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QUASILIMITING BEHAVIOR FOR ONE-DIMENSIONAL
DIFFUSIONS WITH KILLING1

BY MARTIN KOLB AND DAVID STEINSALTZ

University of Oxford

This paper extends and clarifies results of Steinsaltz and Evans [Trans.
Amer. Math. Soc. 359 (2007) 1285–1234], which found conditions for con-
vergence of a killed one-dimensional diffusion conditioned on survival, to
a quasistationary distribution whose density is given by the principal eigen-
function of the generator. Under the assumption that the limit of the killing
at infinity differs from the principal eigenvalue we prove that convergence
to quasistationarity occurs if and only if the principal eigenfunction is inte-
grable. When the killing at ∞ is larger than the principal eigenvalue, then
the eigenfunction is always integrable. When the killing at ∞ is smaller, the
eigenfunction is integrable only when the unkilled process is recurrent; oth-
erwise, the process conditioned on survival converges to 0 density on any
bounded interval.

1. Introduction.

1.1. Background and history. Killed Markov processes are central objects in
probability theory. One natural line of inquiry runs to questions about the asymp-
totic behavior of the process conditioned on long-term survival.

We work with the one-dimensional diffusions (Xt)t≥0 on the interval [0,∞),

generated by the differential expression −L := 1
2

d2

dx2 +b d
dx

. In addition to the pos-
sible killing at the boundary 0, there is is a killing rate κ , so that we will really
be concerned with the differential expression −Lκ := −L − κ . (We leave the de-
scription of the domain, and hence of the operator and attendant semigroup, for
later, because much of the analysis will depend on moving flexibly among various
domains on which this differential expression can operate.) Let ν be a compactly
supported distribution on [0,∞). We aim to find conditions which imply conver-
gence of the family of distributions

μν
t (·) := Pν(Xt ∈ · | τ∂ > t)(1.1)

as t → ∞. This limit is sometimes called the Yaglom limit, after the seminal work
of Yaglom (1947) on branching Markov processes conditioned on long survival.
Any such limit must be quasistationary, in the sense that when started in this distri-
bution the process will remain in a multiple of the same distribution for all times.
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The extensive mathematical development and wide-ranging applications in this
area—a bibliography of papers on quasistationary distributions and Yaglom lim-
its compiled and periodically updated by Pollett (2010) lists 403 entries through
2010—permit us to mention only a smattering of the vast array of applications of
killed Markov processes to biology [Seneta and Vere-Jones (1966), Högnäs (1997),
Haridas and Tuljapurkar (2005), Cattiaux et al. (2009), demography: Steinsaltz
and Evans (2004), Le Bras (1976), Li and Anderson (2009), medicine: Manton
and Stallard (1988), Yashin et al. (2007) and statistics: Aalen (1995), Aalen and
Gjessing (2003), Del Moral (2004)]. Particularly in the demographic and medical
contexts, where killed Markov processes suggest themselves as models for popu-
lations undergoing culling by mortality or other processes, Yaglom limits, while
rarely mentioned explicitly in the applied literature, correspond naturally to the
observable distribution of survivors.

The central concerns of this theory are to describe, for a given class of sub-
Markov processes, the quasistationary distributions (if any), and to describe the
convergence (or not) of the process conditioned on survival to one of these quasis-
tationary distributions. A significant part of the literature focuses on discrete state
spaces, commonly birth–death processes (or with some more flexible localization
of the transitions), with killing only on the boundary. One of the most general
accounts of the existence and convergence to quasistationary distributions for dis-
crete processes of this kind can be found in Ferrari et al. (1995). One unusual
contribution, outside of these categories, is Gosselin (2001), which proves con-
vergence to quasistationarity for fairly arbitrary discrete Markov chains with gen-
eral killing, by imposing a stringent Lyapunov-like drift condition. Existence and
vague-convergence conditions for discrete-time Markov chains on general metric
spaces can be found in Lasserre and Pearce (2001).

Killed birth–death processes naturally generalize to killed diffusions in the
continuous-space context, but these have received rather less attention. The ex-
istence of eigenfunctions for the generator of a one-dimensional diffusions is
simplified in the continuous setting, as we may rely upon standard theory of
ordinary differential equations. Showing that these eigenfunctions are integrable
(hence represent the densities of distributions), and quasistationary is more in-
volved, though, and showing Yaglom convergence to the minimal quasistation-
ary distribution becomes technically challenging, particularly when the state space
is an unbounded interval. The foundation for all later work on Yaglom conver-
gence of diffusions was laid by Mandl (1961), who used standard results from
Sturm–Liouville theory and the spectral theorem for self-adjoint operators to prove
vague convergence (i.e., convergence of the distribution of the process condi-
tioned on being in a compact set), and uniform convergence under an assump-
tion of strong inward drift. These results have been substantially extended by a
shifting coalition of researchers who have produced papers Collet, Martínez and
San Martín (1995), Martínez and San Martín (2001), Cattiaux et al. (2009), which
elucidate the conditions under which Yaglom convergence occurs, and distinguish
in Martínez and San Martín (2004) the R-positive situation from the R-null—
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essentially, exponential-rate decay of probabilities distinguished from decays that
are asymptotically not exactly exponential—in terms of the eigenfunctions.

One important constraint in most work in this field to date—as well as Pinsky’s
results in Pinsky (1985), for diffusions on a compact domain with gradient-type
drift—has been the assumption that killing occurs only at the boundary. Not only is
this restriction unnatural from the perspective of many of the applications, particu-
larly the demographic applications discussed in Steinsaltz and Evans (2004, 2007),
it obscures the fundamental links among the spectrum, the killing rate out at infin-
ity, the recurrence-transience dichotomy and Yaglom convergence. (An exception
which proves the rule is the biological application of internally killed diffusions
[Karlin and Tavaré (1983)], which makes no reference to any of the literature on
killed diffusions and cites only Seneta (1966) for quasistationary distributions of
discrete chains.)

Note that this approach to conditioning is quite different from Doob’s h-process
or h-transform. We can generate an h-transform of a Markov process which cor-
responds to conditioning on the process never being killed. That is, we look at
the distribution of {Xt : t ∈ [0, s]} for fixed s conditioned on τ∂ > T (where τ∂

is the killing time), in the limit as T → ∞; we may then take a second limit
s → ∞ to define the process on [0,∞). This procedure generally produces a
new Markov process, which is now unkilled. A well-known example of this is the
three-dimensional Bessel process, which may be derived from the one-dimensional
Brownian motion, conditioned never to hit 0 [Varadhan (2007), Section 6.6]. This
is intimately connected to questions about the Martin boundary.

We will be concerned here only with the Yaglom approach, conditioning on
survival up to finite times. A key difference is that collection of distributions μν

t

for different times t are not consistent, and so cannot be analyzed directly with
Markov-process techniques. They are more amenable to an analytic semigroup
approach.

1.2. Heuristics. We begin by observing that general spectral theory—summa-
rized here in Lemma 2.1—tells us that the bottom of the spectrum λκ

0 gives the
exponential rate of decay of the distribution of Xt restricted to a compact interval.
What needs to be addressed, then, is the question of whether the portion of the
surviving mass within a compact interval dominates the total surviving mass. There
are two ways of addressing this question. One is in terms of the spectrum of the
L2 generator. Suppose K := limx→∞ κ(x) exists. In Steinsaltz and Evans (2007)
the emphasis was placed on the crucial distinction between the cases λκ

0 > K and
λκ

0 < K .
It turns out that a more useful dichotomy is whether or not λκ

0 is an isolated
eigenvalue. The eigenvalue λκ

0 is isolated when the diffusion takes place on a com-
pact interval with two regular boundaries, but also in cases which intuitively seem
well-approximated by a compact process, as when there is strong drift pulling
the process in from ∞, and when there is strong killing out toward ∞. Thus the
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isolated-eigenvalue case includes all of the λκ
0 < K case [see Lemma 3.3(v)]. We

expect the same methods that work in finite dimensions, for powers of positive
symmetric matrices, to work in this case as well. One catch is that the L2 con-
vergence need not tell us about the convergence of the conditioned density, which
is an L1 property; indeed, it is easy to see [cf. Proposition 2.3 of Steinsaltz and
Evans (2007)] that the process always escapes to ∞ if

∫ ∞
0 ϕ(λκ

0 , x) d�(x) is not
finite, where � is the speed measure and ϕ(λ, ·) is the eigenfunction of the gener-
ator, defined as the solution to an ordinary differential equation in Section 3.2. We
show, in Lemma 4.4, that these conditions do, in fact, suffice: That is, whenever λκ

0
is an isolated eigenvalue, and the corresponding eigenfunction is also integrable,
then we have convergence to the quasistationary distribution given by the density
ϕ(λκ

0 , ·)/ ∫
ϕ(λκ

0 , x) d�(x).
What about the case when λκ

0 is not an isolated eigenvalue? This corresponds
to the R-null and R-transient cases in Tweedie’s theory [Tweedie (1974b, 1974a)],
where the decay of the transition kernel is not exactly exponential with rate −λκ

0 ,
but slightly faster, in the sense that eλκ

0 tpκ(t, x, y) → 0 (pκ being the diffusion
transition kernel). It turns out that in this case the convergence lines up precisely
with the standard recurrence/transience dichotomy for the unkilled process. [An-
other way of putting this is to say that when the R-recurrence or R-transience does
not conform to the properties of the unkilled process, this must be reflected in the
equality of λκ

0 and limx→∞ κ(x).]
Another way of understanding the nonisolated case is by thinking about how the

condition λκ
0 > K implies that the distribution must decline on compact sets at a

faster exponential rate than would keep pace with the killing out toward ∞. There
are two ways this imbalance in killing can be maintained: Either the mass vanishes
toward ∞, meaning that the scale (of the unkilled diffusion) is finite; this is the R-
transient case. Or the scale is infinite with finite speed, which means that the excess
mass keeps returning to 0, at long intervals, and the killing rate λ0 corresponds to
real killing at 0, not escape; this is the R-null case. In the R-transient case the
conditioned process escapes to infinity. In the R-null case the conditioned process
converges to the quasistationary distribution. Note that the arguments for the one
or the other behavior seem to refer only to the motion, irrespective of the killing κ .

1.3. Main results. The core of this work is the identification of the asymptotic
behavior of killed diffusions in terms of the relation between the principal eigen-
value of the generator, the limit behavior of κ and the nature of the boundary at ∞.
We move beyond earlier work in removing unnecessary constraints on the drift
and killing terms, and in providing easily testable criteria for determining whether
the conditioned process converges to a quasistationary distribution for all cases in
which the bottom of the spectrum λκ

0 does not coincide with the limit of the killing
rate at ∞.

We begin by summarizing the most important results. These results presuppose
general assumptions and restrictions on the processes involved, which will be for-
mulated fully in Section 2. The quasistationary distribution will be defined in terms
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of its density ϕ(λκ
0 , ·) with respect to �, where ϕ(λκ

0 , ·) is the principal eigenfunc-
tion of the generator, defined as the solution to an ordinary differential equation
with appropriate boundary condition, stated formally in Section 3.2.

(i) Convergence on compacta: There is always convergence to the quasistation-
ary distribution on compact sets, stated formally as Theorem 3.15.

(ii) Dichotomy: If λκ
0 > lim supx→∞ κ(x) or λκ

0 < lim infx→∞ κ(x), then the con-
ditioned process either converges to the quasistationary distribution with den-
sity ϕ(λκ

0 , ·)(∫ ∞
0 ϕ(λκ

0 , y) d�(y))−1 with respect to �, or escapes to ∞. This
behavior is independent of the initial distribution, provided only that it is com-
pactly supported. (For explanation of the terminology, see Section 2.3.) This
is Theorem 3.3 of Steinsaltz and Evans (2007), but it is restated here as Theo-
rem 2.6 in a slightly stronger form, as several restrictions have been removed.

(iii) Yaglom convergence with high killing at ∞ always: If λκ
0 < lim infx→∞ κ(x),

then the conditioned process converges to the quasistationary distribution.
This is stated as Theorem 4.3. Note that this includes the (somewhat unintu-
itive) fact that a bound on the L2 spectrum implies that

∫ ∞
0 ϕ(λκ

0 , y) d�(y) <

∞, which is a fact about the L1 spectrum.
(iv) Yaglom convergence with low killing at ∞ when recurrent: If K :=

limx→∞ κ(x) exists and K < λκ
0 , then the behavior of the conditioned pro-

cess depends on the transience or recurrence of the unkilled process. If the
unkilled process is transient—that is, if

∫ ∞
0 γ (x)−1 dx < ∞—then the con-

ditioned process escapes to ∞. If the unkilled process is recurrent—that is, if∫ ∞
0 γ (x)−1 dx = ∞—then the conditioned process converges to the quasis-

tationary distribution. These results are stated in Theorems 4.9 and 4.7.
(v) Yaglom convergence equivalent to integrability of the principal eigenfunc-

tion: If λκ
0 < lim infx→∞ κ(x) or λκ

0 > limx→∞ κ(x), then convergence to
quasistationarity is equivalent to the integrability of the principal eigenfunc-
tion ϕ(λκ

0 , ·). This is stated as Theorem 5.1

Our results extend those of Steinsaltz and Evans (2007) in several ways:

• In Steinsaltz and Evans (2007) the authors had to impose conditions that re-
quired the drift and killing not to grow too quickly, or be too irregular in order
to insure that ∞ is of the limit point type. Here there is no constraint on the
killing other than local boundedness, and no constraint on the drift other than
that which implies that ∞ is inaccessible. The case of an entrance boundary
at infinity was excluded in Steinsaltz and Evans (2007). Moreover, in contrast
to Steinsaltz and Evans (2007) item (i) is shown to hold without any further
condition on the initial distribution other than compact support.

• In Steinsaltz and Evans (2007) an assertion of the type (iii) was shown under the
assumption that K = limx→∞ κ(x) exists and some further growth restrictions
on b and κ .



QUASILIMITING BEHAVIOR 167

• Item (iv) describes the most substantial advance: The case limx→∞ κ(x) < λκ
0 is

now shown to be split by the standard recurrence-transience dichotomy, which
tells us whether the conditioned process converges or escapes. In Steinsaltz and
Evans (2007) the dichotomy could not be decided if limx→∞ κ(x) < λκ

0 .
• In Steinsaltz and Evans (2007) the assertion of item (v) was established only in

the case λκ
0 < lim infx→∞ κ(x).

