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ASYMPTOTICS OF UNIFORMLY RANDOM LOZENGE TILINGS
OF POLYGONS. GAUSSIAN FREE FIELD!
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Northeastern University and Institute for Information Transmission Problems

We study large-scale height fluctuations of random stepped surfaces cor-
responding to uniformly random lozenge tilings of polygons on the triangu-
lar lattice. For a class of polygons (which allows arbitrarily large number
of sides), we show that these fluctuations are asymptotically governed by a
Gaussian free (massless) field. This complements the similar result obtained
in Kenyon [Comm. Math. Phys. 281 (2008) 675-709] about tilings of regions
without frozen facets of the limit shape.

In our asymptotic analysis we use the explicit double contour integral for-
mula for the determinantal correlation kernel of the model obtained previ-
ously in Petrov [Asymptotics of random lozenge tilings via Gelfand—Tsetlin
schemes (2012) Preprint].

1. Introduction and main result. We begin with a description of the model
and formulation of necessary previous results which motivate the main result of
the present paper. The latter is stated in Section 1.7 below.

1.1. Model of uniformly random tilings. Consider a polygon drawn on the reg-
ular triangular lattice as shown in Figure 1.

In the present paper we study the model of uniformly random tilings of such
polygons by lozenges (= rhombi) of three types:

[7 ) 0

An example of such a tiling is presented in Figure 2, left. Equivalent formula-
tions of the model include:

e (Dimer interpretation.) Lozenge tilings of a polygon are in a bijective correspon-
dence with dimer coverings (= perfect matchings) on the part of the honeycomb
graph located inside the polygon; see Figure 2, right.

e (Stepped surfaces.) One can view each tiling such as in Figure 2, left, as
a 2-dimensional projection of a stepped surface, that is, of a continuous 3-
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FI1G. 1. Polygon on the triangular lattice.
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F1G. 2. Tiling of a polygon on the regular triangular lattice (left) and its dimer interpretation
(right).

dimensional surface glued out of 1 x 1 x 1 boxes with sides parallel to three
coordinate lines in space.

The model of uniformly random lozenge tilings of polygons has received sig-
nificant attention over the past years: Cohn, Kenyon and Propp (2001), Kenyon
and Okounkov (2007), Kenyon (2008). See also Kenyon (2009) for a detailed ex-
position of the subject and more references.

1.2. Affine transform and the class of polygons. For technical convenience, we
perform a simple affine transform of lozenges which were present in Figure 2; see
Figure 3. After this transform, tilings of polygons will look like the one in Figure 7
below. Polygons which are tiled will thus be drawn on the standard square grid,
with all sides parallel either to one of the coordinate axes, or the vector (—1, 1).
We will denote the horizontal and the vertical integer coordinates on the square
grid by x and n, respectively.

We will restrict ourselves to polygons of a special kind, as shown in Figure 4.
Every polygon P we consider can be parametrized by two integers N = 1,2, ...,
and k =2, 3, ... (the polygon has 3k sides), and by 2k (proper) half-integers

Al <By <Ay <By<--- <Ay < By, Ai,BieZ/:=Z+%,

O~ ©-\\ o-O

FI1G. 3. Affine transform of lozenges.
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FIG. 4. A polygon from the class we consider. In this example k = 4, and the polygon has 3k = 12
sides.

subject to the condition Z;‘Zl (B; — A;) = N which ensures that there is at least
one lozenge tiling of P. The bottom side of P lies on the horizontal axis n = 0,
and all the k — 1 top sides [the ith such side has endpoints (B;, N) and (A; 41, N),
i=1,...,k—1]lie on one and the same line n = N.

1.3. Height function of a tiling. We will view our lozenge tilings (as on Fig-
ure 7 below) as projections of 3-dimensional stepped surfaces onto the (x, ) plane.
The surface itself can thus be interpreted as a graph of a function 4 (x, n) which is
called the height function of the tiling. To be concrete, let us stick to the convention
that lozenges of type ~ correspond to horizontal planes, that is, planes where the
height function is constant. We also require that 4 (x, n) is zero near the lower left
corner of the polygon. See Figure 5 for an example and Section 3.1 below for a
precise definition. See also [Kenyon (2009), Section 2.8] for more discussion.

The main object of the present paper is the height function corresponding to the
uniformly random lozenge tiling of a polygon P. We assume that P belongs to the
class of polygons described in Section 1.2. We denote this random height function
by hp(x, n).

1.4. Limit shape. We consider large N asymptotics of random tilings as all di-
mensions of the polygon P =P(N) grow. That is, let the parameters A; (N), B; (N)

4 N\
N\
BN
2]
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FI1G. 5. Values of the height function h(x, n) on each horizontal plateau.
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FIG. 6. The limiting polygon P on the (x, n) plane and the frozen boundary curve.

of P(N) behave as
(1) A;(N)=[a;N]+ const, Bi(N) =[b;N] + const (i=1,...,k).

Here a; < by < --- < ax < by are new continuous parameters which satisfy
Zf-‘zl(bi — a;) = 1. The constants above are bounded uniformly in N and are
needed to ensure that A; (N), B;(N) € Z' and Z,iV:l(Bi(N) —A;(N))=N.

In Cohn, Kenyon and Propp (2001) it was shown that in this N — oo regime,
the rescaled random stepped surface concentrates around a nonrandom limit shape
which can be obtained as a unique solution to a suitable variational problem;
see also Cohn, Larsen and Propp (1998), Destainville, Mosseri and Bailly (1997)
and Destainville (1998). This solution was described in Kenyon and Okounkov
(2007) by means of the complex Burgers equation. For polygons we consider in
the present paper, the limit shape is an algebraic surface.

More precisely, the limit shape result means that the height function ip(y) obeys
the following law of large numbers (with almost sure convergence):

h N1, [nN
2 P(N)([XN] [(nN])

where (x, n) are the new global continuous coordinates, and k(x, 1) is the func-
tion whose graph is the limit shape. The new coordinates (x, n) are assumed to
belong to the limiting polygon P which is parametrized by {a;, bi}f.‘:1 in the same
way as it was for P(N) and {A;(N), B; (N)}i-‘:1 in Section 1.2; see Figure 6. The
new polygon P is located inside the strip 0 <n < 1.

A feature of the model we deal with is that the limit shape develops frozen facets
where the function h(y,n) is linear. In other words, frozen facets correspond
to zones inside P where lozenges of only one type are asymptotically present.
Along with the frozen facets, there is a connected open liguid region D C P. For
(x,n) € D, the limiting height function k(yx, n) is curved: asymptotically inside
the liquid region one sees a random mixture of all types of lozenges; for exam-
ple, see Cohn, Larsen and Propp [(1998), Figure 2], Borodin and Gorin [(2009),
Figure 5], Kenyon and Okounkov [(2007), Figure 1] for illustrations of uniformly
random tilings with small mesh where the limit shape and the frozen boundary are
clearly seen.

— h(x,n), N — o0,
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REMARK 1.1. There are more precise results in this direction. Namely, the
asymptotic local distribution of lozenges around a given global position (x, ) € D
is governed by an ergodic translation invariant Gibbs measure on tilings of the
whole plane. Such a measure is unique up to fixed proportions of lozenges of
all types Sheffield (2005), and these proportions depend on the slope of the limit
shape at the given point (), n). For polygons in the class described in Section 1.2,
this result was established in Petrov (2012). For k = 2 (when the polygon is a
hexagon) this was obtained earlier in Baik et al. (2007), Gorin (2008). For tilings
of regions when the limit shape has no frozen parts, the same local behavior was
shown in Kenyon (2008). See also Okounkov and Reshetikhin (2003) and Kenyon,
Okounkov and Sheffield (2006) for more detail on the limiting translation invariant
ergodic Gibbs measures.

1.5. Complex structure on the limit shape surface. Complex coordinate on
the limit shape surface was introduced in Kenyon and Okounkov (2007) [see also
Kenyon (2008)], and by a different technique in Petrov (2012). From the results of
Petrov (2012) it follows (see Section 4.2 below) that there exists a diffeomorphism
w = w(y, 1) from the liquid region D to the upper half plane H := {z € C: Iz > 0}.
[In Petrov (2012) the complex coordinate w was denoted by w..] The function
w(x, n) is algebraic, and it satisfies the following degree k equation:

k k
3) W= [[w—a)=w—x+1-n]]w-05),

i=1 i=l

and a version of the differential complex Burgers equation [see also Kenyon and
Okounkov (2007)],

wiom —x dwlx,m) - dw(x,n)

1—7 ax — om
The complex coordinate w(x, ) can be used, in particular, to describe the local
asymptotics of random tilings mentioned in Remark 1.1; see Petrov (2012), Sec-
tions 2.3-2.4 for more detail. The complex structure w(yx, n) on the liquid region
D is employed in our description of asymptotics of fluctuations of the height func-
tion; see Section 1.7 below.

“4)

1.6. Gaussian free field. Before we proceed to describing our results, let us
first briefly discuss the object which governs the asymptotics of fluctuations of the
height function, namely, the Gaussian free field. This subsection is adapted from
Sheffield (2007), see that survey for a detailed and systematic discussion.

The Gaussian free (massless) field GFF on the upper half plane H is a proba-
bility Gaussian measure supported on a suitable class of generalized functions on
H (and not on ordinary functions). In particular, the value GFF(z) at a point z € H
does not make sense.
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The distribution of GFF may be understood as follows. For any sequence of
compactly supported smooth test functions {¢,}7°,, the pairings {GFF(¢,)}2,
form a sequence of mean zero Gaussian random variables with covariances

E(GFF(¢x)GFF(¢)) = /HXH dz11?1d 221> i (21)1(22)G (21, 22).

Here (-, -) in the first integral is the usual inner product, and

I—w

I—w

1
) G(z,w):=——1In , z,weH
27

is the Green function for the Laplace operator on the upper half plane H with
Dirichlet boundary conditions.

Even though the value of GFF at a point cannot be defined, one can still think
that the expectations of products of values of GFF at pairwise distinct points

71, ..., Zs are well defined and are given by
s/2
E(GFF(z))-- - GFF(zs)) = Z l_[ G(Zoi-1)> 20(20))> S even;
o =l
0, s odd,
with sum over all fixed point free involutions (= pairings) o on {1, ..., s}. Indeed,

for a finite number of test functions,

6) E(GFF(¢) - GFF(¢s)) = /H _E(GFF(21) -~ GFF(ze)) [ | ldzi i zo)-

i=1
The moments (6) uniquely determine the Gaussian free field.
1.7. Results. Now we are in a position to describe the main results of the
present paper. We are interested in asymptotics of fluctuations
(7 Hy(x,n) = hpw)([x N1, [nN1) — Ehpny ([x N1, [nN])
of the height function (of a uniformly random tiling) around its mean.
THEOREM 1.2 (Moment convergence of fluctuations to GFF). For pairwise

distinct points (x1,11), ..., (Xs, Ns) inside the liquid region D, as we scale the
polygon P(N) as in (1), the following convergence of moments holds:

lim 7%*E(Hy (x1,m) -+ Hy(Xs: 0s))
N—o00

(8) =E(GFF(W(x1, m)) - - - GFF(W(xs, 1s)))
s/2
_ D o TT9W (e @i-1)s o 2i-1))s W(Xo 2i)s Mo 20))) s even;
o i=1
O, S Odd,

where the sum is taken over all fixed point free involutions o on {1, ..., s}.
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THEOREM 1.3 (Central limit theorem for fluctuations of the height function).
The random function /7 Hy(x,n) on D weakly converges as N — 00 to the w-
pullback of the Gaussian free field GFF on H.

