Translator Disclaimer
March 2016 Spatial asymptotics for the parabolic Anderson models with generalized time–space Gaussian noise
Xia Chen
Ann. Probab. 44(2): 1535-1598 (March 2016). DOI: 10.1214/15-AOP1006

Abstract

Partially motivated by the recent papers of Conus, Joseph and Khoshnevisan [Ann. Probab. 41 (2013) 2225–2260] and Conus et al. [Probab. Theory Related Fields 156 (2013) 483–533], this work is concerned with the precise spatial asymptotic behavior for the parabolic Anderson equation

\[\cases{{\frac{\partial u}{\partial t}}(t,x)={\frac{1}{2}}\Delta u(t,x)+V(t,x)u(t,x),\cr u(0,x)=u_{0}(x),}\] where the homogeneous generalized Gaussian noise $V(t,x)$ is, among other forms, white or fractional white in time and space. Associated with the Cole–Hopf solution to the KPZ equation, in particular, the precise asymptotic form

\[\lim_{R\to\infty}(\log R)^{-2/3}\log\max_{|x|\le R}u(t,x)={\frac{3}{4}}\root 3\of{\frac{2t}{3}}\qquad\mbox{a.s.}\] is obtained for the parabolic Anderson model $\partial_{t}u={\frac{1}{2}}\partial_{xx}^{2}u+\dot{W}u$ with the $(1+1)$-white noise $\dot{W}(t,x)$. In addition, some links between time and space asymptotics for the parabolic Anderson equation are also pursued.

Citation

Download Citation

Xia Chen. "Spatial asymptotics for the parabolic Anderson models with generalized time–space Gaussian noise." Ann. Probab. 44 (2) 1535 - 1598, March 2016. https://doi.org/10.1214/15-AOP1006

Information

Received: 1 January 2014; Revised: 1 January 2015; Published: March 2016
First available in Project Euclid: 14 March 2016

zbMATH: 1348.60092
MathSciNet: MR3474477
Digital Object Identifier: 10.1214/15-AOP1006

Subjects:
Primary: 60F10, 60G55, 60J65, 60K37, 60K40

Rights: Copyright © 2016 Institute of Mathematical Statistics

JOURNAL ARTICLE
64 PAGES


SHARE
Vol.44 • No. 2 • March 2016
Back to Top