2. Assumptions, definitions and previous results.

2.1. Analytic terminology. In general a Sturm–Liouville operator is any for-
mal differential operator of the form τ = τp,q,V = − 1

2p
d
dx

q d
dx

+ V , where
p,q : (a1, a2) → (0,∞) and V : (a1, a2) → R are sufficiently well-behaved func-
tions. In this work we consider only operators where p = q = γ , V = κ ≥ 0 and
a1 = 0, a2 = ∞. Note that the diffusion coefficient has been set to 1. However,
the case of a general nondegenerate diffusion coefficient can be reduced to the
present case via a time change. Thus our results can be applied to the case of
a general diffusion coefficient. This reduction simplifies the formulas consider-
ably. Moreover, we always assume in this chapter that γ (x) = e2

∫ x
0 b(s) ds for some

b ∈ L1
loc([0,∞)) ∩ C((0,∞)) and 0 ≤ κ ∈ C([0,∞)). These conditions are not

entirely necessary, but this constraint still admits a large class of one-dimensional
diffusions. [However, see Cattiaux et al. (2009) for a natural application to biology
which requires b to be singular at 0.] Concerning the assumptions on b we could re-
place the condition b ∈ L1

loc([0,∞)) by the condition that
∫ 1

0 e− ∫ x
c 2b(s) ds dx < ∞

for some c ∈ (0,∞), and
∫ 1

0 e
∫ x
c 2b(s) ds dx < ∞, which is equivalent to saying that

the boundary point 0 is regular in the sense of Feller and also in the sense of Weyl.
In this paper we will consistently use � as a reference measure instead of the
Lebesgue measure, which is different from the convention adopted in Steinsaltz
and Evans (2007). Recall that the speed measure of a one-dimensional diffusion
is also the reversing measure, with respect to which the generator is symmetric.
Unless otherwise indicated, we will always use the bare notation L2 to mean
L2((0,∞),�), and for f,g ∈ L2 we have the inner product

〈f,g〉 =
∫ ∞

0
f (x)g(x)γ (x) dx.(2.1)

The formal differential operator Lκ = − 1
2γ

d
dx

γ d
dx

+ κ gives rise to a closable

densely defined quadratic form q̃κ,α in L2 by

ϕ 
→ q̃κ,α(ϕ)
(2.2)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

αϕ(0)2 + 1

2

∫ ∞
0

|ϕ′(y)|2γ (y) dy +
∫ ∞

0
κ(y)|ϕ(y)|2γ (y) dy,

if α < ∞,
1

2

∫ ∞
0

|ϕ′(y)|2γ (y) dy +
∫ ∞

0
κ(y)|ϕ(y)|2γ (y) dy,

if α = ∞,



168 M. KOLB AND D. STEINSALTZ

for any ϕ ∈ Dκ,α , where Dκ,α is defined by

Dκ,α :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{ϕ ∈ L2|ϕ ∈ C1(0,∞) ∩ C([0,∞)), q̃κ,α(ϕ) < ∞},

if α ∈ [0,∞),

{ϕ ∈ L2|ϕ ∈ C1(0,∞) ∩ C([0,∞)), ϕ(0) = 0, q̃κ,∞(ϕ) < ∞},
if α = ∞.

The closure of this quadratic form will be denoted by qκ,α . To the quadratic form
qκ,α there corresponds a uniquely defined positive self-adjoint operator Lκ,α with
a dense domain of definition D(Lκ,α). It is easy to see (essentially via integration
by parts) that the action of the operator Lκ,α is given by

Lκ,αϕ(x) = −1
2ϕ′′(x) − b(x)ϕ′(x) + κ(x)ϕ(x).

By definition of the operator Lκ,α every element ϕ ∈ D(Lκ,α) is absolutely con-
tinuous and satisfies the boundary condition 2αϕ(0) = ϕ′(0) [or ϕ(0) = 0 when
α = ∞]. As in the definition of qκ,α we see that α = ∞ corresponds to Dirich-
let condition at 0 (instantaneous killing), and α = 0 to Neumann condition (pure
reflection) at 0.

The bottom of the spectrum of Lκ will be denoted by λκ
0 . The spectrum of the

self-adjoint operator Lκ is written �(Lκ). Where there is no danger of confusion,
the corresponding objects with κ ≡ 0 will also be denoted by q , L and λ0 instead
of q0, L0 and λ0

0, respectively (or q0,α , L0,α and λ
0,α
0 ). Since Lκ and L are self-

adjoint operators, the spectral theorem implies the existence of spectral resolutions
(Eκ

λ)λ∈[λκ
0 ,∞) and (Eλ)λ∈[λ0,∞), respectively. For the basic facts concerning spec-

tral theory of self-adjoint operators the reader should consult Weidmann (2000).
The spectral theorem for self-adjoint operators allows us to define functions

f (Lκ) of the operator. For every Borel-measurable function f : R → R the opera-
tor f (Lκ) is defined via

D(f (Lκ)) =
{
u ∈ L2

∣∣∣ ∫
�(Lκ)

|f (λ)|2 d‖Eκu‖2(λ) < ∞
}
,(2.3)

f (Lκ)u =
∫
�(Lκ)

f (λ) dEκ(λ)u,(2.4)

‖f (Lκ)u‖2 =
∫
�(Lκ)

f (λ)2 d‖Eκu‖2(λ).(2.5)

Observe that for a Borel-measurable function f : [0,∞) → R and a ≥ 0 we have
Ran(f (Lκ)) ⊂ D((Lκ)a) if [0,∞) � λ 
→ |λaf (λ)| is bounded. This implies in
particular that the range of e−tLκ

is contained in the domain of all powers of Lκ .
Moreover the spectral theorem allows us to clarify further the connection between
the quadratic form qκ and the associated nonnegative operator Lκ . Let

√
Lκ de-

note the unique nonnegative square root of Lκ , which is defined using the spectral
theorem. Then we have D(qκ) = D(

√
Lκ), and for every f ∈ D(Lκ) we have

qκ(f, g) = 〈√
Lκf,

√
Lκg

〉
.(2.6)
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Using the “elliptic” Harnack inequality and Weyl’s spectral theorem it is not diffi-
cult to see that

λκ
0 = max

{
λ ∈ R | there is a positive solution of (Lκ − λ)u = 0

(2.7)

with u(0) = 1

1 + α
,

1

2
u′(0) = α

1 + α

}
.

[This was proved by Mandl (1961) using slightly different methods.] Equation
(2.7) already suggests that for 0 ≤ λ ≤ λκ

0 solutions of (Lκ − λ)u = 0 might have
a probabilistic significance.

In the sequel we usually denote by ϕ(λ, ·) the solution of the eigenvalue equa-
tion

(Lκ − λ)ϕ(λ, ·) = 0, ϕ(λ,0) = 1

1 + α
,

1

2
ϕ′(λ,0) = α

1 + α
.(2.8)

It might be important to note that solutions in (2.7) and (2.8) are solutions in
the sense of the theory of ordinary differential equations. An important issue is
whether the solution also belongs to the Hilbert space L2 and thus is an eigen-
function in the sense of spectral theory. When we wish to emphasize that certain
solutions are also eigenfunctions in the sense of spectral theory, we denote them
by uλ.

Crucial to much of our analysis is the fact that the asymptotic behavior of the
semigroup is wholly determined by the spectrum right near the base of the spectral
measure, which we show in Lemma 2.1, and then that the base of the spectral
measure for any nonnegative function is λκ

0 , which is Lemma 2.2. For g ∈ L2,
define λg to be the infimum of the support of the spectral measure of g; that is,

λg := sup{λ :‖Eλg‖ = 0},(2.9)

and let Aλ be the subspace of L2 consisting of functions f such that λf ≥ λ.

LEMMA 2.1. Given g ∈ D(Lκ,α), we have

|g(x)| ≤ Cα(x)
∥∥√Lκg

∥∥ + C′
α‖g‖

(2.10)

= Cα(x)

(∫ ∞
0

λd‖Eκg‖2(λ)

)1/2

+ C′
α

(∫ ∞
0

d‖Eκg‖2(λ)

)1/2

,

where

Cα(x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max

{√
2

α
,

(
2

∫ x

0
γ (y)−1 dy

)1/2}
, for α > 0,(

18
∫ x

0
γ (y)−1 dy

)1/2

, for α = 0,

(2.11)
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and

C′
α :=

⎧⎪⎪⎨⎪⎪⎩
0, if α > 0 or

∫ ∞
0

γ (y) dy = ∞,(∫ ∞
0

γ (y) dy

)−1/2

, if α = 0 and
∫ ∞

0
γ (y) dy < ∞.

(2.12)

For any t > 1/2λg ,

sup |e−tLκ

g(x)| ≤ (
Cα(x)λg + C′

α

)‖g‖e−tλg .(2.13)

PROOF. Suppose α ∈ (0,∞). Since g ∈ D(Lκ) is differentiable, we have

|g(x)| ≤ |g(0)| +
∫ ∞

0
|g′(y)|1[0,x]

γ (y)
γ (y) dy

= |g(0)| +
〈
|g′|, 1[0,x]

γ

〉

≤ |g(0)| +
∥∥∥∥1[0,x]

γ

∥∥∥∥ · ‖g′‖ (Cauchy–Schwarz inequality)

≤
(

2|g(0)|2 + 2
∥∥∥∥1[0,x]

γ

∥∥∥∥∫ ∞
0

|g′(y)|2γ (y) dy

)1/2

≤ Cαqκ,α(g)1/2

= Cα

∥∥√Lκ,αg
∥∥

by (2.2) and (2.6). The spectral theorem (2.5) allows us to represent
√

Lκg in terms
of the spectral resolution, yielding (2.10).

If α = ∞, then g(0) = 0, so the corresponding term drops out of the bound.
If α = 0, we have the alternative bound

|g(x)| ≤ |g(0)| + C(qκ,0(g))1/2,

|g(x)| ≥ |g(0)| − C(qκ,0(g))1/2,

where C = √
2‖1[0,x]

γ
‖. The second bound gives us

‖g‖2 ≥
(∫ ∞

0
γ (y) dy

)(|g(0)|2 − 2C|g(0)|(qκ,0(g))1/2)
,

which implies that

|g(0)| ≤ 2C

√
qκ,0(g) + ‖g‖2

(∫ ∞
0

γ (y) dy

)−1/2

.

We combine this with the above calculation to obtain the appropriate version of
(2.10).
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For any positive t , we have gt := e−tLκ
g ∈ D(Lκ), so we may apply (2.10) to

obtain

|gt (x)| ≤
(∫ x

0
γ (y)−1 dy

)1/2∥∥√Lκe−tLκ

g
∥∥.

Applying again the spectral theorem (2.5)—now with f (x) = √
xe−tx—yields

‖√Lκe−tLκ

g‖2 =
∫ ∞

0
λe−2tλ d‖Eκg‖2(λ)

=
∫ ∞
λg

λe−2tλ d‖Eκg‖2(λ)

≤ λge
−2tλg‖g‖2,

since λe−2tλ attains its maximum at λ = 1
2t

. Similarly,

‖e−tLκ

g‖2 =
∫ ∞
λg

e−2tλ d‖Eκg‖2(λ) ≤ e−2tλg‖g‖2. �

LEMMA 2.2. For any nonnegative measurable function f ∈ L2 with ‖f ‖ > 0,
the spectral measure d‖Eκf ‖2(λ) corresponding to f includes λκ

0 in its support.

PROOF. Since e−Lκ
f is everywhere nonnegative (except perhaps at the

boundary), and its associated spectral measure has the same support as d‖Eκf ‖2,
we may assume that if there were a counterexample it would not vanish off the
boundary.

Suppose there is some λ∗ > λκ
0 such that ‖Eκ

λ∗f ‖ = 0. Then for any h ∈ L2 with
|h| ≤ f ,

e−λ∗t‖f ‖2 ≥
∫ ∞
λ∗

e−λt d‖Eκf ‖2(λ)

= ‖e−(t/2)Lκ

f ‖
≥ ‖e−(t/2)Lκ

h‖
=

∫ ∞
λκ

0

e−λt d‖Eκh‖2(λ).

Thus, it must be that d‖Eκh‖2(λ) is supported on [λ∗,∞) as well. Thus, for all
such h we have ‖Eκ

λ∗h‖ = 0.
Let fn = f · 1[0,n]. For any λ̃ ∈ (λκ

0 , λ∗), by (2.3) fn is in the domain of the
resolvent Rλ̃ = (Lκ − λ̃)−1. Furthermore, by (2.5), if we choose λ∗∗ large enough
so that ‖Eλ∗∗f ‖ > 0, then

‖Rλ̃f ‖2 =
∫

(λ̃ − λ)−2 d‖Eκf ‖2(λ) ≥ (λ̃ − λ∗∗)−2‖Eλ∗∗f ‖2 > 0.
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Let gn := Rλ̃fn/‖Rλ̃fn‖. Then gn satisfies

Lκgn(x) = λ̃gn for x ≤ n.

(In principle, the equality holds only in the L2 sense, but it becomes true for all x

since both sides are in Dα , hence, in particular, continuous.) By the representation

Rλ̃fn =
∫ ∞

0
esλ̃e−sLκ

fn ds,

we see that gn is nonnegative.
The space of solutions to the ordinary differential equation Lκg = λ̃g satisfying

boundary condition (2.14) is one-dimensional, so if we renormalize to

g̃n :=
{

(1 + α)−1gn(0)−1gn, if α < ∞,
g′

n(0)−1gn, if α = ∞,

we have g̃n(x) = g̃n′(x) for x ∈ [0, n] when n ≤ n′. The limit must then be iden-
tical with the function ϕ(λ̃, ·), and is everywhere nonnegative, contradicting the
characterization of λκ

0 in (2.7). �

2.2. Boundary conditions, recurrence and transience. Defining the diffusion
includes a boundary condition at 0, parametrised by α ∈ [0,∞]

2αφ(0) = φ′(0) if α < ∞, or φ(0) = 0 if α = ∞.(2.14)

(It is more common in probability to use a parameter on [0,1], corresponding
to α/(1 + α).) The condition α = ∞ corresponds to instantaneous killing at 0,
while α = 0 corresponds to reflection with no killing. Intermediate parameters
correspond to “slow killing” at 0, so that the process is killed when the local time
at 0 reaches an exponentially distributed random variable. The operator Lκ,α is
associated with the closure of the quadratic form q̃κ,α . That is, L is the self-adjoint
realization of the differential expression − 1

2γ
d
dx

(γ d
dx

)+κ in L2 that has boundary
condition (2.14) at 0. The quadratic form q is a Dirichlet form, and the canonically
associated Markov process is a solution for the martingale problem associated to
the operator L with the appropriate killing or reflection at 0. This means there
exists a family of measures (Pt )t∈(0,∞) on the space C([0,∞),R) of real valued
continuous functions on [0,∞) such that for every f ∈ L2 and every x ∈ (0,∞)

(due to the Feller property)

(e−tLf )(x) = Ex[f (Xt), T0 > t],
where (Xt) is the canonical process on C([0,∞),R), and T0 is a random time
defined with respect to the local time at 0. (Again, if α = ∞, then T0 is the time of
first hitting 0; if α = 0, then T0 ≡ ∞.) In this normalization, the scale measure has
density γ (x)−1 with respect to Lebesgue measure.

It is a trivial consequence of the definition of natural scale that
∫ Xt γ (x)−1 is

a martingale, and so that Px(Xt hits 0 eventually) = 1 for x > 0 if and only if
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the scale function is infinite at ∞; that is, for c > 0,
∫ ∞
c γ (x)−1 dx = ∞. When

there is killing at 0, the process is recurrent only when the scale function is infinite
at both ends. In analytic terms, recurrence means that the associated generator is
critical [see Gesztesy and Zhao (1991) and Pinsky (1995)]. Recall that Lκ is called
critical iff there exists a unique (up to constant multiples) positive solution ψ of
Lκψ = 0. Otherwise Lκ is called subcritical. We know from criticality theory—
for example, from Theorem 3.15 of Gesztesy and Zhao (1991)—that the generator
must be critical if 0 is an isolated eigenvalue. A generalization of this fact will be
used in Lemma 3.3.