Theorem 1.3 means that for any smooth compactly supported test function ¢
on D, we have the weak convergence as N — oo,

ﬁ/ ¢(X,n)HN(x,n)dxdn—>/ ¢ (x, mGFF(w(x,n)dxdn
) P
—/ (z) J(2)GFF(2)|dz|?,

where J (z) is the Jacobian of the change of variables z — (), ) by w™! [which in
fact can be explicitly calculated using (3)—(4)]. Theorem 1.3 follows from Theo-
rem 1.2 plus an additional bound on moments of fluctuations of the height function
at infinitesimally close points; see Section 5.4.

It is worth noting that Gaussian free field fluctuations in random tiling models
were also obtained [along with Kenyon (2008)] in Borodin and Ferrari (2008),
Duits (2011) and Kuan (2011).

1.8. Strategy of the proof and organization of the paper. Our proof is based on
an explicit formula for the determinantal correlation kernel of uniformly random
tilings which was established in Petrov (2012). We recall these results in Section 2.
In Section 3 we write the multipoint fluctuations E(Hy (x1,n1) - - - Hv(xs, 1)) of
the height function in terms of that correlation kernel. This allows us to establish
Theorem 1.2 and then Theorem 1.3 in Section 5 using certain fine asymptotic
properties of the correlation kernel which are obtained in Section 4.

Our argument generally follows the approach of Borodin and Ferrari (2008) (es-
pecially see Section 5 in that paper) which in turn was partly inspired by Kenyon
(2008). We also use some ideas from Duits (2011). However, our correlation ker-
nel has a more complicated structure than those of Borodin and Ferrari (2008)
and Duits (2011): the critical points of the action (Section 4.2) which are solu-
tions of (3) cannot be determined explicitly. Thus, in our Section 4 in order to
investigate asymptotics of the kernel, we must employ certain new considerations
(Sections 4.3-4.4).

2. Determinantal structure of random tilings. In this section we recall the
formula of Petrov (2012) for the determinantal correlation kernel of our model of
uniformly random tilings. Then we extend that kernel and describe the joint distri-
bution of all three types of lozenges in our random tiling. Except for Section 2.4,
this section is essentially taken from Petrov (2012).
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Fi1G. 7. Tiling of a polygon and the corresponding interlacing particle array.

2.1. Interlacing particle arrays. Let P be a polygon of our class in the (x, n)
plane (see Section 1.2) contained inside the horizontal strip 0 <n < N. We pass
from tilings of P to interlacing particle arrays as follows. We first trivially extend
any tiling of P to a tiling of the whole strip 0 <n < N with N small triangles
added on top; see Figure 7. Then we place a particle in the center of every lozenge
of type \.

Thus, we get a particle array X := {x’]’?:m =1,...,N;j=1,...,m} €
ZNWN+D/2 ith precisely m particles at each mth horizontal level, m =0, 1, ...,
N. Because we started from a tiling of P, these particles must satisfy the interlac-
ing constraints

m m—1 m
(10) Xjip1 <X;  =X;

(for all j’s and m’s for which these inequalities can be written out). Moreover, the
particles in the top row of the array are fixed,

Py <o <x7')

(11) ={A1+3<A1+3<--<Bi—-3<B —3%
<Ar+i< o <B-i<<A+li<<B- 1)

(here {A;, B,-}f:1 are the parameters of P; see Section 1.2). Clearly, lozenge tilings
of P and such interlacing arrays X with fixed top row (11) are in a bijective cor-
respondence. For a connection of these arrays with Gelfand-Tsetlin schemes (an
object related to branching of representations of unitary groups), see, for example,
Petrov (2012), Section 3.

2.2. Determinantal correlation kernel. We see from Section 2.1 that the uni-
form measure on the set of all tilings of the polygon P is the same as the uniform
measure on the space of interlacing integer arrays X = {x;f’} with fixed top row (11).



ASYMPTOTICS OF RANDOM LOZENGE TILINGS. GAUSSIAN FREE FIELD 9

We denote both measures by Pp. Viewing X as a particle configuration, we can also
think of the measure Pp as of a point process on Z x {1,2, ..., N}.

DEFINITION 2.1. Let (x{,n1),...,(xs,ns) be pairwise distinct positions,
xi € Z,1 <n; < N. The correlation functions of the point process Pp are defined
as

ps(x1,n1; ... Xs, ng) := Pp(there is a particle of the random configuration {x’j"}

at position (x;, n;) forevery i =1,...,s).

It is well known that the measure Pp on interlacing particle arrays is deter-
minantal (for instance, this fact can be deduced from the Kasteleyn theory; see
Section 2.3 below). That is, there exists a function K (x, n; y, m) (the correlation
kernel), such that

S

(12) Ps(X1, 115 . .5 X, ns) = det[ K (x;,nis xj,nj)]; i

for any s and any collection of pairwise distinct positions (x1,n1), ..., (xs, #g).
About determinantal point processes in general see the surveys Soshnikov (2000),
Hough et al. (2006), Borodin (2011).

In Petrov (2012) the following explicit formula for the correlation kernel K of
random interlacing arrays X with fixed top row (11) was obtained:

THEOREM 2.2 [Petrov (2012)]. For1 <n; <N,1<ny<N-—1landx;,x; €
7, the correlation kernel of the point process Pp has the form*
K (x1,n1;x2,n2)
(x1 —x2+ Dny—np—1 (N —nyp)!
(n;y —ny—1)! (N —np—1)!

= _1n2<n1 lxzfxl
(13)
1 (Z=x2+DN-np—1 1
X ——— dz dw
2r1)* Jex) ¢(00) (W—=X)N-n+1 W—2

k
A +1/2 —w)p _a,
Xl_[( + / w)Bz AI.

(Ai +1/2 —=2)B;—a;

i=1

The contours in z and w are positively (counter-clockwise) oriented and do not

intersect. The contour €(x») in z encircles the integer points xo, xo+1, ..., By — %
and only them (i.e., does not contain xo — 1, x —2, ... and B+ %, By + %, ...). The
contour ¢(00) in w contains €(x,) and all the points x1,x1—1,...,x1 — (N —ny).

The above explicit formula for the kernel K is our main tool in the present paper.

2Here and below 1{...} denotes the indicator of a set, and (y)p :=y(y + D) ---(y +m —1),m =
1,2, ... [with (y)g := 1] is the Pochhammer symbol.
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FI1G. 8. Edges of three directions in the graph Gp encoded by pairs of triangles.

2.3. Inverse Kasteleyn matrix. Here let us recall the connection [Petrov
(2012), Section 6] between the above kernel K (Theorem 2.2) and the Kaste-
leyn matrix of the honeycomb graph Gp inside our polygon P (Figure 2, right).
We will use it to write down the joint distribution of three types of lozenges Y, o
and = in Section 2.4 below.

The honeycomb graph Gp is bipartite; its vertices correspond to two types of
(triangle) faces in the dual triangular lattice,

(NN}

We will encode each such triangle by the position (x,n) of the mid-point of
its horizontal side. The Kasteleyn matrix of the graph Gp is its adjacency matrix
with rows and columns parametrized by white and black triangles, respectively;
for example, see Kenyon (2009). Inside the polygon, this matrix looks as
1, if (y,m) = (x, n);

1, if (y,m)=(x,n—1);
1, if(y,m)=x+1,n—1);
0, otherwise;

(14) Kast(N(x,n); N(y,m)) =

see Figure 8. For N(x, n) on the boundary of the graph Gp, the N(x, n)th row of
Kast will contain less than three ones, and the same for the \ (y, m)th column.

It is known that the determinant det[Kast(N(x, n); N (y, m)], where N(x, n) and
A (y,m) run over all possible white and black triangles in Gp, is equal to the
total number of lozenge tilings of the polygon P. As [Kenyon (2009), Corollary 3]
suggests, Kast™! can serve as a correlation kernel for the uniform measure on
tilings of P. A more precise statement is as follows:

THEOREM 2.3 [Petrov (2012)]. The inverse Kasteleyn matrix and the corre-
lation kernel K of Theorem 2.2 are related as follows [for all possible values of
(x,n) and (y, m)]:

Kast™! (N (y, m); N(x,n)) = (=1)* ™™ "K (x, n; y, m).

2.4. Extension of K and joint distribution of three types of lozenges. Here we
compute probabilities that a random tiling has lozenges of prescribed types at pre-
scribed positions (i.e., the joint distribution of all types of lozenges). These proba-
bilities are given by determinants similar to the correlation functions of interlacing
particle arrays (Definition 2.1), but with an extended kernel.
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Let, by agreement, the position of every lozenge be encoded by the position
of its white triangle (i.e., by the position of the circle dot on Figure 8). We in-
troduce the following extended kernel (here and below 6; € N, o, <} are types of
lozenges):

K (x1,n1; x2,n2), if 6, =Y,
(15)  Ko(x1,n1,01;x2,n2,602) := { —K(x1,n1; x2,n3 — 1), if 0 =o;
K(xy,n;;x0+ 1,0y — 1), if 6 =

PROPOSITION 2.4. For any collection of lozenges of types 61,...,0s €
N, o, <} at (pairwise distinct) positions (x;j,n;),i =1,...,s, we have

Pp(There is a lozenge of type 0, at (xr,n,) forallr =1,...,s)

:det[Kg(xi,ni,Q,-; x]',nj,ej)]ijzl.
PROOF. This is a direct consequence of the above Theorem 2.3 and also of
Kenyon (2009), Corollary 3. Namely:

e there is a lozenge of type \ at (x, ) if and only if the dimer covering contains
the edge (M (x, n); N(x, n));

e there is a lozenge of type o at (x, n) if and only if the dimer covering contains
the edge (M (x,n — 1); N(x,n));

e there is a lozenge of type ~ at (x, n) if and only if the dimer covering contains
the edge (N(x +1,n — 1); N(x, n)).

