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We find scaling limits for the sizes of the largest components at critical-
ity for rank-1 inhomogeneous random graphs with power-law degrees with
power-law exponent τ . We investigate the case where τ ∈ (3,4), so that the
degrees have finite variance but infinite third moment. The sizes of the largest
clusters, rescaled by n−(τ−2)/(τ−1), converge to hitting times of a “thinned”
Lévy process, a special case of the general multiplicative coalescents studied
by Aldous [Ann. Probab. 25 (1997) 812–854] and Aldous and Limic [Elec-
tron. J. Probab. 3 (1998) 1–59].

Our results should be contrasted to the case τ > 4, so that the third mo-
ment is finite. There, instead, the sizes of the components rescaled by n−2/3

converge to the excursion lengths of an inhomogeneous Brownian motion,
as proved in Aldous [Ann. Probab. 25 (1997) 812–854] for the Erdős–Rényi
random graph and extended to the present setting in Bhamidi, van der Hof-
stad and van Leeuwaarden [Electron. J. Probab. 15 (2010) 1682–1703] and
Turova [(2009) Preprint].

1. Introduction. The critical behavior of random graphs has received tremen-
dous attention in the past decades. The simplest example of a random graph is the
Erdős–Rényi random graph, whose critical regime has been intensely explored
(see, e.g., [2, 5, 10, 19, 26] and the references therein). In the past few years, many
examples of real-world networks have been found where the degrees are highly
variable and heavy tailed, unlike the degrees in the Erdős–Rényi random graph,
which instead are extremely light tailed. As a result, there has been a concerted ef-
fort to define and analyze models for such real-world networks. See, for example,
[1, 18, 30] for major reviews of real-world networks and models for them.

In this paper, we study how inhomogeneity in the random graph model changes
the critical regime of the random graph. In our model, the vertices have a weight
associated to them, and the weight of a vertex moderates its degree. Therefore, by
choosing these weights appropriately, we can generate random graphs with highly
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variable degrees. For our class of random graphs, it is shown in [34], Theorem 1.1,
that when the weights do not vary too much, the critical behavior is similar to the
one in the Erdős–Rényi random graph. See in particular the recent works [8, 33],
where it was shown that if the degrees have finite third moment, then the scaling
limit for the largest critical components in the critical window are essentially the
same as for the Erdős–Rényi random graph, as identified by Aldous in [2].

Interestingly, in [34], Theorem 1.2, it was shown that when the degrees have in-
finite third moment, then the sizes of the largest critical clusters are quite different.
See also [22] for a related result for the configuration model, another random graph
model having flexible degrees. In this paper, we identify the scaling limits of the
largest critical clusters in the critical window in the regime where the degrees have
infinite third moments. As we shall see, this scaling limit is rather different com-
pared to that for the Erdős–Rényi random graph. Let us first introduce the model
that shall be the focus of our investigations for the rest of this article.

1.1. Model. In our random graph model, vertices have weights, and the edges
are independent with the edge probability being approximately equal to the
rescaled product of the weights of the two end vertices of the edge. While there
are many different versions of such random graphs (see below), it will be conve-
nient for us to work with the so-called Poissonian random graph or Norros–Reittu
model [31]. To define the model, we consider the vertex set [n] := {1,2, . . . , n}
and suppose each vertex is assigned a weight, vertex i having weight wi . Now,
attach an edge with probability pij between vertices i and j , where

pij = 1 − exp(−wiwj/�n)(1.1)

with �n denoting the total weight

�n = ∑
i∈[n]

wi.(1.2)

Different edges are independent. In this model, the average degree of vertex i is
close to wi , which brings inhomogeneity into the model.

There are many adaptations of this model, for which equivalent results hold.
Indeed, the model considered here is a special case of the so-called rank-1 inho-
mogeneous random graph introduced in great generality by Bollobás, Janson and
Riordan [11]. It is asymptotically equivalent with many related models, such as
the random graph with given prescribed degrees or the Chung–Lu model, where
instead

pij = max(wiwj/�n,1),(1.3)

and which has been studied intensively by Chung and Lu (see [13–17]). A further
adaptation is the generalized random graph introduced by Britton, Deijfen and
Martin-Löf in [12], for which

pij = wiwj

�n + wiwj

.(1.4)
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See Janson [25] for conditions under which these random graphs are asymptoti-
cally equivalent, meaning that all events have asymptotically equal probabilities.
As discussed in more detail in [34], Section 1.3, these conditions apply in the set-
ting to be studied in this paper. Therefore, all results proved here also hold for
these related rank-1 models.

Let us now specify how the weights are chosen. We let the weight sequence
w = (wi)i∈[n] be defined by

wi = [1 − F ]−1(i/n),(1.5)

where F is a distribution function on [0,∞) for which we assume that there exists
a τ ∈ (3,4) and 0 < cF < ∞ such that

lim
x→∞xτ−1[1 − F(x)] = cF ,(1.6)

and where [1 − F ]−1 is the generalized inverse function of 1 − F defined, for
u ∈ (0,1), by

[1 − F ]−1(u) = inf{s : [1 − F ](s) ≤ u}.(1.7)

By convention, we set [1−F ]−1(1) = 0. We often make use of the fact that, with U

uniform on [0,1], the random variable [1 − F ]−1(U) has distribution function F .
An interpretation of the choice in (1.5) is that the weight of a vertex Vn chosen

uniformly in [n] has distribution function Fn given by

Fn(x) = P(wVn ≤ x) = 1

n

∑
j∈[n]

1{wj≤x}

= 1

n

∑
j∈[n]

1{[1−F ]−1(j/n)≤x} = 1

n

n−1∑
i=0

1{[1−F ]−1(1−i/n)≤x}
(1.8)

= 1

n

n−1∑
i=0

1{F−1(i/n)≤x} = 1

n

n−1∑
i=0

1{i/n≤F(x)}

= 1

n

(�nF(x)� + 1
) ∧ 1,

where, throughout this paper and for x, y ∈ R, we write (x ∨ y) = max(x, y) and
(x ∧ y) = min(x, y). By (1.8), Fn → F uniformly. As a result, a uniformly chosen
vertex has a weight which is close in distributional sense to F .

For the setting in (1.1) and (1.5), by [11], Theorem 3.13, the number of vertices
with degree k, denoted by Nk , satisfies

Nk/n
P−→ E

[
e−W Wk

k!
]
, k ≥ 0,(1.9)
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where
P−→ denotes convergence in probability, and where W has distribution func-

tion F appearing in (1.5). We recognize the limiting distribution as a mixed Poisson
distribution with mixing distribution F ; that is, conditionally on W = w, the dis-
tribution is Poisson with mean w. Equation (1.9) also implies that the distribution
of the degree of a uniformly chosen vertex in [n] converges to a mixed Poisson
distribution with mixing distribution F . This can be understood by noting that the
weight of a uniformly chosen vertex is, by (1.8), close in distribution to F . In turn,
when a vertex has weight w, then, by (1.1), its degree is close to Poisson with pa-
rameter w. Since a Poisson random variable with large parameter w is closely con-
centrated around its mean w, we see that the tail behavior of the degrees in our ran-
dom graph is close to that of the distribution F . As a result, when (1.6) holds, and
with Dn the degree of a uniformly chosen vertex in [n], lim supn→∞ E[Da

n] < ∞
when a < τ − 1 and lim supn→∞ E[Da

n] = ∞ when a ≥ τ − 1. In particular, the
degree of a uniformly chosen vertex in [n] has finite second, but infinite third mo-
ment when (1.6) holds with τ ∈ (3,4).

We shall frequently make use of the fact that (1.6) implies that, as u ↓ 0,

[1 − F ]−1(u) = (cF /u)1/(τ−1)(1 + o(1)
)
.(1.10)

Under the key assumption in (1.6), we have that the third moment of the degrees
tends to infinity; that is, with W ∼ F , E[W 3] = ∞. Define

ν = E[W 2]/E[W ],(1.11)

so that, again by (1.6), ν < ∞. Then, by [11], Theorem 3.1 (see also [11], Sec-
tion 16.4, for a detailed discussion on rank-1 inhomogeneous random graphs, of
which our random graph is an example), when ν > 1, there is one giant component
of size proportional to n, while all other components are of smaller size o(n), and
when ν ≤ 1, the largest connected component contains a proportion of vertices that
converges to zero in probability. Thus, the critical value of the model is ν = 1. The
main aim of this paper is to investigate what happens close to the critical point,
that is, when ν = 1.

A simple example of our model arises when we take

F(x) =
{

0, for x < a,
1 − (a/x)τ−1, for x ≥ a,

(1.12)

in which case [1 − F ]−1(u) = a(1/u)1/(τ−1), so that wj = a(n/j)1/(τ−1) and

E[W ] = a(τ − 1)

τ − 2
, E[W 2] = a2(τ − 1)

τ − 3
.(1.13)

The critical case thus arises when

ν = E[W 2]/E[W ] = a(τ − 2)

τ − 3
= 1,(1.14)

that is, when a = (τ − 3)/(τ − 2).
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With the definition of the weights in (1.5), we shall write G 0
n(w) for the graph

constructed with the probabilities in (1.1), while, for any fixed λ ∈ R, we shall
write Gλ

n(w) when we use the weight sequence w(λ) = (wi(λ))i∈[n] defined by

w(λ) = (
1 + λn−(τ−3)/(τ−1))w.(1.15)

We shall assume that n is so large that 1 + λn−(τ−3)/(τ−1) ≥ 0, so that wi(λ) ≥
0 for all i ∈ [n]. This setting was first explored in [34], where, for the largest
connected component Cmax and all λ ∈ R, it is proved that both n−(τ−2)/(τ−1)|Cmax|
and n(τ−2)/(τ−1)/|Cmax| are tight sequences of random variables. In this paper, we
bring the discussion of the critical behavior of such inhomogeneous random graphs
substantially further, by identifying the scaling limit of (n−(τ−2)/(τ−1)|C(i)|)i≥1,
where (C(i))i≥1 denote the connected components ordered in size, that is, |Cmax| =
|C(1)| ≥ |C(2)| ≥ · · · .

Interestingly, as proved in [8, 33, 34], when τ > 4, so that E[W 3] < ∞, the
scaling limits of the random graphs studied here are (apart from a trivial scaling
constant) equal to the scaling limit of the ordered connected components in the
Erdős–Rényi random graph, as first identified by Aldous in [2]. This suggests that
the high-weight vertices play a crucial role in our setting, a fact that shall feature
extensively throughout our proof. The importance of the high-weight vertices also
partly explains why we restrict our setting to (1.5) and (1.6), which give us sharp
asymptotics of the weights of the high-weight vertices in the heavy-tailed setting
we study here. We shall comment on extensions of our results in more detail in
Section 1.5 below.

Before stating our main results, we introduce some notation. For a vertex i ∈ [n],
we write C(i) for the vertices in the connected component or cluster of i. Further,
let

C≤(i) =
{ C(i), if i ≤ j ∀j ∈ C(i),

∅, otherwise.
(1.16)

Then, clearly, |Cmax| = maxi∈[n] |C(i)| = maxi∈[n] |C≤(i)|, and (|C(i)|)i≥1 is equal
to the sequence (|C≤(i)|)i≥1 ordered in size. We further define the cluster weight
of vertex i to be

W(i) = ∑
j∈C(i)

wj ,(1.17)

and let W≤(i) be as in (1.17), where the sum is restricted to C≤(i). We again let
(W(i))i≥1 be equal to the sequence (W≤(i))i≥1 ordered in size.

Throughout this paper, we shall make use of the following standard notation.

We let
d−→ denote convergence in distribution, and

P−→ convergence in proba-
bility. For a sequence of random variables (Xn)n≥1, we write Xn = OP(bn) when
|Xn|/bn is a tight sequence of random variables as n → ∞, and Xn = oP(bn)

when |Xn|/bn
P−→ 0 as n → ∞. For a nonnegative function n �→ g(n), we write
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f (n) = O(g(n)) when |f (n)|/g(n) is uniformly bounded, and f (n) = o(g(n))

when limn→∞ f (n)/g(n) = 0. Furthermore, we write f (n) = �(g(n)) if f (n) =
O(g(n)) and g(n) = O(f (n)). Finally, we write that a sequence of events (En)n≥1
occurs with high probability (whp) when P(En) → 1.

Now we are ready to state our main results. We start in Section 1.2 by describing
the scaling limit of the ordered clusters, and in Section 1.3 we discuss further
properties of the scaling limit.

1.2. The scaling limit for τ ∈ (3,4). In this section, we investigate the scal-
ing limit of the connected components ordered in size. Our first main result is as
follows:

THEOREM 1.1 [Weak convergence of the ordered critical clusters for τ ∈
(3,4)]. Fix the Norros–Reittu random graph with weights w(λ) defined in (1.5)
and (1.15). Assume that ν = 1 and that (1.6) holds. Then, for all λ ∈ R,(

n−(τ−2)/(τ−1)
∣∣C(i)

∣∣)
i≥1

d−→ (γi(λ))i≥1(1.18)

in the product topology, for some nondegenerate limit (γi(λ))i≥1.

We next study the joint convergence of the clusters for different values of λ ∈ R.
By increasing λ, more and more edges are added to the system. These extra edges
potentially create connections between disjoint clusters, thus merging them. As a
result, we can interpret λ as a time variable, and as time increases, clusters are be-
ing merged. This resembles a coalescence process, as studied in [7]. We now make
this connection precise. Before being able to do so, we introduce some necessary
notation.

We first give a quick overview of Aldous’s standard multiplicative coalescent
and how it relates to the limiting random variables in Theorem 1.1, seen as func-
tions of the parameter λ. It will not be possible to give a full description of the
process and its many fascinating properties here, and we refer the interested reader
to the paper [3], the survey paper [4] and the book [7].

Write �2↘ for the metric space of infinite real-valued sequences x = (x1, x2, . . .)

with x1 ≥ x2 ≥ · · · ≥ 0 and
∑∞

i=1 x2
i < ∞, with the �2-norm as the metric. The

standard multiplicative coalescent is described as the Markov process with states in
�2↘ whose dynamics is as follows: for each pair of clusters (x, y), the pair merges
at rate xy. Thus, the multiplicative coalescent is a continuous-time Markov process
of the masses of an infinite number of particles, where two particles merge at a rate
equal to the product of their masses.

In [2], Aldous showed that there is a Feller process on the space �2↘ defined for
all times −∞ < t < ∞ starting from infinitesimally small masses at time −∞, and
following the above merging dynamics. The distribution of the coalescent process
at any time t is the same as the limiting ordered cluster sizes of an Erdős–Rényi
random graph with edge probabilities pn = (1 + tn−1/3)/n.
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Aldous and Limic [3] explicitly characterize the entrance boundary at −∞ of
the above Markov process, in the sense that they prove that every extreme version
of the above Markov process is characterized by a diffusion parameter κ , a trans-
lation parameter β , and a vector of “limiting largest weights” c = (c1, c2, . . .) that
describe the asymptotic decay of the masses of the particles at time −∞. In this
terminology, the multiplicative coalescent can be described as the ordered lengths
of excursions beyond past minima of the process

Wκ,β,c(s) = κ1/2W(s) + βs − 1
2κs2 + V c(s),(1.19)

where (W(s))s≥0 is a standard Brownian motion, while

V c(s) =
∞∑

j=1

cj

(
1{Ej≤s} − cj s

)
(1.20)

with (Ej )j≥1 independent exponential random variables, Ej having mean 1/cj .
Then, the (κ,β, c)-multiplicative coalescent is the set of ordered lengths of excur-
sions from zero of the reflected process

Bκ,β,c(s) = Wκ,β,c(s) − min
0≤s′≤s

Wκ,β,c(s′).(1.21)

Part of the proof in [3] is the fact that these ordered excursions can be defined
properly.

The following theorem draws a connection between the components of the
graph for a fixed λ and the sizes of clusters at the same time in a multiplicative
coalescent with a particular entrance boundary, scale and translation parameter.
For this, define the sequence

c = (
ci−1/(τ−1))

i≥1 with c = c
1/(τ−1)
F .(1.22)

Then, we have the following theorem:

THEOREM 1.2 (Relation to multiplicative coalescents). Assume that the con-
ditions in Theorem 1.1 hold. Consider the sequence-valued random variables
X∗(λ) = (γ1(E[W ]λ), γ2(E[W ]λ), . . .) with (γi(λ))i≥1 as in Theorem 1.1. Then
X∗(λ) has the same distribution as a multiplicative coalescent at time λ with
entrance boundary c/E[W ], diffusion constant κ = 0 and centering constant
β = −ζ/E[W ], where ζ is identified explicitly in (2.18) below. More precisely,
there exists a simultaneous coupling of the clusters (|C(i)(λ)|)i≥1, where |C(i)(λ)|
is the ith largest cluster when the weights are equal to w(λ), such that, for every
vector (λ1, λ2, . . . , λk),(

n−(τ−2)/(τ−1)(∣∣C(i)(λl)
∣∣)

i≥1

)k
l=1

d−→ (
X∗(λl/E[W ]))kl=1.(1.23)

In particular, with cj defined as in (1.22),

|λ|γj (λ)
P−→ cj as λ → −∞ for each j ≥ 1.(1.24)
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Theorem 1.2 proves that the finite-dimensional distributions of the rescaled
cluster sizes converge to those of a multiplicative coalescent. While we believe
that also process convergence holds, viewing the processes as elements of an ap-
propriate function space, we have no proof for this fact. See Section 7 for a full
proof of Theorem 1.2. The setting in this paper is the first example where the mul-
tiplicative coalescent with κ = 0 arises in random graph theory. Indeed, all random
graph examples in [3] have largest component sizes of the order n2/3, like for the
Erdős–Rényi random graph studied in [2]. Our example links the multiplicative
coalescent also to random graphs with the largest critical connected components
of the order n(τ−2)/(τ−1) instead of n2/3.