The semigroup e−tLκ
has a probabilistic representation: We consider the prod-

uct space

C([0,∞)) × [0,∞) = {(ω, ξ) ∈ C([0,∞)) × [0,∞)}
endowed with the natural product σ -field. Let (P̃x)x∈(0,∞) denote the family of
measures which is induced by the Dirichlet form q0. For x ∈ (0,∞) we define the
measures

P̃x ⊗ e−ξ dξ

and the stopping time

Tκ(ω, ξ) = inf
{
s ≥ 0

∣∣∣ ∫ s

0
κ(ωs) ds ≥ ξ

}
.

If we set

τ∂ = min(T0, Tκ)

then we have the Feynman–Kac representation,

(e−tLκ

f )(x) = Ẽx[f (Xt), τ∂ > t] = Ex

[
e− ∫ t

0 κ(Xs) dsf (Xt), T0 > t
]
.(2.15)

It is easy to see that e−tLκ
is an integral operator. We denoty by pκ(t, x, y) its

integral kernel with respect to the measure �, that is,

e−tLκ

f (x) =
∫ ∞

0
pκ(t, x, y)f (y)�(dy) for every f ∈ L2((0,∞),�).

Since we are working with the self-adjoint version of the generator (with respect
to the measure �), the Feynman–Kac representation holds in great generality, fol-
lowing the derivation in Demuth and van Casteren (2000). We will generally omit
the tilde, since it will be clear from context which measure is meant.

Let us recall the usual Feller classification [see, e.g., Chapter 3 in Lorenzi and
Bertoldi (2007)] of boundary points for diffusion generators −1

2
d2

dx2 − b(x) d
dx

in
an open interval (0, r).
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DEFINITION 2.3. Let c ∈ (0, r) be given and set γ (x) = e
∫ x
c 2b(y) dy . The

point r is called accessible, if
∫ r
c γ (x)−1 ∫ x

c γ (y) dy dx < ∞, and otherwise in-
accessible. If r is an accessible boundary point, then it is called regular iff∫ r
c γ (x)

∫ x
c γ (y)−1 dy dx < ∞. If r is accessible and

∫ r
c γ (x)

∫ x
c γ (y)−1 dy dx =

∞, then r is called an exit boundary. If r is inaccessible, then it is an en-
trance boundary, iff

∫ r
c γ (x)

∫ x
c γ (y)−1 dy dx < ∞. If r is inaccessible and∫ r

c γ (x)
∫ x
c γ (y)−1 dy dx = ∞, then r is called natural. Of course the same classi-

fication holds for 0.

Except where otherwise indicated, we will always assume that the boundary
point ∞ is inaccessible.

It is easy to check that the boundary point r is regular if and only if
∫ r
c γ (x) dx <

∞ and
∫ r
c γ (x)−1 dx < ∞. A boundary point is thus regular in the sense of Feller

if and only if it is regular in the sense of Weyl; cf. Jörgens and Rellich (1976). Let
us recall the relevant definition from the Weyl theory of self-adjoint extensions of
singular Sturm–Liouville operators Lκ = − 1

2γ
d
dx

(γ d
dx

) + κ in (0, r), adapted to
our special situation.

DEFINITION 2.4. We say that boundary r is of limit-point type, if there
exists c ∈ (0, r) and z ∈ C, and a solution f of (Lκ − z)f = 0 such that∫ r
c |f (y)|2γ (y) dy = ∞. If there exists c ∈ (0,∞), such that for every solution

of the equation (Lκ − z)f = 0 the integral
∫ r
c |f (y)|2γ (y) dy is finite, then we say

that r is of limit-circle type. An analogous notation applies to the boundary point 0.

A fundamental result in the theory of Sturm–Liouville operators is the so called
Weyl-alternative, which states that exactly one of the above situations holds and
that the limit-point/limit-circle classification is independent of z ∈ C [see Jörgens
and Rellich (1976)]. Moreover if we are in the limit-point case at r , then for every
z ∈ C \ R there exists exactly one solution of the equation (Lκ − z)f = 0 which
satisfies

∫ r
c |f (s)|2γ (y) dy < ∞. Roughly limit-circle case at a boundary point r

means that we have to specify boundary conditions at r in order to get a self-
adjoint realization, whereas in the limit-point case at r no boundary conditions at
r are necessary.

2.3. Quasi-limiting and quasi-stationary behavior. We say that Xt converges
from the initial distribution ν to the quasistationary distribution ϕ on compacta if
for any positive z, and any Borel A ⊂ [0, z]

lim
t→∞Pν(Xt ∈ A|Xt ≤ z) =

∫
A ϕ(y)γ (y) dy∫ z
0 ϕ(y)γ (y) dy

;
Xt converges from the initial distribution ν to the quasistationary distribution ϕ if∫ ∞

0 ϕ(y)γ (y) dy < ∞, and for any Borel subset A ⊂ [0,∞)

lim
t→∞Pν(Xt ∈ A|τ∂ > t) =

∫
A ϕ(y)γ (y) dy∫ ∞

0 ϕ(y)γ (y) dy
.
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Finally we say that Xt escapes from the initial distribution ν to infinity if

lim
t→∞Pν(Xt ≤ z|τ∂ > t) = 0.

REMARK 2.5. In the literature there is no completely standard terminology
for quasistationary distributions. The probability measure ϕ(y)�(dy)∫ ∞

0 ϕ(y)γ (y) dy
described

here is sometimes also called a quasi-limiting distribution. A quasistationary distri-
bution ν̃ is often defined as a probability measure ν̃ supported in (0,∞) satisfying

Pν̃ (Xt ∈ A|τ∂ > t) = ν̃(A) ∀ Borel sets A ⊂ (0,∞), t > 0.

Quasilimiting distributions are also called Yaglom limits. It is not difficult to see
that quasilimiting distributions are also quasistationary distributions.

2.4. Previous results. Observe that we have in equation (2.7) that ϕ(λκ
0 , ·) is

positive. Steinsaltz and Evans (2007) showed a slightly weaker version of the fol-
lowing result. Their additional assumptions concerning the b and κ are easily seen
to be unnecessary.

THEOREM 2.6 [Theorem 3.3 in Steinsaltz and Evans (2007)]. Assume that ∞
is a natural boundary point and that we are in the limit-point case at ∞. Suppose
that either

lim inf
x→∞ κ(x) > λκ

0 or lim sup
x→∞

κ(x) < λκ
0 .

Then either Xt converges to the quasistationary distribution ϕ(λκ
0 , y) dγ (y)/∫ ∞

0 ϕ(λκ
0 , y) dγ (y), or Xt escapes to infinity. In the case lim infκ(x) > λκ

0 , Xt

converges to the quasistationary distribution ϕ(λκ
0 , ·) if and only if

∫ ∞
0 ϕ(λκ

0 , y) ×
γ (y) dy is finite.

A priori it would not have been clear that the conditional distribution converges,
and that the mass cannot split, with part of the mass remaining on a compact inter-
val and the remainder escaping to infinity. Having recognized that there is a a di-
chotomy, it is natural to then seek a simple criterion for discriminating between the
cases: escape or convergence. One such is given in Steinsaltz and Evans (2007), un-
der which Xt converges to quasistationarity, namely when λκ

0 < K =: limt→∞ κ(t)

together with the growth bound

∃b̃, κ̃ ≥ 0 ∀y large enough: |b(y)| ≤ b̃y and κ(y) ≤ κ̃y(GB′)

or the related bound

∃b̄1, b̄2, κ̄, β ≥ 0 ∀y large enough: b̄1y
β ≥ b(y) ≥ −b̄1y, b′(y) ≥ −b̄2y

2

(GB′′)
and κ(y) ≤ κ̃y.
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While these conditions are satisfied in many applications they are, from a theo-
retical point of view, unsatisfactory. In particular, it seems peculiar that an upper
bound on the killing rate as in (GB′) should be necessary. On the contrary increas-
ing the killing rate κ should, from a heuristic point of view, only strengthen the
convergence to quasistationarity.

REMARK 2.7. We make use of Theorem 2.6 only in the case

λκ
0 > lim

x→∞κ(x)

and �((0,∞)) < ∞. In the other cases we use different techniques. In the next
chapter we will show that ∞ is always in the limit-point case. As emphasized and
explained in Steinsaltz and Evans (2007) in this case the heuristic behind Theo-
rem 2.6 is quite clear, but the translation of this idea into formal mathematics is
not trivial.

3. Analytic results. In this chapter we derive several key analytic facts about
the spectra of generators and resolvents. While some of these are standard in the
theory of Sturm–Liouville operators, and well known to specialists in that field,
they are less familiar to probabilists, and we explain them in some detail here.
In Section 3.1 we show that the technical conditions for a limit-point boundary
at ∞ may be weakened. Section 3.2 derives basic results linking the spectrum and
speed measure. Section 3.3 presents the standard parabolic Harnack inequality in
the form that we will be using. Section 3.4 applies the analytic results to con-
vergence on compacta. Section 3.5 explains why strong conditions on the initial
conditions are unnecessary. Finally, Section 3.6 generalizes the results to the case
of an entrance boundary at ∞.

3.1. Classification of boundary points. We start by establishing a connection
between the Feller classification and the Weyl classification of boundary points.
This has already been investigated in Wielens (1985) for the case κ = 0, but in
this work the author introduces the notion of weak entrance boundary and shows
that one is in the limit-circle case if the boundary point is of weak entrance type.
We show that there are no weak entrance boundaries at ∞ by proving that ∞ is
in the limit-point case. The proof we give is well known in the Schrödinger case
[see Braverman, Milatovich and Shubin (2002) for similar ideas in a much more
general context]. We assume regularity of the coefficients of the Sturm–Liouville
expression, although weaker assumptions would also suffice.

LEMMA 3.1. Let the Sturm–Liouville expression τf (x) = − 1
γ (x)

(γ (x) ×
f ′(x))′ + κ(x)f (x) be given. Assume that γ is strictly positive and locally Lip-
schitz in (0,∞) and κ ∈ L2

loc([0,∞)) such that κ(x) ≥ −C|x|2 + D for some
constants C,D ≥ 0. Then we are in the limit-point case at ∞.
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PROOF. We can assume, without loss of generality, that D = 0 and that γ is
continuous up to the boundary. The first assumption is obviously harmless. If γ

is not continuous up to zero we can consider the differential expression in (1,∞)

instead of (0,∞). This shift does not change the Weyl-classification of τ at in-
finity. Similarly, we may assume that the boundary condition at 0 is Dirichlet
(α = ∞), since the classification at infinity is unaffected by the boundary con-
dition at 0.

As usual in the theory of Sturm–Liouville operators we define the maximal
operator T and the minimal operator T̃ associated to the differential expression τ

as

D(T ) := {f ∈ L2|f,γf ′ absolutely continuous in (0,∞), τf ∈ L2},
Tf := τf for f ∈ D(T )

and

D(T̃ ) := {f ∈ D(T )|f has compact support in (0,∞)},
T̃ f := τf for f ∈ D(T̃ ),

respectively. Let TD be the restriction of the maximal operator T to the domain

D = {f ∈ D(T )|f (0) = 0},
that is, we put Dirichlet boundary conditions at the boundary point 0.

The deficiency indices (we refer to the short summary in the Appendix) of T̃

are (1,1) if the limit-point case holds at ∞, and (2,2) if limit-circle holds at ∞.
In the former case, the maximal symmetric (self-adjoint) extensions of T̃ are one-
dimensional; in the latter case, they are two-dimensional. If TD defines a sym-
metric operator—〈f,TDf 〉 ∈ R for every f ∈ D—then it cannot have dimension
higher than 2. But there is one free parameter at 0; in the limit-circle case there
would be two free parameters at ∞. Thus, in the limit-circle case TD would be a
three-dimensional extension of T̃ , so it could not be symmetric. If we show that TD

is symmetric, it will follow that the Sturm–Liouville problem is in the limit-point
case at ∞.

Let ϕ ∈ C∞
c (R) such that 0 ≤ ϕ ≤ 1 and

ϕ(x) =
{

1, if |x| ≤ 1,
0, if |x| ≥ 2.

Further we set ϕk(x) = ϕ(x
k
) (k ∈ N). This gives, for f ∈ D(TD) and k ∈ N

〈f,TDf 〉 = lim
k→∞

∫ ∞
0

ϕk(x)2f (x)TDf (x)γ (x) dx

= lim
k→∞

∫ ∞
0

ϕk(x)2f (x)

[
− 1

2γ
(γf ′)′(x) + κ(x)f (x)

]
γ (x) dx(3.1)
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= lim
k→∞

[
1

2

∫ ∞
0

(ϕk(x)2f (x))′f ′(x)γ (x) dx

+
∫ ∞

0
ϕk(x)2κ(x)|f (x)|2γ (x) dx

]
= lim

k→∞

{∫ ∞
0

ϕ2
k (x)

(
1

2
|f ′(x)|2 + κ(x)|f (x)|2

)
γ (x) dx

+
∫ ∞

0
ϕk(x)ϕ′

k(x)f (x)f ′(x)γ (x) dx

}
.

Observe that in the third line the boundary term ϕ2
k f̄ γf ′|∞0 coming from the in-

tegration by parts vanishes, since γf is continuous up to 0 (since it satisfies an
ODE), f (0) = 0 and ϕk(x) is identically zero for x large enough.

The first term on the right-hand side is real, and we have to prove that the second
term converges to 0 as k → ∞. We have, by the Cauchy–Schwarz inequality and
the properties of the cut-off sequence (ϕk),∣∣∣∣∫ ∞

0
ϕk(x)ϕ′

k(x)f (x)f ′(x)γ (x) dx

∣∣∣∣
≤

(∫ ∞
0

ϕk(x)2|f ′(x)|2γ (x) dx

∫ ∞
0

|ϕ′
k(x)|2|f (x)|2γ (x) dx

)1/2

(3.2)

≤ Ck−1
(∫ ∞

0
ϕk(x)2|f ′(x)|2γ (x) dx

∫ 2k

k
|f (x)|2γ (x) dx

)1/2

.

For the first integral on the right-hand side we integrate by parts in a similar vein to
(3.1). The assumptions on κ as well as the elementary inequality |ab| ≤ a2/4 + b2

imply

1

2

∫ ∞
0

ϕk(x)2|f ′(x)|2γ (x) dx

=
∫ ∞

0
ϕk(x)2f (x)(TDf (x))γ (x) dx

−
∫ ∞

0
ϕk(x)2κ(x)|f (x)|2γ (x) dx −

∫ ∞
0

ϕkϕ
′
k(x)f (x)f ′(x)γ (x) dx

≤
∫ ∞

0
ϕk(x)|f (x)||TDf (x)|γ (x) dx + C

∫ ∞
0

ϕ2
kx

2|f (x)|2γ (x) dx

+
∫ ∞

0
|ϕk(x)ϕ′

k(x)f (x)f ′(x)|γ (x) dx

≤
∫ ∞

0
ϕk(x)|f (x)||TDf (x)|γ (x) dx + C

∫ ∞
0

ϕ2
kx

2|f (x)|2γ (x) dx

+
∫ ∞

0

[
1

4
|ϕk(x)f ′(x)|2 + |ϕ′

k(x)f (x)|2
]
γ (x) dx
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≤ ‖f ‖‖TDf ‖ + C(2k)2‖f ‖2

+ 1

4

∫ ∞
0

ϕk(x)2|f ′(x)|2γ (x) dx + M2k−2‖f ‖2.