Then, using Kenyon (2009), Corollary 3, we can write the probability
Pp(There is a lozenge of type 6, at (x,,n,) forallr =1,...,s)

as a determinant of a suitable matrix with entries Kast™!. In this matrix there
will be three types of rows (recall that they are indexed by black triangles) corre-
sponding to different types of lozenges as above. Then, using the relation between
Kast~! and the kernel K (Theorem 2.3), we complete the proof. [

A similar property for a different tiling model (of an infinite region) was ob-
tained in Borodin and Ferrari (2008), Theorem 5.2; see also Borodin, Gorin and
Rains (2010), Section 7.2.

3. Height function and its multipoint fluctuations. In this section we dis-
cuss the concept of a height function of a tiling. In Section 3.3, for our model of
uniformly random tilings, we express the multipoint moments of fluctuations of
the height function through the correlation kernel K of Theorem 2.2.
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F1G. 9. “Level lines” of the height function (left) and the corresponding parts of the frozen bound-
ary (right).

3.1. Definition of the height function. Let P be a polygon from our class (Sec-
tion 1.2). Fix a tiling of P. It is possible to define the height function of this tiling
which at every position (x, n) € P is equal to

(16) h(x,n):= Z 1{there is a lozenge of type N or o at (x,m)}.

m:m=<n

Clearly, this implies that the height function is constant on each horizontal plateau
consisting of lozenges of type ~; see Figure 5.

With every tiling one can associate three families of nonintersecting lattice
paths; for example, see Petrov (2012), Section 2.5. Nonintersecting paths in one
of these families shown in Figure 9 (left) can serve as “level lines” of the height
function. Namely, 4 (x, n) at a given point is equal to the number of these noninter-
secting paths lying between (x, n) and the line n = 0. See also Figure 7 where the
tiling is extended so that formula (16) and the interpretation with the “level lines”
make full sense.

REMARK 3.1. The two other families of nonintersecting paths [Petrov (2012),
Section 2.5] give two other possible ways to define the height function; see also
Kenyon (2009), Section 2.8 for a more detailed discussion.

3.2. Paths to the boundary. Now let P(N) be a sequence of polygons scaled
as explained in Section 1.4. We would like to study asymptotics of multipoint
fluctuations of the random height function hp(y) [corresponding to the uniformly
random tiling of P(N)] around global positions (x1, 1), -.., (Xs, Ns) € D. Here
D is the liquid region (Figure 6). Namely, we are interested in the asymptotic
behavior of the expectations entering (8),

(17) E(Hy (x1,m) - - Hyn (Xs» 1)),

where Hy (x;,n;)’s are the fluctuations of the height function defined in (7).

To compute values of the height function entering (17), one could use for-
mula (16). But then several indicators corresponding to the same point (x, m)
in (16) will enter the resulting expression. This will lead to certain technical com-
plications which we can easily avoid. Namely, let us choose s piecewise-linear
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F1G. 10. Paths to the frozen boundary along which we calculate the height function at
([x;N1,[n;ND,i=1,..., s.

simple paths with horizontal and vertical pieces such that each ith path connects
([xi N1, [niN]) and the lower left part of the frozen boundary as in Figure 10. We
choose this part of 3D because on the corresponding facet the height function will
be asymptotically equal to zero; cf. Figure 5. By agreement, we assume that while
crossing the frozen boundary, each path goes in a vertical direction and proceeds
vertically down until it hits the boundary of the polygon. By taking N larger if nec-
essary, we require that these s paths do not intersect.’> We also require the number
of piecewise-linear segments in each path to be bounded (uniformly in N).

Such paths can be constructed using the diffeomorphism w:D — H (see Sec-
tion 1.5 and Section 4.2 below) which maps the frozen boundary to the real line. It
is not hard to show that in H the desired (continuous) nonintersecting paths exist.
Then in D we can approximate the images of these paths under w=! by piecewise-
linear paths. Since the number of points (x;, 1;) (and paths) is finite, we can also
make sure that the number of segments in these paths is bounded uniformly in N.

REMARK 3.2. We could also use paths ending at any part of the frozen bound-
ary in Figure 9 (right) because on the corresponding facets our height function
asymptotically becomes constant, and we subtract this constant in the definition
of Hy (7). However, we use only paths as oi Figure 10 to simplify the notation in
Section 4.6 below.

DEFINITION 3.3. For integers x < x” and n, denote

x/

(18) Hy v (n) := Z 1{there is a lozenge of type N at (y,n)}.
y=x+1

Also, for integers n < n’ and y, set

n/

(19) Vo (y) = Z l{there is a lozenge of type Noro at (y, m)}.
m=n+1

3Except for the case when some of the points (x;, n;) coincide; then we still do not allow intersec-
tions away from the starting points ([x; N1, [n; N]).
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Above we have explained how each individual fluctuation Hy (x;, ni), i =
1,...,s, can be written as a finite linear combination (with coefficients 41) of
expressions of the form H, ,/(n) — EH, /(n) and V,, ,/(y) — IEV,,,,,/(y).‘* More-
over, if all the points (x;, ;) are distinct, then each indicator entering any of the
sums (18) and (19) corresponding to (x;, n;), i =1, ..., s, appears only once be-
cause our paths to the boundary do not intersect.

3.3. Expectation of a product of horizontal and vertical sums. Let all the
points (x;,ni), i = 1,...,s, be distinct. From the discussion of Section 3.2, it
follows that our expectation (17) can be expressed as a linear combination (with
coefficients 4-1) of terms of the form

(20) E(H(Hxi,x{ (nj) — EHxi,xl( (ni)) H (Vn_,-,n/j (xj) - IE‘:Vn_,-,n/j (x/))>

i=1 j=r+1
such that the following horizontal and vertical segments,

{oni)iy=xi+1,...,x]}, i=1,...,r

{(xj,m):m:nj—i—l,...,n’j}, j=r+1,....s,

do not intersect. Here and below we assume that x; < xlf SNy < n/j for all i, j.

PROPOSITION 3.4 [cf. Borodin and Ferrari (2008), Lemma 5.3]. With the
above notation and assumptions, expression (20) can be written in the following
form:

xi r+1 né‘. A A
1,1 1,2
2D E E E E det[A21 Azz]'
yi=x1+1 Ve=xr+1lmpyp1=nep+1 ms=ns+1 ’ ’

The matrix blocks are given by

Al —[(1 —511)1(()’1,”1, y;J’lj)],/ 1

.....

Aip=[KQinisxj+1mi—D)_;  ._y o
@) T nj=r+l,...s
Azl—[ K(Xi,mi§yj,nj)]i:hq“_.’s;j:l ..... "

—(1 = 8;))K (ximizxj + 1L,mj— D] i
PROOF. As was observed in [Kenyon (2008), Proof of Theorem 7.2], the
subtraction of the means in (20) leads to vanishing of the diagonal matrix ele-

ments in Ay | and A in (22). Thus, it suffices to consider E([T;_, Hy, x(ni) x
H§=r+1 an’n} (xj)). We write every HXi,x{ (n;) and an,n/j (x;) as the corresponding

4Note that the height function vanishes at the end of each path in Figure 10.
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sum (18)—(19). After taking the expectation, we get an s-fold sum as in (21) with
terms

Pp(n) (There is a lozenge of type Nat (y;,n),i=1,...,r

and of type Noroat (xj,m;), j=r+1,...,s)
(23)
= Pp(w)(There is a lozenge of type N at (y;,n;),i =1,...,r;

and there is no lozenge of type ~ at (x;,m;), j=r+1,...,s).
The latter probability can be expressed as an s x s determinant which has the
structure
det[ K& (vioni, N yir,nin,N)
K& (xj,mj, = yin,ninN)
KSioni, Nyxjmp, <)

K@ (x_]vm_]vxax‘]/v m]“x) i,i’:l,...,r;j,j/:r-i-l S

Here K, QA is the kernel which is obtained from Ky (15) via a particle-hole involution
[e.g., see Borodin, Okounkov and Olshanski (2000), Appendix A.3] at positions
{(x;, mf)}j':r-i-l‘ That kernel KQA looks as follows (see also Proposition 2.4):
KQA(yia ni, §7 Yirs i’y Q) = K()’i, ni; yir, l’li/);
KSioni, N xjpomp, ) = Ko(yi,ni, N xjr,mjr, =)
=K©i,nisxp+1,mp —1);
K (xjomj, sy nin,N) = —Kg(xj,mj, 3 yir,nin, V)
=—K(xj,mj; yi,ny);
KSGjomy i xpomp, ) =8; jy — Ko(xj,mj, ;i xjr,mjr, )
=5j’j/ —K(Xj,mj;xj/—i— 1,mj/ —1).

Then, setting the diagonal matrix elements to zero, we obtain matrix blocks (22).
This completes the proof. [

REMARK 3.5. Representation of Proposition 3.4 is not valid if some of the
points (x;, n;j) coincide because then we cannot write all the probabilities (23) as
s x s determinants. In this case, in the asymptotic analysis of multipoint fluctua-
tions (17) we employ Lemma 5.6 below.

4. Asymptotics of the kernel. In this section we investigate asymptotic prop-
erties of the correlation kernel of Theorem 2.2 in various regimes.
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4.1. Action S(w; x,n). The polygon P(N) is assumed to be scaled as in Sec-
tion 1.4. We will be interested in asymptotics of the kernel K (x1, n1; x2, n2) when
the two points (x1,n1) and (x3, ny) behave as

Xj nj :

where (x1, 1) and (x2, n2) are two (not necessarily distinct) global positions in-
side the limiting polygon P; see Section 1.4 and especially Figure 6.

DEFINITION 4.1 [Petrov (2012), Section 7.2].  Define the action by
S(w; x, 1)

25 =w-—x)Ih(w—-x)—(w—-—x+1-nh(w—-x+1-n)
k

+ (=) In(l —n) + D _[(bi —w) In(b; — w) — (a; —w) In(a; — w)].
i=1
Unless otherwise stated, we assume that that the branches of all logarithms have

cuts looking in negative direction along the real line. Note that the real part
NS(w; x, n) is well defined and continuous for all w € C.

Denote also
_wopw—x+1-mn

E(w; x,m: 1
-n
and
X; nj Xj nj .
(26) Ej(w) :=a<w;ﬁj,ﬁ]), Sj(w) :=S<w;ﬁj,ﬁ]>, j=1,2.

PROPOSITION 4.2. In regime (24), the kernel K (x1,n1;x2,n2) of Theo-
rem 2.2 has the following asymptotics:

K (x1,n1;x2,n2)
1 1 exp{N (S1(z) — $2(2))}
=—1y <ni 1 o(— Py d
2 ( - <N>>27TI?§€(X2—) Nee Gl

+(1+0(5))

y 1 ?g dzyg dw I exp{N(S1(w) — $2(2))}
Qi) Jen-) ey w—z  VEIWE2@)

Here 7 in both single and double integrals runs over a counter-clockwise contour
which crosses the real line just to the left of x», and also to the right of by ~ BTK;
see (1). The w contour is counter-clockwise, contains €(xo—) (without intersect-
ing it) and is sufficiently large.