A crucial part of the proof of Theorem 1.2 is the analysis of the subcriti-
cal phase of our model. The asymptotics of the rescaled ordered cluster sizes
in the subcritical regime acts as the entrance boundary of the multiplicative co-
alescent, as explained in more detail in [3], Proposition 7. This entrance bound-
ary is identified in the following theorem, which is of independent interest. In
the statement of Theorem 1.3, the lower bound on λn appears only to ensure that
wi(λn) = (1 + λnn

−(τ−3)/(τ−1))wi ≥ 0 for every i ∈ [n].
THEOREM 1.3 (Subcritical phase). Assume that the conditions in Theorem 1.1

hold, but now take λ = λn → −∞ as n → ∞ such that λn ≥ −n−(τ−3)/(τ−1).
Then, for each j ∈ N, with cj defined as in (1.22),

|λn|n−(τ−2)/(τ−1)
∣∣C(j)

∣∣ P−→ cj .(1.25)

Theorem 1.3 is proved in Section 6. Interestingly, the limit in (1.25) is determin-
istic [recall also (1.22)]. The rough idea for this is as follows. As λ = λn → −∞,
the random graph becomes more and more subcritical. Now, if we look at C(j),
the cluster of vertex j , then we can view it as the union of approximately wj

(which is roughly the degree of vertex j ) almost independent clusters. These clus-
ters are close to total progenies of branching processes having mean offspring
νn(λn) ≈ 1 + λnn

−(τ−3)/(τ−1). The expected total progeny of a branching process
with mean offspring ν equals 1/(1 − ν). As a result, the expected cluster size of
vertex j is close to

wj

1 − νn(λn)
≈ wj

|λn|n−(τ−3)/(τ−1)
= n(τ−2)/(τ−1)

|λn| cj

(
1 + o(1)

)
.(1.26)

In our setting, cj = c
1/(τ−1)
F j−1/(τ−1), so that j �→ cj is strictly decreasing. Thus,

we must also have that |C(j)| = |C(j)| whp. The proof of Theorem 1.3 makes this
argument precise, by investigating the deviation from a branching process, a tech-
nique that is also crucially used in [34] to study tightness of the sequence of ran-
dom variables |Cmax|n−(τ−2)/(τ−1). A result similar to Theorem 1.3 is proved for
the near-critical phase of the configuration model in [36], but the proof we give
here is entirely different.
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We also obtain that the ordered cluster weights as defined in (1.17) satisfy the
same scaling results as described above.

THEOREM 1.4 (Scaling limit of cluster weights). Theorems 1.1, 1.2 and 1.3
also hold for the ordered cluster weights (n−(τ−2)/(τ−1)W(i))i≥1, with identical
scaling limits as in Theorems 1.1, 1.2 and 1.3.

As explained in more detail in Section 2.1 below, Theorem 1.4 can be heuristi-
cally understood by noting that the average weight of a vertex in a cluster is close
to ν = 1, and therefore it contributes the same to the weight of the cluster as it
does to the cluster size. In fact, the proof will show that n−(τ−2)/(τ−1)W(i) and
n−(τ−2)/(τ−1)|C(i)| converge to the same limit. The proof of Theorem 1.4 shall be
given simultaneously with the proofs of Theorems 1.1, 1.2 and 1.3, respectively,
adapted so as to deal with cluster weights or cluster sizes. Sometimes, it is more
convenient to study cluster sizes (e.g., since cluster explorations can more naturally
be formulated in terms of the number of vertices than their weight), in some cases
it is more convenient to work with cluster weights (e.g., since the cluster weights
can be described in terms of multiplicative coalescents, a fact that is crucial in the
proof of Theorem 1.2).

1.3. Properties of large critical clusters. We shall also derive some related
interesting properties of the limiting largest clusters. In the following theorem, we
consider the connectivity structure of the high-weight vertices:

THEOREM 1.5 (Connectivity of high-weight vertices). Under the assumptions
in Theorem 1.1, for every i, j ≥ 1 fixed,

lim
n→∞ P

(
j ∈ C(i)

) = qij (λ) ∈ (0,1)(1.27)

and

lim
n→∞ P(i ∈ Cmax) = qi(λ) ∈ (0,1).(1.28)

Theorem 1.5 states that the high-weight vertices play an essential role in the
critical regime. Indeed, we shall see that in the subcritical regime, with high prob-
ability, Cmax = C(1), so that P(1 ∈ Cmax) = 1 − o(1), while P(i ∈ Cmax) = o(1) for
i > 1. In the supercritical regime, instead, P(i ∈ Cmax) = 1 − o(1) for every i ≥ 1
fixed. Thus, the critical regime is precisely the regime where the high-weight ver-
tices start to form connections. Informally, this can be phrased as “power to the
wealthy.” Theorem 1.5 should be contrasted with the situation when E[W 3] < ∞
studied in [8, 33], where the probability that any specific vertex is an element
of Cmax is negligible, and, instead, the largest cluster is born out of many trials
each having a small probability. This can be informally phrased as “power to the
masses.”
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The following theorem, which is a crucial ingredient in the proof of Theo-
rem 1.1, essentially says that, for each fixed λ, the maximal size components are
those attached to the largest weight vertices:

THEOREM 1.6 (Large clusters contain a high-weight vertex). Assume that the
conditions in Theorem 1.1 hold. Then:

(a) for any ε ∈ (0,1), there exists a K = K(ε) ≥ 1, such that, for all n,

P

(
max
i≥K

∣∣C≤(i)
∣∣ ≥ εn(τ−2)/(τ−1)

)
≤ ε;(1.29)

(b) for any m ≥ 1,

lim
ε↓0

lim inf
n→∞ P

((∣∣C≤(i)
∣∣)

i∈[n] contains m components of size

(1.30)
≥ εn(τ−2)/(τ−1)) = 1.

1.4. Overview of the proofs. In this section, we give an overview of the proofs
of our main results. We start by explaining the proof of Theorem 1.1, along the
way also explaining the key ideas behind Theorems 1.5 and 1.6. After this, we
shall discuss the proofs of Theorem 1.2 and 1.3.

We note that, since u �→ [1 − F ]−1(u) is nonincreasing, w is ordered in size,
that is, w1 ≥ w2 ≥ w3 ≥ · · · . We start by exploring the clusters from the largest
weight vertices onward. Here, by a cluster exploration, we mean the recursive in-
vestigation of the neighbors of the vertices already found to be in the cluster. This
cluster exploration shall be described in detail in Section 2.1. The rough idea is
as follows. We start with a vertex i, and wish to find all the vertices that are in
its cluster. For this, we sequentially take each vertex in the cluster being currently
explored and find its direct neighbors, that have not yet been found by the explo-
ration process. Call a vertex active when it is found to be in the cluster, but has
not yet been explored. A vertex is called explored when its neighbors have been
investigated and neutral when it has not yet appeared in the exploration process.
Then, in the exploration process at time t , we take a vertex, turn it from active to
explored, and explore it, that is, see which neutral neighbors it has. Turn the status
of its neutral neighbors to active. Let Zl denote the number of active neighbors
after the exploration of the lth active vertex. When Zl = 0 for the first time, then
there are no more active vertices, so all elements of the cluster have been found.
(The description in Section 2.1 is slightly different than the one described here, as
it studies potential elements of the cluster instead.)

We note that the high-weight vertices have weights of the order wj ∼
(cF n/j)1/(τ−1), so, when we start with a high-weight vertex, initially, the num-
ber of active vertices shall be of the order n1/(τ−1). When our exploration process
hits another high-weight vertex, then the number of active vertices gets a large
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push of the order n1/(τ−1) upward. It is these upward pushes that change the num-
ber of active vertices in a substantial way, and, therefore, the high-weight vertices
play a crucial role in the critical behavior of our random graph. In turn, this sug-
gests that the largest clusters contain at least one high-weight vertex, as indicated
by Theorem 1.6. Due to the critical nature of our random graph, it turns out that
the average number and weight of active vertices being added in each exploration
is close to one, so that, due to the removal of the vertex which is being explored,
the exploration process has increments that have a mean close to zero.

In Section 2, we start by identifying the scaling limit of n−(τ−2)/(τ−1)|C≤(1)| =
n−(τ−2)/(τ−1)|C(1)|. The weak limit of n−(τ−2)/(τ−1)|C(1)| is given in terms of
the hitting time of zero of an exploration process exploring the cluster of ver-
tex 1 (the vertex with the highest weight). See Theorems 2.1 and 2.4. The scaling
limit of the exploration process of a cluster exists (see Theorem 2.4), and can be
viewed as a “thinned” Lévy process. Therefore, the convergence in distribution of
n−(τ−2)/(τ−1)|C(1)| in Theorem 2.1 is equivalent to the convergence of the first
hitting time of zero of the exploration process to the one of this thinned Lévy pro-
cess. In proving this, we perform a careful analysis of hitting times of a spectrally
positive Lévy process that stochastically dominates the thinned Lévy process.

Following the proof of convergence of n−(τ−2)/(τ−1)|C(1)| in Theorem 2.1, we
shall prove the convergence in distribution of (n−(τ−2)/(τ−1)|C≤(i)|)i∈[n] in Theo-
rem 4.1. This proof makes crucial use of the estimates in the proof of Theorem 2.1,
and allows us to extend the result in Theorem 2.1 to the (joint) convergence of sev-
eral rescaled clusters by an inductive argument. The largest m clusters are given by
the largest m elements of the vector (|C≤(i)|)i∈[n], so that this completes the proof
of Theorem 1.1. The conclusion of this argument shall be carried out in Section 5.

In Section 6, we prove Theorem 1.3 by a second moment argument, using the
fact that the subcritical phase of our random graph is closely related to (and even
stochastically dominated by) a branching process. In Section 7, we use the results
proved in Section 6, jointly with the results in [3], to prove Theorem 1.2. We now
discuss in a bit more detail how one can understand the appearance of multiplica-
tive coalescents in the random graphs we study here.

We make crucial use of [3], Proposition 7, whose application we now ex-
plain. Fix a sequence λn → −∞. For each fixed t , consider the construction
of the inhomogeneous random graph as in (1.1) but with the weight sequence
w̄(t) = (w̄j (t))1≤j≤n given by

w̄j (t) = wj

(
1 + (t + λn)�nn

−2(τ−2)/(τ−1)).(1.31)

Let

X(n)(t) = (
n−(τ−2)/(τ−1)W(i)(t)

)
i≥1(1.32)

denote the ordered version of cluster weights when the vertex weights are given by
w̄(t).
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Note that the above process, when taking t = −λn + λ/E[W ], is closely re-
lated to the ordered cluster weights of our random graph with weights wj(λ) =
wj(1 + λn−(τ−3)/(τ−1)), since �n = E[W ]n(1 + o(1)). We then note that X(n) can
be constructed so that, viewed as a function in t , it is a multiplicative coalescent.

LEMMA 1.7 (Discrete multiplicative coalescent). We can construct the pro-
cess X(n) = (X(n)(t))t≥0 such that, for each fixed t , X(n)(t) has the distribution of
the ordered rescaled weighted component sizes of the random graph with weight
sequence given by (1.31) and such that, for each fixed n, the process viewed as a
process in t is a multiplicative coalescent. The initial state denoted by x(n)(0) has
the same distribution as the ordered cluster weights of a random graph with edge
probabilities as in (1.1) and weight sequence

w̄j (0) = wj

(
1 + λn�nn

−2(τ−2)/(τ−1)).(1.33)

PROOF. For each unordered pair (i, j), let ξij be an exponential random vari-
able with rate wiwj/�n, where (ξij )(i,j) are independent. For fixed t , define the
graph Ḡt

n to consist of all edges (i, j) for which

ξij ≤ 1 + (λn + t)�n

n2(τ−2)/(τ−1)
.(1.34)

Then, by construction, for all t ≥ 0, the rescaled weighted component sizes of
Ḡt

n(w) have the same distribution as X(n)(t). Further, for any time t we note that
two distinct clusters C1 and C2 having weights W(i)(t) and W(j)(t), respectively,
coalesce at rate

�nn
−2(τ−2)/(τ−1)

∑
s1∈C1,s2∈C2

ws1ws2

�n

(1.35)
= (

n−(τ−2)/(τ−1)W(i)(t)
)(

n−(τ−2)/(τ−1)W(j)(t)
)

as required. �

In effect, Theorems 1.1 and 1.2 give us two distinct proofs of the state-
ment that the ordered cluster weights converge, and we now discuss the advan-
tages of these two different proofs. Theorem 1.1 proves that for any fixed λ,
(n−(τ−2)/(τ−1)W(i))i≥1 converges in distribution. Further, by the fact that this vec-
tor is obtained by sequentially investigating the clusters of the high-weight ver-
tices, it allows us to prove properties about the high-weight vertices that are part
of the largest clusters, as in Theorems 1.5 and 1.6. Finally, it allows us to show
that the ordered cluster sizes have the same scaling limit as the ordered cluster
weights (see Theorem 1.4), a feature that is also crucial in the proofs of Theorems
1.2 and 1.3.

Theorem 1.2, instead, shows that the process of the ordered cluster sizes or
weights converges in distribution. This means that there exists a stochastic process
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that describes the joint convergence of the ordered cluster sizes or weights for dif-
ferent values of λ simultaneously. Due to the fact that the proof of Theorem 1.2
relies on [3], Proposition 7, however, we obtain less information about the vertices
that are part of the large critical clusters. The combination of the two proofs pro-
vides us with a detailed and full understanding of the scaling limit of the ordered
cluster sizes or weights.

1.5. Discussion.

Comparison to the case of weights with finite third moments. In [2, 8, 33],
the scaling limit was considered when E[W 3] < ∞. In this case, the scaling limit
turns out to be (a trivial rescaling of) the scaling limit for the Erdős–Rényi random
graph as found by Aldous in [2]. Thus, the setting for τ ∈ (3,4) is fundamentally
different. When E[W 3] < ∞, the probability that 1 ∈ Cmax is negligible, while in
our setting this is not true, as shown in Theorem 1.5.

Other weights. Our proof reveals that the precise limits of win
−1/(τ−1), for

fixed i ≥ 1, arise in the scaling limit. We make crucial use of the fact that, by (1.10)
ci = limn→∞ win

−1/(τ−1) = (cF /i)1/(τ−1). However, we believe that our results
can be appropriately adapted to the situation that limn→∞ win

−1/(τ−1) exists for
every i ≥ 1 and is asymptotically equal to ai−1/(τ−1) for some a > 0. This suggests
that, by varying the precise values of high weights, there are many possible scaling
limits. It would be of interest to investigate this further.

Also, we restrict to tail distributions 1 − F(x) that are, for large x ≥ 0, asymp-
totic to an inverse power of x; see (1.6). It would be of interest to investigate
the scaling behavior when (1.6) is replaced with the assumption that 1 − F(x)

is regularly varying with exponent 1 − τ , that is, [1 − F ](x) = x−(τ−1)�(x) for
some x �→ �(x) which is slowly varying at ∞. In this case, we believe that the
asymptotic sizes of the largest critical clusters are given by �∗(n)n(τ−2)/(τ−1) for
some suitable slowly varying function n �→ �∗(n) that can be described in terms
of x �→ �(x). For more details, see [34], Section 1.3, where also the critical cases
τ = 3 and τ = 4 are discussed.

I.i.d. weights. In our analysis, we make crucial use of the choice for wi in (1.5).
In the literature, also the setting where (Wi)i∈[n] are independent and identically
distributed (i.i.d.) random variables with distribution function F has been consid-
ered. We expect the behavior in this model to be different. Indeed, let wi = W(i),
where W(i) are the order statistics of the i.i.d. sequence (Wi)i∈[n]. It is well known
that

n−1/(τ−1)W(i)
d−→ ξi ≡ (E′

1 + · · · + E′
i )

−1/(τ−1),(1.36)

where (E′
i )

∞
i=1 are i.i.d. exponential random variables with mean 1. In particular,

when τ ∈ (3,4), E[ξa
1 ] < ∞ whenever a < τ − 1. The extra randomness of the
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order statistics has an effect on the scaling limit, which is thus different. In most
cases, the two settings have the same behavior (see, e.g., [8], where this is shown
to hold for weights for which E[W 3] < ∞, where W has distribution function F ).
See [27] for the identification of the scaling limit of the largest cluster sizes in
the critical configuration model with i.i.d. degrees, which is markedly different
from ours. We believe that the same applies to the Norros–Reittu model with i.i.d.
weights.

High-weight vertices. The fact that the vertex i is in the largest connected
component with nonvanishing probability as n → ∞ (see Theorem 1.5) is remark-
able. In our setting, a uniformly chosen vertex in [n] is an element of Cmax with
negligible probability. The point is that vertex i has weight wi , which, for i fixed,
is close to (cF /i)1/(τ−1)n1/(τ−1), while a uniformly chosen vertex has a bounded
weight. Thus, Theorem 1.5 can be interpreted as saying that the highest-weight
vertices characterize the largest components. In the subcritical case (see, e.g., the
results by Janson in [24] or Theorem 1.3), the largest connected component is the
one of the vertex with the highest weight, and the critical situation arises when the
highest-weight vertices start connecting to each other.

Connection to the multiplicative coalescent. The mental picture associated
with the entrance boundary of the coalescent here seems to be different from [3],
where in spirit many of the component sizes are of order n2/3. Here the entrance
boundary describes the sizes of the maximal components rescaled by n−(τ−2)/(τ−1)

in the λ → −∞ regime, whilst in [3] they arise as limits of random graphs sim-
ilar to critical Erdős–Rényi random graphs, where, in addition to the random
edges, there are initially a number of large “planted” components of sizes �cin

1/3�;
see [3], Section 1.3. However, the results of [3] are crucial in identifying the dis-
tribution of the limiting component sizes for fixed λ. It would be interesting to
see if the stochastic calculus techniques developed in [3] can be further modified
to give useful information about the surplus of edges in the maximal components
[the surplus of a component C with E(C) edges and V (C) vertices is equal to
E(C) − (V (C) − 1) and denotes the minimal number of edges that must be re-
moved from the component to make it a tree].

