Open Access
May 2013 Invariant monotone coupling need not exist
Péter Mester
Ann. Probab. 41(3A): 1180-1190 (May 2013). DOI: 10.1214/12-AOP767

Abstract

We show by example that there is a Cayley graph, having two invariant random subgraphs $X$ and $Y$, such that there exists a monotone coupling between them in the sense that $X\subset Y$, although no such coupling can be invariant. Here, “invariant” means that the distribution is invariant under group multiplications.

Citation

Download Citation

Péter Mester. "Invariant monotone coupling need not exist." Ann. Probab. 41 (3A) 1180 - 1190, May 2013. https://doi.org/10.1214/12-AOP767

Information

Published: May 2013
First available in Project Euclid: 29 April 2013

zbMATH: 1300.05276
MathSciNet: MR3098675
Digital Object Identifier: 10.1214/12-AOP767

Subjects:
Primary: 22F50 , 37A50
Secondary: 05C05 , 05C78

Keywords: Cayley graphs , invariant processes , monotone coupling

Rights: Copyright © 2013 Institute of Mathematical Statistics

Vol.41 • No. 3A • May 2013
Back to Top