This yields∫ ∞
0

ϕk(x)2|f ′(x)|2γ (x) dx ≤ 4‖f ‖‖TDf ‖ + 16Ck2‖f ‖2 + 4M2k−2‖f ‖2

and therefore for large k∫ ∞
0

ϕk(x)2|f ′(x)|2 dx ≤ C1 + C2k
2 ≤ C3k

2.(3.3)

Thus inequalities (3.2) and (3.3) imply that [observe that f ∈ L2((0,∞), γ )]∣∣∣∣∫ ∞
0

ϕk(x)ϕ′
k(x)f (x)f ′(x)γ (x) dx

∣∣∣∣ ≤ Ck−1
(
C3k

2
∫ 2k

k
|f (x)|2γ (x) dx

)1/2

→ 0,

as k → ∞. This proves the assertion, and so completes the proof. �

3.2. The spectrum of Sturm–Liouville operators. We begin with a version of
the spectral theorem for self-adjoint operators on a Hilbert space, specifically
adapted to Sturm–Liouville operators. A proof of it can be found in general refer-
ences on the theory of Sturm–Liouville or Schrödinger operators, such as Gesztesy
and Zinchenko (2006), Carmona and Lacroix (1990), Zettl (2005).

Let τ = − 1
2γ

d
dx

(γ d
dx

) + κ be a Sturm–Liouville expression which is regular at
0 and in the limit-point case at infinity, and let H be the self-adjoint realization of
τ in L2 with boundary conditions 2.14 at 0. Let ϕ(z, ·) be the unique solution of
the ordinary differential equation τϕ(z, ·) = zϕ(z, ·) satisfying ϕ(z,0) = 1/(1+α)

and 1
2ϕ′(z,0) = α/(1 + α).

Given a continuous function F ∈ C(R) and a σ -finite measure μ on R, we have
a corresponding maximal multiplication operator MF on L2(R,μ) defined by

D(MF ) = {g ∈ L2(R,μ) s.t. gF ∈ L2(R,μ)},
MF (g) = Fg.

THEOREM 3.2 (Weyl’s spectral theorem). There exists a measure σ whose
support is �(H), such that the map taking a compactly supported function h ∈
L2((0,∞),�) to the function ĥ ∈ L2(�(H),σ ), defined by

ĥ(·) =
∫ ∞

0
h(x)ϕ(·, x)γ (x) dx

may be uniquely extended to a unitary mapping U :L2((0,∞),�) → L2(�(H),σ )

with the property

UF(H)U−1 = MF .
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The spectrum of H is simple, and �(F(H)) = ess ranσ (F ).

The spectrum �(A) of a self-adjoint operator A may be divided into two com-
ponents: the essential spectrum �ess(A), comprising the limit points and eigen-
values of infinite multiplicity, and the discrete part �d(A), comprising the isolated
eigenvalues of finite multiplicity. In the Sturm–Liouville case every eigenvalue has
finite multiplicity (no more than 2), so the essential spectrum consists only of limit
points of the spectrum. It is well known that the essential part of the spectrum of
self-adjoint operators is invariant with respect to relatively compact perturbations
[see Theorem 9.15 of Weidmann (2000)]. [We recall that an operator V :X → X

on the Banach space X is called relatively compact with respect to T :X → X if
D(T ) ⊂ D(V ), and if for some z ∈ C \�(T ) the operator V (T − z)−1 is compact.
We refer to Section 9.2 of Weidmann (2000) for further details.]

The core of our results is contained in the following analytic lemma, which cat-
alogs some of the key linkages among the base of the spectrum, the scale measure
and the speed measure. These take us beyond the results of Theorem 2.6, by sepa-
rating the influence of the drift from the effect of the killing term. Moreover, they
show clearly why the case λκ

0 < K will turn out to be easier than the case λκ
0 > K .

The major results—particularly Theorems 3.15, 4.3, 4.7 and 4.9—will in essence
be just unpacking these analytic results in probabilistic terminology.

LEMMA 3.3. With the above definitions:

(i) if limx→∞ κ(x) = K , then �ess(L
0,α) + K = �ess(L

κ,α);
(ii) λ

0,∞
0 > 0 and

∫ ∞
0 γ (x)−1 dx = ∞ imply �(R+) = ∫ ∞

0 γ (x) dx < ∞;

(iii) λ
0,α
0 > 0 and �([0,∞)) = ∞ imply λ

0,0
0 > 0;

(iv) λ
0,α
0 > 0 and �([0,∞)) = ∞ imply limr→∞ 1

r
log�([0, r)) > 0;

(v) if λ
κ,α
0 < lim infx→∞ κ(x), then λκ

0 is a simple isolated eigenvalue with a
unique positive eigenfunction;

(vi) if α > 0 (not pure reflection at 0) or if �([0,∞)) = ∞, then 0 is not an
isolated eigenvalue of L0,α ;

(vii) if α > 0 (not pure reflection at 0) or if �([0,∞)) = ∞, then λκ
0 >

lim supx→∞ κ(x) implies λ
0,α
0 > 0.

PROOF. Assertion (i) can be derived from the fact that the essential spectra of
two self-adjoint operators L1 and L2 coincide if for some z ∈ C\(�(L1)∪�(L2))

the difference

(L1 − z)−1 − (L2 − z)−1

is a compact operator; cf. Theorem 9.15 of Weidmann (2000). Set κn(t) =
1[0,n](t)(κ(t) − K). The resolvent equation gives for z ∈ C \ R

(Lκn − z)−1 − (L − z)−1 = (Lκn − z)−1(L − Lκn)(L − z)−1

= −(Lκn − z)−1κn(L − z)−1.
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Observe now that the operator κn(L − z)−1 is compact; that is, the operator acting
by multiplication with κn is relatively compact with respect to the operator L.
This can be seen by considering the explicit form of the resolvent [see Chapter 3.3
in Jörgens and Rellich (1976); similar results can be found in Coddington and
Levinson (1955)]. We have

[κn(L − z)−1]g(x)

= κn(x)
1

W(v,u)

(
v(x)

∫ x

0
u(y)g(y)γ (y) dy + u(x)

∫ ∞
x

v(y)g(y)γ (y) dy

)
where u and v are linearly independent solutions of

(τ − z)w = 0 satisfying

u(0) = 1

1 + α
,

1

2
u′(0) = α

1 + α
and

∫ ∞
1

|v(y)|2γ (y) dy < ∞.

Observe that here we use the fact that we are in the limit-point case at infinity.
The Wronskian W(f,g) of two locally absolutely continuous functions f and g is
defined by

W(f,g)(x) = [f (x)g′(x) − f ′(x)g(x)]γ (x).

Thus κn(L − z)−1 is an integral operator in L2 with kernel k(·, ·) given by

k(x, y) =
{

W(v,u)−1κn(x)v(x)u(y), if y ≤ x, and
W(v,u)−1κn(x)v(y)u(x), if y ≥ x.

The known properties of u and v imply∫ ∞
0

∫ ∞
0

|k(x, y)|2γ (y)γ (x) dy dx

= 1

W(v,u)2

∫ n

0

(
|v(x)|2

∫ x

0
|u(y)|2γ (y) dy + |u(x)|2

∫ ∞
x

|v(y)|2γ (y) dy

)
× |κn(x)|2γ (x) dx

< ∞.

Thus κn(L − z)−1 is Hilbert–Schmidt, hence also compact.
We complete the proof by observing that the resolvent equation

(Lκn+K − z)−1 − (Lκ − z)−1 = (Lκn − z)−1(κ − κn − K)(Lκ − z)−1,

implies

‖(Lκn+K − z)−1 − (Lκ − z)−1‖ ≤ ‖(Lκn − z)−1‖‖κ − κn − K‖∞‖(Lκ − z)−1‖
≤ 1

(�z)2 ‖κ − κn − K‖∞ → 0

as n → ∞; that is, Lκn+K converges in the norm-resolvent sense to Lκ . In the
second inequality we used the fact that the operator norm of the operator that acts
as multiplication by a function f is just the supremum norm of f .
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Assertion (ii) is contained in Martínez and San Martín (2001) and also follows
from Theorem 1 of the recent work Pinsky (2009). [In Pinsky (2009) somewhat
stronger conditions on the drift are imposed, but these are not actually necessary
for the proof.]

Assertion (iii): Because L0,α and L0,0 differ only in their (one-dimensional)
boundary conditions, the difference (L0,0 + 1)−1 − (L0,α + 1)−1 has one-
dimensional range, so it is compact. For more details, see Weidmann (2000),
Satz 10.17. The bottom of the essential spectrum of L0,0 is then strictly posi-
tive, since it coincides with the bottom of the essential spectrum of L0,α , hence is
above the bottom of the full spectrum of L0,α . If λ

0,0
0 := inf spec(L0,0) = 0, then

λ
0,0
0 = 0 is necessarily an isolated eigenvalue of the operator L0,0. Let us assume

that λ
0,0
0 = 0. The unique (up to positive multiples) nontrivial and nonnegative

eigenfunction vN ∈ L2 associated to λ
0,0
0 = 0 therefore solves the boundary value

problem

L0,0vN = λ
0,0
0 vN = 0, vN(0) = 1

1 + α
and

1

2

dvN

dx
(0) = α

1 + α
.

Since this ordinary differential equation has a unique solution, and since the con-
stant function 1 is also a solution of this equation, we conclude that vN = 1. Thus
1 ∈ L2, which means that �((0,∞)) < ∞, contradicting our assumption that � is
infinite. It follows that λ

0,0
0 > 0.

Assertion (iv) follows from the above and the work of Notarantonio (1998).
His result implies that the bottom of the essential spectrum of the operator L0,0 is
bounded above by lim supr→∞ 1

r
log�((0, r)). This is 0 if the volume growth is

subexponential. Since we have already showed that λ
0,0
0 > 0, the result follows.

Assertion (v): Assume first that limx→∞ κ(x) exists. If λκ
0 < limx→∞ κ(x) =

K , then an application of the result (i) shows that Lκ = L + K + (κ − K) has the
same essential spectrum as L + K . Since L is a positive operator, the bottom of
the spectrum of L+K , hence a fortiori of the essential spectrum, has to be at least
K , hence bigger than λκ

0 , which implies (v).
Let us now assume only that lim infx→∞ κ(x) > λκ

0 . By the decomposition prin-
ciple [see Section 131 in Achieser and Glasmann (1981)] it is not difficult to see
that Lκ has the same essential spectrum as the operator Lκ

a (a > 0), defined as the
self-adjoint extension of τκ in L2((a,∞),�) satisfying Dirichlet boundary con-
ditions at a. If a0 > 0 and ε > 0 are such that infx≥a0 κ(x) > λκ

0 + ε we conclude
that

inf�ess(L
κ) ≥ inf�(Lκ

a0
)

≥ inf
ϕ∈C∞

c (a0,∞)

‖ϕ‖
L2((a0,∞),�)

=1

∫ ∞
a0

|ϕ′(x)|2γ (x) dx +
∫ ∞
a0

κ(x)|ϕ(x)|2γ (x) dx

≥ λκ
0 + ε.
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Assertion (vi): Let f,g be continuous functions, nonnegative and not identically
zero, with compact support on (0,∞), and λ1 := inf�(L0,α) \ {0}, where α > 0.
Suppose 0 is an isolated eigenvalue, so that λ1 > 0. Then

〈f, e−tL0,α

g〉 =
∫
�(L0,α)

e−tλ d〈f,Eg〉(λ)

= 〈f,E0,α({0})g〉 +
∫ ∞
λ1

e−tλ d〈f,E0,αg〉(λ)

→ 〈f,u0〉〈g,u0〉 as t → ∞.

This is positive, since u0 may be chosen to be strictly positive.
By Lemma 2.1 [observe that e−tL0,α

g ∈ D(L0,α) according to equation (3)]
there is a constant C such that for all x ∈ supp(g),

|e−tL0,α

g(x)| ≤ C
∥∥√

L0e−tL0
g
∥∥

≤ C

(∫ ∞
0

λe−2λtd‖E0,α
λ g‖2

)1/2

≤ C‖g‖e−λ1t for t sufficiently large,

so that

〈f, e−tL0
g〉 ≤ C‖g‖e−λ1t

∫ ∞
0

f (x)γ (x) dx → 0

as t → ∞, which is a contradiction.
Assertion (vii): Suppose first that the limit K of κ(x) exists. Intuitively, what

we are saying is that when the mass in a neighborhood of 0 shrinks at a rate faster
than K (what λκ

0 measures), it is being driven by drift: Either the mass is being
swept down into a region of high killing near 0, or it is being swept up away from 0.
In the latter case, the drift will still cause the mass near 0 to shrink exponentially
in the absence of killing; in the former case, the killing at 0 will do the job, except
in the case of pure reflection at 0.

By part (i), we see that Lκ = L + K + (κ − K) and L + K have the same
essential spectrum. In particular we conclude that inf�ess(L) + K = inf�ess(L +
K) ≥ λκ

0 and therefore inf�ess(L) ≥ λκ
0 − K > 0, so λ0 = 0 would imply that 0

is an isolated eigenvalue. Since this is impossible, by assertion (vi), it follows that
λ0 > 0. The extension to the case when the limit does not exist goes exactly the
same way as in the proof of assertion (v) above. �

REMARK 3.4. It was shown in Pinsky (2009) that conclusion (ii) of Lemma 3.3
can be sharpened. Assuming that absorption is certain, it was shown that

1

8A(b)
≤ λ0 ≤ 1

2A(b)
,(3.4)
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where

A(b) = sup
x>0

(∫ ∞
x

γ (y) dy

)(∫ x

0
γ (y)−1 dy

)
.

Related analytic inequalities, which are usually referred to as weighted Hardy in-
equalities, can be found in Muckenhoupt (1972). Indeed the results of Mucken-
houpt (1972) imply Pinsky’s bounds.

REMARK 3.5. The fact that the bottom of the spectrum is an isolated eigen-
value is also of practical interest, because in this case the associated eigenfunction
can be approximated accurately by the ground states of regular Sturm–Liouville
operators on bounded intervals [see the recent survey Weidmann (2005)]. Such
a result has recently been rederived [Villemonais (2009)] in the context of ap-
proximating the minimal quasistationary distribution of a diffusion generator with
discrete spectrum via interacting particle systems of Fleming–Viot type.

REMARK 3.6. Assume that λκ
0 is an eigenvalue with associated eigenfunction

uλκ
0
∈ L2, which by general theory is strictly positive and simple. Then

lim
t→∞ eλκ

0 tpκ(t, x, y) = cuλκ
0
(x)uλκ

0
(y),(3.5)

where c is a normalizing constant. This was proved in Simon (1993) for the transi-
tion function of Brownian motion on Riemannian manifolds but the proof carries
over without essential changes to our case.

We will also make use of the following result which is a special case of Theo-
rem 3.1 in Steinsaltz and Evans (2007).

LEMMA 3.7 [Theorem 3.1 in Steinsaltz and Evans (2007)]. Let 0 ≤ f ∈ L2

with compact support supp(f ) ⊂ [0,∞) be given, and let νf denote the measure
f (x)γ (x) dx. Let Lκ be as in Lemma 3.3 and let pκ(t, ·, ·) denote the integral
kernel of e−tLκ

. Then for arbitrary measurable bounded sets A,B ⊂ (0,∞)

lim
t→∞

∫ ∞
0 f (x)

∫
B pκ(t, x, y)γ (y)γ (x) dy dx∫ ∞

0 f (x)
∫
A pκ(t, x, y)γ (y)γ (x) dy dx

=
∫
B ϕ(λκ

0 , y)γ (y) dy∫
A ϕ(λκ

0 , y)γ (y) dy
,

that is, Xt converges from the initial distributions
νf∫ ∞

0 f (s)γ (ds)
on compacta to the

quasistationary distribution ϕ(λκ
0 , ·).