2. The scaling limit of the cluster of vertex 1. In this section, we identify the
scaling limit of |C(1)|. We note from (1.5) that the weight of vertex 1 is maximal,
that is, w1 ≥ w2 ≥ · · · ≥ wn. When τ > 4, the probability that vertex 1 belongs to
Cmax is negligible. When τ ∈ (3,4), instead, we shall see that vertex 1 is in Cmax
with positive probability, so that it is quite reasonable to start exploring the cluster
of vertex 1 first, since |C(1)| stochastically dominates |C(j)| for all j ∈ [n]. Theo-
rem 2.1 below states that |C(1)| is of order n(τ−2)/(τ−1). By [34], Theorem 1.2, the
same is valid for |Cmax|, which confirms the above heuristic.
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THEOREM 2.1 [Weak convergence of the cluster of vertex 1 for τ ∈ (3,4)].
Fix the Norros–Reittu random graph with weights w(λ) defined in (1.15). Assume
that ν = 1 and that (1.6) holds. Then, for all λ ∈ R,

n−(τ−2)/(τ−1)|C(1)| d−→ H1(0)(2.1)

for some nondegenerate limit H1(0).

Theorem 2.1 is proved in Section 3.2. We now start by discussing cluster explo-
rations and their relation to branching processes, which play an essential role in
our proofs.

2.1. Cluster explorations and their relation to branching processes. We fix
the weight sequence to be w(λ) defined in (1.15), and we shall denote the weight
of vertex i [or the ith coordinate of w(λ)] by wi(λ).

In order to prove Theorem 2.1, we make heavy use of the cluster exploration,
which is described in detail in [31] and [34]. The model in [31] is a random multi-
graph, that is, a random graph potentially having self-loops and multiple edges.
Indeed, for each i, j ∈ [n], we let the number of edges between vertex i and j be
Poi(wi(λ)wj (λ)/�n(λ)), where, for μ ≥ 0, we let Poi(μ) denote a Poisson random
variable with mean μ, and we define

�n(λ) = ∑
i∈[n]

wi(λ) = �n

(
1 + λn−(τ−3)/(τ−1)).(2.2)

The number of edges between different pairs of vertices are independent. To re-
trieve our random graph model, we merge multiple edges and erase self-loops.
Then, the probability that an edge exists between two vertices i, j ∈ [n] is equal to

pij = P
(
Poi

(
wi(λ)wj (λ)/�n(λ)

) ≥ 1
) = 1 − e−wi(λ)wj (λ)/�n(λ)(2.3)

as required. Further, the number of potential edges from a vertex i has a Poisson
distribution with mean wi(λ). We shall work with the above Poisson random graph
instead, and we shall refer to the Poisson random variable Poi(wi(λ)) as the num-
ber of potential neighbors of vertex i. When we find what the vertices are that
correspond to these Poi(wi(λ)) potential neighbors, that is, when we determine
their marks, then we can see how many real neighbors there are. Here by a “mark”
we mean a random variable M with distribution

P(M = m) = wm(λ)/�n(λ) = wm/�n, 1 ≤ m ≤ n.(2.4)

The variable M corresponds to the actual vertex label associated to the potential
vertex. A potential vertex arising in our exploration process is an actual vertex
when its mark has not arisen in the exploration up to that point. We now describe
this cluster exploration in detail.

We denote by (Zl)l≥0 the exploration process in the breadth-first search, where
Z0 = 1 and where Z1 denotes the number of potential neighbors of the initial
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vertex (which is in the case of Theorem 2.1 equal to vertex 1, and which we shall
often take to be vertex i). The variable Zl has the interpretation of the number of
potential neighbors of the first l explored potential vertices in the cluster whose
neighbors have not yet been explored. As a result, we explore by taking one vertex
of the “stack” of size Zl , drawing its mark and checking whether it is a real vertex,
followed by drawing its number of potential neighbors. Thus, we set Z0 = 1,Z1 =
Poi(wi(λ)), and note that, for l ≥ 2, Zl satisfies the recursion relation

Zl = Zl−1 + Xl − 1,(2.5)

where Xl denotes the number of potential neighbors of the lth potential vertex
that is explored. More precisely, when we explore a potential vertex, we start by
drawing its mark in an i.i.d. way with distribution (2.4). When we have already
explored a vertex with the same mark as the one drawn, we turn the status of the
vertex to be explored to inactive, the potential vertex does not become a real vertex,
and proceed with the next potential vertex. When, instead, it receives a mark which
we have not yet seen, then the potential vertex becomes a real vertex, its mark
Ml ∈ [n] indicating which vertex in [n] the lth explored vertex corresponds to,
so that Ml ∈ C(i). We then draw Xl = Poi(wMl

), and Xl denotes the number of
potential vertices incident to the real vertex Ml . Again, upon exploration, these
potential vertices might become real vertices, and this occurs precisely when their
mark corresponds to a vertex in [n] that has not appeared in the cluster exploration
so far. We call the above procedure of drawing a mark for a potential vertex to
investigate whether it corresponds to a real vertex a vertex check.

In [31], Proposition 3.1 (see also [34], Section 3.2, in particular, Proposi-
tion 3.4), the cluster exploration was described in terms of a thinned marked mixed
Poisson branching process. This description implies that the distribution of Xl (for
2 ≤ l ≤ n) is equal to Poi(wMl

(λ))Jl , where (a) the marks (Ml)
∞
l=2 are i.i.d. random

variables with distribution (2.4); and (b) Jl = 1{Ml /∈{i}∪{M2,...,Ml−1}} is the indicator
that the mark Ml has not been found before and is not 1. Here, the mark Ml is
the label of the potential element of the cluster that we are exploring, and, clearly,
if a vertex has already been observed to be part of C(i), and its neighbors have

been explored, then we should not do so again. We sometimes write J
(i)
j , X

(i)
l and

Z
(i)
l to explicitly indicate the vertex whose cluster we are exploring, and omit the

superscript when no confusion can arise.
We conclude that we arrive at, for l ≥ 2,

Zl = Zl−1 + Xl − 1
(2.6)

where Xl = Poi(wMl
(λ))Jl and Jl = 1{Ml /∈{i}∪{M2,...,Ml−1}}.

Then, the number of vertex checks that have been performed when exploring the
cluster of vertex i equals V (i), which is given by

V (i) = inf{l :Zl = 0}(2.7)
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since the first time at which there are no more potential vertices to be checked, all
vertices in the cluster have been checked.

Further, the number of real vertices found to be part of C(i) after l vertex checks
equals

|C(i; l)| = 1 +
l∑

j=2

Jj ,(2.8)

that is, all the potential vertices, except for those that have a mark that has appeared
previously. Therefore, we conclude that

|C(i)| = 1 +
V (i)∑
j=2

Jj = V (i) −
V (i)∑
j=2

(1 − Jj ).(2.9)

It turns out that the second contribution is an error term (see Lemma 3.6 below),
so that the cluster size of 1 asymptotically corresponds to the first hitting time of 0
of l �→ Zl . We prove Theorem 2.1 by applying the above to i = 1.

Throughout the paper, we abbreviate

α = 1/(τ − 1), ρ = (τ − 2)/(τ − 1), η = (τ − 3)/(τ − 1).(2.10)

2.2. Branching process computations. In this section, we discuss some useful
facts about branching processes. Note that if, in the recursion arising in the explo-
ration of the cluster in (2.6), we ignore the Jl’s (i.e., we ignore the effect of marks
that have already been used), then we arrive at the recursion

Z
(BP)
l = Z

(BP)
l−1 + X

(BP)
l − 1,(2.11)

where now

X
(BP)
l = Poi(wMl

(λ)),(2.12)

and where (Poi(wMl
(λ)))l≥2 are i.i.d. random variables, while M1 = i. This re-

cursion is the random walk description in the exploration of the total progeny of a
branching process. Indeed, let

T (i) = inf
{
l :Z(BP)

l = 0
}

(2.13)

be the first hitting time of 0 of the process (Z
(BP)
l )l≥0. Then, by the random walk

description of a branching process (see, e.g., [35], Section 3.3), T (i) has the same
distribution as the total progeny of a branching process in which the root has off-
spring distribution Poi(wi(λ)), while the offspring of all other individuals is i.i.d.
with mixed Poisson offspring distribution Poi(wM(λ)), where M is the mark dis-
tribution in (2.4). In the setting in Section 2.1, we have i = M1 = 1, so that we
start from the root having mark 1, but in this section, we shall generalize as well
to M1 = i, where i ∈ [n]. Further, we shall also denote the total progeny of the
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branching process with offspring distribution Poi(wM(λ)) by T . In this section,
we investigate properties of such branching processes.

The connection to branching processes [in particular, the stochastic domination
of the cluster sizes by branching processes due to (2.6)] plays a crucial role in [34],
where this comparison was used in order to prove that n−ρ |Cmax| and nρ/|Cmax| are
tight sequences of random variables. There, only bounds on the maximal cluster
size were shown, while, in this paper, we identify the scaling limit of all large
clusters.

The difference between the branching process recursion relation in (2.11) and
(2.12), and the corresponding one for the cluster exploration in (2.6) resides in
the random variables (Jl)l≥1. Indeed, when Jl = 0, then Xl = Poi(wMl

(λ))Jl = 0,
while X

(BP)
l = Poi(wMl

(λ)) is unaffected. Therefore, we can think of this proce-
dure as a thinning of our branching process. Indeed, when the mark of the lth
potential vertex has been seen before, then, in the cluster exploration, we remove
this vertex and all of its offspring. Thus, the recursions in (2.11), (2.12) and (2.6)
give us a simultaneous coupling of the cluster exploration process and the branch-
ing process such that any deviation between the two arises from the thinning of the
potential vertices and the subsequent removal of the branching process tree that is
attached to the thinned potential vertices. This description shall prove to be crucial
in the comparison of cluster sizes and branching process total progenies used in
the proofs of Theorems 1.2 and 1.3.

We continue to investigate the critical behavior of the branching processes at
hand. We denote

νn(λ) = 1

�n

∑
j∈[n]

wjwj (λ),(2.14)

and we write νn = νn(0). Then, we note that

νn(λ) = E[Poi(wM(λ))],(2.15)

so that νn(λ) is the mean offspring of the branching process, and νn(λ) → 1 corre-
sponds to our branching process being critical. Further,

E
[
Poi(wM(λ))

(
Poi(wM(λ)) − 1

)]
(2.16)

= E[w2
M(λ)] = 1

�n

∑
j∈[n]

wjwj (λ)2 → ∞,

so that our branching process has asymptotically infinite variance in the setting
in (1.6). We now give detailed asymptotics for the mean νn = νn(0) of the above
branching process. From this asymptotics, we can easily deduce the asymptotics
of νn(λ) = νn(1 + λn−η) [recall (2.10), (2.14) and (1.15)].
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LEMMA 2.2 (Sharp asymptotics of νn). Let the distribution function F sat-
isfy (1.6), and let νn = νn(0) be given by (2.14) and ν by (1.11). Then, with η given
in (2.10),

νn = ν + ζn−η + o(n−η),(2.17)

where

ζ = −c
2/(τ−1)
F

E[W ]
∞∑
i=1

[∫ i

i−1
u−2α du − i−2α

]
∈ (−∞,0).(2.18)

PROOF. By [34], Corollary 3.2, �n = ∑
i∈[n] wi = nE[W ] + O(nα), where it

is also proved that νn − ν = O(n−η). The sharper asymptotics for νn in (2.17) is
obtained by a more careful analysis of the arising sum. We note that, by the remark
below (1.7),

ν =
∫ 1

0 [1 − F ]−1(u)2 du∫ 1
0 [1 − F ]−1(u) du

.(2.19)

By the asymptotics of �n above, we have that

νn =
∑

i∈[n] w2
i

nE[W ] + o(n−η).(2.20)

We shall make use of the fact that, when f is nonincreasing,

f (i) ≤
∫ i

i−1
f (u)du ≤ f (i − 1).(2.21)

Applying this to f (u) = [1 − F ]−1(u)2, which is nonincreasing, we obtain in par-
ticular that, for any K ≥ 1,∫ 1

K/n
[1 − F ]−1(u)2 du − 1

n
w2

K/n

(2.22)

≤ 1

n

n∑
i=K+1

w2
i ≤

∫ 1

K/n
[1 − F ]−1(u)2 du.

Now,

1

n
w2

K/n = cF

n
(n/K)2α(

1 + o(1)
) = �(K−2αn−η).(2.23)

Thus we conclude that

ν − νn = 1

E[W ]n
K∑

i=1

∫ i/n

(i−1)/n
[1 − F ]−1(u)2 du − 1

E[W ]n
K∑

i=1

w2
i

(2.24)
+ �(K−2αn−η) + o(n−η).
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Next, by (1.6), for every K ≥ 1 fixed,

1

n

K∑
i=1

w2
i = n−η

K∑
i=1

(cF /i)2α + o(n−η)(2.25)

and

1

n

K∑
i=1

∫ i/n

(i−1)/n
[1 − F ]−1(u)2 du = n−η

K∑
i=1

∫ i

i−1
(cF /u)2α du + o(n−η).(2.26)

Combining these two estimates yields

nη[ν − νn] = c2α
F

E[W ]
K∑

i=1

[∫ i

i−1
u−2α du − i−2α

]
+ �(K−2α) + o(1).(2.27)

Letting first n → ∞ followed by K → ∞, we conclude that

lim
n→∞nη[νn − ν] = ζ(2.28)

as required. The fact that ζ > −∞ follows from the fact that, for i ≥ 2,

0 ≤
∫ i

i−1
u−2α du − i−2α ≤ (i − 1)−2α − i−2α,(2.29)

which is a summable sequence. �

We conclude that, in the critical regime where ν = 1, we have

νn(λ) = 1 + θn−η + o(n−η),(2.30)

where θ = λ+ζ . The parameter θ ∈ R indicates the location inside the critical win-
dow formed by the weights w(λ). Indeed, in the asymptotics for νn(λ) in (2.30),
the fact that θ = ζ + λ arises from νn(λ) = (1 + λn−η)νn, together with the sharp
asymptotics of νn in (2.17). The value of ζ is constant and does not depend on λ,
while the value of λ indicates the location inside the scaling window, so we can,
alternatively, measure the location inside the scaling window by θ ∈ R.

We continue by computing first and second moments of total progenies and their
weights, where, for our marked mixed Poisson branching processes, we define the
weight of the branching process total progeny to be

wT =
T∑

l=1

wMl
(2.31)

and similar for wT (i). Then we can compute the following moments, the proof of
which is standard and shall be omitted:
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LEMMA 2.3 (Branching process characteristics).

(a)

E[T ] = 1

1 − νn

, E[T 2] = 1 + νn

(1 − νn)2 + 1

(1 − νn)3

∑
j∈[n]

w3
j

ln
.(2.32)

(b)

E[wT ] = νn

1 − νn

, E[w2
T ] = 1

(1 − νn)3

∑
j∈[n]

w3
j

ln
.(2.33)

(c)

E[T (i)] = 1 + wi

1 − νn

,

(2.34)

E[T (i)2] =
(

1 + wi

1 − νn

)2
+ wi(1 + νn)

(1 − νn)2 + wi

(1 − νn)3

∑
j∈[n]

w3
j

ln
.

(d)

E
[
wT (i)

] = wi

1 − νn

, E
[
w2

T (i)

] =
(

wi

1 − νn

)2

+ wi

(1 − νn)3

∑
j∈[n]

w3
j

ln
.(2.35)

2.3. Scaling limit of the cluster exploration process. Theorem 2.1 will follow
from the fact that we can identify the scaling limit of the process (Zl)l≥0. To do
so, we let

Z (n)
t = n−1/(τ−1)Ztn(τ−2)/(τ−1) = n−αZtnρ ,(2.36)

where we recall the abbreviations in (2.10). By convention, for t ≥ 0 and for a
discrete-time process (Sl)l≥0, we let St = S�t�.

The intuition behind (2.36) is as follows. First, since the largest connected com-
ponents are of order nρ as proved in [34], Theorem 1.2, and the successive elapsed
times between hits of zero of the process (Zl)l≥0 correspond to the cluster sizes,
the relevant time scale is tnρ . Further, by Theorem 1.6, we see that the large clus-
ters correspond to the clusters of the high-weight vertices. The maximal weight is
of the order nα , so that this needs to be the relevant scale on which the process Zl

runs. The proof below makes this intuition precise.
In order to define the scaling limit, we introduce a nonnegative continuous-time

process (St )t≥0. For some a > 0, we let (Ii (t))
∞
i=1 denote independent increasing

indicator processes defined by

Ii (s) = 1{Exp(ai−α)∈[0,s]}, s ≥ 0,(2.37)
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so that

P
(

Ii (s) = 0 ∀s ∈ [0, t]) = e−ati−α

.(2.38)

We further let, for some b > 0 and c ∈ R, and a as in (2.37),

St = b − abt + ct +
∞∑
i=2

bi−α[Ii (t) − ati−α](2.39)

for all t ≥ 0. We call (St )t≥0 a thinned Lévy process, a name we shall explain in
more detail after the theorem. To make the dependence on (a, b, c) explicit, we
now denote St = St (a, b, c). Then, we have the obvious scaling relation

St (a, b, c) = bSat

(
1,1, c/(ab)

)
,(2.40)

where

St (1,1, β) = 1 + (β − 1)t +
∞∑
i=2

i−α[Ii (t) − t i−α],
(2.41)

Ii (t) = 1{Exp(i−α)∈[0,t]}.

The main result concerning the scaling limit of the exploration process is the
following theorem:

THEOREM 2.4 (The scaling limit of Zl). As n → ∞, under the conditions of
Theorem 1.1,

(
Z (n)

t

)
t≥0

d−→ (St )t≥0,(2.42)

where a = cα
F /E[W ], b = cα

F , c = θ − ab, in the sense of convergence in the J1-
Skorokhod topology on the space of càdlàg functions on R

+.

It is worthwhile to note that while the convergence in Theorem 2.4 only has
implications for our random graph for t ≤ H1(0), which is the hitting time of zero
of the process (St )t≥0, the processes (Z (n)

t )t≥0 and (St )t≥0 are well defined also
for larger t , and convergence holds for all t . This is, in fact, useful in the proof.