27)
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When (x1, n1) = (x2, n2), this essentially coincides with Petrov (2012), Propo-
sition 7.2.

PROOF OF PROPOSITION 4.2. Let us adapt the double contour integral in
formula (13) to the asymptotic regime (24) by scaling the variables as 7 = z/N,
w = w/N (and then renaming back to z, w),

(x1 —x2+ Dpy—np—1 n N(N —ny)!

K ’ ; ) =-1 1
(x1,n1; x2,n2) ny<ny lxy<x; (11 —na — 1! (N —ny—1)!
1 yg (Nz—x2+Dn_p—1 1
X . Z dw
2r1)* Je(n-) ¢(00) (NW = X)N-nj+1 W—2
k

(Ai +1/2— Nw)p,—4;
[

i) (Ai+1/2=N2)p—a,

Here z and w run over the corresponding scaled contours, and they can be chosen
independently of N.3 These contours coincide with the ones in the claim (27).

Expressing all the Pochhammer symbols in the integrand above through the
Gamma function and applying the Stirling approximation, we may write for non-
real z, w [see Petrov (2012), Section 7.2 for more detail],

I NN —n)! (Nz=x3+ Dynyo1 17 (Ai +1/2 = Nw)p,_4,
w—z(N—ny— DI (Nw—=x)N-n+1 ;3 (Ai+1/2=N2)p—a

= <1 + 0(i>) ! ! exp{N (S1(w) — $2(2))}.

NJJw—z/E1(w)E2(z)

i

As for the additional summand, using Lemma 6.2 in Petrov (2012), we write

(xl —x2+ l)nl—nz—l

(ny —ny—1)!

(N —nyp)! y 1 7§ (z—x24+ DN-ny—1
C(x2)

(N —ny—1)! 2 (Z = X1)N—n1+1

_1n2<n1 lxzfxl
(28)
dz.

= _1n2<n1

Then, scaling the z variable as above for the double integral (7 = z/N), and using
the fact that

N(N —n))! (Nz—x2+ Dn_n,—1 (1 n 0<i)>exp{N(S1(Z) - 5(2))}
(N—ny—D! (Nz—x1)N-n;+1 N vV E1(2)E2(2) ’
we complete the proof. [J

SWe may drag the z contour slightly to the left of x, because the integrand has zeroes in z which
allow that; and also drag it to the right of by because the integrand in (13) does not have z poles to
the right of By — %
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4.2. Critical points of the action. Proposition 4.2 suggests to use the saddle
point (steepest descent) approach [e.g., see Okounkov (2002), Section 3] to in-
vestigate the asymptotics of the correlation kernel K (x1, n1; x2, n2). The first step
is to understand critical points of the action, that is, points where S’ (w; x,n) :=
%S(w; x,n) = 0. Let us recall the results about critical points obtained in Petrov
(2012):

(1) Depending on the global position (x,n) inside the limiting polygon P,
there are either O or 1 critical points of the action in the (open) upper half plane H.

(2) Points (x, n) € P for which there exists a nonreal critical point [denote it
by w(x, n)] constitute the (open) liquid region D C P where asymptotically one
sees all three types of lozenges; see Remark 1.1.

(3) As a function of the global position (x, n) € D, w(x, n) satisfies the alge-
braic equation (3) and a form of the complex Burgers equation (4).

(4) When (x, n) € D approaches the frozen boundary curve 3D (which sepa-
rates the liquid region from frozen facets), the critical point w(x, n) € H merges
with its complex conjugate W(x, n). In addition, points (x, ) € 9D that are cusps
(= turning points), or points where 9D is tangent to a side of the polygon (see
Figure 6) correspond to certain more special types of merging of the critical points
w(x, n) and W(x, ), which we do not need to address in our amalysis.6

Thus, for all (x,n) € 3D, the action S(w; x, n) has (at least) double critical
point w(x, ) € R which can be taken as a real parameter on the frozen bound-
ary curve. The map w™!' : R — 3D is one-to-one and rational; see Petrov (2012),
Proposition 2.6.

PROPOSITION 4.3. The map w:D — H, (x,n) — w(x,n), is a diffeomor-
phism.

PROOF. Finding the image of a point z € H under the inverse map w~!

amounts to solving the equation (3)
k k
(29) C-0[lec-—a)=Gc—x+1-n]]E-b)
i=1 i=1

for x and 7. Since z € H is complex and (), ) must be real, this is actually a pair
of real equations. Let us first rewrite (29) as

k z—>b k z—b;
x=z|1-]] +(x+n=DJ] .
i=1

— U
l.zlz—ai 12— ai

6See the explanation in the proof of Lemma 4.15 that one can choose paths in Figure 10 away from
such more special points.
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Since the imaginary part of ]_[f-‘:1 Z:Sz is nonzero for z € H (Lemma 4.4 below),

one can always solve the equation

ko7 — b; —b;
sxzs<z(1— - )+(x+n—1)]_[ ):0

— da;
i=1 !

for x +n — 1 and thus find a solution (), ) which belongs to D because we have
a bijection on the boundary dD. This implies that the map w: D — H is bijective.

The map w is differentiable, and, moreover, the partial derivatives w, and w;,
cannot both be zero inside D because of the complex Burgers equation (4). One
can also check that the inverse map is differentiable. This concludes the proof. [J

LEMMA 4.4. Leta; <by <--- <ay < by, Zle(bi —a;) = 1, be the param-
eters of the limiting polygon P. Then

PROOF.  Observe that the argument of > 2=bi g the angle under which the seg-
ment [a,, ;] is seen from the point z. Thus the argument of the whole product
]—[l = a’ must be strictly between 0 and 7, and so the imaginary part of that
product cannot vanish. [J

4.3. Moving the contours. Our aim in this subsection is to explain how we
deform the contours in the double integral in (27) to employ the saddle point anal-
ysis.

Let us assume that (not necessarily distinct) limiting global positions (x1, 11)
and (x2, n2) in (24) belong to the liquid region D C P. Denote the corresponding
critical points of the action by w; := w(%, %) eH, j=1,2.

The behavior of Sj 2 around wj 7 is quadratic because these critical points are
simple; see also the proof of Proposition 4.11. Thus there are four curves starting
from each point w; > along which the imaginary part J(S7 2(w)) is constant; see
Figure 11. As the new w contour we choose the counter-clockwise closed con-
tour passing through w; composed of two curves with J(S;(w) — S;(wy)) =0 on
which 9 (S1(w) — S1(wy)) < 0 for w # wy, wy (Figure 11, left). The new counter-
clockwise z contour must pass through wy and look like the one on Figure 11,
right, so on it we will have M (S2(z) — S2(w2)) > 0 for z £ wa, Ws.

PROPOSITION 4.5. The z and w contours in the double integral in (27) can al-
ways be deformed to become the new contours described above (indicated on Fig-



20 L. PETROV

a0 05 0 5 00 05 10 5

Fi1G. 11. Critical points wy (left) and wy (right). Along the bold curves one has
S(S;(¢) — Sjwj)) =0, j =1,2. Shaded are regions where R(S;(-) — Sj(w;)) > 0. The new w
and z contours are indicated on the left and on the right, respectively.

ure 11). This results in the following asymptotics of the kernel K in the regime (24):

K (x1,n1;x2,n2)

1 1 exp{N (S1(z) — $2(2))}
30 =|(14+0|—=))=— d
( ) < + <N)) 27T1 Asingle ¢ v EI(Z)EZ(Z)

1 1 dzd N(S -8
+<1+0(_)) -zf ?g 2dw exp(N($1(w) — )
NJJCr)* Sy Jwy w -2z VEI(W)E2(2)
where in the double integral {z} and {w} are the new deformed contours.
The single integral may or may not be present; this depends on whether the new

contours intersect, and also on the inequality between ny and n». All these cases
can be unified by choosing an appropriate contour Cgingle; see Section 4.4.

PROOF. Let us fix any (x,n) € D, and set w := w(x,n) and S(z) :=
S(z; x,n). As our first step, we aim to justify that the picture of shaded regions
where N(S(z) — S(w)) > 0 looks exactly as in Figure 11, and also describe the
points where the four contours {z:3S(z) = IS(w)} intersect the real line.

Because RS(z; x,n) ~ nln|z| as |z] = oo, and 0 < n < 1 inside D, far away
on Figure 11 we see a shaded region, that is, where 3(S(z) — S(w)) > 0.

Since S(z) is holomorphic everywhere in H, along each of the four contours
{z:35(z2) = 3S(w)} (the thick curves on Figure 11) the sign of R(S(z) — S(w))
must be constant. This implies that each thick curve on Figure 11 from w to w
must be completely inside a shaded or nonshaded region.

Now let us look at the function J(S(z) — IS (w)) for z € R + ie for fixed small
& > 0. Observe that

J((r+1ie)In(z +1ie)) = eln |t +ig| + targ(r +ie) ~ 7 - (1) =7 - t1,0,
where t € R, as ¢ — 0+. Thus

1 k
38+ ~ (= 0- — (= x+1=m-+ Y=t —(@j—n_];
j=1
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0.4

0.3

Fi1G. 12.  Graph of %S(S(t +ie) — SW)), 1 € R, for small ¢ > 0. The segments [a;, b;] (red) and
[x +n—1, x1 (black) are displayed.

see Figure 12. Clearly, %%SSO +ie) ~ Liey4n—1,41 — lezl lte[aj,bj]. Looking

at the slopes of the graph in Figure 12, we see that the four contours {z:3S(z) =
IS (w)} can intersect the real line in at most three points.7 Because of the relation
between these contours and the shaded regions in Figure 11 explained above, there
are exactly three such points of intersection:

o tt e[y +n—1,x], where IS¢T) =3IS(w) and RS(tT) > RS(W);
e 1, <1, ,bothbelonging to the union of the segments [a;, b;], where IS(7; ) =
JS§(w) and RS ) < NS(w).

Moreover, from Figure 12 we see that ;7 < T < t=. The fourth contour
{z:385(2) =3S(w)} [with RS(z) > NS (w)] runs to infinity; see Figure 11.

Now as a second step, we explain how we can move the z and w contours in the
double contour integral in (27) to get (30). Looking at the poles in z and w in the
original integrand in (13), we see that:

e We can drag the points of intersection of the z contour with R (without picking
any residues) everywhere except in regions where the slope of the graph on
Figure 12 is strictly negative.

e The same goes for the w contour: we cannot drag it through regions where the
slope of the graph on Figure 12 is strictly positive.

