) and x € g.

PROOF. Let 6 > O sufficiently large such for all x € g and y € B,»(x)
there exists h” € Wy, such that h{ =X, hty € B;2(x) for all 7 € [0, 1], and
IhY{| p-var;[0,1] > & +7/2 (e.g., take t > h,y as a geodesic from y to x on [0, 1/2]
and then h) = xhy,_; for t € [1/2, 1] for a fixed h € W, *([0, 1], g) with hy =0,
h; € B,/>(0) forall 7 € [0, 1], and [|h]| p-var;[0,1] > k +7/2).

Since [|X[| p-var;0,1] = 107 [l p-var;10,1] — @1/ p-Ho1: (0,11 (X, '), we have for all x €
g,y € Byja(x) and a € E™(A)

Pa’y[xt € By(x) forallt € [0, 1], ||X”p-var;[0,1] >k,X € Br/Z(X)]
> Pa’y[dl/p_Hal(X, hy) < r/2].

Applying Lemma 6.21 with ¢ =r/2 and o = 1/ p, along with the (weak) Markov
property and conditional expectation, concludes the proof. [J

REMARK 6.23. Note that Proposition 6.22 deals only with the quantity
Ni,j0,11,p(X%*) and does not provide a lower bound on the tail of n p(X?dfCT]).
In particular, one cannot conclude that ESig[S(X“¥)¢ 7] does not have an infinite
radius of convergence.

We now show an upper bound on the tail of Ny 0,7, ,(X%*) which will im-
ply that S(X%¥)o 1 € ®(R?) (see, however, Remark 6.26). For a subset D C g,
consider the following property:

(6.3) There existr,c > 0 suchthat sup inf d(xh,y)>c forall x € D.
heB,(0) YED
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REMARK 6.24. For | <k <n, let 7% : g"(R?) > g¥(R?) denote the projec-
tion. Then whenever the image 7%(D) satisfies (6.3) for some 1 < k < n [for the
respective metric on gk (R%)], then so does D (with a different choice of r, ¢).

Indeed, on the one hand d(x, y) > d(r*(x), 7*(y)) for all x, y € g"(R?). On
the other hand, for every r > 0, there exists R > 0 such that B, (0) C 7% (Bg(0)) C
g¥(R?). The conclusion readily follows since 7* is a group homomorphism.

PROPOSITION 6.25. Let p > 4, k >0, and D C g be an open set satisfy-
ing (6.3) for some r,c > 0. Define T =inf{t > 0| X{"* ¢ D} the first exit time of
X%* from D. Then there exists § > 0 such that

P [Nejo.r1,p(X) = k] < (1 = 9

forall a e 8~*(A) and x € D.

PROOF. Let 6 > 0 be sufficiently large such that for every i € B,(0) there
exists h € Wy.o such that h; = h. Note that it suffices to prove the statement for
any fixed ¥ > 0. In particular, we may assume that « > 6 + c.

It follows that to every point x € D, we can assign 7* € B,(x) and h* € Wy,
such that infyep d(h*, y) > c and h] = h*. Then for all a € 2"4(A) and x € D

B [ey > 1= T] = B[ Xl pvario.1) < 6 + ¢ X1 ¢ D]
> P [IXNpotsionny < 0+, d (X, 1) <]
> P [d1)p-nst;i0.1 (X, ') < c].

Applying Lemma 6.21 with @ = 1/ p, along with the (strong) Markov property and
conditional expectation, concludes the proof. [J

REMARK 6.26. The diffusion X%~ is constructed on the space g" = g"(R%)
[or equivalently on G”(R%)], and Proposition 6.25 gives an exponential bound
on the tail of Ny [o,7],,(X*") computed in terms of X** for any p > 4. Fixing
4 < p <5, Corollary 6.18 thus implies that S(X**)o. 7 € & (RY) forn > 4.

One could extend this to the case n = 2 or 3 (recall for n = 1 we consider the
diffusion X¢°™'* on g?) if the analogue of Lemma 6.21 were true for all o €
[0, 1/2). However such a support theorem is currently unknown.

Nonetheless, in light of Remarks 6.4 and 6.16, for n = 2 or 3 we can still show
that S(X“*)o.1 € ®(RY) by showing that Ni,0,71,p(S4X*”) has an exponential
tail.