The proof of Theorem 2.4 shall be given in Section 3 below. We now first discuss
the limiting process (St )t≥0 and its connection to Lévy processes. To do this, we
denote by (Rt )t≥0 the process given by

Rt = b − abt + ct +
∞∑
i=2

bi−α[Ni(t) − ati−α],(2.43)

where (Ni)t≥0 are independent Poisson processes with rates ai−α . Clearly, the pro-
cess (Rt )t≥0 is a spectrally positive Lévy process, that is, (Rt )t≥0 has no negative
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jumps (see, e.g., [6, 29] for more information on Lévy processes), with exponent
ψ(ϑ) [for which E(e−ϑ(Rt−R0)) = e−tψ(ϑ)] given by

ψ(ϑ) = (c − ab)ϑ +
∞∑
i=2

ai−α[1 − e−ϑbi−α − bϑi−α].(2.44)

Alternatively, the exponent ψ(ϑ) can be expressed as

ψ(ϑ) = (c − ab)ϑ − ϑ

∫ ∞
1

x�(dx)

(2.45)
+

∫ ∞
0

(
1 − e−ϑx − ϑx1{x<1}

)
�(dx),

where the Lévy measure � is defined by

�(dx) =
∞∑
i=2

ai−αδx,bi−α .(2.46)

Since �(b,∞) = 0, the jumps of (Rt )t≥0 are bounded by b. Further,

∫ ∞
0

(1 ∧ x2)�(dx) ≤
∫ ∞

0
x2�(dx) = a

∞∑
i=2

(
b

iα

)3

= ab3
∞∑
i=2

i−3α < ∞,(2.47)

since τ ∈ (3,4) so that 3α = 3/(τ − 1) > 1. Therefore, the process (Rt )t≥0 is a
well-defined Lévy process.

We may reformulate (2.39) as

St = b − abt + ct +
∞∑
i=2

bi−α[
1{Ni(t)≥1} − ati−α]

,(2.48)

so that the process (St )t≥0 does not include multiple counts of the independent
processes (Ni(t))t≥0. This is the reason that we call the process (St )t≥0 a thinned
Lévy process. In [3], this process is called a Lévy process without repetitions.
Naturally, we have that the descriptions in (2.43) and (2.48) satisfy that, a.s., for
all t ≥ 0,

St ≤ Rt ,(2.49)

which allows us to make use of Lévy process methodology in our proofs. We do
note that Rt is a rather poor approximation for St , particularly on large time scales,
because the thinning becomes more important as time progresses.

3. Proofs of Theorems 2.1 and 2.4. In this section, we prove Theorems 2.1
and 2.4. We start by proving Theorem 2.4 in Section 3.1, and make use of Theo-
rem 2.4 to prove Theorem 2.1 in Section 3.2.
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3.1. Proof of Theorem 2.4. Instead of (Zl)l≥0, it is convenient to work with
a related process (Sl)l≥0, which is defined as S0 = 1, S1 = w1(λ) and satisfies the
recursion relation, for l ≥ 2,

Sl = Sl−1 + wMl
(λ)Jl − 1,(3.1)

that is, the Poisson random variables Poi(wMl
(λ)) appearing in the recursion for

Zl in (2.6) are replaced with their (random) weights wMl
(λ). We shall first show

that Sl and Zl are quite close:

LEMMA 3.1. Uniformly in m ≥ 0,

sup
l≤m

|Zl − Sl| = OP(m1/2).(3.2)

PROOF. We have that (Zl − Sl)l≥0 is a martingale w.r.t. the filtration
Fl = σ((Mi)

l
i=1). Therefore, by the Doob–Kolmogorov inequality ([21], Theo-

rem (7.8.2), page 338) for any M > 0,

P

(
sup
l≤m

|Zl − Sl| > M
√

m
)

≤ 1

mM2 E[|Zm − Sm|2].(3.3)

Now,

E[|Zm − Sm|2] = E
[
E[|Zm − Sm|2 | (Mi)

m
i=1]

] = E

[
m∑

l=1

wMl
(λ)Jl

]

(3.4)

≤ E

[
m∑

l=1

wMl
(λ)

]
= mνn(λ) = m

(
1 + o(1)

)

by (2.30). This proves the claim. �

We proceed by investigating the scaling limit of (Sl)l≥1. For this, we define

S (n)
t = n−αStnρ ,(3.5)

where we recall the rounding convention right below (2.36).
We shall prove that, in the sense of convergence in the J1-Skorokhod topology

on the space of càdlàg functions on R
+,

(
S (n)

t

)
t≥0

d−→ (St )t≥0,(3.6)

which shall be enough to prove Theorem 2.4. Indeed, to see that (3.6) implies
Theorem 2.4, we note that by Lemma 3.1, for every t = o(n(4−τ)/(τ−1)),

sup
s≤t

∣∣Z (n)
s − S (n)

s

∣∣ = OP

(√
tn(τ−4)/(2(τ−1))) = oP(1).(3.7)
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We continue with the proof of (3.6). We shall prove that, due to (2.9) and Lem-
ma 3.1, the first hitting time of S (n)

s of 0 is close to n−ρ |C≤(1)|. We note that,
by (3.1),

Sl = w1(λ) + ∑
i∈V (n)

l

wi(λ) − (l − 1)

(3.8)

= w1(λ) +
n∑

i=2

wi(λ)I (n)
i (l) − (l − 1),

where

I (n)
i (l) = 1{i∈V (n)

l } with V (n)
l =

l⋃
j=2

{Mj }.(3.9)

Using that

νn(λ) = ∑
i∈[n]

wi(λ)wi

�n

,(3.10)

we can rewrite Sl as

Sl = w1(λ) − (l − 1)w1(λ)w1

�n

+
n∑

i=2

wi(λ)

[
I (n)

i (l) − (l − 1)wi

�n

]
(3.11)

+ (
νn(λ) − 1

)
(l − 1).

Now we take l = tnρ , use that νn(λ) − 1 = θn−ηνn + o(n−η) [recall (2.30) and
(2.10)], and we recall from (1.5) and (1.6) that, for i such that n/i → ∞,

wi = [1 − F ]−1(i/n) = b(n/i)α
(
1 + o(1)

)
,(3.12)

where b = cα
F and cF is defined in (1.6). As a result, by (3.11),

S (n)
t = n−αStnρ

= b − b2

E[W ] t +
n∑

i=2

n−αwi(λ)

[
I (n)

i (tnρ) − n−α wit

μn

]
(3.13)

+ θt + o(1),

where we write μn = �n/n = E[W ] + o(1).
We proceed by showing that the sum in (3.13) is predominantly carried by the

first few terms. Define

M
(n,K)
l =

n∑
i=K

n−αwi(λ)

[
I (n)

i (l) − (l − 1)wi

�n

]
.(3.14)
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We compute the mean and variance of M
(n,K)
l for K large. For the mean, we

compute

E
[
M

(n,K)
l

] =
n∑

i=K

n−αwi(λ)

[
P

(
I (n)

i (l) = 1
) − (l − 1)wi

�n

]
(3.15)

=
n∑

i=K

n−αwi(λ)

[(
1 − wi

�n

)l−1

− 1 + (l − 1)wi

�n

]
.

Thus, since 0 ≤ 1 − (1 − x)l − lx ≤ (lx)2/2, we have that E[M(n,K)
l ] ≤ 0 and

∣∣E[
M

(n,K)
l

]∣∣ =
n∑

i=K

n−αwi(λ)

[
1 −

(
1 − wi

�n

)l−1

− (l − 1)wi

�n

]

≤
n∑

i=K

n−αwi(λ)

(
lwi

�n

)2

≤ C
l2n2α

�2
n

n∑
i=K

i−3α(3.16)

≤ C
l2n2α

�2
n

K1−3α,

where, here and in the sequel, C > 0 denotes a constant that can change from line
to line. By (2.10) and the fact that �n = �(n), we have that lnα/�n = �(lnα−1) =
�(ln−ρ), so that, uniformly in l ≤ tnρ ,∣∣E[

M
(n,K)
l

]∣∣ ≤ Ct2K1−3α.(3.17)

To compute the variance of M
(n,K)
l , we start by noting that I (n)

i (l) is the indi-

cator that i ∈ V (n)
l , and V (n)

l contains the first l marks drawn, where M1 = 1 and

the marks (Mi)
l
i=2 are i.i.d. with distribution given by (2.4). Therefore, I (n)

i (l) and

I (n)
j (l) are, for different i, j , negatively correlated, so that

Var
(
M

(n,K)
l

) ≤
n∑

i=K

(n−αwi(λ))2 Var
(

I (n)
i (l)

)
.(3.18)

Since I (n)
i (l) is an indicator,

Var
(

I (n)
i (l)

) ≤ E
[

I (n)
i (l)

] ≤ lwi/�n.(3.19)

Therefore, when l = tnρ , and using that ρ + α = 1 [recall (2.10)]

Var
(
M

(n,K)
l

) ≤
n∑

i=K

(n−αwi(λ))2 witn
ρ

�n

≤ Ct

n∑
i=K

i−3α

(3.20)
≤ CtK1−3α = o(1),

when K → ∞, since τ ∈ (3,4), so that α = 1/(τ − 1) > 1/3.
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We next observe that (M
(n,K)
l )l≥1 is a supermartingale, since

E
[
M

(n,K)
l+1 − M

(n,K)
l | (

I (n)
i (l)

)
i∈[n]

]

= E

[
n∑

i=K

n−αwi(λ)

[
I (n)

i (l + 1) − I (n)
i (l) − wi

�n

] ∣∣∣ (
I (n)

i (l)
)
i∈[n]

]

(3.21)

≤
n∑

i=K

n−αwi(λ)
(
1 − I (n)

i (l)
)(

E
[

I (n)
i (l + 1) | (

I (n)
i (l)

)
i∈[n]

] − wi

�n

)

= 0.

Therefore, by the maximal inequality ([21], Theorem 12.6.1, page 496),

P

(
max
l≤m

∣∣M(n,K)
l

∣∣ ≥ ε
)

≤ −E[M(n,K)
0 ] + E[|M(n,K)

m |]
ε

.(3.22)

We further bound, using Cauchy–Schwarz,

E
[∣∣M(n,K)

m

∣∣] ≤ ∣∣E[
M(n,K)

m

]∣∣ + √
Var

(
M

(n,K)
l

)
.(3.23)

Thus by (3.17) and (3.20), and uniformly in m ≤ tnρ ,

P

(
max
l≤m

∣∣M(n,K)
l

∣∣ ≥ ε
)

≤ Ct2ε−1K1−3α + ε−1
√

CtK1−3α.(3.24)

Since τ < 4, we obtain that, uniformly in n, we can take K = K(ε) so large that
P(maxl≤m |M(n,K)

l | ≥ ε) ≤ ε.
We denote, with μn = �n/n,

S (n,K)
t = b − b2

E[W ] t +
K∑

i=2

n−αwi(λ)

[
I (n)

i (tnρ) − n−α wit

μn

]
+ θt.(3.25)

Then we obtain the following corollary:

COROLLARY 3.2 (Finite sum approximation of Z (n)). For every ε, δ, T > 0,
there exists K > 0 and N ≥ 1 such that for all n ≥ N ,

P

(
sup
t≤T

∣∣Z (n)
t − S (n,K)

t

∣∣ ≥ δ
)

≤ ε.(3.26)

The above suggests that it suffices to investigate (I (n)
i (tnρ))i∈[K].

LEMMA 3.3 (Convergence of indicators). As n → ∞, for all K ≥ 1,

(
I (n)

i (tnρ)
)
i∈[K],t≥0

d−→ (Ii (t))i∈[K],t≥0.(3.27)
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As a consequence, for all K ≥ 1,

(
S (n,K)

t

)
t≥0

d−→ (
S (∞,K)

t

)
t≥0,(3.28)

where the limiting process (S (∞,K)
t )t≥0 is defined as

S (∞,K)
t = b − b2

E[W ] t +
K∑

i=2

bi−α[Ii (t) − ai−αt] + θt.(3.29)

In both statements,
d−→ refers to convergence in the J1-Skorokhod topology on the

space of càdlàg functions on R
+.

PROOF. Convergence of the process for t ≥ 0 follows when the process con-
verges for t ∈ [0, T ] for all T > 0 (see [9], Lemma 3, page 173).

Since (I (n)
i (tnρ))t≥0 are all indicator processes of the form

I (n)
i (tnρ) = 1{Ti≤tnρ},(3.30)

where Ti is the first time that mark i is chosen, it suffices to prove that

(n−ρTi)i∈[K]
d−→ (Ei)i∈[K],(3.31)

where Ei are independent exponentials with rate ai−α . For this, in turn, it suffices
to prove that, for every sequence t1, . . . , tK ,

P(n−ρTi > ti ∀i ∈ [K]) → exp

(
−a

K∑
i=1

i−αti

)
.(3.32)

The latter is equivalent to

P
(

I (n)
i (tin

ρ) = 0 ∀i ∈ [K]) → P
(

Ii (ti) = 0 ∀i ∈ [K])
(3.33)

= exp

(
−a

K∑
i=1

i−αti

)
.

Now, since the marks are i.i.d., we obtain that

P
(

I (n)
i (mi) = 0 ∀i ∈ [K]) =

∞∏
l=1

P(Ml /∈ {i ∈ [K] : l ≤ mi})
(3.34)

=
∞∏
l=1

(
1 − ∑

i : l≤mi

wi

�n

)
.
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A Taylor expansion gives that

P
(

I (n)
i (mi) = 0 ∀i ∈ [K]) = exp

(
−

n∑
l=1

∑
i : mi≥l

wi

�n

+ o(1)

)

(3.35)

= exp
(
− ∑

i∈[K]

wimi

�n

+ o(1)

)
.

Applying this to mi = tin
ρ , for which

miwi

�n

= bi−αti

E[W ]
(
1 + o(1)

)
,(3.36)

we arrive at the claim in (3.27) with a = b/E[W ]. The claim in (3.28) follows from
the fact that, by (3.25), S (n,K)

t is a weighted sum of the (I (n)
i (tnρ))i∈[K], and the

(deterministic) weights converge. Thus, the continuous mapping theorem gives the
claim. �

PROOF OF THEOREM 2.4. Again we use that convergence of the process for
t ≥ 0 follows when the process converges for t ∈ [0, T ] for all T > 0 (see [9],
Lemma 3, page 173). By (3.26), with probability 1 − o(1) when first n → ∞ and
then K → ∞, the process (Z (n)

t )t∈[0,T ] is uniformly close to (S (n,K)
t )t∈[0,T ]. By

Lemma 3.3, the process (S (n,K)
t )t≥0 converges to (S (∞,K)

t )t≥0. Now,

St − S (∞,K)
t = ∑

i≥K+1

bi−α[Ii (t) − ai−α],(3.37)

and similar techniques as used to prove (3.24) can be used to prove that

P

(
max
t≤T

∣∣St − S (∞,K)
t

∣∣ ≥ ε
)

≤ CT 2ε−1K1−3α + ε−1
√

CT K1−3α,(3.38)

so that again we can take K = K(ε) so large that P(maxt≤T |St − S (∞,K)
t | ≥ ε) ≤

ε. This proves the claim. �

3.2. Proof of Theorem 2.1. In this section, we give a proof of Theorem 2.1.
We start by looking at the first hitting time of zero of the process l �→ Zl , and use
the fact that by (2.7), V (1) = inf{l :Zl = 0}, where we recall that V (1) denotes
the number of vertex checks performed in exploring the cluster of vertex 1. Recall
further that C(1) denotes the cluster of vertex 1, |C(1)| the number of vertices in it,
and W (1) = ∑

j∈C(1) wj its weight.
The proof proceeds as follows. We shall first use Theorem 2.4 and Lemma 3.1 to

prove that V (1)n−ρ converges in distribution to HS (0), where HS (0) denotes the
first hitting time of 0 of the process (St )t≥0; see Corollary 3.4 below. We then prove
that V (1)n−ρ , |C(1)|n−ρ and W (1)n−ρ have identical scaling limits, by looking
at the contribution due to the second term in (2.9) for |C(1)|n−ρ , and a similar
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computation for W(1)n−ρ ; see Lemma 3.6 below. We then complete the proof of
Theorem 2.1, both for |C(1)|n−ρ and for W(1)n−ρ . Finally, in Proposition 3.7, we
state and prove an auxiliary result concerning joint convergence of |C(1)|n−ρ and
the indicators 1{q∈C(1)} for all q . This result is useful in the proofs of Theorems
1.1 and 1.5 and plays a crucial role in the proof of Theorem 4.1 in the next section,
where we investigate the scaling limit of several clusters simultaneously.

By Theorem 2.4 and Lemma 3.1, the process (Z (n)
t )t≥0, where Z (n)

t = n−αZtnρ ,
converges in distribution to the process (St )t≥0. By (3.6), the same applies to
(S (n)

t )t≥0. Note that

n−ρV (1) = min
{
t : Z (n)

t = 0
} ≡ H(n)(0).(3.39)

We next prove convergence in distribution of n−ρV (1):

COROLLARY 3.4 (Convergence of hitting times). As n → ∞,

n−ρV (1)
d−→ HS (0),(3.40)

where

HS (x) = inf{t : St ≤ x}(3.41)

is the first hitting time of level x of (St )t≥0.

PROOF. Since the process (St )t≥0 has only positive jumps ([23], Proposi-
tion 2.11 in Chapter 6) implies that the hitting time of zero is a continuous function
a.s. under the probability measure of the limiting process on the space of càdlàg
functions equipped with the J1-Skorokhod topology. �

LEMMA 3.5 (St has a density). For all t > 0, St has a density. As a result, the
distribution of HS (0) has no atoms.