The old z and w contours are described in Proposition 4.2; together with what
was said above, we see that these z and w contours can always be deformed in a
desired way. The new w contour will intersect the real line at points 7, . (x1, 71);

7In fact, the case when there are infinitely many such points (i.e., when a horizontal part of the
graph in Figure 12 is lying at the horizontal coordinate line) corresponds to (x, 1) belonging to the
frozen boundary, when the action has a real double critical point; see Section 4.2.
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F1G. 13.  Various possibilities for the new deformed z and w contours.

the new z contour—at ¢+ (2, 72). Because the integrand in (13) is regular in z at
7 = 00, we can let the z contour pass through infinity.

In the course of this deformation no residues coming from poles on R will be
picked. However, if the new z and w contours intersect, the residue at w = z will
be picked from the w integral, and then this residue will be integrated in z over an
appropriate arc. Together with the single integral already present in (27), this will
lead to appearance of the single integral in (30). We will describe and investigate
it in Section 4.4 below. [

4.4. Estimating the single integral. The goal of this subsection is to asymp-
totically estimate the single integral in (30). A priori from the proof of Proposi-

tion 4.5 we see that the integral over &single may look as follows [we omit the
1 ; 1 exp{NS1(2)=$ ()} .
factor (1 + O()) and the integrand 5~ B 50 dz]:

(a) If the new z and w contours of Proposition 4.5 do not intersect, then the
integral has the form 1,,,>,, §;,;, where {z} is the full new z contour.

(b) If the new contours intersect at points ¢ € H and ¢, then the integral has
the form —1,,,, f€L(§) + 1,50, f¢R(C)’ where € (¢) is the left part of the new z
contour passed from ¢ to ¢, and €x(¢) is its right part passed from ¢ through oo
to ¢.

See Figure 13 for the possible configurations of contours.
REMARK 4.6. If the new z and w contours intersect more than once in H,

then the contour &jnele Wwould contain several parts. However, then we always can
write an estimate of the form

Loovetde st [ ldz g [ 1 1dz
€single CL(¢) Cr(¢)

(dots mean the integrand), where ¢ and ¢’ are some points of intersection of the
new contours. Below (in Lemmas 4.8 and 4.9 and Proposition 4.10) we estimate
the above two summands separately, so we may think that the case (b) covers all
possibilities when the two contours intersect.

First, we deal with the case (a):
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LEMMA 4.7. Ifthe new z and w contours do not intersect, then there is in fact
no single integral in (30).

PROOF. Recall that the single integral in (30) in that case is asymptotically
equivalent to (see Proposition 4.2)

L?g' NN —n)! (Nz—x2+ Dy_ny—1
mEMori iy (N—na— 1) (Nz—ni+ 1)
Here {z} is the full new z contour. This integral can be explicitly computed using
Lemma 6.2 in Petrov (2012) [see also (28)], it is equal to
(nl - n2)x1—x2

(x1 —x2)!
This expression is nonzero only if x| + n; < xp + ny; otherwise the Pochhammer
symbol vanishes. But observe that the three inequalities

1 dz.

1n22n1 1)625)61

ny=zni, X2 < X, X1 +ny =<xx+ny

in the regime (24) imply that (for large N) the segment [x2 + 172 — 1, x2] is com-
pletely inside [x1 + 1 — 1, x1]. From the proof of Proposition 4.5 it follows that
the new z contour crosses the real line at some point inside [x2 + 72 — 1, x2] (and
hence inside [x1 + 11 — 1, x1]), and the new w contour passes through two real
points at the opposite sides of [x; + n1 — 1, x1]. Thus, we see that in this situation
the new z and w contours must intersect. This concludes the proof. [J

Now we will obtain certain estimates in the case (b).

LEMMA 4.8. Letny > ny, and €g(¢) for ¢ € H be defined as above. We have
the estimate

L/ exp{N(S1(z) — $2(2))}
21 Jer(o) VE1(2)E2(2)
Here the constant C is uniform for (x1,ny), (x2,n2) in the regime (24) with the

condition ny > ny, for the limiting global positions (x1,n1), (x2, n2) belonging to
a compact region D, C D.

dz| < Cexp{N -R(S1(5) — $200))}-

PROOF. Assume first that (x1,n1) # (x2,n2). For large |z|, we have the ex-
pansion

F(z) :=81(2) — $2(2)
ny—ny

= const +
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AN ' /

FI1G. 14. Level lines of RF (z) (top; warmer colors represent larger values) and I F (z) (bottom) in
the case ny > n1 (left) and ny = ny (right). The red (left) segment is [x1 +n1 — 1, x11, and the black
(right) one is [x2 +m — 1, x2].

Observe that the function F'(z) has no nonreal critical points. This implies that
there is a curve in H starting at the point ¢ € H along which IF (z) = IF(¢) and
NF(z2) < NF(¢) for z # ¢. This curve can either extend to infinity, or cross the
real line somewhere in the segment [x» + 172 — 1, x2]; see Figure 14. This can
be seen by considering the function IF (¢ + i¢) of ¢ € R similarly to the proof
of Proposition 4.5. Note that for ny = n1, such curves will never to go to infinity
(Figure 14, right). In the lower half plane the situation is symmetric.

Since the integrand is regular at z = oo (see the proof of Proposition 4.2), we
can always transform the contour €x(¢) so that it will consist of curves described
above [along which NF(z) < MF(¢)]. This implies the claim for (x1,n1) #
(x2,n2) because if (x;,n;) € D, then the factor 1/4/E1(z) E2(z) in the integrand
is uniformly bounded. For (x1, n1) = (x2, n2), the integral does not depend on N,
and the claim is trivial. [J
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FIG. 15. Level lines of WF (2) (left; warmer colors represent larger values) and IF (z) (right) in
the case ny <nj.

LEMMA 4.9. Letny <ny,and €1 () for ¢ € H be defined as above. We have

1 / PN (S1() = )
2riJe, ) VE1(2)E2(z2)
Here the constant C is uniform for (x1,ny), (x2,nz) in the regime (24) with the

condition ny < ny, for the limiting global positions (x1,n1), (x2, n2) belonging to
a compact region D, C D.

z| < Cexp{N - R(S1(¢) — $2(0) }.

PROOF. This is established in the same way as Lemma 4.8. Since € ({) never
extends to infinity, we can always transform it to get the desired estimate; see
Figure 15. O

From Lemmas 4.8 and 4.9 we derive a stronger estimate which we will use:

PROPOSITION 4.10. The single integral in (30) can be estimated as

31) if exp{N (S1(z) — $2(2))} dz| < Cexp{N - R(S1(¢) — $2(8))}
2mi Csingle V El (Z) EZ(Z) - I+ R ’
where R :=+/(x] — x2)2 + (n| — n2)2. The constant C is uniform for (x1,n1) and

(x2,n2) behaving as in (24), for the limiting global positions (x1,n1), (X2, 1n2)
belonging to a compact region D, C D.

PROOF. The passage from the estimates of Lemmas 4.8 and 4.9 to (31) is done
similarly to Duits (2011), Lemma 6.3, and is based on a standard steepest descent
argument.



26 L. PETROV

Let ¢ € H be the point of intersection of the z and w contours of Proposition 4.5
(see also Figure 13) where the contour Cjygle starts. (If the z and w contours do
not intersect, the claim is trivial by Lemma 4.7.) Assume that we have transformed
Csingle as in Lemma 4.8 or 4.9 so that on it we have IF (z) =3 F(¢) and RF(2) <
NF(¢) for z # ¢, where F(z) = S1(z) — S2(z). If the new contour extends to
infinity (Figure 14, left), let us close is so that it will become bounded. Denote this
new contour by C;ingle.

Let us choose a smooth parametrization z = z(¢) of the part of the curve @;ingle
inside H such that z(0) = ¢ and z(1) € R. We have |7/(¢)| < const [and by com-
pactness of D, this constant is uniform in (x;,n;)], so

hs f exp{N(51(2) — $2(2)}
27[1 Csingle vV EI(Z)EZ(Z)
Let us assume that (x1, n1) # (x32, n2); otherwise the claim is again trivial. We have

(x1 — x2,n1 —n2) = R(cos ¢, sin¢), R > 0.

dz’ < const-‘/olexp{N “R(F(z(1)))} dt.

Denote
N -R(F(z(1))) =R - G12(t; $).

The property that R F (z) < R F(¢) on our contour allows to write the following
estimate. Since D, is compact and ¢ depends continuously on (x;,n;), we can
choose r > 0 uniformly so that

Gio(t;9) — G1,2(0; ) < —At, 0<t<r,

with a constant A not depending on ¢ or ¢.
Then we have

/’ oRG12(1:0) g _ JRG12(0:9) /’ oRG12(E:0)~G120:0) 4,
0 0

< oRG12(0:0) /re—ARz di < ﬁemm(o;w

0
and

1
/ eRG1L2ED) gy < o= ATR G RG12(0:9)
\

because on the contour {z(¢):r <t < 1} we have the inequalities RHF(z) <
NF(z(r)) <NF(¢) — Ar. This concludes the proof. [

4.5. Asymptotics of the kernel in the bulk. Our aim in this subsection is to
write an exact asymptotic expansion of the kernel K (x1, n1; x2, n2) (30) when the
two points (x1,n1) and (x2,n2) are in the bulk of the system [i.e., they behave
as in (24) and (x;,n;) € D] and are sufficiently far from each other. The tech-
nique of getting such an expansion involves only “local” properties of the double
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contour integral formula (30) for the kernel (in contrast to some considerations of
Section 4.4), and mainly follows the approach of Borodin and Ferrari (2008) and
Duits (2011).

PROPOSITION 4.11.  Fix (sufficiently small) § > 0 and a compact D, C
D. Uniformly in (xj,n;) (j =1,2) with (3, 3) € De, such that ||(xi,ny) —
(x2,m2)|| = N2+ we have the following expansion:

K (x1,n1; x2,n2)

1 ( N (5101~ S2(wy))
— 22N \(wi — w2)VE W) B2 (W) (—S] (wi))/2(S85 (wa)) /2

N (S1(W1)—=S2(w2))

+
(W1 — w2)/E1(W1) Bz (wa) (=S (W) 1/2(S5 (wp)) /2

eN(S1(W)—=52(W2))

+ — — — —
(W1 —W2)/E1 (W) Ba(Wa) (=87 (W) 1/2(S5 (Wp))1/?
N (S1(W1)—52(W2)) )

+
(W1 — W2) /81 (W1) B2 (W2) (— Sy (W1))1/2(S5 (Wa)) /2
x (14+0(N~%?)).

(32)

The branches of the square roots (:I:S}’ (- N2 above are chosen in accordance
with the directions of the w and z contours in the double integral in (30) at points
w1, Wi and Wy, Wy, respectively; see (34) in the proof.