To show this, note we can apply Proposition 6.25 to the diffusion X*°™"-Y on
g4 and the open set (™~ YD) c g4 [which indeed satisfies (6.3) due to Re-
mark 6.24]. We thus obtain that N 1.[0.7]. p(X”"” "y ) has an exponential tail, where

T is the first exit time of 7"X°""Y from D.
To conclude that Ny 0,7, p(S4X%¥) has an exponential tail, it suffices to show

that Y 1=y % S4X; " is equal in law to X" " for all y € g* as processes on
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g* (x denoting group multiplication in g*). This follows by a similar argument
as [11] Section 6: observe that the Markov process Yty is the solution of an RDE
with starting point y € g* and driven by nz(Xf’”ny ) (which is non-Markov in
general) along the (unbounded) canonical left-invariant vector fields uy, ..., u4
on g*. Denoting by P; the semi-group on Cj,(g*) of Y}, it suffices to show that

m(t = (f = Pof). 8o = €7 (£.8)

for all f, g € C°(gh).

Consider f,g € C° (g*) with support in a ball Bg(0) C g* and fix smooth
vector fields uiR which agree with u; on Bog(0) and have compact support. Let
Y,R "’ denote the RDE driven by nz(X?’”n(y ) ) along ulR starting at Yg Y = y. For
all y € Bg(0) and ¢ € [0, 1], we have Yf’y = Y,y whenever Y3 € By (0) for all
s € [0, t]. The probability that Y, leaves Boz(0) in [0, ¢] is bounded above by
C_lexp(—Ct_z/P) for any 2 < p < 3 and some C = C(R, p) (which follows
from Fernique estimates on || X“*||1/,-Hs1;[0,1])-

Defining PlR f)=E[f (Yf’y )], it follows readily that

lim(r =1 (f =P f), g) = lim{r ' (f — PF f), g).
t—0 t—0
Finally, the latter limit is now seen to equal £%°7" (f, g) following [11] Lem-

mas 26, 27 and the proof of Proposition 28 (note that one readily extends
Lemma 27 to diffusions on g” for n > 2, cf. [15] Proposition 16.20).

PROOF OF LEMMA 6.21. We mimic the proofs of [15] Lemma 16.32 and
Theorem 16.33 while keeping track of constants.
For a € [0, 1/4), h e W!2([0, 1], g) and & > 0 define the set

B, ={xe MN[0, 11, 9) | IXlla-to1 < 2lIhlla-ts1 + 1, doo(x, h) <&}
We claim that for all @ € [0, 1/4) and ¢ > 0, there exists § > 0 such that
P“*[X e B,] > 6

for alla € E™(A), x € g, and h € Wj.,.

Indeed, we follow the proof [15] Lemma 16.32 (we also mention here that,
directly as stated, [15] Lemma 16.32 contains the minor error that it fails to hold
for the trivial path ||h||4-ps1 = O; this is readily fixed by modifying the definition of
their Bg‘ to our definition above; moreover the proof of [15] Theorem 16.33 then
goes through unchanged).

Using Step 1 of the proof of [15] Lemma 16.32, we obtain that for any 8 €
(a,1/2), PY¥[X € B;‘;a] > A1 — Ay, where A1 =P**[dyo (X, h) <¢] and

Ay =P [|[X| -t > (IIhlla-pir + 1)7/* (22)' P/,
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The claim will follow once we show that A>/A; — 0 as ¢ — 0 uniformly over
ae E"’d(A), xeg,and he Wy.,.

By [15] Theorem E.21, we have log(Ap) > —c1e7% where ¢ = C(l +
[[h| W1.2)2 and C is a constant depending only on the doubling and Poincaré con-
stants of £, which in turn depend only on A, n and d ([15] Proposition 16.5 and
Theorem E.8).

On the other hand, the Fernique estimate in [15] Corollary 16.12 implies that

2 - —
10g(A2) < —ca([[lg-ps + 1) /4272812 <y 22012

where ¢ depends only on 8 and A. So for fixed o € [0, 1/4), choose any 8 €
(2o, 1/2). Since 2 — 28 /o < —2, we see Ay /A1 — 0 as ¢ — 0 uniformly over the
desired variables, which proves the claim.

To conclude, we follow the proof of [15] Theorem 16.33. By the dy/d~ estimate
on g ([15] Proposition 8.15),

do(x, h) < Cdoo (X, h) + Cdoo(x, 1)/ (||X[| 0 + [l 00)

where C = C(n, a;), and so by interpolation ([15] Lemma 8.16) we have for all
xeg,x,he C¥H9([0,1],¢) and 0 < &’ < & < 1/4 that

1-1/n
9

do-1161 (%, 1) < ([IXll-trs1 + 10 lle-t161)* 7 do (x, )17/
< C1 (gt + actien)

1-1 1—o’
X [do (%, 1) + oo (. 1) /7 (|xl| g + [11lc) /"]~
Since [|hlloo < [[hlle-tai < [[hlly12, it follows for all h € Wy, and x € B, that

da/_H(il(X, h) < 03(8 4 Sl/n)l_a//a’
where c3 depends only on n, d, a, &’ and 6.