The above lemma can be proved directly using the spectral representation for
Sturm–Liouville operators. The reader will see the necessary arguments later in
this work in the proof of Theorem 3.15. Our first goal is to extend this result to the
case of general compactly supported initial distributions ν.

We begin by deducing some consequences of Lemma 3.7. This will lead to
Proposition 3.9, which is a “strong ratio limit theorem.” Before we start proving
the strong ratio limit theorem we explain another analytic fact which has no direct
relation to spectral theory but which will turn out to be very useful.
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3.3. Local parabolic Harnack inequality. A crucial tool for smoothing ana-
lytic information about the transition kernel between different times and sites is the
local parabolic Harnack inequality, which quite generally holds for second order
parabolic differential equations. One version appropriate to our current purposes
may be found in Lieberman (1996), and states that for fixed x0, t0 ∈ (0,∞) and
R > 0 there is a constant C such that for every weak solution u of (∂t − Lκ)u = 0
which is nonnegative in Q((x0, t0),4R) ⊂ (0,∞) × (0,∞),

sup
�((x0,t0),R/2)

u ≤ C inf
Q((x0,t0),R)

u,

where

Q((x0, t0),R) = {
(x, t) ∈ R

2|max
(|x − x0|,

√|t − t0|) < R, t < t0
}

and �((x0, t0),R) = Q((x0, t0 −R2),R). As in Theorem 10 of Davies (1997) this
inequality can be applied to the transition kernel pκ(t, x, y) in order to prove that
for every compact K ⊂ (0,∞) and T > 0 there is a constant c = c(K,T ) > 0 such
that for t ≥ T , x1, x2, x3, x4 ∈ K

c−1pκ(t, x1, x2) ≤ pκ(t, x3, x4) ≤ cpκ(t, x1, x2).(3.6)

Moreover the local parabolic Harnack inequality shows that there exists a locally
bounded function ζ : (0,∞) → (0,∞) such that for every t ≥ 1, y > 0, and x, z >

0 satisfying |z − x| < 1
2 ∧ |x|

4

pκ(t, x, y) ≤ ζ(x)pκ(t + 1, z, y).(3.7)

3.4. Strong ratio limit theorem and convergence on compacta.

LEMMA 3.8. For any fixed x0 ∈ (0,∞) the family of functions{
[0,∞) × R+ × R+ � (t, x, y) 
→ pκ(t + s, x, y)

pκ(s, x0, x0)

∣∣∣s ≥ 1
}

is relatively compact in the space C((0,∞)2,R) of real-valued continuous func-
tions on (0,∞)2, endowed with the vague topology.

PROOF. Let (sn)n∈N be a sequence with 1 ≤ sn → ∞, and set for t ∈ [0,∞),
x, y ∈ (0,∞)

rn(t, x, y) = pκ(t + sn, x, y)

pκ(sn, x0, x0)
,

where a ∈ (0,∞) is fixed. The functions (t, x, y) 
→ rn(t, x, y) (n ∈ N) are solu-
tions to the parabolic equation

(2∂t + Lκ
x + Lκ

y)rn(t, x, y) = 0,
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where the operator Lκ
x and Lκ

y act as Lκ on x- and y-variable, respectively. By
the local parabolic Harnack inequality (see Section 3.3) we conclude that for each
compact set K ⊂ (0,∞) there exists a constant CK such that for all n ∈ N, t ≥ 0
and x, y, a ∈ K

pκ(t + sn, x, y) ≤ CKpκ(t + sn, x0, x0).

By general spectral theory it is proved in Davies (1997) that r 
→ pκ(r, x0, x0) is
nonincreasing. Therefore we conclude that for t ≥ 0 and x, y ∈ K

pκ(t + sn, x, y)

pκ(sn, x0, x0)
≤ CK.

Theorem 6.28 in Lieberman (1996) shows that the set {rn | n ∈ N} is locally uni-
formly equicontinuous. Therefore by the theorem of Arzela–Ascoli [Kelley (1975),
Theorem 17], there exists a subsequence (rnk

)k∈N which converges locally uni-
formly. �

The proof above is modeled on Theorem 2.2 of Anker, Bougerol and Jeulin
(2002). Since that theorem assumed the operator was critical and the coefficients
were Hölder-continuous, some modification was required

The analytic core of quasilimiting behavior is the convergence of ratios of tran-
sition kernels, which we state and prove here as Proposition 3.9. This will imply
convergence to the quasistationary distribution on compacta, Theorem 3.15. Con-
vergence on the whole state space will then require a consideration of the recur-
rence or transience, to decide whether most of the mass stays in a compact interval
or escapes to infinity.

Results comparing transition probabilities at different times and sites, in the
limit as time goes to infinity, are commonly referred to as strong ratio limit theo-
rems. Strong ratio limit theorems for certain branching processes can be found in
Athreya and Ney (1972). A proof of the strong ratio property for certain Markov
chains on the integers was given in Kesten (1995).

PROPOSITION 3.9. For any a ∈ (0,∞)

lim
s→∞

p(t + s, x, y)

p(s, a, a)
= e−λκ

0 t ϕ(λκ
0 , x)ϕ(λκ

0 , y)

ϕ(λκ
0 , a)ϕ(λκ

0 , a)
.

PROOF. For every sequence (sn)n∈N ⊂ (0,∞) converging to infinity we know
by Lemma 3.8 that for some subsequence (snk

)k of (sn) there exists a function ψ

such that

pκ(t + snk
, x, y)

pκ(snk
, a, a)

→ ψ(t, x, y),
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where the convergence is locally uniform in [0,∞)×(0,∞)2. Since by Lemma 7.5
in Steinsaltz and Evans (2007) [see also Davies (1997)] for every f ∈ L2 with
compact support

lim
s→∞

〈e−(t+s)Lκ
f, f 〉

〈e−sLκ
f, f 〉 = e−λκ

0 t ,

one easily concludes that

ψ(t, x, y) = e−λκ
0 (t)ψ(0, x, y).

Lemma 3.7 shows that for every f,g,h ∈ C∞
0 (0,∞)∫ ∞

0 g(y)ϕ(λκ
0 , y)γ (y) dy∫ ∞

0 h(y)ϕ(λκ
0 , y)γ (y) dy

= lim
k→∞

∫ ∞
0 f (x)

∫ ∞
0 g(y)pκ(snk

, x, y)γ (y)γ (x) dy dx∫ ∞
0 f (x)

∫ ∞
0 h(y)pκ(snk

, x, y)γ (y)γ (x) dy dx

= lim
k→∞

∫ ∞
0 f (x)

∫ ∞
0 g(y)(pκ(snk

, x, y)/pκ(snk
, x0, x0))γ (y)γ (x) dy dx∫ ∞

0 f (x)
∫ ∞

0 h(y)(pκ(snk
, x, y)/pκ(snk

, x0, x0))γ (y)γ (x) dy dx

=
∫ ∞

0 f (x)
∫ ∞

0 g(y)ψ(0, x, y)γ (y)γ (x) dy dx∫ ∞
0 f (x)

∫ ∞
0 h(y)ψ(0, x, y)γ (y)γ (x) dy dx

.

This implies that for x ∈ (0,∞), g,h ∈ C∞
0 ((0,∞)∫ ∞

0 g(y)ϕ(λκ
0 , y)γ (y) dy∫ ∞

0 h(y)ϕ(λκ
0 , y)γ (y) dy

∫ ∞
0

h(y)ψ(0, x, y)γ (y) dy

=
∫ ∞

0
g(y)ψ(0, x, y)γ (y) dy,

and hence for every h

ψ(0, x, y) = ϕ(λκ
0 , y)

∫ ∞
0 h(z)ψ(0, x, z)γ (z) dz∫ ∞
0 h(z)ϕ(λκ

0 , z)γ (z) dz
.

Due to the symmetry of ψ(0, ·, ·) we conclude that for some constant c ≥ 0

ψ(0, x, y) = cϕ(λκ
0 , x)ϕ(λκ

0 , y).

Because of ψ(0, a, a) = 1 we arrive at c−1 = ϕ(λκ
0 , a)ϕ(λκ

0 , a). Since this is true
for every subsequence, the assertion of the theorem is proved. �

COROLLARY 3.10. If ν is any compactly supported initial distribution, and
f a nonnegative compactly supported measurable function with ν[f ] > 0, then for
any fixed t ,

| log Eν[f (Xt+s)] − log Eν[f (Xs)]|
is bounded for s ∈ R

+.
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PROOF. Since g(s) := ∫∫
pκ(s, x, y)γ (y)f (y) dν(x) is positive and continu-

ous, it suffices to show that

0 < lim inf
s→∞

g(t + s)

g(s)
≤ lim sup

s→∞
g(t + s)

g(s)
< ∞.

By (3.6) we may find positive c such that for s sufficiently large, and any x∗, y∗ ∈
K := supp(ν) ∪ supp(f ),

c−1pκ(s, x∗, y∗)�[f ] ≤ g(s) ≤ cpκ(s, x∗, y∗)�[f ].
Thus,

c−2 pκ(s + t, x∗, y∗)
pκ(s, x∗, y∗)

≤ g(s + t)

g(s)
≤ c2 pκ(s + t, x∗, y∗)

pκ(s, x∗, y∗)
.

By Proposition 3.9 the upper and lower bounds converge to c2e−λκ
0 and c−2e−λκ

0 ,
respectively, as s → ∞. �

REMARK 3.11. In terms of parabolic Martin boundary theory Proposition 3.9
says that every sequence (sn, x) ⊂ (0,∞) × (0,∞) with limn→∞ sn = ∞ con-
verges in the parabolic Martin topology to the parabolic Martin boundary point
corresponding to the minimal parabolic function hλκ

0
(t, x) = eλκ

0 tϕ(λκ
0 , x). The

parabolic function hλκ
0

must actually be invariant, since it corresponds to a point in
the parabolic Martin boundary whose time coordinate is ∞.

REMARK 3.12. The existence of strong ratio limits for general symmetric
diffusion, that is, the existence of

lim
t→∞

p(t, x, y)

p(t, x0, y0)
,

where p(t, ·, ·) denotes the transition kernel of the diffusion, was investigated un-
der special conditions by Davies (1997) and is now often referred to as Davies’s
conjecture. In a private communication, Gady Kozma disproved this conjecture
by presenting a counterexample. Proposition 3.9 shows that in one dimension the
Davies conjecture is true, if one boundary point is regular. It is an open question
whether the Davies conjecture generally holds in one dimension.

PROPOSITION 3.13. For all positive z, including z = ∞,

lim sup
t→∞

1

t
log Px{Xt ≤ z} and lim inf

t→∞
1

t
log Px{Xt ≤ z}

are both constant in x > 0. Hence also

lim sup
t→∞

1

t
log Px{Xt ≤ z|τ∂ > t} and lim inf

t→∞
1

t
log Px{Xt ≤ z|τ∂ > t}

are both constant in x > 0.
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PROOF. We prove only the first statement for lim sup, the other proof being
identical. Suppose we have x, x′ such that

lim sup
t→∞

1

t
log Px{Xt ≤ z} < lim sup

t→∞
1

t
log Px′ {Xt ≤ z}.(3.8)

We may assume without loss of generality that |x − x′| < 1
2 ∧ |x|

4 ∧ |x′|
4 . (If not,

then there must be other starting points closer together where the limits differ.)
Applying (3.7), we have for all t ≥ 1,

Px′ {Xt ≤ z} ≤ ζ(x′)Px{Xt+1 ≤ z},
so that

lim sup
t→∞

1

t
log Px′ {Xt ≤ z} ≤ lim sup

t→∞
1

t
log Px{Xt ≤ z}

+ lim sup
t→∞

1

t
log

Px{Xt+1 ≤ z}
Px{Xt ≤ z} .

The limits on the second line are 0 by Corrolary 3.10. We have then a contradiction
to (3.8), which completes the proof. �

3.5. Conditions on the initial distribution. In their version of the ratio limit
theorem [Steinsaltz and Evans (2007), Theorem 3.1], the authors had to pose an
additional condition on the initial distribution ν, and they stated the general case
as an open problem. Their most general condition reads

If X0 has distribution ν, then ∃s ≥ 0 for which the distribution of Xs has a
density f ∈ L2, with lim infλ↓λκ

0
Uf (λ) > −∞,(ID′)

where the U denotes the unitary operator from Theorem 3.2. [In Steinsaltz and
Evans (2007) the definition of the operator U is slightly different. This is connected
to the fact that there the authors work L2 spaces with respect to the Lebesgue mea-
sure.] This condition is obviously satisfied for compactly supported initial distribu-
tions having a density, but it is not obvious how to verify that a given general initial
distribution ν with compact support satisfies the condition (ID′). Using some re-
sults from spectral theory and several ideas from Steinsaltz and Evans (2007), we
can remove this restriction. An essential ingredient in the proof is Lemma 2.1,
which allows us to ignore the upper end of the spectrum for large t .

LEMMA 3.14. Given g ∈ L2, we have

lim
t→∞ t−1 log‖e−tLκ

g‖ = −λg.(3.9)
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PROOF. By the spectral theorem (2.5) we know that

lim sup
t→∞

t−1 log‖e−tLκ

g‖2 = lim sup
t→∞

t−1 log
∫ ∞
λg

e−2tλ d‖Eκ
λg‖2(λ)

≤ −2λg + lim sup
t→∞

t−1 log‖g‖2

= −2λg.

For the lower bound we take any λ∗ > λg , and have

lim inf
t→∞ t−1 log‖e−tLκ

g‖2 ≥ lim inf
t→∞ t−1 log

∫ λ∗

λg

e−2tλ d‖Eκ
λg‖2(λ)

≥ −2λ∗ + lim inf
t→∞ t−1 log‖Eκ([λg,λ∗])g‖2.

Since λg is in the support of d‖Eκg‖, this is equal to −2λ∗. Since this is true for
any λ∗ > λg , this completes the proof of (3.9). �

For a Radon measure ν on (0,∞) and a Borel measurable function f : (0,∞) 
→
C we use the notation 〈ν,f 〉 := ∫ ∞

0 f (s)ν(ds).

THEOREM 3.15. The killed diffusion Xt converges on compacta to the qua-
sistationary distribution with density proportional to ϕ(λκ

0 , ·) from any initial dis-
tribution which is compactly supported in (0,∞).

PROOF. An application of Weyl’s eigenfunction expansion theorem and Fu-
bini’s theorem tells us that the operator Eκ([λκ

0 , λ1))e
−tLκ

has a continuous inte-
gral kernel

(t, x, y) 
→ hλ1(t, x, y) =
∫
[λκ

0 ,λ1]
e−tλϕ(λ, x)ϕ(λ, y) dσ(λ)(3.10)

with respect to the measure �. This implies that for every compact subset K ⊂
[0,∞) the function Eκ([λκ

0 , λ1])e−tLκ
1K is continuous and therefore

〈ν,Eκ([λκ
0 , λ1])e−tLκ

1K〉 =
∫

R

Eκ([λκ
0 , λ1])e−tLκ

1K(x)dν(x)

is well defined. For every Borel set A ⊂ [0, z], then

ν[Eκ([λκ
0 , λ1])e−tLκ

1A]
(3.11)

=
∫
[λκ

0 ,λ1]
e−tλ

[∫ z

0
ϕ(λ, x) dν(x)

∫
A

ϕ(λ, y) d�(y)

]
dσ(λ).