PROOF. Observe that the contribution from the single integral in (30) given in
Proposition 4.10 is asymptotically negligible in comparison to the desired expan-
sion (32). Thus, it suffices to consider only the double contour integral in (30),

1 yg f dzdw exp{N (S1(w) — 5:(2))}
QS w—z  VEIWER

Recall that the w contour passes through the critical points wy, wy, and on it we
have JIS1(w) = JIS1(wy) and NS (w) < RNSy(wy) for w #£ wy, wy. Similarly for
the z contour: it passes through wy, wp, and on it I352(z) = I S2(w3), and NS> (2) >
RS2 (wy) for z # wa, W.

The main contributions to (33) come from neighborhoods of the critical points,
and parts of the contours which are sufficiently far from them give an exponen-
tially small contribution. Since there are four pairs of critical points, we get four
summands in (32). Let us consider only the case of (wy, wy), for the other three
pairs the situation is analogous.

In small neighborhoods of wi and w; let us replace the (curved) w and z con-
tours by the corresponding tangent lines. Introduce the local coordinates ¢, s €

(33) IL(x1,n15x2,n2) :=
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[—N?, N®] as follows:

t N
NS ST R S e

34) w()=w;+

Here the branches of the square roots (—S; (w1))!/2 and (85 (W2))!/2 are chosen
so that when ¢ (resp., s) increases, the point w(t) [resp., z(s)] passes along the
tangent line to the w (resp., z) contour in the direction of that contour.

In these new variables the behavior of the exponents in the double contour inte-
gral is

Jim N (S1(w(n) — Si(wp) = —1%/2,
(35) -
Jim N (8:(2(9)) = S2(w2)) = 52/2.

The convergence here is uniform for 7, s € [-N®, N°] and also (by compactness
of D, and continuity) for our values of (x;, n;). Moreover, at the endpoints 7, s =
+N? the expressions eV S1WE)=S1WD) apg N (S22()=5W2)) are exponentially
small. Parts of the contours which are even farther from the critical points wy, w
and w», Wy thus give an exponentially negligible contribution.

This implies that the double contour integral (33) picks the following contribu-
tion from the neighborhood of (w1, w»):

1 1 NB NS
@2 N (=S W) (S5 ()12 Ly L s
" exp{N (S1(w(r)) — $2(z(s)))}
(w(t) — z2()VE1 (W (1) Ea(z(s))

Let us now get rid of nonexponential terms in the integral above. The map
w~!:H — D is a diffeomorphism, so there exists a constant A > 0 such that

(36)

Wi —wa| > A (Gxr, m1) — (x2, m2) | = AN/,

The second derivatives Si/,z(Wl,Z) are nonzero inside D and hence are bounded
from below in D, (recall that they vanish on the frozen boundary D). Thus, we
may write

1

= —s)2
o) =200~ wy —wy L H O,

where the constant in O (N ~%/2) does not depend on § (it depends only on D,). We
can also replace E1(w(?))E2(z(s)) by E1(wy)Ea(wz). This will affect the asymp-
totics by a factor which is less significant than (1 + O(N —4/2)). Thus, we may
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rewrite (36) as

1 eN (S1(w)—52(w2))

QM2 N (=] W) (S5 (W2) V2 (Wi — wa) /BT (W) B2 (W2)

NB N5
x (14 O(N~3/2)) f 8 / NSO SR g gy,
—N° J—N

Taking N large and using the uniform asymptotics (35), we see that the above
double integral becomes Gaussian and can be explicitly evaluated. This completes
the proof. [J

COROLLARY 4.12. In the setting of Proposition 4.11, we have the same ex-

pansion for K (x1,n1; x2+1, ny — 1) as in (32), but with an extra factor of "‘{2;);2//]3/

in each term with Wy, and with a factor of V\iz;l);z//]{,\/ in each term with W».

PROOF. This is obtained in the same way as Proposition 4.11 using the fact
that

xy + 1 nz—]) ( X2 nz) ( nz) ( XQ>
—NS|z; , ~—NS|lz;—=, =) —In[1—-—= Inlz——=).
(Z N N YA A G R S

See also Lemma 7.4 in Petrov (2012). O

We can also write an estimate of the double contour integral /> (33) when the
points (x1,n1) and (x2, ny) are sufficiently close:

LEMMA 4.13. Fix (sufficiently small) 6 > 0 and a compact D, C D. Uni-
formly in (xj,n;) (j =1,2) with (3, ) € De, such that ||(x1,n1) — (x2,m2)|| <
NY2+8 wwe have the following estimate:

CeN-R(S1W1)—S2(w2))

VN

PROOF. We argue as in Proposition 4.11, but now we must estimate the term
1/(w(t) — z(s)) in a different way. Since the points wi and wy are close, we can
write S7(wy) = S5 (w2)(1 + O(N~1/2+%)), where the constant in O(N~!/2%9) is
uniform in our (x;, n;)’s and depends only on D,. This implies that in 1/(w(t) —
z(s)) we can replace (—Si’(wl))l/2 with :I:i(Sé/(wz))l/z, where the sign &+ depends
on the choice of square roots. Moreover, we have |[w; —ws| = O (N ~1/2%9), so we
can write

|L(x1,n1;x2,n2)| <

1 N VN
w(®) —z(s) /Ny —wa) — (Sy(w2)~1/2(s £ ir)
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Then we proceed as in the proof of Proposition 4.11 and see that the resulting
double integral has the following asymptotics coming from the neighborhood of

(W1, w2):
1 N (S1(w)—=52(w2))

@12 N (=S W) 2S5 (W) 2T (WD) B2 (W2)
NSNS GN(SI @) =81 W)= $2(z(s)+5>(Wn)
< | d
~N SNt N (Wi — w2) — (85 (w2)) ™2 (s £ ir)

(For other three pairs of critical points, one can get the same estimate.) Depending
on how close the points w; and w» in our regime, we see that the above integral
may have a singularity which is integrable, and (on the other hand) the expres-
sion ~/N (wW; — Wy) may go to infinity. This implies that we can always bound the
integral by a constant, and thus we arrive at the desired estimate. [

sdt.

REMARK 4.14. In Proposition 4.11 we see that when the points (x;,7n;) (j =
1, 2) are sufficiently far from each other, the main contribution to K (x1, n1; x2, n2)
(30) comes from the double contour integral. On the contrary, for sufficiently close
points (x;,n;), the single integral in (30) is asymptotically more significant. On
the extreme, when asymptotically the differences x| — x2,n; — ny € Z stabilize,
the double integral in (30) vanishes in the limit, while the single integral gives rise
to the incomplete beta kernel; see Petrov [(2012), Theorem 2 and Proposition 7.9].

4.6. Estimates of the kernel close to the edge and in the facet. We conclude
this section with several estimates for the kernel K (x1, n1; x2, n2) (30) when one
or both points (x;, n ;) becomes close to the lower left edge of the liquid region D,
or outside D in the lower left facet; see Figure 10. We mainly follow a similar
treatment for a simpler kernel which was performed in Borodin and Ferrari (2008),
Section 6.

Recall (Section 3.2) that we choose the paths for calculating the height function
as in Figure 10 ending in the lower left facet. Let n = ng, () be the equation for the
corresponding lower left part of the frozen boundary. Thus, the liquid region (suffi-
ciently close to that part of dD) is determined by the inequality n — g (x) > 0. We
distinguish three regimes for a point (x, n) (in the pre-limit integer coordinates):

(37) (inside the liquid region) ~ n — Nngp(x/N) = N?/3;
(38) (close to the edge) ~ N?/3>n— Nnp(x/N) > cN'/3;
(39) (at the edge or in the facet)y ~ n — Nyp(x/N) <cN'/3

for some ¢ > 0.

LEMMA 4.15. Assume that the points (xj,n;) (j = 1,2) behave as in (24),
and one or both of them is close to the lower left edge as in (38). Also, let |w| —
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wy| be bounded away from zero uniformly in N. Then there exists c in (38) large
enough so that we have

CeNR(S1W1)—S2(w2))

N /1S (wi) S5 (wo)|

(40) |K (x1,n1; x2,n2)| <

uniformly in N.

PROOF. Because |w; — wy| must be bounded from below, we see that the lim-
iting global positions (x;,7;), j = 1,2, must be distinct. Proposition 4.10 (cf.
Remark 4.14) then implies that the single integral in (30) is asymptotically less
significant than the desired estimate (40) for the kernel [note that at least one of the
factors Sy (w1), S5 (w2) goes to zero as N — oo, see also the proof of Lemma 5.2].
Therefore, it suffices to derive (40) for the double contour integral in (30).

As usual in the steepest descent approach, the main contribution to the double
contour integral in (30) comes from the neighborhoods of the critical points. Thus,
there we have w ~ wj, z & wy (plus three more possibilities with wj > replacing
w1 2, but they give the same contribution to the desired bound).

Let, by agreement, the paths in Figure 10 be separated [in the limiting coordi-
nates (x, n)] form the tangent points of the frozen boundary and the sides of the
polygon. Clearly, such paths still can be chosen. Thus, we may think that the quan-
tities E1(wy) and E»(w») are uniformly bounded away from zero; see also Petrov
(2012), Proposition 2.7 and Figure 14. Thus, it remains to estimate the product of
two single integrals

?§ eNsl(w)dw?f N9 gy
{w) (2}

where the w and z contours are as in (30). We will derive the estimate of the form
CeENNS1 2w 2)
INISY y(wi )]
and “—" for the second one), and this will give the desired claim. If, say, (x1, n1) is
not close to the edge, then the corresponding estimate can be obtained in the same
way as in Proposition 4.11. So let us assume that (x;,n1) is close to the lower
left edge, and estimate the w integral above; for the z integral the argument is the
same.

From Petrov (2012), Proposition 2.7, it follows that for (x1, n1) approaching the
lower left edge of the liquid region, the corresponding critical point wy approaches
the real line to the left of the point a; from (1). Using Petrov (2012), Section 2.3
and (2.10) (cf. Remark 1.1), it can be shown that arg S{’(Wl) tends to —m /2. Let us
introduce the local variable ¢ around wi,

for each of the single integrals (with “+4” sign for the first integral,

wit)=w +e T 5 <t <V23(wy).
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It can be readily checked [cf. Borodin and Ferrari (2008), Lemma 6.8] that replac-
ing the w contour around w; by the straight line {w(#)} will not affect the desired
bound [provided that ¢ in (38) is large enough]. We then have

1 1+i
Si(w(®)) = Sy (wy) — 55;’(w1)z2 - ﬁsf’(wl)ﬁ +0(th,
and N(— 1 ”(Wl)tz) ~ —2|S”(w1)|t2 Since wj is close to the real line, one can
sy (Wl) _1STwy)]

derive an equlvalence of the form §7"(wy) ~ and so

is ‘(Wl) S(wy) 2

1
¢ " ~
R( 6fS (wor ) 6+/23 (1) STl
We see that for —§ <t < 0, the cubic term helps the convergence, and for 0 <
t < v/23(wy), we can bound the cubic term by the quadratic term which will also
ensure the convergence. We thus see that the integral of eNS1W)=S1 W) around
wi is equal to a constant times the integral of exp(—— |S/ "(w1)|£2), which leads to
the desired estimate. [

To describe further estimates, we need to introduce some notation. Let (x, n) be
at the lower left edge or in the corresponding facet as in (39). We would like to
mimic the critical point w(%- e N) and the value of the action S(w(% e N)

for such (x, n) as follows:
(%) =(5m(x))e®

(w—% ln(w—%)

(el om(y)

#(1=5)m(-m(5)

k
+ ) (i —w) In(b; — w) — (@; — w) In(a; — w)].
i=I

NN)

=
=

’N .