PROOF. We note that St has a density if and only if S ′
t has, where

S ′
t =

∞∑
j=2

j−α[I ′
j (t) − tj−α],(3.42)

and (I ′
j (t))j≥2 are independent indicator processes with rate j−α . This, in turn,

follows when the characteristic function of S ′
t is integrable; see, for example, [21],

page 189.
The characteristic function of S ′

t is given by

f̂S ′
t
(ϑ) = E[eiϑ S ′

t ] =
∞∏

j=2

e−j−2α iϑ (
1 + (e−j−α iϑ − 1)e−j−αt ).(3.43)



NOVEL SCALING LIMITS 2329

Thus, for every jϑ ≥ 2,

|f̂S ′
t
(ϑ)| ≤

∞∏
j≥jϑ

|1 + (e−j−α iϑ − 1)e−j−αt |.(3.44)

Next, note that

|1 + (e−j−α iϑ − 1)e−j−αt |2
= e−2j−αt sin(j−αϑ)2 + (

1 − e−j−αt + cos(j−αϑ)e−j−αt )2

= 1 − 2(1 − e−j−αt )e−j−αt [1 − cos(j−αϑ)]
≤ e−2(1−e−j−αt )e−j−αt [1−cos(j−αϑ)]

≤ e−j−αt[1−cos(j−αϑ)],

so that

|f̂S ′
t
(ϑ)| ≤ e−t

∑
j≥jϑ

j−αt[1−cos(j−αϑ)] ≡ e−t�(ϑ).(3.45)

We choose

jϑ = max{j ≥ 2 :bϑj−α ≥ π/2},(3.46)

so that

jϑ = �(2bϑ/π)1/α� ∨ 2 = �(2bϑ/π)τ−1� ∨ 2.(3.47)

Then we bound

�(ϑ) ≥
∞∑

j=jϑ

a

jα
[1 − cos(bϑj−α)].(3.48)

Next, we use that

1 − cos(x) ≥ 2

π
x2, x ∈

[
−1

2
π,

1

2
π

]
,(3.49)

to arrive at

�(ϑ) ≥ cϑ2
∞∑

j=jϑ

j−3α,(3.50)

where c > 0 denotes a positive constant appearing in lower bounds that possibly
changes from line to line. We arrive at the fact that

�(ϑ) ≥ cϑ2j1−3α
ϑ ≥ cϑ2 ∨ ϑτ−2,(3.51)

so that |f̂S ′
t
(ϑ)| is integrable. To prove that HS (0) has no atoms, note that when

P(HS (0) = u) > 0 for some u ≥ 0; then, in particular, P(Su = 0) > 0, which con-
tradicts the fact that Su has a density. �
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We proceed by showing that the scaling limits of the number of vertex checks
of a cluster and the cluster size are identical. For this, we shall make use of the
following lemma:

LEMMA 3.6 (Number of multiple hits is small). As n → ∞, for any m ≥ 1,

E

[
m∑

j=2

[1 − Jj ]
]

≤ mw1

�n

+ m(m − 1)νn

2�n

.(3.52)

Consequently, there exists tn → ∞, such that

n−ρ
tnnρ∑
j=2

[1 − Jj ] P−→ 0.(3.53)

PROOF. We note that Jj = 0 precisely when Ml = 1 or when there exists an
l < j and i ∈ [n] such that Ml = Mj = i. By independence and (2.4),

P(Ml = Mj = i) = P(Ml = i)P(Mj = i) = w2
i /�

2
n.(3.54)

Therefore,

E[1 − Jj ] ≤ w1

�n

+
j−1∑
l=2

n∑
i=2

w2
i

�2
n

≤ w1

�n

+ (j − 1)
νn

�n

.(3.55)

Summing the above inequality over 2 ≤ j ≤ m proves the claim in (3.52).
For (3.53), we use the Markov inequality to bound

P

(
n−ρ

tnnρ∑
j=2

[1 − Jj ] ≥ εn

)
≤ ε−1

n n−ρ
E

[
tnnρ∑
j=2

[1 − Jj ]
]

≤ tnw1

εn�n

+ t2
nnρνn

2�nεn

= o(1),

whenever t2
nn−α/εn = o(1). Choosing, for example, tn = logn and εn = 1/ logn

does the trick. �

Now we are ready to complete the proof of Theorem 2.1.

PROOF OF THEOREM 2.1. By Corollary 3.4, n−ρV (1)
d−→ HS (0). In partic-

ular, this implies that |C(1)| ≤ V (1) ≤ nρtn for any tn → ∞. Therefore, by (2.9),
and whp,

n−ρV (1) − n−ρ
tnnρ∑
j=2

[1 − Jj ] ≤ n−ρ |C(1)| ≤ n−ρV (1).(3.56)

Now, by Lemma 3.6, the difference between the left-hand and right-hand sides of
(3.56) converges to zero in probability, so that also

n−ρ |C(1)| d−→ HS (0).(3.57)
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This completes the proof of Theorem 2.1 and identifies H1(0) = HS (0). In the
same vein,

W(1) = ∑
i∈C(1)

wi =
V (1)∑
j=1

wMj
Jj .(3.58)

Now, by (3.1), for any l ≥ 1,

l∑
j=1

wMj
Jj = Sl + l.(3.59)

As a result,

W(1) = V (1) + SV (1),(3.60)

so that

n−ρ W(1) = n−ρV (1) + n−ρSV (1).(3.61)

Finally, n−ρV (1)
d−→ HS (0), and, since α < ρ, n−ρ |SV (1)| = o(1)n−α|SV (1)| P−→

0. This proves that n−ρ W(1)
d−→ HS (0) as well. �

In the next section, where we study the joint convergence of various clusters
simultaneously, we shall also need the following joint convergence result:

PROPOSITION 3.7 (Weak convergence of functionals). As n → ∞,

(
n−ρ

∣∣C(1)
∣∣, (

1{q∈C(1)}
)
q≥1

) d−→ (HS (0), (Iq(HS (0)))q≥1)(3.62)

in the product topology, where Iq(HS (0)) denotes the indicator that Iq(t) = 1
at the hitting time of 0 of (St )t≥0. Moreover, (i) the random variable HS (0) is
nondegenerate; and (ii) the indicators (Iq(HS (0)))q≥2 are nontrivial in the sense
that they take the values 0 and 1 each with positive probability.

We note that, while the indicator processes (Iq(t))t≥0 are independent for dif-
ferent q , the random variables (Iq(HS (0)))q≥1 are not independent since HS (0),
the hitting time of 0 of the process (St )t≥0, depends sensitively on all of the indi-
cator processes.

PROOF. We shall use a randomization trick. Indeed, let (N
(n)
j (t))t≥0 be a se-

quence of independent Poisson processes with rate wj/�n. Let

Tj = inf{t :N(t) = j} where N(t) = ∑
j∈[n]

N
(n)
j (t).(3.63)
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Then t �→ N(t) is a rate 1 Poisson process, and we have that [recall (3.11)]

Sl = S′
Tl

,(3.64)

where the continuous-time process (S′
t )t≥0 is defined by

S′
t = w1(λ) − w1w1(λ)N(t)

�n

+
n∑

i=2

wi(λ)

[
1{N(n)

i (t)≥1} − wiN(t)

�n

]
(3.65)

+ (
νn(λ) − 1

)
N(t).

By construction, the processes (1{N(n)
q (nρt)≥1})t≥0 are independent, and are char-

acterized by the birth times

E(n)
q = inf

{
t :N(n)

q (nρt) ≥ 1
}
.(3.66)

Again by construction, these birth times are independent for different q ≥ 2, and

E
(n)
q has an exponential distribution with parameter nρwq/�n. The parameters of

these exponential random variables converge to

nρwq/�n → aq−α,(3.67)

where a = cα
F /E[W ], and which are the parameters of the limiting exponen-

tial random variables in terms of which we can identify Iq(t) = 1{Nq(t)≥1} =
1{Exp(aq−α)≤t}; see (2.48). By the convergence of the parameters, we can couple

E
(n)
q with Eq = Exp(aq−α) in such a way that, for every q ≥ 2 fixed,

P
(
E(n)

q �= Eq

) = o(1).(3.68)

Indeed, (3.68) follows by noting that, by (3.67), the density of E
(n)
q converges

pointwise to that of Eq , which, by [32], (7.3), implies that we can couple (E
(n)
q )n≥1

to Eq in such a way that (3.68) holds.

Equation (3.68), jointly with the independence of (E
(n)
q )n≥1 for different q’s,

immediately implies that, for each K ≥ 1,

P
(
1{N(n)

q (nρt)≥1} = Iq(t) ∀t ≥ 0, q ∈ [K]) = 1 − o(1),(3.69)

so that we have also, whp, perfectly coupled the entire processes(
1{N(n)

q (nρt)≥1}
)
t≥0,q∈[K] and (Iq(t))t≥0,q∈[K].

In particular, this implies that, for every K ≥ 2,

P
(
1{N(n)

q (Tl)≥1} = Iq(Tl) ∀l ≥ 1, q ∈ [K]) = 1 − o(1)(3.70)

and, by construction, 1{N(n)
q (Tl)≥1} = I (n)

q (l).
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Applying the perfect coupling to l = V (1), for which 1{N(n)
q (Tl)≥1} = 1{q∈C(1)},

this provides a perfect coupling between 1{q∈C(1)} and Iq(TV (1)). We then note
that

n−ρ |C(1)| d−→ HS (0)(3.71)

and, since Tj is the birth time of the j th individual in a rate 1 Poisson process,

sup
t≤u

|n−ρTtnρ − t | P−→ 0,(3.72)

where, for noninteger tnρ , we recall the convention below (2.36).
Weak convergence of (1{q∈C(1)})q≥1 in the product topology is equivalent to

the weak convergence of (1{q∈C(1)})q∈[m] for any m ≥ 1; see [28], Theorem 4.29.
Therefore, together with the exact coupling in (3.70), this completes the proof
of (3.62), since the processes (Ii (t))t≥0 have a.s. no jump close to HS (0).

We continue to show the properties of the limiting variables. The random vari-
able HS (0) is nondegenerate, since its distribution does not have any atoms. We
shall next show that 1{q∈C(1)} is nontrivial. We shall show this only for q = 2, the
proof for q > 2 being identical. For this, we use the fact that

lim
n→∞ P

(
2 ∈ C(1)

) ≥ P
(
HS (0) ≥ ε, I2(ε) = 1

)
(3.73)

≥ P
(
HS (0) ≥ ε

)
P

(
I2(ε) = 1

)
> 0

by the Fortuin–Kasteleyn–Ginibre (FKG) inequality (see [20], Theorem 2.4) and
the fact that both random variables HS (0) and I2(ε) are monotone in the indepen-
dent exponential random variables that describe the first hit of q for all q ≥ 1, so
that both {HS (0) ≥ ε} and I2(ε) = 1 are increasing events.

Further,

lim
n→∞P

(
2 /∈ C(1)

) ≥ P
(
HS (0) ≤ K, I2(K) = 0

)
(3.74)

≥ P
(
HS (0) ≤ K

)
P

(
I2(K) = 0

)
,

again by FKG, now using that both {HS (0) ≤ K} and {I2(K) = 0} are decreasing
events. Thus

lim
n→∞ P

(
2 /∈ C(1)

) ≥ P
(
HS (0) ≤ K

)
P

(
I2(K) = 0

)
> 0,(3.75)

which proves the claim. �

REMARK 3.8 (Convergence in the uniform topology). In fact, by the proof of
Proposition 3.7, we even obtain that the weak convergence in Theorem 2.1 holds in
the uniform topology. Indeed, the coupling obtained in the proof of Proposition 3.7

[see in particular (3.69)] shows that we can couple (S (n,K)
t )t≥0 and (S (∞,K)

t )t≥0
such that these processes are whp equal for all t ≥ 0. By (3.26) in Corollary 3.2,
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(Z (n)
t )t≥0 is close to (S (n,K)

t )t≥0 in the uniform topology on [0, T ], while (3.38)
shows that (S (∞,K)

t )t≥0 is uniformly close to (St )t≥0. This proves the convergence
in the uniform topology.

REMARK 3.9 (Convergence of cluster size of vertex i). We next remark on
the scaling limits of |C(i)| and |C≤(i)|. As in (2.39), define

S (i)
t = b − abti−α + ct +

∞∑
j=1 : j �=i

bj−α[Ij (t) − atj−α],(3.76)

so that (St )t≥0 = (S (i)
t )t≥0. Define

H(i)(0) = inf
{
t : S (i)

t = 0
}

(3.77)

to be the first hitting time of zero of the process (S (i)
t )t≥0. Then, in an identical

way as in the proof of Proposition 3.7, it follows that, as n → ∞,(
n−ρ |C(i)|, (

1{q∈C(i)}
)
q≥1

) d−→ (
H(i)(0),

(
Iq

(
H(i)(0)

))
q≥1

)
(3.78)

in the product topology. As a result,

n−ρ |C≤(i)| d−→ H(i)(0)

i−1∏
j=1

(
1 − Iq

(
H(i)(0)

))
.(3.79)

4. Convergence of multiple clusters. In this section, we extend the analysis
of one cluster in Section 2 to multiple clusters. This sets the stage for the proof of
Theorem 1.1, which is completed in the next section. The main result is as follows:

THEOREM 4.1 (Weak convergence of clusters of first vertices). Fix the
Norros–Reittu random graph with weights w(λ) defined in (1.15). Assume that
ν = 1 and that (1.6) holds. Then, for all λ ∈ R,

(n−ρ |C≤(i)|)i≥1
d−→ (Hi(0))i≥1(4.1)

for some nondegenerate limit (Hi(0))i≥1.

In the remainder of this section, we shall prove Theorem 4.1 and use it to com-
plete the proof of Theorem 1.1. We let I

(n)
1 = 1, and let

I
(n)
2 = min[n] \ C(1)(4.2)

be the minimal element that is not part of C(1), where, for a set of indices A ⊆ [n],
we let minA denote the minimal element of A. To extend the above definitions
further, we define, recursively,

D(n)
i = C≤

(
I

(n)
i

)
and D(n)

≤i = ⋃
j≤i

D(n)
j .(4.3)
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Then we define I
(n)
i+1 by

I
(n)
i+1 = min[n] \ D(n)

≤i ,(4.4)

which is the vertex with the smallest index of which we have not yet explored its
cluster.

Obviously, |C≤(i)| = 0 unless i = I
(n)
j for some j . This prompts us to investi-

gate the weak convergence of n−ρ |D(n)
i |. This will be done by induction on i. The

induction hypothesis is that

(
n−ρ

∣∣D(n)
j

∣∣, (
1{q∈D(n)

≤j }
)
q≥1

)
j∈[i]

d−→ (
Hj(0),

(
1{q∈D≤j }

)
q≥1

)
j∈[i](4.5)

in the product topology, for some limiting random variables. Part of the induc-
tion hypothesis is that these limiting random variables satisfy the following facts:
(1) the limiting random variables (Hj (0))j∈[i] are nondegenerate, in the sense
that the essential support of the random vector (Hj (0))j∈[i] is i-dimensional, and
(2) the random indicators (1{q∈D≤j })j∈[i],q>i are all nontrivial, in the sense that
they take the values zero and one, each with positive probability. By construction,
1{q∈D(n)

≤j } = 1 for q ≤ i, so the restriction to q > i in condition (2) is the most we

can hope for.
We shall start by initializing the induction hypothesis for j = 1, which follows

from Proposition 3.7, as we show now. Indeed, we have that D(n)
1 = D(n)

≤1 = C(1),
so that (4.5) is identical to the statement in Proposition 3.7.

We next advance the induction hypothesis by verifying that (4.5) also holds for
j = i + 1. We first intuitively explain our approach. The random variable Hi+1(0)

shall be the weak limit of n−ρ |D(n)
i+1|. We shall show that Hi+1(0) is the hitting time

of zero of a process similar to (St )t≥0 in Section 2. We now start by explaining how
this process arises.

Assume that the induction hypothesis (4.5) holds for i. By (4.5), the index set
D≤i is the (random) set of indices for which

(
1{q∈D(n)

≤i }
)
q≥1

d−→ (
1{q∈D≤i }

)
q≥1.(4.6)

Then, we note that, by (4.5), we have that

I
(n)
i+1 ≡ min

{
q :1{q∈D(n)

≤i } = 0
} d−→ Ii+1 ≡ min

{
q :1{q∈D≤i} = 0

}
,(4.7)

and we see that I
(n)
i+1 and Ii+1 are deterministic functions of the sets D(n)

≤i and D≤i ,
respectively. The random variable Ii+1 is finite, since, for K,Q ≥ 1 large,

P
(
I

(n)
i+1 > K

) ≤ P
(∣∣D(n)

≤j

∣∣ ≥ Qnρ) + P
(
I

(n)
i+1 ≥ K,

∣∣D(n)
≤j

∣∣ < Qnρ)
.(4.8)
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The first probability converges, by (4.5) and the continuous-mapping theorem, to
P(H1(0) + · · · + Hi(0) ≥ Q), which is small for Q ≥ 1 large. For the second
probability in (4.8), and for i ≤ K/2, we can bound

P
(
I

(n)
i+1 > K,

∣∣D(n)
≤i

∣∣ < Qnρ) ≤ P(vertex K drawn in Qnρ vertex checks)

≤ P(∃l ≤ Qnρ :Ml = K) ≤
Qnρ∑
l=1

wK

�n

(4.9)

≤ CQK−α,

which converges to zero as K → ∞ when Q = Kβ with β < α. As a result, we
have that

P(Ii+1 > K) = lim
n→∞ P

(
I

(n)
i+1 > K

)
(4.10)

is small for K large.
We conclude that, from the induction hypothesis in (4.5), we obtain the joint

convergence ((
n−ρ

∣∣D(n)
i

∣∣, (
1{q∈D(n)

≤j }
)
q≥1

)
j∈[i], I

(n)
i+1

)
(4.11)

d−→ ((
Hj(0),

(
1{q∈D≤j }

)
q≥1

)
j∈[i], Ii+1

)
.

We now start exploring the cluster of I
(n)
i+1, and we need to show that this clus-

ter size, as well as the indices in it, converge in distribution. More precisely, the
joint convergence in (4.5) for i + 1 (and thus the advancement of the induction
hypothesis) follows when we prove that, conditionally on D(n)

≤i ,

(
n−ρ

∣∣D(n)
i+1

∣∣, I (n)
i+1,

(
1{q∈D(n)

≤i+1}
)
q≥1

)
(4.12)

d−→ (
Hi+1(0), Ii+1,

(
1{q∈D≤i+1}

)
q≥1

)
.