Let g : [λκ
0 ,∞) → R be any continuous function. Then

lim sup
t→∞

∣∣∣∣
∫
[λκ

0 ,λ1] e
−tλg(λ) dσ(λ)∫

[λκ
0 ,λ1] e−tλ dσ (λ)

− g(λκ
0)

∣∣∣∣ ≤ sup
[λκ

0 ,λ1]
|g(λ) − g(λκ

0)|.(3.12)
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As in the proof of Theorem 3.1 in Steinsaltz and Evans (2007), for any λ1, λ̃1, λ2 >

λκ
0 set λ∗ = λ1 ∧ λ̃1 ∧λ2 ∧ λ̃2 and λ∗ = λ1 ∨ λ̃1 ∨λ2 ∨ λ̃2. Then we have the bound∣∣∣∣

∫
[λκ

0 ,λ1] e
−tλg(λ) dσ(λ)∫

[λκ
0 ,λ2] e−tλ dσ (λ)

−
∫
[λκ

0 ,λ̃1] e
−tλg(λ) dσ(λ)∫

[λκ
0 ,λ̃2] e

−tλ dσ (λ)

∣∣∣∣
≤ e(λκ

0−λ∗)t
∫
[λκ

0 ,λ∗] |g(λ)|dσ(λ)∫
[λκ

0 ,λ∗)] dσ(λ)
,

which tells us that

lim sup
t→∞

∫
[λκ

0 ,λ1] e
−tλg(λ) dσ(λ)∫

[λκ
0 ,λ2] e−tλ dσ (λ)

is independent of λ1, λ2 ∈ (λκ
0 ,∞).(3.13)

Since g is continuous, (3.12) and (3.13) combine to show that for a general positive
continuous h,

lim
t→∞

∣∣∣∣
∫
[λκ

0 ,λ1] e
−tλh(λ)g(λ) dσ(λ)∫

[λκ
0 ,λ1] h(λ)e−tλ dσ (λ)

− g(λκ
0)

∣∣∣∣ = 0.(3.14)

By (3.11) we now see that for every λ1 ∈ (λκ
0 ,∞)

lim
t→∞

ν[Eκ([λκ
0 , λ1])e−tLκ

1A]
ν[Eκ([λκ

0 , λ1])e−tLκ 1[0,z]]

= lim
t→∞

∫
[λκ

0 ,λ1] e
−tλ[∫ z

0 ϕ(λ, x) dν(x)
∫
A ϕ(λ, y) d�(y)]dσ(λ)∫

[λκ
0 ,λ1] e−tλ[∫ z

0 ϕ(λ, x) dν(x)
∫ z

0 ϕ(λ, y) d�(y)]dσ(λ)
(3.15)

=
∫
A ϕ(λκ

0 , y)γ (y) dy∫ z
0 ϕ(λκ

0 , y)γ (y) dy
.

The assertion of the theorem follows immediately from (3.15) once it is shown
that

lim
t→∞

Pν(Xt ∈ A)

Pν(Xt ≤ z)
= lim

t→∞
ν[Eκ([λκ

0 , λ1])e−tLκ
1A]

ν[Eκ([λκ
0 , λ1])e−tLκ 1[0,z]] .(3.16)

Observe that

ν[e−tLκ
1A]

ν[Eκ([0, λ1])e−tLκ 1A]

= ν[Eκ([0, λ1])e−tLκ
1A] + ν[Eκ((λ1,∞))e−tLκ

1A]
ν[Eκ([0, λ1])e−tLκ 1A](3.17)

= 1 + ν[Eκ((λ1,∞))e−tLκ
1A]

ν[Eκ([0, λ1])e−tLκ 1A] .
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Since e−tLκ
1A and Eκ([0, λ1])e−tLκ

1A are continuous, the function
Eκ((λ1,∞))e−tLκ

1A must also be continuous. Thus ν[Eκ((λ1,∞))e−tLκ
1A] is

well defined. By Lemma 2.1,

− lim
t→∞

1

t
log |〈ν,Eκ((λ1,∞))e−tLκ

1A〉| ≥ λ1.(3.18)

As ϕ(λκ
0 , x) > 0 for every x ∈ (0,∞) there is, by continuity, λ1 > λκ

0 such that for
every λ ∈ [λκ

0 , λ1]∫ ∞
0

ϕ(λ, x) dν(x) and
∫
A

ϕ(λ, y)γ (y) dy are both positive.

Then it is easy to see that

− lim
t→∞

1

t
log

∫
[λκ

0 ,λ1]
e−λt

∫ ∞
0

ϕ(λ, x) dν(x)

∫
A

ϕ(λ, y)γ (y) dy dσ(λ) ≤ λκ
0 .(3.19)

Equations (3.17), (3.18) and (3.19) combine to show that

lim
t→∞

ν[e−tLκ
1A]

ν[Eκ([0, λ1])e−tLκ 1A] = 1,

and therefore (3.16). �

3.6. Entrance boundary at ∞. As mentioned above, with the exception of the
recent work [Cattiaux et al. (2009)], work on these problems has generally as-
sumed that 0 is regular and ∞ natural. Intuitively, we should expect the problems
to be easier if ∞ is an entrance boundary. We show that this is indeed the case in
Theorem 3.16, as the spectrum of the operator Lκ is purely discrete. This interest-
ing fact has not been mentioned by previous authors [cf. Section 3 in Cattiaux et al.
(2009)] working on quasistationary distributions for one-dimensional diffusions.
The proof relies on standard ideas from the spectral theory of differential operators.

THEOREM 3.16. If ∞ is an entrance boundary, then the spectrum of Lκ is
discrete.

PROOF. Assume that 0 is a regular boundary point, and we begin by consider-
ing the case κ ≡ 0. Let f be a solution to the eigenvalue equation − 1

2γ
(γf ′)′ = λf

on (0,∞), for some λ > 0.
Let x > 1 be any local maximum, and x̃ > x the first local minimum following

x (assuming there is one). Since f solves the equation τu = λu one easily sees
that local maxima are positive and local minima negative. Integrating by parts and
using the fact that f ′(x) = f ′(x̃) = 0, we have

0 < f (x) − f (x̃) =
∫ x

x̃
f ′(y) dy

=
∫ x

x̃
(γ (y)f ′(y))γ (y)−1 dy
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=
∫ x̃

x
(γ (y)f ′(y))′

∫ y

1
γ (z)−1 dzdy

= −2λ

∫ x̃

x
γ (y)f (y)

∫ y

1
γ (z)−1 dzdy

< 2λ
(
f (x) − f (x̃)

) ∫ x̃

x
γ (y)

∫ y

1
γ (z)−1 dzdy,

from which we conclude that

1

2λ
<

∫ x̃

x
γ (y)

∫ y

1
γ (z)−1 dzdy.

Since we have assumed that ∞ is an entrance boundary, we know that

∞ >

∫ ∞
1

γ (y)

∫ y

1
γ (z)−1 dzdy

≥ ∑
pairs (x,x̃)

∫ x̃

x
γ (y)

∫ y

1
γ (z)−1 dzdy

≥ (2λ)−1 · #pairs (x, x̃).

Since the zeroes of f are separated by alternating local minima and maxima, it
follows that f has only finitely many zeroes on (1,∞), hence only finitely many
zeroes in all. It follows from a theorem of Hartmann [Weidmann (1967), Theo-
rem 1.1] that the spectrum of L0 (the operator with κ ≡ 0) is discrete.

Suppose now that the spectrum of Lκ is not discrete. Then there is a λ∗ such
that Eλ∗ has infinite-dimensional range. All such v ∈ Ran(Eλ∗) are in the domain
of qκ and satisfy qκ(v, v) ≤ λ∗‖v‖2. But then they are also in the domain of q0

and satisfy q0(v, v) ≤ λ∗‖v‖2. By the minimax principle for the discrete spectrum
[cf. Weidmann (2000), Theorem 8.8], this contradicts the fact that L has discrete
spectrum. �

REMARK 3.17. There are general necessary and sufficient conditions for the
discreteness of the spectrum of Sturm–Liouville operators obtained in Ćurgus and
Read (2002), of which Theorem 3.16 may be seen as a special case. However,
general versions found in the literature, such as the main result in Ćurgus and Read
(2002) and Theorem 1 in Pinsky (2009), do not seem to be immediately applicable.

4. Convergence to quasistationarity. In this section we consider the problem
of convergence to the Yaglom limit. More precisely we ask for conditions, which
ensure that Xt converges to the quasistationary distribution given by the density
ϕ(λκ

0 , ·). Recall that we always assume that 0 is regular.
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4.1. The asymptotic measure and asymptotic killing rate. We begin by col-
lecting some basic results about the asymptotic distribution of the process on sets
which may not be compact. These results hold whenever λκ

0 �= K , but will be re-
quired primarily in Section 4.3, where λκ

0 > K .
As in Steinsaltz and Evans (2007) we define, for Borel sets A, the family of

measures

Ft(ν,A) = Pν(Xt ∈ A|τ∂ > t)

and

at (ν, r) = Pν(τ∂ > t + r|τ∂ > t) =
∫

Ft(ν, dy)Py(τ∂ > r).

If the process Xt started from the compactly supported initial distribution ν es-
capes to infinity, then for any sequence (tn)n∈N converging to infinity the measures
Ftn(ν, ·) converge weakly to point the measure δ∞. If the process Xt started from
ν converges to the quasistationary distribution ϕ then then the limit of Ftn(ν, dy)

is concentrated on R+, and has the density
ϕ(λκ

0 ,·)∫ ∞
0 ϕ(λκ

0 ,y)γ (y) dy
with respect to �.

The next lemma is in essence a combination of Lemma 5.3 and Theorem 3.3 in
Steinsaltz and Evans (2007), together with our Lemma 3.7.

LEMMA 4.1. Assume that ∞ is a natural boundary point and suppose that
λκ

0 �= K . Then the limit a(ν, r) = limt→∞ at (ν, r) exists, and satisfies

a(ν, r) = F(ν,R+)

∫
ϕ(λκ

0 , y)Py(τ∂ > r)γ (y) dy

(4.1)
+ (

1 − F(ν,R+)
)
e−Kr.

Either F(ν,R+) = 0 for every compactly supported initial distribution ν or
F(ν,R+) = 1 for every such ν.

There exists ην ∈ R (called the asymptotic mortality rate) such that

a(ν, r) = e−ηνr .(4.2)

If the process escapes to infinity then ην = K .

PROOF. Let ν be a compactly supported initial distribution. Let (tn) ⊂ (0,∞)

be a sequence converging to infinity. On the compactification [0,∞] of (0,∞)

the sequence of measures Ftn(ν, dy) has a limit point. By Theorem 2.6 this limit

point is either a measure on (0,∞) which has the density
ϕ(λκ

0 ,·)∫ ∞
0 ϕ(λκ

0 ,y)γ (y) dy
with

respect to the measure � or is the point mass at ∞. Theorem 2.6 shows that there
is only one limit point, and that the limit point is independent of the sequence (tn)

and the initial distribution ν. Thus Ft(ν, dy) converges weakly. If ∞ is natural,
then according to Proposition 3.1 in combination with Proposition 4.3 in Azencott
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(1974) the unkilled diffusion process (κ = 0) satisfies limy→∞ Py(Ta ≤ t) = 0 for
every a > 0. Due to our assumption on κ we are given ε > 0 and sufficiently large
a > 0, and we therefore get (x ≥ a)

e−(K−ε)t ≤ Px(τ∂ > t) = Ex

[
e− ∫ t

0 κ(Xs) ds;Ta ≤ t
] + Ex

[
e− ∫ t

0 κ(Xs) ds;Ta > t
]

≤ ε + e−(K+ε)t .

Thus we conclude that

lim
y→∞ Py(τ∂ > r) = e−Kr.

This shows that

lim
t→∞

∫
Ft(ν, dy)Py(τ∂ > r) = F(ν,R+)

∫
ϕ(λκ

0 , y)Py(τ∂ > r)γ (y) dy

+ (
1 − F(ν,R+)e−Kr),

which is (4.1).
For any r, s ≥ 0 we have

a(ν, r + s) = lim
t→∞

Pν(τ∂ > t + r + s)

P(τ∂ > t)

= lim
t→∞

Pν(τ∂ > t + r + s)

Pν(τ∂ > t + s)

Pν(τ∂ > t + s)

Pν(τ∂ > t)

=
(

lim
t→∞

Pν(τ∂ > t + r + s)

Pν(τ∂ > t + s)

)(
lim

t→∞
Pν(τ∂ > t + s)

Pν(τ∂ > t)

)
= a(ν, r)a(ν, s),

which directly implies (4.2). The final statement follows directly from (4.1). �

The quantity ην plays an important role. The reason for this consists of the
implication

lim
t→∞

Pν(τ∂ > t + r)

Pν(τ∂ > t)
= e−ηνr ⇒ − lim

t→∞Pν(τ∂ > t) = ην,(4.3)

whose elementary proof is left to the reader. Thus in order to decide, whether Xt

converges to the quasistationary distribution, we investigate the asymptotic behav-
ior of the function r 
→ Pν(τ∂ > r), as r → ∞.

LEMMA 4.2. Suppose that � is a finite measure. Then for any compactly sup-
ported initial distribution ν we have

− lim
t→∞

1

t
log Pν(τ∂ > t) = λκ

0 .
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PROOF. Since � is finite, the constant function 1 is in L2. Lemma 2.1 implies

lim sup
t→∞

1

t
log Pν(τ∂ > t) = lim sup

t→∞
1

t
log

∫
e−tLκ

1(x) dν(x)

(4.4)
≤ −λκ

0 .

Now we need a corresponding lower bound. Fix any z > 0, and let I := {x :
|x − z| < 1

2 ∧ z
4}. By (3.7) there is a constant C(z) = supw∈I ζ(w) such that

‖e−t/2Lκ

1I ‖2 = 〈e−tLκ

1I ,1I 〉
=

∫
I

∫
I
pκ(t, x, y) d�(y) d�(x)

(4.5)
≤ C(z)

∫
I
pκ(t + 1, z, y)γ (y) dy

≤ C(z)Pz(τ∂ > t + 1).

By Lemma 3.14 and Lemma 2.2 (using that 1I is strictly positive on I ) we see that

lim inf
t→∞

1

t
log Pz(τ∂ > t) ≥ − inf suppd‖Eκ1I ‖2(λ) = −λκ

0 .

Since by Proposition 3.13 the exponential rate of decay of Pz(τ∂ > t) is locally
constant in z this completes the proof. �

4.2. High killing at ∞. In this section we consider the case where the asymp-
totic killing rate is strictly bigger than λκ

0 . Theorem 2.6 shows that one has con-
vergence to the quasistationary distribution if and only if the lowest eigenfunction
is integrable. We give a proof of this assertion and moreover prove that the low-
est eigenfunction is actually always integrable. Therefore lim infκ > λκ

0 always
implies convergence to the quasistationary distribution. In contrast to Steinsaltz
and Evans (2007), we do not need to assume that ∞ is a natural boundary. Thus
∞ is only assumed to be inaccessible. Since according to Lemma 3.3(v) the bot-
tom of the spectrum is an isolated eigenvalue, the corresponding eigenfunction is
square-integrable, as well as λκ

0 -invariant.