S’(w;

2| =

Denote by wy 2 and Sl,g(w) the corresponding quantities at (x12,71,2) similarly
to w2 and S12(w); see also (26). Note that when the point (x, n) is at the edge,
that~is, when n — Nng(x/N) = O(N'/3), we have |w — W| = O(N'/3), and same
for S.

LEMMA 4.16. Assume that the situation is as in Lemma 4.15, but now the
point (xp,n3) is at the lower left edge or in the corresponding facet as in (39),



ASYMPTOTICS OF RANDOM LOZENGE TILINGS. GAUSSIAN FREE FIELD 33

while (x1, n1) is in the bulk (37) or close to the edge (38). Let Wy — W»| be bounded
away from zero uniformly in N. Then, also uniformly in N, we get the following
estimate with C, Cy > 0:

|K (x1,n1; x2,n2)]

CeNRSIW) = NSy (W) 23 0\ m
< — X T exP —CoN“" | ngp N N/
NS} (wi)

PROOF. Similarly to the beginning of the proof of Lemma 4.15, we see that it
suffices to estimate the product of two single integrals. The w integral is bounded
as in Lemma 4.15 (yielding the first factor in the claim). Thus, it remains to esti-
mate the z integral f{ 2 e~ N5 {7z We will mainly follow the approach of Borodin
and Ferrari (2008), Section 6.1 [which is in turn based on the technique first applied
in Borodin, Ferrari and Sasamoto (2008), Propositions 15 and 17]. We provide a
brief derivation omitting certain bounds which are done in a way similar to what
is performed in Borodin and Ferrari (2008), Section 6.1.

Let us first consider the following scaling of (x2, n7):

xa=0eNl.  na=[Nw(x) +uN'"],
where u € R, and x» is some coordinate such that the line {x : x = x2} intersects

the lower left part of the frozen boundary as in Figure 10. Let us expand

x2 ny
—NS(z, i N) ~ —NS(z; x2, nv(x2)) — uN'S,(z; x2, no(x2)).-

We deform the z contour in _, e ~N52(2) 47 so that it will pass through the real dou-
ble critical point Wy = w(x2, nfb( X2)). As it usually happens for Airy-type asymp-
totics, the main contribution to the integral comes from an N'/3-neighborhood of
the double critical point. Let us introduce the local variable ¢,

z=Wy+ N1,
and continue the above expansion,
—NS(W2 + N3 x0, nm(x2)) — uN'3S, (W2 + N3 w0, i (x2))
~ —NS(W23 x2. 1w (x2)) — 278" (W23 x2, i (x2))
—uN'8, (Wa; x2. 1o (x2)) — ut S) (W2: x2. v (x2))-

The terms —%t3S’”(v~vz; %2, No(x2)) — utS;, (W2; x2, nfp(x2)) after the integration
in the neighborhood of the double critical point w; give the Airy function [similarly
to Borodin and Ferrari (2008), Lemma 6.1]. The terms containing N contribute to
the factor e~ V$2(W2) [after substituting u = N2/3(”W2 - (F))]-

For general (x2,n2) as in (39), the desired exponential estimate containing
et for the single integral is obtained along the lines of Lemma 6.2 in Borodin
and Ferrari (2008). This completes the proof. [
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LEMMA 4.17.  Assume that now both the points (xj,n;) (j =1,2) are at the
lower left edge or in the corresponding facet as in (39). Let Wy — W2 | be bounded
away from zero uniformly in N. Then

|K (x1,n1; x2,12)|
C eN(mi. (W) =R, (W2))

<
— N2/3

X n b ) n
ool 3) ) -€ov(on() - 5)

uniformly in N, where C, Cy, C> > 0.

PROOF. This lemma is obtained similarly to the previous Lemma 4.16, but
now we derive exponential estimates for both w and z integrals. [J

5. Completing the proofs. In this section we finish the proof of Theorem 1.2
(Sections 5.1-5.3), and then explain how it leads to Theorem 1.3 (Section 5.4).

5.1. Expanding determinants in s-fold sums (21). Fix pairwise distinct points
(x1,11), - .-, (xs, ns) inside the liquid region D. In Section 3 we showed that the
expectation E(Hy (x1,n1) - - - Hy(Xs, ns)) of Theorem 1.2 can be expressed as a
linear combination of expressions like (21)

x] Xy g ng A A
(41) oy >y det[ L1 1*2},
yi=x1+1 ye=xe+lmep1=nry+1 ms=ns+1 AZ’I A2’2

where the matrix blocks are given in (22). Each such s-fold sum corresponds to
a choice of one linear (horizontal or vertical) part on every ith path starting at
the point (x;,n;), i =1, ...,s; see Figure 10. Throughout the section we assume
that these paths on Figure 10 along which we calculate the height function are
separated from tangent points as explained in the proof of Lemma 4.15.

Let us consider one s-fold sum as in (41). Expanding the above s x s determi-
nant, we write it as the sum over permutations o € G(s) of terms each of which

is sgno times the product of matrix elements with indices (i,0;), i =1,...,s.
Express o as a union of several disjoint cycles. Since the matrix [ﬁ;: i;z] has

zero diagonal entries, all these cycles must have length > 2. In the next subsection
we will show that the contribution of permutations containing cycles of length > 3
becomes negligible in the limit as N — oo.

5.2. Contribution of permutations with cycles of length > 3. Let the permu-
tation o € G(s) contain a cycle of length ¢ > 3. To shorten the notation, we
assume that this cycle is 1 - 2 — --- — £ — 1. In the expansion of the de-
terminant in (41) we take the product of the kernels and do a horizontal (over
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yi=xj+ 1,...,x}) or vertical (over m; =n; + 1,...,n’;) summation. Let us
collect terms corresponding to a fixed index i =1, ..., £. W]e will assume that the
shifts i &= 1 are given mod{. There are four possible cases we consider:

(V) The summation related to the index i is performed over a vertical segment:
{(xij,mi):mj=n; +1,..., n; }. It can happen that this vertical segment crosses the
lower left frozen boundary; see Figure 10. Thus, we split the summation into three
parts according to (37)—(39).

(V; edge or facet) Summation over I} := {n; + 1,..., n;} N {m;:m; <
Nnp(xi/N) +cN 1/ 3}. Here ny, is defined in Section 4.6. We need to consider
(42) — Y K(i—r i xi+1,mj — DK (i, mis i1, uig).

m; el

The minus sign is coming from the second factor; see (22). Here and below, the
points (#j+1, u;+1) (corresponding to indices o; and ai_l) are equal to (y;,n;) or
(xj +1,m; — 1) for suitable j; see (22).

LEMMA 5.1. The contribution of the sum (42) over I goes to zero as
N — oo.

PROOF. By Lemmas 4.16 and 4.17, we can write

Y K(@ior,ui—:xi+ 1Lmi — DK (xi,mis fig1, uig1)

m;€lj

const 2/3 Xi m; .
< N3 ZG:I exp{—const- N (T]fb(ﬁ) — W)} X terms in (¢j41, Uj+1)
m; 1

const i
< NI X terms in (41, Uj+1).
To get the first estimate above we employ considerations similar to Corollary 4.12;
this may change the bound only by a factor of a constant. The second estimate

completes the proof. [

(V; close to edge) Summation over I = {n; + 1,...,n}} N {m; :eNV3 +
N (xi/N) <m; < N*3 + Ny (xi/N)}.

LEMMA 5.2. The contribution of the sum (42), where m; runs over I instead
of 1, also goes to zero as N — o0.

PROOF. We have
’ > Kot uim xi+ 1,mi — DK, mys tig, wig)

m;el

- const Z 1 ‘ in (¢ )

< —— xtermS 1n (¢ +1, U;j+1)-

N 1S/ (w(i))] A
miel, 'l
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Here we have used a shorthand notation w(i) := w(%, %), and the same for S;; see
also (26). Also, as in the previous lemma we use argument similar to Corollary 8,
but this again may only change the constant in the bound.

Let us bound |S;(w(i))| from below. Observe that the third derivative S (w) is
bounded away from zero for small Jw, if Siw belongs to a bounded interval to the
left of the point a; € R from (1). Indeed, under the map w™l:H — D, such w’s
are close to the lower left edge and are separated from the tangent points. Thus,
we can write | S/ (w(i))| > const - Jw(i).

Next, it can be seen that the imaginary part Iw(i) can be bounded from below
by const - [wy, (x, M| - |5 — e (F) + O(N~1/9)|, where (x, n) € D is some inter-
mediate point closer to the edge than (%, %). Instead of O (N ~1/) one could take
any correction term which is asymptotically smaller than 7 — ngm (). We have
[see also Petrov (2012), Section 7.6]

_ w— X
= l4+ W= W—x+1-nSw)’

Wy

where

Z(W):Zk:(w—lbi 1 )

i=1 W—dai

Using the formula for the action (25), we see that
1
S"WOG; X.m) - (W—x +1—=n)

(43) w, =

Therefore,
mi/N — np(xi/N) + O(N~1/)
"W ms x>m)

S/ (w(i))| > const - ‘

m; X;
>const-N1/3‘—’— (—l)+0 N_1/6‘
> N Ty ( )
[we estimate the second derivative in the denominator using (38)]. We obtain
1 const- N~1/3

const
N 2 ST = 2 = N (e /N) + OGN

mi;elp mi€lp

§const-N_1/3lnN.

This completes the proof. [J

It is not hard to see from Lemmas 5.1 and 5.2 that in the two remaining cases (V;
bulk) and (H) (see below) we may assume that all the ¢ variables we are summing
over (which correspond to vertical and horizontal summations) always belong to
the bulk of the system in the sense of (37).
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(V; bulk) Summation over I3 := {n; + 1,...,n;} N {m;j:m; > N23 +
Nngp(xi/N)}. From what was said right above, we may as well take I3 =
{ni +1,...,n;}. We will investigate the asymptotics of (42) where now m; runs
over I3 instead of ;.