To prove (4.12), we follow the approach in Section 2 as closely as possible.
A crucial observation is that after the exploration of D(n)

≤i and conditionally on
it, the remaining graph is again a rank-1 inhomogeneous random graph, with (a)
vertex set [n] \ D(n)

≤i , and (b) edge probabilities, for u, v ∈ [n] \ D(n)
≤i , given by

puv = 1 − e−wuwv/�n .
We now extend the exploration process of clusters described in Section 2.1 to the

setting above. As in Section 2, we set Z0(i) = 1 and let Z1(i) denote the number

of neighbors of the vertex I
(n)
i+1 outside D(n)

≤i , that is,

Z1(i) = ∑
j /∈D(n)

≤i

Poi
(
w

I
(n)
i+1

(λ)wj/�n

) = Poi
(
w

I
(n)
i+1

(λ)�n(i)/�n

)
,(4.13)
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where we let

�n(i) = ∑
j /∈D(n)

≤i

wj(4.14)

be the total weight of vertices outside D(n)
≤i . For l ≥ 2, (Zl(i))l≥1 satisfies the re-

cursion relation

Zl(i) = Zl−1(i) + Xl(i) − 1,(4.15)

where Xl(i) denotes the number of potential neighbors outside of D(n)
≤i of the lth

vertex which is explored. As explained in more detail in Section 2, the distribution
of Xl(i) (for 2 ≤ l ≤ n) is equal to Poi(wMl(i)�n(i)/�n)Jl(i), where now the marks
(Ml(i))

∞
l=1 are i.i.d. random variables with distribution M(i) given by

P
(
M(i) = m

) = wm/�n(i), m ∈ [n] \ D(n)
≤i ,(4.16)

and

Jl(i) = 1{Ml(i)/∈{I (n)
i+1}∪{M2(i),...,Ml−1(i)}}(4.17)

is the indicator that the mark Ml(i) has not been found up to time l and is not equal
to vertex I

(n)
i+1.

Then the number of vertex checks V (I
(n)
i+1) in the exploration of D(n)

i+1 =
C≤(I

(n)
i+1) equals

V
(
I

(n)
i+1

) = inf{l :Zl(i) = 0}(4.18)

and (
1{q∈D(n)

i+1}
)
q �=I

(n)
i+1=(1{∃l≤|D(n)

i+1| : Ml(i)=q})q �=I
(n)
i+1

,(4.19)

while 1{I (n)
i+1∈D(n)

i+1} = 1. We again note that

∣∣D(n)
i+1

∣∣ = ∣∣C≤
(
I

(n)
i+1

)∣∣ ≤ V
(
I

(n)
i+1

)
,(4.20)

while

n−ρ[
V

(
I

(n)
i+1

) − ∣∣D(n)
i+1

∣∣] P−→ 0,(4.21)

which can be proved along the lines of the proof of Lemma 3.6. This gives us a
convenient description of all the random variables needed to advance the induction
hypothesis.

In order to prove the weak convergence of n−ρV (I
(n)
i+1), we again investigate

the scaling limit of the process (Zl(i))l≥0. For this, we define S0(i) = 1, S1(i) =
w

I
(n)
i+1

(λ)�n(i)/�n and, for l ≥ 2,

Sl(i) = Sl−1(i) + wMl(i)(λ)Jl(i)�n(i)/�n − 1.(4.22)
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Then, as in Lemma 3.1, it is easy to show that, conditionally on D(n)
≤i , the processes

(Sl(i))l≥0 and (Zl(i))l≥0 are uniformly close. Denote by B(n)
i = D(n)

≤i ∪ {I (n)
i+1} the

union of all vertices explored in the first i clusters and the minimal element not in
the first i clusters. We rewrite

Sl(i) = w
I

(n)
i+1

(λ)
�n(i)

�n

+
l∑

j=2

wMj(i)

�n(i)

�n

Jj (i) − (l − 1)

(4.23)

= w
I

(n)
i+1

(λ)
�n(i)

�n

+ ∑
q∈[n]\B(n)

i

wq(λ)
�n(i)

�n

I (n)
q (l; i) − (l − 1),

where

I (n)
q (l; i) = 1{∃j≤l : Mj(i)=q}.(4.24)

We further rewrite the above as

Sl(i) = w
I

(n)
i+1

(λ)
�n(i)

�n

+ ∑
q∈[n]\B(n)

i

wq(λ)
�n(i)

�n

(
I (n)

q (l; i) − lwq

�n(i)

)

(4.25)

+ l

( ∑
q∈[n]\B(n)

i

wq(λ)wq

�n

− 1
)

+ 1.

We note that we can rewrite the last sum, using (2.30), as

(1 + λn−η)
∑

q∈[n]\B(n)
i

w2
q

�n

− 1 = (
νn(λ) − 1

) − (1 + λn−η)
∑

q∈B(n)
i

w2
q

�n

(4.26)

= θn−η − ∑
q∈B(n)

i

w2
q

�n

+ o(n−η).

In turn, the sum can be approximated by

∑
q∈B(n)

i

w2
q

�n

= dn−η
∑

q∈B(n)
i

q−2α(
1 + oP(1)

)
,(4.27)

where d = c2α
F /E[W ]. Denoting

D
(n)
i = d

∑
q∈B(n)

i

q−2α,(4.28)

we therefore have that

Sl(i) = w
I

(n)
i+1

�n(i)

�n

+ ∑
q∈[n]\B(n)

i

wq

�n(i)

�n

(
I (n)

q (l; i) − lwq

�n(i)

)

(4.29)
+ l

(
θ − D

(n)
i

)
n−η + oP(ln−η).
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We conclude that we arrive at a similar process as when exploring C(1), apart from
the fact that: (i) fewer vertices are allowed to participate, (ii) a negative drift −D

(n)
i

is introduced and (iii) a factor �n(i)
�n

= 1 + oP(1) is introduced.

We proceed by investigating the convergence of D
(n)
i :

LEMMA 4.2 (Weak convergence of random drift). As n → ∞, and assuming
(4.11),

D
(n)
i

d−→ Di ≡ ∑
q∈D≤i∪{Ii+1}

q−2α,(4.30)

where (D≤i , Ii+1) is the weak limit of (D(n)
≤i , I

(n)
i+1) given in (4.11).

PROOF. We start by bounding P(q ∈ D(n)
≤i ), for q > 0 large. We shall first

prove that the probability that |D(n)
≤i | ≤ nρK is 1 − o(1) when K > 0 grows

large. Indeed, by [34], Theorem 1.2, we have that, |Cmax| = maxi |C≤i | ≤ ωnρ with
probability 1 − o(1), as ω → ∞. Thus, |D(n)

≤i | ≤ nρ(iω) = nρK , with probability
1 − o(1) as K → ∞, when we take K = ωi. Denoting

E (n)
i,K = {∣∣D(n)

≤i

∣∣ ≤ nρK
}
,(4.31)

we have that

P
({

q ∈ D(n)
≤i \ {

I
(n)
j

}i
j=1

} ∩ E (n)
i,K

) ≤ nρK
wq∑

j>Knρ wj

,(4.32)

since, independently of the choices before, the probability of drawing q is at most
wq/

∑
j>Knρ wj . Now,

∑
j>Knρ

wj = �n

(
1 + o(1)

) = E[W ]n(
1 + o(1)

)
.(4.33)

Thus, for some C > 0,

P
({

q ∈ D(n)
≤i \ {

I
(n)
j

}i
j=1

} ∩ E (n)
i,K

) ≤ CKq−α,(4.34)

so that

E

[ ∑
q∈B(n)

i : q>Q

q−2α1E (n)
i,K

]
≤ iQ−2α + CKQ1−3α,(4.35)

where the first contribution arises from the (at most i) values of q = I
(n)
j for j ∈

[i + 1] for which I
(n)
j > Q, and the second contribution from the q /∈ {I (n)

j }j∈[i+1].
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Equation (4.35) implies that the weak convergence of D
(n)
i follows from the

weak convergence of ∑
q∈B(n)

i : q≤Q

q−2α,(4.36)

which, in turn, follows from (4.11) and the continuous mapping theorem. �

Now we are ready to complete the proof of Theorem 4.1.

PROOF OF THEOREM 4.1. We start by setting the stage for the weak conver-
gence of processes needed to advance the induction hypothesis as formulated in
(4.12). Define

Z (n)
t (i) = n−αZtnρ (i), S (n)

t (i) = n−ρStnρ (i)(4.37)

and

St (i) = bI−α
i+1 + ∑

q∈D≤i∪{Ii+1}
aq−α(

Iq(t) − btq−α) + t (c − Di).(4.38)

Then, using Lemma 4.2, the proof of Theorem 2.1 can easily be adapted to prove

that n−ρ |D(n)
i+1| d−→ Hi+1(0), where Hi+1(0) is the hitting time of 0 of (St (i))t≥0,

and where a, b, c are given by a = cα
F /E[W ], b = cα

F and c = θ .

Indeed, in more detail, we shall work conditionally on D(n)
≤i . The proof of The-

orem 2.1 reveals that the main contribution to (St (i))t≥0 and (S (n)
t (i))t≥0 arises

from the vertices q ∈ [K]. Now, since (1{a∈D(n)
≤i })a∈[K] is a sequence of discrete

random variables taking a finite number of outcomes and that converge in distribu-
tion, we have that its probability mass function converges pointwise. By [32], (6.3)
on page 16, this implies that we can couple (1{a∈D(n)

≤i+1})a∈[K] to (1{a∈D≤i+1})a∈[K]
in such a way that

P
((

1{a∈D(n)
≤i+1}

)
a∈[K] �= (

1{a∈D≤i+1}
)
a∈[K]

) = o(1).(4.39)

Therefore, whp, there is a perfect coupling between the elements of D(n)
≤i+1 ∩ [K]

and D≤i+1 ∩ [K]. When this is the case, we can basically think of the set of sum-
mands in (4.25) as being deterministic and follow the proof of Theorem 2.1 verba-
tim.

Further, the proof of Proposition 3.7 can be adapted to prove the joint conver-
gence of (

n−ρ
∣∣D(n)

i+1

∣∣, (
1{q∈D(n)

i+1}
)
q≥1

) d−→ (Hi+1(0), (Iq(Hi+1(0)))q≥1).(4.40)

Together with the induction hypothesis, this proves that (4.5) also holds for all
j ≤ i+1, and, thus, we have advanced the induction hypothesis. This, in particular,
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proves Theorem 4.1. The proof for cluster weights follows in an identical way as
the convergence proof of n−ρ W(1) in the proof of Theorem 2.1. �

5. Proofs of Theorems 1.1, 1.5 and 1.6. In this section, we prove Theo-
rems 1.1, 1.5 and 1.6 using the results in Theorems 2.1 and 4.1, as well as Proposi-
tion 3.7. We start with a proof of Theorem 1.6, followed by those of Theorems 1.5
and 1.1. Note that, combining parts (a) and (b) in Theorem 1.6, we obtain that, with
high probability as K becomes large, the largest m clusters are all among the first
(|C≤(i)|)i∈[K]. This explains why we start the cluster exploration from the vertices
with the highest weights.

PROOF OF THEOREM 1.6. (a) For maxi≥K |C≤(i)| ≥ εnρ to occur, we must
have that there exists a cluster using the vertices in [n]\ [K] such that (1) |C≤(i)| ≥
εnρ , and (2) the cluster C≤(i) is not connected to any of the vertices in [K].

By construction, the graph restricted to the vertices in [n] \ [K] is again a
Norros–Reittu model, with edge probabilities pij = 1 − e−wiwj /�n , for all i, j ∈
[n] \ [K]. However, no vertex in [n] \ [K] found to be in the cluster C(i) is allowed
to have an edge to any of the vertices in [K]. We shall now bound this probability,
making use of the results in [34].

With

Z
[K]
≥k =

n∑
v=1

1{|C(v)|≥k,C(v)∩[K]=∅},(5.1)

we have

P

(
max
i≥K

|C≤(i)| ≥ k
)

= P
(
Z

[K]
≥k ≥ k

) ≤ E[Z[K]
≥k ]
k

(5.2)

= 1

k

n∑
v=K+1

P
(|C(v)| ≥ k, C(v) ∩ [K] = ∅

)
.

Denote by C[K](v) the cluster of v restricted to the vertices [n] \ [K]. Then, due to
the independence of disjoint sets of edges, and the fact that C(v) ∩ [K] = ∅ only
depends on edges between [K] and [n] \ [K], while |C[K](v)| ≥ k depends only on
edges between pairs of vertices in [n] \ [K], we obtain

P
(|C(v)| ≥ k, C(v) ∩ [K] = ∅

)
= E

[
P

(
C(v) ∩ [K] = ∅ | C[K](v)

)
1{|C[K](v)|≥k}

]
(5.3)

= E
[
e−W[K]W [K](v)/�n1{|C[K](v)|≥k}

]
,

where, similarly to (1.17), we define

W [K](v) = ∑
a∈C[K](v)

wa and W[K] =
K∑

j=1

wj .(5.4)
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We split depending on whether W [K](v) ≥ k/2 or not, to obtain

P

(
max
i≥K

|C≤(i)| ≥ k
)

≤ 1

k

n∑
v=K+1

e−W[K]k/(2�n)
P

(∣∣C[K](v)
∣∣ ≥ k

)
(5.5)

+ 1

k

n∑
v=K+1

P
(∣∣C[K](v)

∣∣ ≥ k, W [K](v) ≤ k/2
)
.(5.6)

For the first term we compute that, for some C > 0,

W[K] ≥ cF

K∑
j=1

(n/j)α
(
1 + o(1)

) ≥ CnαKρ.(5.7)

Thus, when k = kn = εnρ , we obtain, for some u > 0, and using α + ρ = 1 [see
(2.10)],

1

kn

e−W[K]kn/(2�n)
∑

v∈[n]
P

(∣∣C[K](v)
∣∣ ≥ kn

)

≤ 1

kn

e−uεKρ ∑
v∈[n]

P
(∣∣C[K](v)

∣∣ ≥ kn

)
(5.8)

≤ e−uεKρ 1

kn

∑
v∈[n]

P
(|C(v)| ≥ kn

)

= e−uεKρ n

kn

P
(|C(V )| ≥ kn

)
,

where V ∈ [n] is a vertex chosen uniformly at random from [n]. By [34], Proposi-
tion 2.4(a), there exists a constant a1 < ∞ such that

P
(|C(V )| ≥ kn

) ≤ a1
(
k−1/(τ−2)
n + (

εn ∨ n−(τ−3)/(τ−1))1/(τ−3))
(5.9)

≤ a1
(
k−1/(τ−2)
n + n−1/(τ−1)),

so that, for k = kn = εnρ with ε < 1 and with a′
1 = 2a1,

n

kn

P
(|C(V )| ≥ kn

) ≤ a′
1ε

−(τ−1)/(τ−2)n−ρ.(5.10)

Therefore, the term in (5.5) is bounded by

e−aεKρ

a′
1ε

−(τ−1)/(τ−2).(5.11)

When we pick K = K(ε) sufficiently large, we can make this as small as we wish.
We continue with the term in (5.6), for which we use a large deviation argument.

We formulate this result in the following lemma:
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LEMMA 5.1 (Large deviations for cluster weights). For every k = o(n) and
K = o(n), there exists a J > 0 such that

P
(∃v :

∣∣C[K](v)
∣∣ ≥ k, W [K](v) ≤ k/2

) ≤ ne−Jk.(5.12)

PROOF. When |C[K](v)| ≥ k, then W [K](v) is stochastically bounded from
below by the sum

∑k
i=1 wv(i), where (v(i))ki=1 is the sized-biased ordering of [n],

that is, for every j /∈ (v(s))s∈[i−1],

P
(
v(i) = j | (v(s))s∈[i−1]

) = wj∑
l /∈(v(s))s∈[i−1] wl

.(5.13)

See [8], Section 2, Lemma 2.1, for more details about the size-biased reordering.
Indeed, each time we draw a random mark and, conditionally on this mark not
being one that has been found earlier as well as on all the marks found so far, it
will be equal to j with the probability in (5.13). When |C[K](v)| ≥ k, we must
draw a vertex that we have not seen yet, a total of at least k times.

We apply the size-biased reordering to the vertex set [n] \ [K]. Then, for each
i and conditionally on (v(s))s∈[i−1], the random variable wv(i) is stochastically
bounded from above by the random variable W ′

i with distribution

P(W ′
i = wj) = wj

�n − ∑i−1+K
s=1 ws

, j ∈ [n] \ [i − 1 + K],(5.14)

that is, we have removed the vertices with the largest i − 1 + K weights. As a
result, the random variables (W ′

i )i≥1 are independent. Now take κ > 0 very small,
and note that, whenever k − 1 + K ≤ κn and for every i ≤ k, W ′

i is stochastically

bounded from above by a random variable W
(n)
i (κ) with distribution

P
(
W

(n)
i (κ) = wj

) = wj

�n − ∑κn
s=1 ws

, j ∈ [n] \ [κn],(5.15)

where the random variables (W
(n)
i (κ))ki=1 are i.i.d. Now take κ > 0 so small that

E
[
W

(n)
i (κ)

] =
n∑

j=κn

w2
j

�n − ∑κn
s=1 ws

≥ 3/4.(5.16)

Then,

P
(∃v :

∣∣C[K](v)
∣∣ ≥ k, W [K](v) ≤ k/2

)
≤

n∑
v=K+1

P
(∣∣C[K](v)

∣∣ ≥ k, W [K](v) ≤ k/2
)

(5.17)

≤ nP

(
k∑

i=1

W
(n)
i (κ) ≤ k/2

)
.
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Intuitively, since E[W(n)
i (κ)] ≈ νn ≈ ν = 1 for κ > 0 small, the Chernoff bound

proves that P(
∑k

i=1 W
(n)
i (κ) ≤ k/2) is exponentially small in k, so that the term in

(5.6) is exponentially small. We now make this intuition precise.
By the Chernoff bound, for each ϑ ≥ 0, and by the fact that (W

(n)
i (κ))i∈[k] are

i.i.d. random variables, we have

P

(
k∑

i=1

W
(n)
i (κ) ≤ k/2

)
≤ eϑk/2

E
[
e−ϑ

∑k
i=1 W

(n)
i (κ)] = (eϑ/2φn,κ(ϑ))k,(5.18)

where

φn,κ(ϑ) = E
[
e−ϑW

(n)
1 (κ)](5.19)

denotes the Laplace transform of W1(κ). By (5.18), it suffices to prove that there
exists a ϑ > 0 such that, uniformly in n sufficiently large, ϑ/2 + logφn,κ(ϑ) < 0.
This is what we shall show now. By dominated convergence, for each fixed ϑ > 0,

logφn,κ(ϑ) → logφκ(ϑ) = log E
[
e−ϑW(κ)],(5.20)

where

P
(
W(κ) ≤ x

) = E
[[1 − F ]−1(U) | U ≥ κ

]
,(5.21)

and U is a uniform random variable on [0,1]. As a result, the distribution of
U conditionally on U ≥ κ is uniform on [κ,1]. Let Uκ denote a uniform ran-

dom variable on [κ,1], so that W(κ)
d= [1 − F ]−1(Uκ). Then, W(κ) has mean

E[W(κ)] ≥ 3/4 and bounded variance σ 2
κ (since W(κ) ≤ [1 − F ]−1(κ) < ∞ a.s.).