THEOREM 4.3. Suppose that lim infx→∞ κ(x) > λκ
0 . Then we have for every

Borel set U ⊂ (0,∞)

lim
t→∞ eλκ

0 t
P

x(Xt ∈ U ; τ∂ > t) = uλκ
0
(x)

∫
U

uλκ
0
(y)γ (y) dy,(4.6)

where uλκ
0
∈ L2 denotes the uniquely determined (up to positive multiples) eigen-

function associated to the eigenvalue λκ
0 . Moreover, the process (Xt) associated to

the Dirichlet form qκ converges to the quasistationary distribution uλκ
0
.
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The theorem will be the direct consequence of two lemmas: Lemma 4.4, which
states that quasilimiting convergence follows whenever the eigenfunction uλκ

0
is

in L2 and L1; and Lemma 4.5, which states that uλκ
0

is indeed in L1 when
lim infx→∞ κ(x) > λκ

0 .

LEMMA 4.4. Suppose uλκ
0
∈ L1 ∩ L2. Then (4.6) holds, and Xt converges to

the quasistationary distribution uλκ
0
(y)�(dy)/

∫ ∞
0 uλκ

0
(y)�(dy).

PROOF. We know from Lemma 3.3 [part (v) that λκ
0 is an isolated eigenvalue.

Therefore, the eigenfunction uλκ
0

is square integrable and satisfies

e−tLκ

uλκ
0
= e−tλκ

0 uλκ
0

in L2, hence identically (since uλκ
0

is continuous).(4.7)

By (3.7), for r > 0 sufficiently small,

pκ(t, x, y) =
∫
Br(x) p

κ(t, x, y)uλκ
0
(x̃)γ (x̃) dx̃∫

Br(x) uλκ
0
(x̃)γ (x̃) dx̃

≤ ζ(x)

∫
Br(x) p

κ(t + 1, x̃, y)uλκ
0
(x̃)γ (x̃) dx̃∫

Br(x) uλκ
0
(x̃)γ (x̃) dx̃

≤ ζ(x)
e−(t+1)λκ

0 uλκ
0
(y)∫

Br(x) uλκ
0
(x̃)γ (x̃) dx̃

.

For fixed x, pκ(t, x, y)etλκ
0 is dominated by a constant times uλκ

0
(y), which is

in L1. The dominated convergence theorem, together with (3.5), implies that there
is a constant c such that for any Borel set U ,

lim
t→∞ eλκ

0 t
Px(Xt ∈ U,τ∂ > t) = lim

t→∞

∫ ∞
0

eλκ
0 tpκ(t, x, y)1U(y)γ (y) dy

(4.8)
= cuλκ

0
(x)

∫
U

uλκ
0
(y)γ (y) dy.

Taking quotients,

lim
t→∞P

x(Xt ∈ U |τ∂ > t) = lim
t→∞

P
x(Xt ∈ U,τ∂ > t)

Px(τ∂ > t)

= limt→∞ eλκ
0 t

P
x(Xt ∈ U,τ∂ > t)

limt→∞ eλκ
0 t

Px(τκ > t)

= c
∫
U uλκ

0
(y)γ (y) dy

c
∫ ∞

0 uλκ
0
(y)γ (y) dy

.
�

For the second part of the proof we apply an argument used in Carmona and
Lacroix (1990) to derive properties of eigenfunctions of Schrödinger operators.
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Some modification is required to deal with the complication that we have a domain
with boundary, and we do not know a priori that the eigenfunctions are bounded.
The one-dimensional setting helps us to overcome these complications.

LEMMA 4.5. Assume that λκ
0 < K := lim infx→∞ κ(x). Then the square inte-

grable nonnegative eigenfunction uλκ
0

associated to the isolated eigenvalue λκ
0 is

integrable with respect to the measure �.

PROOF. By (4.7) and the Feynman–Kac formula

e−λκ
0 tuλ0(x) = Ex

[
e− ∫ t

0 κ(X∗
s ) dsuλκ

0
(X∗

t ), T0 > t
]
,(4.9)

for every x ∈ [0,∞), where X∗
s is the diffusion which is killed only at the bound-

ary. For t ≥ 0 we define the martingale

Mt = e− ∫ t
0 (κ−λκ

0 )(X∗
s ) dsuλκ

0
(X∗

t )1{T0>t}.
By the assumption λκ

0 < K there exist positive real numbers a and ε such that
κ(x) − λκ

0 > ε for every x ∈ [a,∞). Let Ta be the first hitting time of the set
[0, a].

By the optional sampling theorem we get for every T > 0 and x > a

uλκ
0
(x) = Ex

[
e− ∫ Ta∧T

0 (κ−λκ
0 )(X∗

s ) dsuλκ
0
(X∗

Ta∧T )1{T0>Ta∧T }
]

= Ex

[
e− ∫ T

0 (κ−λκ
0 )(X∗

s ) dsuλκ
0
(X∗

T )1{Ta>T }
]

(4.10)
+ Ex

[
e− ∫ Ta

0 (κ−λκ
0 )(X∗

s ) dsuλκ
0
(a)1{Ta≤T }

]
≤ e−εT

Ex

[
uλκ

0
(X∗

T )1{T0>T }
] + uλκ

0
(a)Ex[e−εTa∧T ].

By Lemma 2.1 and the spectral theorem (2.5) the first term is bounded by

e−εT (
Cα(x)

∥∥√Le−T Luλκ
0

∥∥ + C′
α(x)‖e−T Luλκ

0
‖)

= e−εT

[
Cα(x)

(∫ ∞
0

λe−2T λd‖E0uλκ
0
‖2(λ)

)1/2

+ C′
α

(∫ ∞
0

e−2T λ d‖E0uλκ
0
‖2(λ)

)1/2]
(4.11)

≤ e−εT 2T −1/2‖uλκ
0
‖

T →∞−−−−→ 0.

We have then, from (4.10) and the dominated convergence theorem, that

0 ≤ uλκ
0
(x) ≤ lim

T →∞uλκ
0
(a)Ex[e−εTa∧T ]

(4.12)
= uλκ

0
(a)Ex[e−εTa ].
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We now appeal to a basic fact from potential theory [stated and proved in much
greater generality as Proposition D.15 of Demuth and van Casteren (2000); see
also page 285 of Blumenthal and Getoor (1968)]: There is a constant C(a) such
that for all x ≥ a,

Ex[e−εTa ;Ta < ∞] = C(a)gε(x, a),(4.13)

where gε is the ε-potential, defined by

gε(x, y) =
∫ ∞

0
e−εtp(t, x, y) dt,

where p(t, x, y) = p0(t, x, y) denotes the integral kernel of the operator e−tL.
Since e−tL is self-adjoint, the integral kernel p(t, x, y) is symmetric with respect
to �, so that from (4.12)∫ ∞

a
uλκ

0
(x)γ (x) dx ≤ uλκ

0
(a)

∫ ∞
a

Ex[e−εTa ]γ (x) dx

≤ C(a)uλκ
0
(a)

∫ ∞
0

gε(x, a)γ (x) dx

= C(a)uλκ
0
(a)

∫ ∞
0

∫ ∞
0

e−εtp(t, x, a)γ (x) dx dt

= C(a)uλκ
0
(a)

∫ ∞
0

∫ ∞
0

e−εtp(t, a, x)γ (x) dx dt

≤ C(a)ε−1uλκ
0
(a).

Since uλκ
0
(x)γ (x) is bounded on [0, a], this completes the proof. �

REMARK 4.6. The above result reflects a general principle, which seems to
be well known to analysts and mathematical physicists: The decay of the eigen-
functions associated with isolated eigenvalues is dictated by the decay of Green’s
function, at least in regions where the potential κ is negligible.

4.3. Low killing at ∞: The recurrent case. We assume for the remainder
of this section that K := limx→∞ κ(x) exists. Whereas the total surviving mass
in the case K > λκ

0 decays at the strictly exponential rate e−λκ
0 t , in the case

limx→∞ κ(x) < λκ
0 one typically has

lim
t→∞ eλκ

0 t
Px(Xt ∈ A,τ∂ > t) = 0(4.14)

for every bounded Borel set A ⊂ [0,∞). (This can be seen for a Brownian motion
with constant drift by direct computation.) Equation (4.14) remains true for every
diffusion, if the bottom of the spectrum of the diffusion generator is not an eigen-
value in the L2-sense. Thus we cannot rely upon arguments that assume a spectral
gap.
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It may seem surprising that, despite the complicated relationship between the
unkilled motion and killing for determining the lifetime of the process (and hence,
whether it returns to its starting point), the conventional transience/recurrence di-
chotomy for the unkilled process is exactly the criterion that distinguishes be-
tween convergence and escape to infinity. We begin in this section by assum-
ing that the unkilled process is recurrent, which is equivalent to assuming that∫ ∞

0 γ (x)−1 dx = ∞, and show that this implies convergence to quasistationarity.
In particular the lowest eigenfunction ϕ(λκ

0 , ·) is integrable (but now not necessar-
ily square integrable) with respect to �. In Section 4.4 we then address the case
when the unkilled process is transient.

THEOREM 4.7. Let infinity be a natural boundary. Suppose that K < λκ
0 , and∫ ∞

0 γ (x)−1 dx = ∞. Then Xt started from an arbitrary compactly supported ini-
tial distribution ν converges to the quasistationary distribution with �-density pro-
portional to ϕ(λκ

0 , ·). Moreover, the asymptotic mortality rate ην is independent of
ν and equals λκ

0 .

PROOF. If Xt escapes to infinity then we know from Lemma 4.1 that

a(ν, r) = lim
t→∞

Pν(τ∂ > t + r)

Pν(τ∂ > t)
= e−Kr.

Since by assumption λκ
0 > K , when α > 0 part (vii) of Lemma 3.3 tells us that

λ0 > 0. The strict positivity of λ0 together with the assumption
∫ ∞

0 γ (x)−1 dx =
∞ allow us to apply part (ii) of Lemma 3.3, to conclude that the speed measure
� is finite. When α = 0 and � is infinite the same reasoning holds, leading to a
contradiction. Therefore we may assume, in any case, that � is finite.

Therefore Lemma 4.2 shows that for every compactly supported measure ν

− lim
t→∞

1

t
log Pν(τ∂ > t) = λκ

0 .

In the case of escape to infinity equations (4.2) and (4.3) imply

− lim
t→∞

1

t
log Pν(τ∂ > t) = ην = K �= λκ

0 .

Therefore the assumption F(ν,R+) = 0 cannot be true, and thus by Theorem 2.6
we conclude F(ν,R+) = 1 and F(ν,∞) = 0. Thus Xt converges from every com-
pactly supported initial distribution ν to the quasistationary distribution ϕ(λκ

0 , ·).
�

The above theorem has the following corollary, which in a slightly more restric-
tive form already appears in the work of Collet, Martínez and San Martín (1995).
The proof presented in Collet, Martínez and San Martín (1995) suffers from a gap,
so it seems to be worth presenting an alternative (and more general) proof of the
assertion.
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COROLLARY 4.8. Suppose κ ≡ 0 and ∞ is a natural boundary point, and the
process Xt is recurrent, with α > 0.

• If λ0 > 0, then Xt converges from every compactly supported initial distribution
ν to the quasistationary distribution with �-density proportional to ϕ(λ0, ·).

• If λ0 = 0, then Xt started from ν escapes to infinity.

PROOF. The first part of the assertion follows directly from Theorem 4.7. In
order to prove the second assertion, observe that the function

R(y) := 1

1 + α
+ 2α

1 + α

∫ y

0
γ (x)−1 dx

satisfies LR = 0; since R(0) = 1/(1 + α) and 1
2R′(0) = α/(1 + α) the function R

coincides with the unique eigenfunction ϕ(0, ·). We have∫ ∞
0

ϕ(0, y)γ (y) dy = 1

1 + α

∫ ∞
0

γ (y) dy + 2α

1 + α

∫ ∞
0

γ (y)

∫ y

0
γ −1(x) dx dy

= ∞,

by the assumption that ∞ is a natural boundary. �

4.4. Low killing at infinity: The transient case.

THEOREM 4.9. Suppose that ∞ is a natural boundary point and that∫ ∞
0 γ (x)−1 dx < ∞. If K < λκ

0 , then Xt escapes to infinity from every initial dis-
tribution. The rate of escape is exponential with rate λκ

0 − K , in the sense that for
all z, x > 0,

lim sup
t→∞

1

t
log Px(Xt ≤ z|τ∂ > t) = −(λκ

0 − K).(4.15)

PROOF. Observe that the condition
∫ ∞

0 γ (x)−1 dx < ∞ implies that for each
a ∈ (0,∞) and each x ∈ (a,∞) the unkilled diffusion (corresponding to the gen-
erator L) started from x has nonzero probability of never hitting a. For ε > 0 we
can choose a = aε ∈ (0,∞) such that κ(x) ∈ (K − ε,K + ε) for every x ∈ [a,∞).
Then we have for every x ∈ (a,∞)

Px(τ∂ > t) = Ex

[
e− ∫ t

0 κ(Xs) ds, T0 > t
]

≥ e−(K+ε)t
Px(Ta > t)(4.16)

≥ e−(K+ε)t
Px(Ta = ∞).

Since Px(Ta = ∞) is an increasing function of x, we can apply the Markov prop-
erty to see that there is a nonzero increasing function C(x) such that for all x > 0

Px(τ∂ > t) ≥ Px(X1 ≥ a + 1) · inf
x′≥a+1

Px′(τ∂ > t − 1) ≥ C(x)e−(K+ε)t .(4.17)
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Note that infx′≥a+1 Px′(τ∂ > t −1) > 0 because there is no explosion. On the other
hand, for any fixed z ≥ 0 we can apply the bound (2.13) and Lemma 2.2 to see that

Px(Xt ≤ z, τ∂ > t) = (
e−tLκ

1[0,z]
)
(x)

(4.18)
≤ (

Cα(x)λκ
0 + C′

α

)∥∥1[0,z]
∥∥e−tλκ

0

for all t > 1/2λκ
0 . Combining (4.17) and (4.18), we see that there is a constant C′

such that

Px(Xt ≤ z|τ∂ > t) ≤ ∥∥1[0,z]
∥∥ C′

C(x)
e−(λκ

0−K−ε)t .(4.19)

We conclude that for all x ≥ aε ,

lim sup
t→∞

1

t
log Px(Xt ≤ z|τ∂ > t) ≤ −(λκ

0 − K) + ε.

By Proposition 3.13, since ε is arbitrary, we conclude that the limsup is no more
than −(λκ

0 − K).
In particular, we have shown that the process escapes to infinity. By Lemma 4.1,

it follows that limt→∞ Px{τ∂ > t + 1|τ∂ > t} = e−K, from which we conclude
using (4.3) that

lim
t→∞ t−1 log Px{τ∂ > t} = −K.

Lemmas 3.14 and 2.2 tell us that

lim
t→∞ t−1 log Px{Xt ≤ z} ≥ −λκ

0 ,

from which we conclude that

lim inf
t→∞

1

t
log Px(Xt ≤ z|τ∂ > t) ≥ −(λκ

0 − K),

completing the proof of (4.15). �

If κ is eventually constant—that is, for some a we have κ(x) = K for all
x ≥ a—then we can strengthen the conclusion of Theorem 4.9 slightly.

COROLLARY 4.10. Suppose that κ is eventually constant and that λκ
0 > 0.