Choosing ¢ > 0 so that c3(e + 81/”)1_“,/“ < ¢, it follows that there exists § > 0
such that

P [dy-ps1 (X, h) < c] = P“*[X e B, <c]>6

foralla € E"4(A), x € g, and h € Wy. ., which concludes the proof. [

6.3. Convergence of measures. We conclude the paper with a result analogous
to the method of moments for weak convergence of G(R%)-valued random vari-
ables. We work first with a slightly general notion of coproduct spaces as this is
the only structure of E which we require.

DEFINITION 6.27. A coproduct space (F, A) is alocally convex space F' and

a continuous linear map A : F — F®2, with the additional property that G (F) :=
{geF|A(g) =g®g,g#0}isclosed in F. Let Pg(F) be the set of (weakly)
integrable probability measures on G (F).
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The extra condition that G (F) is closed in F will only arise in Lemma 6.30 to
ensure that G(F) is Polish whenever F is. Remark that (3.1) remains true for any
coproduct space (F, A), f € F/, and u € P(F) with support on G(F).

LEMMA 6.28. Let (F, A) be a nuclear coproduct space and y a semi-norm
on F. There exists a semi-norm & on F such that u(y) < /&(u*) for all n €
Pc(F).

PROOF. Let ¢ be a semi-norm on F such that the canonical map 1’7} — fy is
nuclear. Increasing ¢ by a scalar multiple if necessary, it follows that there exist
(fu)n=1 € F'such that 3°, -1 ¢(fy) <1and y < 3,5 |ful. The conclusion then
follows from (3.1) for any semi-norm & on F such that § > (§®2) oA. [

LEMMA 6.29. Let (F, A) be a Fréchet nuclear coproduct space. Let R C
PG (F) be a family of probability measures on G(F) such that (u*),er is
bounded. Then R is uniformly tight.

PROOF. Let (y,)n,>1 be a defining non-decreasing sequence of semi-norms
on F. By Lemma 6.28 there exists a sequence of semi-norms (£,),>1 on F
such that w(y,) < V&, (u*) for all u € Pg(F). Since (u*)yer is bounded,
Sup,, e g En (™) < 00 for every n > 1.

Let B, = {x € F | y,(x) < 1}. For any sequence of positive reals (A,),>1, the
set K :==(),,>1 An By is bounded in A and thus relatively compact ([36], page 520).
For all i1 € 75(;(F ) we have that

w(KE) =3 n({x 1y =2 }) < 302 ) <D0 a0 Ve (¥).

n>1 n>1 n>1

Taking A, sufficiently large, it follows that sup,,c g £ (K“) can be made arbitrarily
small. O

LEMMA 6.30. Let (F,A) be a Fréchet nuclear coproduct space and let
(n)n>1 be a sequence of measures in Pg(F) such that ) — x weakly for
some x € F. Then there exists u € Pg(F) and a subsequence (n(k))y>1 such that

D
Wn(ky — 1 and x = jL*.

PROOF. Recall that a Fréchet Montel space (thus in particular a Fréchet nu-
clear space) is always separable ([35], page 195), and hence Polish. As a closed
subset of F, G(F) is also Polish.

The sequence (it)),>1 is bounded ([34], Theorem 3.18) thus there exists a con-
vergent subsequence k) — n for some probability measure u on G(F) by
Lemma 6.29.
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Let f € F'. Since sup,,-; un(fz) = supn>1(f®2)(A,uZ) < 00, the sequence of
image measures (u, f~'),>1 on R is uniformly integrable. It follows that f is
p-integrable and f(u)) = w,(f) — wn(f) ([3] Lemma 8.4.3). Thus, x = u* and
nePg(F). O

Recall that E is Fréchet and nuclear whenever V is. The following is now a
consequence of Lemma 6.30 and Proposition 6.1.

THEOREM 6.31. Let (X,),>1 be a sequence of G (RY)-valued random vari-
ables such that E[X,] € E(R?) exists [i.e., ra(X,) = 00] for all n > 1. Sup-
pose that E[X,] converges to some x € E(R?) in the weak topology of E(R%).
Then there exists a unique integrable G (R?)-valued random variable X such that

Xn 2 X and x = E[X].

REMARK 6.32. We remark that F := P(R) = Hk>0(R)®k is also a Fréchet
nuclear coproduct space under the product topology. Moreover the exponential
map exp : R — G(R) = G(F) is a homeomorphism. One may then directly apply
Lemma 6.30 to obtain a proof of the classical method of moments for real random
variables: if p, are probability measures on R with finite moments (m,(j));>1
such that lim,_, oo m,(j) = m(j) for every j > 1, then (m(j));> are the mo-

. . D
ments of a probability measure u on R for which p,,x) — w along a subsequence

(n(k))ik>1 [if u is moment-determined then in fact 2 unl.
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