Therefore, a Taylor expansion yields that, for fixed κ > 0,

logφκ(ϑ) ≤ −3ϑ/4 + σ 2
κ ϑ2 + o(ϑ2).(5.22)

Now, fix a ϑ > 0 so small that

ϑ/2 − 3ϑ/4 + σ 2
κ ϑ2 ≤ −ϑ/6,(5.23)

and then N so large that, for all n ≥ N ,

logφn,κ(ϑ) ≤ logφκ(ϑ) + ϑ/12.(5.24)

Then, indeed, for n ≥ N , since ϑ > 0,

ϑ/2 + logφn,κ(ϑ) ≤ −ϑ/6 + ϑ/12 = −ϑ/12 < 0,(5.25)

so that

eϑ/2φn,κ(ϑ) ≤ e−ϑ/12,(5.26)

which, in turn, implies that
n∑

v=1

P
(∣∣C[K](v)

∣∣ ≥ k, W [K](v) ≤ k/2
) ≤ ne−kϑ/12.(5.27)
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When n → ∞, this proves the claim for J = ϑ/12. �

To prove Theorem 1.6(a), we apply Lemma 5.1 to the term in (5.6), which is
then bounded by e−�(εnρ) when we take k = εnρ .

(b) We denote by

Z≥k =
n∑

v=1

1{|C(v)|≥k}(5.28)

the number of vertices that are contained in connected components of size at
least k. In [34], the random variable Z≥k has been used in a crucial way to prove
probabilistic bounds on |Cmax|. We now slightly extend these results.

We shall prove that, for all ε > 0 sufficiently small, there exist constants b2,C

such that

P
(
Z≥εnρ ≤ b2n

ρε−1/(τ−2)) ≤ Cε2/(τ−2).(5.29)

We first note that it suffices to prove (5.29) when νn ≤ 1 − Kn−η. Indeed, the ran-
dom variable Z≥εnρ is increasing in the edge occupation statuses, and, therefore,
we may take λ < 0 so that −λ > K to achieve the claim.

We shall use a second moment method. By [34], Proposition 2.4(b), there exists
a2 = a2(K) such that

E[Z≥εnρ ] ≥ nP
(|C(V )| ≥ εnρ) ≥ a2n

ρε−1/(τ−2),(5.30)

where V is chosen uniformly from [n]. Therefore, when we take b2 = a2/2,

P
(
Z≥εnρ ≤ b2n

ρε−1/(τ−2)) ≤ P(Z≥εnρ ≤ E[Z≥εnρ ]/2).(5.31)

We take ε > 0 small, and bound, by the Chebychev inequality,

P(Z≥εnρ ≤ E[Z≥εnρ ]/2) ≤ 4 Var(Z≥εnρ )

E[Z≥εnρ ]2 .(5.32)

By [34], Proposition 2.2, and [34], Proposition 2.5 and (2.22), uniformly in k ≥ 1,

Var(Z≥k) ≤ nE[|C(V )|] ≤ n1+η = nρ.(5.33)

As a result, we obtain

P(Z≥εnρ ≤ E[Z≥εnρ ]/2) ≤ 4n2ρ

a2
2ε−2/(τ−2)n2ρ

= Cε2/(τ−2),(5.34)

which is small when ε > 0 is small. We conclude that, with probability at least
1 − oε(1), where oε(1) denotes a function that is o(1) uniformly in n as ε ↓ 0,

Z≥εnρ ≥ E[Z≥εnρ ]/2 ≥ a2

2
ε−1/(τ−2)nρ.(5.35)



2346 S. BHAMIDI, R. VAN DER HOFSTAD AND J. S. H. VAN LEEUWAARDEN

Since, by [34], Theorem 1.2, |Cmax| ≤ ε−1/2nρ with probability at least 1 − oε(1),
there are, again with probability at least 1 − oε(1), at least

a2

2
ε−1/(τ−2)nρ/(ε−1/2nρ) = Cε1/2−1/(τ−2)(5.36)

clusters of size at least εnρ . Since 1/2 − 1/(τ − 2) < 0, the number of clusters of
size at least εnρ tends to infinity when ε ↓ 0. By part (a), whp for K ≥ 1 large,
these clusters will be part of (|C≤(i)|)i∈[K] when K = K(ε) ≥ 1 is sufficiently
large. �

We now complete the proof of Theorem 1.5.

PROOF OF THEOREM 1.5. We use Proposition 3.7 and note that the limiting
variables are all nontrivial (i.e., they are equal to 0 or 1 each with positive proba-
bility). This proves (1.27). The proof of (1.28) is similar, noting that |C≤(i)| equals
|Cmax| with strictly positive probability. �

We finally use Theorem 1.6 to complete the proof of Theorem 1.1:

PROOF OF THEOREM 1.1. Weak convergence of (|C(i)|n−ρ)i≥1 in the product
topology is equivalent to the weak convergence of (|C(i)|n−ρ)i∈[m] for any m ≥ 1;
see [28], Theorem 4.29. In turn, by Theorem 1.6, this follows from the convergence
in distribution of (|C≤(i)|n−ρ)i∈[m] for all m. The latter follows from Theorem 4.1.
Since, whp for large K , again by Theorem 1.6, (|C(i)|n−ρ)i∈[m] is equal to the
largest m components of (|C≤(i)|n−ρ)i∈[K], we have identified

(γi(λ))i≥1
d= (

H(i)(0)
)
i≥1,(5.37)

where (H(i)(0))i≥1 is (Hi(0))i≥1 ordered in size. This completes the proof of The-
orem 1.1 and identifies the limiting random variables. �

6. Proof of Theorem 1.3. In this section, we shall prove Theorem 1.3 on the
largest subcritical clusters. We shall extend the result also to the ordered weights
of subcritical clusters as formulated in Theorem 1.4, which shall be a crucial in-
gredient in the proof of Theorem 1.2, which is given in Section 7 below.

We shall prove that Theorem 1.3 holds for W(j) as well as for |C(j)|. Indeed, it
shall also follow from the result that whp, W(j) = ∑

i∈C(j)
wi , that is, the j th largest

cluster weight is the weight of the j th largest cluster, as claimed in Theorem 1.4.
To prove this scaling, we shall prove that, when the weights are equal to w(λn)

as defined in (1.15), and when λn → −∞,

|λn|n−ρ |C(j)| P−→ cj , |λn|n−ρ W(j)
P−→ cj ,(6.1)

where we recall that

cj = cα
F j−α = lim

n→∞n−αwj .(6.2)
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Since j �→ cj is strictly decreasing, this means that, whp, C(j) = C≤(j). Thus, this
also implies that whp, C(j) = C(j) for all j ≤ m. Then (6.1) proves the result for
the ordered cluster sizes and weights.

Recall the definitions of T , T (i) and their weights wT and wT (i) introduced
in Section 2.2, where also their moments are computed in Lemma 2.3. We make
frequent use of these computations. The proof of Theorem 1.3 consists of four key
steps, which we shall prove one by one.

Asymptotics of mean cluster size and weight of high-weight vertices. In the
following lemma we investigate the means of |C(j)| and W(j):

LEMMA 6.1 (Mean cluster size and weights). As n → ∞, for every j ∈ N

fixed, and when λn → −∞ such that νn(λn) → 1,

E[|C(j)|] = wj

1 − νn(λn)

(
1 + o(1)

)
,

(6.3)
E[W(j)] = wj

1 − νn(λn)

(
1 + o(1)

)
.

PROOF. By the fact that |C(j)| and T (j) can be coupled so that |C(j)| ≤ T (j)

a.s., we obtain that

E[|C(j)|] ≤ E[T (j)] = wj

1 − νn(λn)
,(6.4)

the latter equality following from Lemma 2.3(c). A similar upper bound follows
for E[W (j)] now using Lemma 2.3(d).

For the lower bound, we rewrite

E[|C(j)|] = E[T (j)] − E[T (j) − |C(j)|].(6.5)

Now, for an = nρ � E[T (j)], we bound

E[T (j) − |C(j)|] ≤ E
[
T (j)1{T (j)>an}

] + E
[[T (j) − |C(j)|]1{T (j)≤an}

]
.(6.6)

By Lemma 2.3(c), the first term in (6.6) is bounded by

E
[
T (j)1{T (j)>an}

]
≤ 1

an

E[T (j)2]
(6.7)

= 1

an

((
1 + wj

1 − νn(λn)

)2

+ wj(1 + νn(λn))

(1 − νn(λn))2

+ wj

(1 − νn(λn))3

1

�n

∑
i∈[n]

w3
i

)
.



2348 S. BHAMIDI, R. VAN DER HOFSTAD AND J. S. H. VAN LEEUWAARDEN

The first two terms in (6.7) are o(wj/(1 − νn(λn))) since νn(λn) = 1 + n−ηλn +
o(n−η|λn|) by (2.30) and the fact that λn → −∞, so that

wj/
(
1 − νn(λn)

) ≤ cnα+η|λn|−1 = cnρ |λn|−1 = o(nρ) = o(an),(6.8)

since α + η = ρ [recall (2.10)]. The last term in (6.7) is bounded by

wj

1 − νn(λn)

cn3α−1

an(1 − νn(λn))2 = wj

1 − νn(λn)
cn3α−1−ρ−2η|λn|−2.(6.9)

By (2.10), 3α − 1 −ρ − 2η = 3(τ − 4)/(τ − 1) < 0, so that also this term is o(wj/

(1 − νn(λn))).
For the second term in (6.6), we note that differences between T (j) and |C(j)|

arise due to vertices which have been used at least twice in T (j). Indeed, as ex-
plained in more detail in Section 2.2, the law of |C(j)| can be obtained from the
branching process by removing vertices (and their complete offspring) of which
the mark has already been used (see the description of the cluster exploration
in Section 2.1 and the relation to branching processes described in Sections 2.1
and 2.2). Thus, when we draw vertex i twice, then the second time we must thin
the entire tree that is rooted at this vertex with mark i. The expected number of
vertices in the tree equals E[T (i)], so that we arrive at

E
[[T (j) − |C(j)|]1{T (j)≤an}

]
≤ ∑

i∈[n]
E

[[T (j) − |C(j)|]1{T (j)≤an}1{mark i drawn at least twice}
]

(6.10)

≤ ∑
i∈[n]

E[T (i)]
an∑

s1<s2=1

P(mark i drawn at times s1, s2).

Now, i can only be chosen at time s1 when T (j) ≥ s1 − 1, which is independent
of the event that the mark i is chosen at times s1, s2. Therefore,

E
[[T (j) − |C(j)|]1{T (j)≤an}

] ≤ ∑
i∈[n]

E[T (i)]
an∑

s1<s2=1

P
(
T (j) ≥ s1 − 1

)w2
i

�2
n

≤ an

an∑
s1=1

P
(
T (j) ≥ s1 − 1

) ∑
i∈[n]

E[T (i)]w
2
i

�2
n

(6.11)

≤ anE[T (j)] ∑
i∈[n]

E[T (i)]w
2
i

�2
n

.

This is o(wj/(1 − νn(λn))) when λn → −∞, since

an

∑
i∈[n]

E[T (i)]w
2
i

�2
n

= an

∑
i∈[n]

w3
i

�2
n(1 − νn(λn))

≤ C

|λn|n
ρ−2+3α+η

(6.12)

= C

|λn| = o(1).
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This completes the proof for E[|C(j)|]. The proof for wT (j) is similar. Indeed, we
split

E
[
wT (j) − W(j)

] ≤ E
[
wT (j)1{T (j)>an}

]
(6.13)

+ E
[[

wT (j) − W(j)
]
1{T (j)≤an}

]
.

The first term is now bounded by

E
[
wT (j)1{T (j)>an}

] ≤ 1

an

E
[
wT (j)T (j)

]
,(6.14)

which we can again bound using E[wT (j)T (j)] ≤ E[w2
T (j)] + E[T (j)2] together

with Lemma 2.3(a) and (b). Further,

E
[[

wT (j) − W(j)
]
1{T (j)≤an}

]
≤ ∑

i∈[n]
E

[[
wT (j) − W(j)

]
1{T (j)≤an}1{mark i drawn at least twice}

]
(6.15)

≤ ∑
i∈[n]

E
[
wT (i)

] an∑
s1,s2=1

P(mark i drawn at times s1, s2)

≤ anE[T (j)] ∑
i∈[n]

E
[
wT (i)

]w2
i

�2
n

= an

wjνn(λn)

(1 − νn(λn))2

∑
i∈[n]

w3
i

�2
n

,

so that

E[W(j)] ≥ E
[
wT (j)

] − 1

an

E
[
wT (j)T (j)

] − an

wj

(1 − νn(λn))2

∑
i∈[n]

w3
i

�2
n

.(6.16)

We bound E[wT (j)T (j)] ≤ E[w2
T (j)] + E[T (j)2]. Now we can simply follow the

argument for E[|C(j)|]. �

Cluster size and weight of high weight vertices are concentrated. We note that,
by the stochastic domination and the fact that E[|C(j)|] = wj

1−νn(λn)
(1 + o(1)), we

have

Var(|C(j)|) ≤ Var(T (j)) + o(E[T (j)]2).(6.17)

By Lemma 2.3(a),

Var(T (j)) = wj(1 + νn(λn))

1 − νn(λn)
+ wj

(1 − νn(λn))3

(
1

�n

∑
l∈[n]

w3
l

)
(6.18)

= o

( w2
j

(1 − νn(λn))2

)
,
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since j is fixed and(
1

�n

∑
l∈[n]

w3
l

)(
1 − νn(λn)

)−1 = C

|λn|n
3α−1+η = o(nα) = o(wj ).(6.19)

For wT (j) the argument is identical. We conclude that, for j fixed, Var(|C(j)|) =
o(E[|C(j)|]2) and Var(W (j)) = o(E[W (j)]2), so that

|C(j)|
E[|C(j)|]

P−→ 1,
W(j)

E[W(j)]
P−→ 1,(6.20)

and then Lemma 6.1 completes the proof of (6.1).

Cluster weight sums. We start by proving a convenient result relating the clus-
ter weights W (j) and W≤(j).

LEMMA 6.2 (Cluster weight properties). (a) For every integer m ≥ 2,∑
j∈[n]

W≤(j)m = ∑
j∈[n]

wj W(j)m−1.(6.21)

(b) For every i, j ∈ [n],
E

[
W(i)W(j)1{i←→/ j}

] ≤ E[W (i)]E[W(j)].(6.22)

PROOF. (a) We compute

∑
j∈[n]

W≤(j)m = ∑
j∈[n]

∑
i1,...,im

m∏
s=1

wis1{is∈C(i1) ∀s=2,...,m,min C(i1)=j}

= ∑
i1,...,im

m∏
s=1

wis1{is∈C(i1) ∀s=2,...,m}(6.23)

= ∑
i1∈[n]

wi1 W(i1)
m−1.

(b) We write out

E
[

W (i)W (j)1{i←→/ j}
] = ∑

k,l

wkwlP(i ←→ k, j ←→ l, i ←→/ j)

≤ ∑
k,l

wkwlP(i ←→ k)P(j ←→ l)(6.24)

= E[W (i)]E[W(j)]
by the BK-inequality; see [20], Section 2.3. �
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Only high-weight vertices matter. We start by proving that the probability that,
for K ≥ 1, there exists a j > K such that W≤(j) ≥ εnρ/|λn| is small. Since, for

all j ≤ K , we have that |λn|n−ρ W (j)
P−→ cj , we have that, for all i ≤ m and m

such that cm > ε, W (j) = W(j).
Recall that W [K](j) is the weight of the cluster of j in the random graph only

making use of the vertices in [n] \ [K], and let W [K]
≤ (j) = W [K](j) when j is the

minimal element in C[K](j). If there exists a j > K such that W [K](j) ≥ εnρ/|λn|,
then

∑
j>K

W [K]≤ (j)3 ≥ ε3

|λn|3 n3ρ.(6.25)

Since

�n ≥ ∑
j>K

wj ,(6.26)

we see that this random graph is stochastically bounded by the random graph hav-
ing weights w[K], where w

[K]
j = 0 when j ≤ K and w

[K]
j = wj otherwise. By the

Markov inequality,

P
(∃j > K : W≤(j) ≥ εnρ/|λn|)

(6.27)

≤ ∑
j>K

W [K]≤ (j)3 = |λn|3
ε3 n−3ρ

∑
j>K

wjE
[

W [K](j)2]
,

where we have used Lemma 6.2 for the equality. We note that we can again
stochastically dominate |C[K](j)| by T [K](j) and W [K](j) by wT [K](j), where now

the offspring distribution is equal to X
[K]
i = X

(BP)
i 1{Mi>K} (recall Section 2.1).