Similarly to the proof of Lemma 5.2, let us denote w(i) = w(, 5, w(i &
1) := W(%, "ﬁ' ), and same for S;, &; [see also (26)]. Also, let B,(i) denote the
argument of the tangent vector to the z contour at the point w(i) as on Figure 11,
and analogously for Sy, (i). It can be readily checked [using the global structure of

the z and w contours (Section 4.3)] that

Bo(i) = Bu(i)+5 and
(44) 3
B(i) + Puli) + arg S (w(i)) = 7” +2mg  (for some g € 7).

By the nature of our paths (on Figure 10), the points (;+1, #;+1) are sufficiently
far from (x;, m;). Thus we may use Proposition 4.11 and Corollary 4.12 and write
(here and below § > 0 is sufficiently small and fixed)

— Y K(i—1,ui—t; xi + 1,my — DK (xi, mi; tig1, uit1)

m;el
__1+oWw™?
- 2r N
<Y _ v
o 187 (W)
{ |: P () elBu (@) 1 w(i) —x;/N
w(i — 1) —w(@i) w()—w(+1) Z;w(i) 1—mi/N
iB: (i) i (i) —2Ni3S; (W(i))
45) - _.
wi — 1 —w@) w@)—w@@+1) [8w@)l
w(i) —x; /N B e~ 1B (D) eiPuw (@)
1—mi/N  w(i—1)—wi) w(i)—w(i+1)
NS WD) (i) — x; /N e 1B ()
1Eiw@)l 1—mi/N — w@i—1)—w(@)
e~ hul) 1 W(i)—x,-/N]
W) —wi+ D) E@WG) 1—mi/N

x (terms in (fj+1, ui+1)) + O}.
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Here and below  denotes all additional terms (there are 12 of them in the above
formula) which are obtained by replacing w(i — 1) and/or w(i 4 1) by the corre-
sponding complex conjugate points.

Arguing analogously to Section 5.3 in Borodin and Ferrari (2008) [case (a/3)],
one can show that the contribution of the oscillating terms above containing
eT2NI38i (W) hecomes negligible [of order O (N ~!/3+¢)] in the limit. The remain-
ing terms are smooth and change over distances m; ~ N. Therefore, up to an error
of order O(N~1/3), we can replace the summation over m; in (45) by integration
in the scaled variables. Namely, setting i :=m;/N, n:=(n; +1)/N,n :=n}/N,
X = Xx;/N, we can rewrite (45) as

1+ O(NT2) 1
e an 7w
P (D) ethu® 1 w@)—x
Hwa—n—wm'mw—wa+nammo)1—u
.\ 0] ‘ e~ iBu(@) 1 wa)—-x]
wi — 1) —w@) wi@)—w@i@+1)EW@) 1—n

(46)

X (terms in (fi+1, ui+1)) + O}.

The next step we perform is a change of variables. For the term with w(i),
we set §i+ :=w(i) = w(x, u). The integration path Fl.+ for §i+ is from w(y, n) to
w(x,n’), that is, Fl.+ is the image of the vertical line from 7 to n’ in D under the
map w: D — H. Form the results of Petrov (2012), we have [see also (43)]

gt 1 w(i) — x
o S{W@) - Biw(@) 1—p

Symmetrically, for the term with w(i), let ¢;” :=W(i) = W(x, u), and the inte-
gration path I';” for ¢;~ is conjugate to that for §i+. It can be readily verified [in
particular, using (44)] that the above integral (46) can be rewritten as the sum of
two integrals,

1 . 1 !
. d ?'[ - —
ZniE;:SlfFfi Sl D= w1

(47)
x terms in (41, Ui+1) + O].

There is an additional minus sign for I';” because of a different phase —(B;(i) +
Bw(@)) in the second summand in (46). Thus we have established the following
fact:
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PROPOSITION 5.3. The sum (42), where m; runs over Iz instead of 11, is [up
to a factor of 1 + O(N~%2), where § > 0 is a fixed sufficiently small constant]
equal to the sum of two integrals (47).

(H) The summation related to the index i is performed over a horizontal seg-
ment, {(y;,n;):y;i =x; +1,...,x]}.

PROPOSITION 5.4. The horizontal sum has the following asymptotics:
¥
Y Ko, uiot; yion) K (yionis fig1, wis)
yi=xi+1
1+ 0N

2mi
. 1 1
X & d §l|: - —
8; /rfi S wi — 1)=& ¢ —w(i + 1)

x terms in (tj+1, Ui+1) + ®:|,

where all the notation is as in the previous case, except that now the path of inte-

gration 1"Jr connects w(x’Jrl ") and w(%, %), and I';" is the conjugate of l"i+.
PROOF. This is established in the same way as Proposition 5.3. [

After considering the four above cases, we conclude this subsection with the
desired statement about permutations o € G(s) having cycles of length £ > 3:

PROPOSITION 5.5.  Consider one s-fold sum (41) and expand the s X s deter-
minant as a sum over permutations o € &(s). Then the contribution of those o’s
having cycles of length £ > 3 goes to zero as N — o0.

PROOF. From Lemmas 5.1, 5.2 and Propositions 5.3, 5.4 it follows that each
cycle j1 = jo — ---— j; — j1 in o asymptotically produces the following sum
of ¢-fold integrals:

1 N o 1o 1
i, 2 erveeee L el fL a6 Tl oo

On the other hand, by Kenyon (2008) Lemma 7.3, we have

=0, £ >3.
Z 1_[ UTz UTl+1 =

all £-cycles teG(¢)i=1

This concludes the proof. [
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5.3. Contribution of fixed-point-free involutions. In Sections 5.1-5.2 we have
shown that if one expands the determinant in (41) as a sum over permutations
o € G(s), then the contribution of permutations ¢ which are not fixed-point-free
involutions (= pairings) becomes negligible in the limit. Collecting all summands
of the form (41) corresponding to the expectation E(Hy (x1,n1) - - - HNv(Xs, s))
[with pairwise distinct positions (x1, 11), - - -, (Xs, s)], we see that

}E(HN(le 771) e HN(XSv Us))
= (1+0(N%?)
s/2

X Z l_[ (27.[1)2

pairings 0 €G(s) i=1
W(Xo (2i—1) 10 (2i—1)) W(Xo (2i) 0 (20))
X ﬁ d&oii ﬁ dboi
W(Xo (2i—1)sMo (2i—1)) W(Xo (2i)>N0 (2i))
1
X ——.
(L2i—1 — £2i)
Note the additional minus sign coming from the signature of each transposition.
The paths of integration in H from W(xs (j), s (j)) 10 W(Xq(; i) No(j)) are obtained
by linearity (Section 3.2) and by symmetry of the contours I in Propositions 5.3,

54.
Each integral above can be explicitly evaluated,

1
Q27i)? /w, al /WZ ‘@ —4“2)2
1 1<(w1 wo) (W) — W2)> G(wy, Wz)
— In
472\ (g — W) (W) — wp) b4

where G is the Green function (5). With this step we have completed the proof of
Theorem 1.2.

5.4. Convergence to GFF: Proof of Theorem 1.3. Our aim now is to prove the
weak convergence of /7 Hy (), n) (viewed as a generalized function on D) to the
w-pullback of the Gaussian free field GFF on H; see Sections 1.6—1.7. In order to
do that, we need an additional estimate:

LEMMA 5.6. For any ¢ > 0 and any s points (x1,11), ..., (Xs, ns) € D (not
necessarily pairwise distinct) we have the bound

E(Hn(x1,m1) - Hv(xs, 1s)) = O(N?), N — oo.

PROOF. If all the points are distinct, we have a better bound O(1) by The-
orem 1.2. Next, assume that, say, (x1,n1) = (x2, n2). Connect (x1, 1) with the
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lower left edge by two paths which are close to each other only in a neighborhood
of (x1,n1). As explained in Section 3, we calculate (Hy (X1, 171))2 as a product of
sums over these two paths. Fix small § > 0, and in each sum consider separately
the N'/2%3 terms corresponding to N ~1/2+4_neighborhood of (x1, n1). All other
terms give a contribution of order O (1) because they involve points which are far
apart, and so one can argue similarly to Proposition 4.11 and Theorem 1.2. On the
other hand, the terms corresponding to close points are estimated using Proposi-
tion 4.10 and Lemma 4.13. The former gives growth of order O(In N)? coming
from the single integral in the correlation kernel (30), and the latter provides a
bound O (N%) which comes from the double integral in (30). This completes the
proof. See also the end of Section 7 in Kenyon (2008). [

Now we finish the proof of Theorem 1.3. We argue similarly to Borodin and
Ferrari (2008), Section 5.5. It suffices to establish that [see (9)]

S
li SI’E f i (Xi» i) Hy (xi, i) dxidn;
Jim 7 <£[1 | it mi) Hy O mi) dxidn
(48)

— > (w1, . ) 2
—E(E/HQ(W (zi))J (z))GFF(z;)|dz]| )

where ¢1, ..., ¢s are smooth compactly supported test functions on D. This con-
vergence of moments implies the weak convergence (9) of /7 [ ¢ (x,n) X
Hy(x,n)dy dn to the corresponding Gaussian random variable [i ¢>(W_1 (2)) %
J(2)GFF(2)|dz|?, as well as an obvious multidimensional analogue of this fact
involving convergence to a Gaussian vector.

The left-hand side of (48) is equal to

)
/Hs [T1dzi (i (w™" @) J @) E(Hy (W' (z1)) -+ Hy (W™ (z5))).
i=1
We split this integration over H® into two parts, one where the points z; are suffi-
ciently far apart,

HS:I{(Zl,...,ZS)GHSI|Zi—Zj|ZN71/2+8y1§i<J.§S},

and the remaining part H° \ H§ where some of them are close. As usual, § > 0 is
small and fixed.
For the integration over Hj we use Propositions 5.3 and 5.4 to write

st [T1dzi1* (¢ (W™ (20))J @) E(Hy (W' (z1)) - Hy (W™ (26)))

di=1

- /H [11dzi*(¢i (W™ (z))J (z0))E(GFF(z1) - - - GFF(z6)) + O (N /).

s i=1
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Since the logarithms in E(GFF(z1) - - - GFF(zs)) (see Section 1.6) are integrable
around zero, we may replace the above integral over HS by the same integral
over H®.

The integral over the complement H® \ H is bounded using Lemma 5.6,

/ S\Hsl"lwzl (61 (W' @) T ) E(Hy (W' (21)) -+ Hy (w1 (z6)))

< const - (N~ 1/249)2Ne,

where the constant depends only on our test functions ¢ ;. This last estimate implies
the desired convergence (48), and completes the proof of Theorem 1.3.
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