Therefore, by Lemma 2.3(d), we obtain that

E
[

W [K](j)2] ≤ E
[
w2

T [K](j)

]
(6.28)

=
( w

[K]
j

1 − ν
[K]
n

)2

+ w
[K]
j

(1 − ν
[K]
n )3

(
1

�n

∑
i∈[n]

(
w

[K]
i

)3
)
,

where

w
[K]
j = wj1{j>K}, ν[K]

n = ∑
j∈[n]

(
w

[K]
j

)2
/�n.(6.29)

It is not hard to see that, for each K ≥ 1 fixed, as n → ∞,

E
[
w2

T [K](j)

] ≤
(

wj

1 − νn(λn)

)2

+ (
1 + o(1)

) wj

(1 − νn(λn))3

(
1

�n

n∑
i>K

w3
i

)
.(6.30)
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Substitution of the bound (6.28) in the right-hand side of (6.27) and performing
the sum over j gives that

∑
j>K

wjE
[

W [K](j)2] ≤ 1

(1 − νn(λn))2

(
1 + 1

1 − νn(λn)

) ∑
j>K

w3
j

(6.31)
≤ CK1−3α(nρ/|λn|)3,

so that

P
(∃j > K : W≤(j) ≥ εnρ/|λn|) ≤ |λn|3ε−3n−3ρCK1−3α(nρ/|λn|)3

(6.32)
= CK1−3αε−3,

which can be made arbitrarily small by taking K = K(ε) large.
We complete this section by proving that the probability that there exists a

j > K such that |C≤(j)| ≥ εnρ/|λn| is small. For this, we use Lemma 5.1, which
proves that, whp, if |C≤(j)| ≥ εnρ/|λn|, then also W≤(j) ≥ εnρ/(2|λn|). Thus, the
result for cluster sizes follows from the proof for cluster weights. This completes
the proof of Theorem 1.3.

7. Proof of Theorem 1.2. In this section, we prove Theorem 1.2. We start by
using [3], Proposition 7, to show that the random graph multiplicative coalescent
converges (recall Lemma 1.7).

Convergence of the random graph multiplicative coalescent at fixed time. We
apply [3], Proposition 7, which gives conditions to show that, for fixed λ ∈ R, the
random sequence X(n)(|λn| + λ) converges in distribution to a random variable
which has the same distribution as the (0, β,d)-multiplicative coalescent at time λ

when three conditions are satisfied about the initial state x(n) = X(n)(0). To state
these conditions, we define, for r = 2,3, with x(n) = (x

(n)
j )j≥1,

σr

(
x(n)) = ∑

j

(
x

(n)
j

)r
.(7.1)

Then, the conditions in [3], Proposition 7, are that, as λn → −∞:

(a)

|λn|(|λn|σ2
(
x(n)) − 1

) P−→ −β;(7.2)

(b)

x
(n)
j

σ2(x(n))

P−→ dj ;(7.3)
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(c)

|λn|3σ3
(
x(n)) P−→

∞∑
j=1

d3
j .(7.4)

The conditions (a)–(c) above are not precisely what is in [3], Proposition 7, and we
start by explaining how (a)–(c) imply the conditions for [3], Proposition 7. Indeed,
in [3], Proposition 7, the condition in (a) is replaced by σ2(x(n)) → 0, and the
process

X(n)

(
1

σ2(x(n))
+ λ

)
(7.5)

is proved to converge to the realization of a (0,0,d)-multiplicative coalescent
at time λ. Under condition (a) (and the fact that λn → −∞), (a) implies that
1/σ2(x(n)) = |λn| − β + o(1). Since if (X(t))t is a multiplicative coalescent with
parameters (0,0,d), then (X(t − β))t is a multiplicative coalescent with parame-
ters (0, β,d) (see [3], (13)), and using the continuity proved in [3], Lemma 27, this
proves the fact that X(n)(|λn| + λ) converges in distribution to a random variable
which has the same distribution as a (0, β,d)-multiplicative coalescent at time λ.
Also, in [3], Proposition 7, condition (c) is replaced by the condition that

σ3(x(n))

σ2(x(n))3
P−→

∞∑
j=1

d3
j ,(7.6)

which follows from a combination of (a) and (c). Further, in (a)–(c), we work with
convergence in probability (as the initial state is a random variable), while in [3],
Proposition 7, the initial state is considered to be deterministic. This is a minor
change.

In the remainder of this section, we shall show that conditions (a)–(c) hold with
β = −ζ/E[W ] and dj = cj /E[W ].

Asymptotics of σ2(x(n)). In the following lemma, we state the properties of
σ2(x(n)) that we shall rely on. In order to state the result, we recall that

σ2
(
x(n)) = ∑

j

(
x

(n)
j

)2
,(7.7)

where x
(n)
j = n−ρ W(j), and where the vertex weights are now given by

w̄j (0) = (1 + λn�nn
−2ρ)wj = wj(λn�nn

−2ρ+η) = wj(λn�n/n),(7.8)

since 2ρ − η = 1, so that

w̄(0) = w(λn�n/n) = w(E[W ]λn)
(
1 + o(1)

)
.(7.9)
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Now,

σ2
(
x(n)) = n−2ρ

∑
j≥1

W 2
(j) = n−2ρ

∑
j≥1

W≤(j)2(7.10)

and, thus, by Lemma 6.2,

σ2
(
x(n)) = n−2ρ

∑
j∈[n]

W≤(j)2 = n−2ρ
∑

j∈[n]
wj W(j).(7.11)

We continue by investigating the mean and variance of the above sum:

LEMMA 7.1 [Mean and variance of σ2(x(n))]. When the weights w(λn) satisfy
that νn(λn) < 1 − λnn

−η, then:

(i)

E

[ ∑
i∈[n]

wi W(i)

]
= �n

1 − νn(λn)
+ o(n2ρλ−2

n );(7.12)

(ii)

Var
( ∑

i∈[n]
wi W (i)

)
(7.13)

≤ �nE[w3
T ] ≤ C

(
E[wT ]4 1

�n

∑
i∈[n]

w4
i + E[wT ]2

E[w2
T ] 1

�n

∑
i∈[n]

w3
i

)
.

PROOF. (i) We bound

E

[ ∑
i∈[n]

wi W(i)

]
≤ E

[ ∑
i∈[n]

wiwT (i)

]
= �nE[wT ] = �nνn

1 − νn

.(7.14)

For the lower bound, we make use of the bound alike in (6.16),

E
[
wT (i) − W(i)

] ≤ ∑
j∈[n]

E
[[

wT (i) − W(i)
]
1{mark j drawn at least twice}

]
(7.15)

≤ ∑
j∈[n]

E
[
wT (j)

] ∑
s1<s2

P(mark j drawn at times s1, s2).

Now, there are two contributions, depending on whether s2 is in the family
tree of s1 or not. When it is not, then the events {mark j drawn at time s1} and
{mark j drawn at time s2} are completely independent, and we arrive at

∑
s1<s2

P(mark j drawn at times s1, s2) = w2
j

�2
n

∑
s1<s2

P
(
T (i) ≥ s1

)
(7.16)

≤ w2
j

�2
n

E[T (i)2].
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When s2 is in the family tree of s1, then we obtain the bound

∑
s1<s2

P(j chosen at times s1, s2) = w2
j

�2
n

∑
s1<s2

P
(
T (i) ≥ s1

)
P(s2 ∈ Ts1),(7.17)

where we denote the tree rooted at s1 by Ts1 . Thus, denoting by |Ts1 | the number
of elements in Ts1 , ∑

s2

P(s2 ∈ Ts1) ≤ E[|Ts1 |] = E[T (j)],(7.18)

and we arrive at a contribution of

∑
s1<s2

P(j chosen at times s1, s2) ≤ w2
j

�2
n

∑
s1<s2

P
(
T (i) ≥ s1

)
E[T (j)]

(7.19)

= w2
j

�2
n

E[T (i)]E[T (j)].
Therefore,

E
[
wT (i) − W(i)

] ≤ ∑
j∈[n]

E
[
wT (j)

]w2
j

�2
n

(
E[T (i)2] + E[T (i)]E[T (j)])

= E[T (i)2] 1

1 − νn(λn)

∑
j∈[n]

w3
j

�2
n

(7.20)

+ E[T (i)] 1

(1 − νn(λn))2

∑
j∈[n]

w4
j

�2
n

.

Thus we obtain

∑
i∈[n]

wiE[W(i)] ≥ ∑
i∈[n]

wiE
[
wT (i)

] − ∑
i∈[n]

wiE[T (i)2] 1

1 − νn(λn)

∑
j∈[n]

w3
j

�2
n

− ∑
i∈[n]

w2
i

1

(1 − νn(λn))3

∑
j∈[n]

w4
j

�2
n

.

We bound

∑
i∈[n]

wiE[T (i)2] ∑
j∈[n]

w3
j

�2
n(1 − νn(λn))

≤ C

�2
n(1 − νn(λn))3

( ∑
i∈[n]

w3
i

)2

+ C
∑
i∈[n]

w2
i

(1 − νn(λn))4

∑
j∈[n]

w3
j

�2
n

(7.21)

≤ C|λn|−3n3η−2+6α + C|λn|−4n4η−1+3α.
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Now, 3η − 2 + 6α = 1 < 2ρ = (τ − 2)/(τ − 1), since τ > 3, so that the first term
is o(n2ρ/|λn|2). For the second term 4η − 1 + 3α = 2ρ + (τ − 4)/(τ − 1) < 2ρ,
so this terms is also o(n2ρ |λn|−2). Similarly,

∑
i∈[n]

w2
i

1

(1 − νn(λn))3

∑
j∈[n]

w4
j

�2
n

= νn(λn)
1

(1 − νn(λn))3

∑
j∈[n]

w4
j

�n

(7.22)
≤ C|λn|−3n3η−1+4α.

Again, 3η − 1 + 4α = 2(τ − 3)/(τ − 1) < 2ρ, so also this contribution is
o(n2ρ |λn|−2).

(ii) We shall start by bounding the second moment. For this, we rewrite

E

[( ∑
i∈[n]

wi W (i)

)2]
= ∑

i1,i2

wi1wi2E[W(i1)W(i2)].(7.23)

Now we split

E[W(i1)W(i2)] = E
[

W (i1)W(i2)1{i1←→i2}
]

(7.24)
+ E

[
W(i1)W (i2)1{i1←→/ i2}

]
.

By Lemma 6.2(b), the second term is bounded from above by E[W(i1)]E[W (i2)].
Therefore, summing over i1, i2, we obtain that

E

[( ∑
i∈[n]

wi W(i)

)2]
≤ E

[ ∑
i∈[n]

wi W(i)

]2

(7.25)
+ ∑

i1,i2

wi1wi2E
[

W(i1)W(i2)1{i1←→i2}
]
,

so that

Var
( ∑

i∈[n]
wi W (i)

)
= E

[( ∑
i∈[n]

wi W(i)

)2]
− E

[ ∑
i∈[n]

wi W(i)

]2

≤ ∑
i1,i2

wi1wi2E
[

W (i1)W(i2)1{i1←→i2}
]

(7.26)
= ∑

i∈[n]
wiE[W(i)3]

≤ ∑
i∈[n]

wiE
[
w3

T (i)

] = �nE[w3
T ].

The upper bound on E[w3
T ] follows as in the proof of Lemma 2.3. �
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Check of convergence conditions. We conclude that we are left to prove that
conditions (a), (b) and (c) in (7.2)–(7.4) hold. We shall prove these conditions in
the order (b), (c) and (a), condition (a) being the most difficult one.

Condition (b) follows from (6.1) and condition (a), as we show now. Substitut-
ing (7.9) into (6.1), we obtain that

x
(0)
j = n−ρ W(j) = cj

E[W ]|λn|
(
1 + oP(1)

) = (
1 + oP(1)

)
dj/|λn|,(7.27)

where dj = cj /E[W ]. Further, the first-order asymptotics in condition (a) proves

that |λn|σ2(x(n))
P−→ 1, so that the factor 1/σ2(x(n)) in condition (b) can be re-

placed by a multiplication by |λn|. We conclude that |λn|x(0)
j

P−→ dj , where
dj = cj/E[W ], as required.

For condition (c), we apply similar ideas and start with

|λn|3σ3
(
x(n)) = ∑

j∈[n]
(|λn|n−ρ W≤(j))3.(7.28)

The summands for j > K can be bounded using Lemma 6.2 by∑
j>K

(|λn|n−ρ W≤(j))3 ≤ (|λn|n−ρ)3
∑
j>K

wj W [K](j)2,(7.29)

which is small in probability by the Markov inequality and (6.31). The summands
for j ≤ K converge in probability by (6.1). Thus condition (c) follows from (6.1)
and (6.31).

We continue with condition (a), which is equivalent to the statement that

σ2
(
x(n)) = 1

|λn| − β

λ2
n

+ oP(|λn|−2),(7.30)

where β = −ζ/E[W ].
We shall prove (7.30) by a second moment method. We first identify, by Lem-

ma 6.2(a),

σ2
(
x(n)) = n−2ρ

∑
j∈[n]

W≤(j)2 = n−2ρ
∑
i∈[n]

wi W(i).(7.31)

Thus, in order to prove (7.30), it suffices to show that

E

[ ∑
i∈[n]

wi W(i)

]
= n2ρ

(
|λn|−1 + ζ

E[W ] |λn|−2 + o(|λn|−2)

)
(7.32)

and

Var
( ∑

i∈[n]
wi W(i)

)
= o(n4ρ |λn|−4).(7.33)
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Indeed, by (7.32), we have that, for n sufficiently large,

P

(∣∣∣∣σ2
(
x(n)) − |λn|−1 − ζ

E[W ] |λn|−2
∣∣∣∣ ≥ ε|λn|−2

)
(7.34)

≤ P
(∣∣σ2

(
x(n)) − E

[
σ2

(
x(n))]∣∣ ≥ ε|λn|−2/2

)
,

which, by the Chebychev inequality is bounded by

P

(∣∣∣∣σ2
(
x(n)) − |λn|−1 + ζ

E[W ] |λn|−2
∣∣∣∣ ≥ ε|λn|−2

)
≤ 4|λn|4

ε2 Var
(
σ2

(
x(n)))

(7.35)
= o(1)

by (7.33). Thus, (7.30) follows from (7.32) and (7.33).
To prove (7.32), we apply Lemma 7.1, in the setting that

νn(λn) = νn(1 + λn�nn
−2ρ) = 1 + λn�nn

−2ρ + ζn−η + o(n−η),(7.36)

so that, by Lemma 7.1(i),

E

[ ∑
i∈[n]

wi W(i)

]
=

∑
i∈[n] w2

i

1 − νn(λn)
+ o(n2ρ |λn|−2)

= νn(λn)�n

(|λn|�nn
−2ρ − ζn−η + o(n−η)

)−1

+ o(n2ρ |λn|−2)(7.37)

= |λn|−1n2ρ + ζ

E[W ]n
2ρ |λn|−2

+ o(|λn|−2n2ρ),

which proves (7.32) with β = −ζ/E[W ].
By Lemma 7.1(ii),

Var
( ∑

i∈[n]
wi W(i)

)
≤ C

(
E[wT ]4 1

�n

∑
i∈[n]

w4
i + E[wT ]2

E[w2
T ] 1

�n

∑
i∈[n]

w3
i

)
(7.38)

= o(n4ρλ−4
n ),

precisely when both terms in the middle inequality satisfy this bound. We complete
the proof by checking these estimates. The first contribution is bounded by

1

�n(1 − νn(λn))4

∑
i∈[n]

w4
i ≤ C

|λn|4 n4α+3η−1 = o(n4ρ |λn|−4),(7.39)

since 4α+3η−1 = 2(τ −2)/(τ −1) = 2ρ < 4ρ. The second contribution, instead,
is bounded by

1

�2
n(1 − νn(λn))5

( ∑
i∈[n]

w3
i

)2

≤ C

|λn|5 n6α+5η−2 = o(n4ρ |λn|−4),(7.40)
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since 6α + 5η − 2 = (3τ − 7)/(τ − 1) < 4ρ = 4(τ − 2)/(τ − 1). This proves the
required concentration for σ2(x(n)) and hence completes the proof of Theorem 1.2
for cluster weights and for any fixed λ.

Convergence of the finite-dimensional distributions random graph multiplica-
tive coalescent. So far, we have proved the convergence of X(n)(|λn| + λ) for
a fixed time λ. By [3], Lemma 26, there exists an eternal multiplicative coa-
lescent with the same marginal for every λ. By the strong Feller property of
multiplicative coalescents proved in [2], as well as [3], Lemma 27, the conver-
gence of X(n)(|λn| + λ1) implies that the future finite-dimensional distributions
(X(n)(|λn|+λl))

k
l=1 converge in distribution to the finite-dimensional distributions

of the eternal multiplicative coalescent. This completes the proof of the conver-
gence of the finite-dimensional distributions in Theorem 1.2 for cluster weights.

Convergence of cluster sizes from cluster weights. By the adaptation of Theo-
rem 1.1 to cluster weights in Theorem 1.4, we obtain that W≤(j) = |C≤(j)|(1 +
oP(1)), so that the result immediately follows for the cluster sizes.

Acknowledgments. We thank Tom Kurtz for a discussion that helped us to
simplify the proof of Corollary 3.4 substantially and to note the extension to the
convergence in the uniform topology in Remark 3.8. We thank David Aldous and
Vlada Limic for help on their results in [3], which in particular clarified the conver-
gence of finite-dimensional distributions in Theorem 1.2. We thank Sandra Kliem
and two anonymous referees for their valuable comments that helped us to sub-
stantially improve the presentation.

REFERENCES

[1] ALBERT, R. and BARABÁSI, A.-L. (2002). Statistical mechanics of complex networks. Rev.
Modern Phys. 74 47–97. MR1895096

[2] ALDOUS, D. (1997). Brownian excursions, critical random graphs and the multiplicative coa-
lescent. Ann. Probab. 25 812–854. MR1434128

[3] ALDOUS, D. and LIMIC, V. (1998). The entrance boundary of the multiplicative coalescent.
Electron. J. Probab. 3 59 pp. (electronic). MR1491528

[4] ALDOUS, D. J. (1999). Deterministic and stochastic models for coalescence (aggregation
and coagulation): A review of the mean-field theory for probabilists. Bernoulli 5 3–48.
MR1673235

[5] ALON, N. and SPENCER, J. H. (2000). The Probabilistic Method, 2nd ed. Wiley, New York.
With an appendix on the life and work of Paul Erdős. MR1885388
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