Then for every x, z ∈ (0,∞)

sup
t

e(λκ
0−K)t

Px(Xt ≤ z|τ∂ > t) < ∞.

PROOF. If κ is eventually constant, then (4.16) and (4.17) hold with ε = 0,
hence (4.19) as well. �
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REMARK 4.11. The case κ ≡ 0 corresponds to the setting considered in
Martínez and San Martín (2001). Theorem 4 of Martínez and San Martín (2001)
includes a slightly weaker version of the result in Corollary 4.10, obtained by dif-
ferent methods. The above theorem shows that when κ ≡ 0 the principal eigenvalue
λκ

0 gives the exponential convergence rate at which Xt escapes to infinity.

As already mentioned in Remark 2.5, a quasilimiting distribution ν̃, which in
our case is a probability measure on (0,∞) is always quasistationary in the sense
that for every Borel set A ⊂ (0,∞),

Pν̃ (Xt ∈ A|τ∂ > t) = ν̃(A);
but the converse need not hold true. In the cases where we know there is no
quasilimiting distribution, though, because the process escapes to ∞, we can show
that there is also no quasistationary distribution.

COROLLARY 4.12. Let ∞ be a natural boundary, with λκ
0 > K and∫ ∞

0 γ (x)−1 dx < ∞. Then there is no quasistationary distribution.

PROOF. Assume that ν̃ is a general quasistationary distribution. The measure
ν̃ is absolutely continuous with respect to � with a positive continuous density
g : [0,∞) → (0,∞) (for a sketch of the proof of this fact we refer to the Ap-
pendix). There is a λ such that Pν̃ (τ∂ > t) = e−λt . By (4.17), for any positive ε,

e−λt = Pν̃{τ∂ > t} ≥ e−(K+ε)t
∫

C(x)dν̃(x),(4.20)

which means that λ ≤ K . For any fixed x0 > 0,

Pν̃{Xt ≤ z, τ∂ > t} = 〈
g, e−tLκ

1(0,z]
〉

= 〈
g1[0,x0], e−tLκ

1(0,z]
〉 + 〈

r1(x0,∞), e
−tLκ

1(0,z]
〉

(4.21)

≤ ∥∥g1[0,x0]
∥∥ · ∥∥e−tLκ

1(0,z]
∥∥ + sup

x≥x0

Px{Xt ≤ z, τ∂ > t}.

Since ‖g1[0,x0]‖ and ‖1(0,z]‖ are both finite, we can use (2.5) and (4.18) to see that
there is a constant B such that

Pν̃{Xt ≤ z, τ∂ > t} ≤ Be−tλκ
0 .(4.22)

Combining (4.20) and (4.22), we see that for all positive t ,

ν̃([0, z]) = Pν̃{Xt ≤ z|τ∂ > t} ≤ Be−(λκ
0−K)t ,(4.23)

so ν̃ must be identically 0 on [0,∞). �
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4.5. Processes that may not hit 0. Consider a process which is killed only at 0
(i.e., with κ ≡ 0). If the process is not almost surely absorbed at 0 eventually—that
is, if Px(T0 = ∞) > 0—we may wish to condition the process at time t on being
killed eventually, but not yet. That is, we consider the long-time asymptotics of

Px

(
Xt ∈ · |T0 ∈ (t,∞)

)
.

Conditions of this kind can often be found in the analogous problems in the theory
of branching processes. This problem can be reduced to our previous analysis by an
h-transform. The function h(x) = Px(T0 < ∞) is harmonic, and by general theory
[see Pinsky (1995), Chapter 4, Sections 3 and 10] the process (Xt) conditioned to
hit 0 corresponds to the generator Lh whose action is given by

Lhf =
(

1

h
L(hf )

)
(x) = −1

2
f ′′(x) +

(
−b(x) − h′(x)

h(x)

)
f ′(x).

The process associated to the operator Lh can again be defined by Dirichlet form
techniques, and the associated family of measures on the path space is denoted by
P̃x . As explained above we have

Px(· |T0 < ∞) = P̃x(·).
The operator Lh can be realized as a self-adjoint operator on the Hilbert space
L2((0,∞), h(x)2γ (x) dx). The transformation V :L2((0,∞), h(x)2γ (x) dx) →
L2((0,∞), γ (x) dx) defined by Vf = f h is unitary, and defines a unitary equiva-
lence between L and Lh, so the spectrum is invariant under h-transforms. In par-
ticular, positivity of the bottom of the spectrum of L implies the positivity of the
spectrum of Lh. Since absorption is certain with respect to the measure P̃x we can
apply our previous results in order to conclude that for every Borel set A ⊂ (0,∞)

lim
t→∞Px

(
Xt ∈ A|T0 ∈ (t,∞)

) =
∫
A ϕ̃h(λ0, x)h(x)γ (x) dx∫ ∞

0 ϕ̃h(λ0, x)h(x)γ (x) dx
,

where ϕ̃h(λ0, x) is the unique solution of (Lh − λ0)u = 0, which satisfies
ϕ̃h(λ0,0) = 0 and (ϕ̃h)′(λ0,0) = 1.

4.6. The case of an entrance boundary at ∞. Observe that
∫ ∞

0 γ (x)−1 dx =
∞ if ∞ is an entrance boundary. This follows from the fact that in this situation the
total speed measure

∫ ∞
0 γ (x) dx must be finite. Thus, the situation is essentially the

same as in Theorem 4.7. Indeed, we always have convergence to quasistationarity
if ∞ is an entrance boundary.

THEOREM 4.13. Assume that 0 is regular and that ∞ is an entrance bound-
ary. Then the bottom of the spectrum is an isolated eigenvalue with associated non-
negative eigenfunction uλκ

0
. From every compactly supported initial distribution ν,

the process Xt converges to the distribution with density uλκ
0
/

∫ ∞
0 uλκ

0
(x)γ (x) dx

with respect to �.
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PROOF. The first assertion follows from Theorem 3.16. Lemma 4.4 directly
implies that Xt converges to the quasistationary distribution uλκ

0
from every com-

pactly supported initial distribution if and only if
∫ ∞

0 uλκ
0
(y)γ (y) dy is finite. Since

we are assuming that 0 is regular and ∞ is an entrance boundary the speed measure
� must be finite. Thus the L2(�) function uλκ

0
is also in L1(�). �

4.7. Existence and uniqueness of quasistationary distributions when κ ≡ 0. In
this short section we first reformulate the criterium for existence of quasistationary
distributions in the case κ ≡ 0 and Px(T0 < ∞) = 1. This allows a direct com-
parison with the criterium for the uniqueness of the quasistationary distriubution,
which has been recently established in Cattiaux et al. (2009). We consider only the
case α > 0, since otherwise there is no killing at all, and this is merely a classical
situation of a stationary distribution. The interesting point in the next result con-
sists of the fact that the existence of some exponential moment of the first hitting
time T0 of 0 is equivalent to the existence of quasistationary distributions for any
α > 0.

THEOREM 4.14. Let 0 be regular and let infinity be inaccessible. Moreover,
suppose that α ∈ (0,∞], κ ≡ 0 and Px(T0 < ∞) = 1.

(i) There exists a quasistationary distribution if and only if for some ε > 0 and
some (hence every) x > 0

Ex[eεT0] < ∞.

(ii) There exists a unique quasistationary distribution if and only if for every a > 0
there exists ya > 0 such that

sup
x>ya

Ex[eaTya ] < ∞.

This is true if and only if infinity is an entrance boundary.

PROOF. Assertion (ii) follows from assertion (i) in combination with Theo-
rem 7.3 of Cattiaux et al. (2009). In order to prove assertion (i) let us first as-
sume that there exists a quasistationary distribution ν. Then there exists λ̄ such that
Pν(τ∂ > t) = e−λ̄t . Since hitting 0 is certain we conclude that λ̄ > 0. As shown in
Lemma A of the Appendix the measure ν is absolutely continuous with respect to
� with a strictly positive and continuous density ϕ. Therefore, we get for 0 < a < b

and some positive constant c > 0

e−λ̄t = Pν(τ∂ > t) =
∫ ∞

0
ϕ(y)Py(τ∂ > t)�(dy)

≥ c

∫ b

a
ϕ(y)

(
e−tL0,α

1(a,b)ϕ
)
(y)�(dy)(4.24)

= c

∫
[0,∞)

e−tλ d
∥∥E0,α

λ

(
1(a,b)ϕ

)∥∥2
.
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Using Lemma 2.2 we therefore have λ
0,α
0 = inf suppd‖E0,α(1(a,b)ϕ)‖2(λ) ≥

λ̄ > 0. Since the essential spectra of L0,α and L0,∞ coincide, either λ
0,0
0 is

strictly positive or 0 is an isolated eigenvalue. According to Lemma 3.3(vi)
the latter case cannot occur. But this means, according to Corollary 4.8, that
ϕ(λ

0,0
0 , y)�(dy)/

∫ ∞
0 ϕ(λ

0,0
0 , y)�(dy) is the quasilimiting distribution of the diffu-

sion killed at 0 and therefore limt→∞ 1
t

log Px(T0 > t) = −λ
0,0
0 . Hence Ex[eεT0] <

∞ for every 0 < ε < λ
0,0
0 .

Assume now that Ex[eεT0] < ∞ for some 0 < ε. Then obviously

lim
t→∞

1

t
log Px(T0 > t) < 0.

Using implication (4.3) we see that the asymptotic killing rate ηx is strictly bigger
than 0. By Lemma 4.1 the process Xt with absorption at 0 does not escape to infin-
ity; hence it converges. By Corollary 4.8 we then have λ

0,∞
0 > 0. Using the same

argument as in the first part of the proof of assertion (i) we conclude that λ
0,α
0 > 0,

which by Corollary 4.8 implies the existence of a quasistationary distribution. �

Thus uniqueness of quasistationary distributions is equivalent to the “time of
implosion from infinity into the interior” having exponential moments of all orders,
whereas existence of a quasistationary distribution is equivalent to the existence
of some exponential moment of the first hitting time of 0. Both results together
account for the existence and uniqueness of quasistationary distributions.

REMARK 4.15. It seems to be a rather general principle that there are three
possibilities. The first possibility is the nonexistence of quasistationary distribu-
tions. If there exists a quasistationary distribution, then it is either unique or there
is a whole continuum of quasistationary distributions parameterized by a real inter-
val. This is at least true for birth and death processes on the nonnegative integers;
cf. Cavender (1978).

5. The dichotomy and the integrability of the principal eigenfunction.
According to the basic dichotomy of Steinsaltz and Evans (2007), as ex-
tended here, we know that under the assumptions K �= λκ

0 and the nonac-
cessibility of infinity either Xt converges to the quasistationary distribution
ϕ(λκ

0 , ·)/ ∫ ∞
0 ϕ(λκ

0 , y) dγ (y) or Xt escapes to infinity. Moreover, we have shown
that escape to infinity occurs (under these assumptions) if and only if the boundary
point infinity is natural, the underlying unkilled diffusion is transient and λκ

0 > K .
Another way of expressing this dichotomy is in terms of the integrability of the

principal eigenfunction. It follows without much effort from Theorem 3.15 [see,
e.g., Proposition 2.3 in Steinsaltz and Evans (2007)], that

∫ ∞
0 ϕ(λκ

0 , y)�(dy) = ∞
implies escape to infinity. Is integrability of the principal eigenfunction actually
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equivalent to Yaglom convergence, at least under the condition K �= λκ
0? We an-

swer in the affirmative, stating the result as a theorem because of its salience,
although it might strictly be seen as a fairly direct corollary to the results of Sec-
tion 4.

THEOREM 5.1. Assume that 0 is regular and that infinity is not accessible.
Moreover, suppose that K �= λκ

0 . Then Xt escapes to infinity if and only if∫ ∞
0

ϕ(λκ
0 , y) d�(y) = ∞.

If
∫ ∞

0 ϕ(λκ
0 , y) d�(y) < ∞, then Xt converges to the quasilimiting distribution

ϕ(λκ
0 ,y) d�(y)∫ ∞

0 ϕ(λκ
0 ,y) d�(y)

.

PROOF. All we need to show is that∫ ∞
0

ϕ(λκ
0 , y) d�(y) = ∞

holds when there is escape to infinity; that is, in the case λκ
0 > K , ∞ is natural,

and
∫ ∞

0 γ (y)−1 dy < ∞. In all other cases we know that Xt converges to quasis-
tationary, and in particular the principal eigenfunction is integrable.

Under these assumptions we know from the proof of Theorem 4.9 [see equa-
tion (4.17)] that for every ε > 0 there exists a nontrivial, nonnegative increasing
function Cε(·) such that for y > 0 and t > 0

Py(τ∂ > t) ≥ Cε(y)e−(K+ε)t .(5.1)

Let us assume that m := ∫ ∞
0 ϕ(λκ

0 , y) d�(y) < ∞ and show that this gives
a contradiction. Integration of (5.1) with respect to the probability measure
m−1ϕ(λκ

0 , y) d�(y) gives

m−1
∫ ∞

0
ϕ(λκ

0 , y)Py(τ∂ > t) d�(y)

(5.2)
≥ e−(K+ε)tm−1

∫ ∞
0

Cε(y)ϕ(λκ
0 , y) d�(y).

On the other hand, using the symmetry of the semigroup we have

m−1
∫ ∞

0
ϕ(λκ

0 , y)Py(τ∂ > t) d�(y)

(5.3)
= m−1

∫ ∞
0

(e−tLκ

ϕ(λκ
0 , ·))(y) d�(y).

Now observe that ϕ(λκ
0 , ·) is λκ

0 -subinvariant [see, e.g., Lemma 7.7 in Steinsaltz
and Evans (2007)], that is,

e−tLκ

ϕ(λκ
0 , ·) ≤ e−λκ

0 tϕ(λκ
0 , ·).(5.4)



208 M. KOLB AND D. STEINSALTZ

Using (5.3), (5.2) and (5.4), for all t > 0,

m ≥
∫ ∞

0
ϕ(λκ

0 , y)Py(τ∂ > t) d�(y)

(5.5)
≥ e(λκ

0−K−ε)t
∫ ∞

0
Cε(y)ϕ(λκ

0 , y) d�(y).

As we know that λκ
0 − K − ε > 0 for ε sufficiently small, and the integral is as-

sumed nonzero, the right-hand side goes to ∞ as t → ∞, which is a contradiction
if m is finite. Therefore m = ∫ ∞

0 ϕ(λκ
0 , y) d�(y) = ∞. �

APPENDIX

In this Appendix we sketch a proof of the regularity of quasistationary distribu-
tions of one-dimensional diffusions with one regular boundary.

LEMMA A. Let Lκ be one of the self-adjoint realizations considered in this
work, of the Sturm–Liouville expression τ +κ in L2; and let ν̃ be a quasistationary
distribution. Then ν̃ is absolutely continuous with respect to the measure �, with
a positive and continuous density g : [0,∞) → R.

PROOF. The main assertion of the lemma will be almost obvious to readers
who are familiar with regularity theory for stationary distributions. Observe that
the main point here is the continuity up to the boundary 0. Indeed, the main strategy
we follow is very similar to the case of stationary distributions. Straightforward
arguments show that ν̃ is absolutely continuous with respect to the measure �.
Denote by g the density of ν̃ with respect to �. The equation

e−λt ν̃(f ) = Eν̃[f (Xt); τ∂ > t]; λ ≥ 0, f ∈ Cc((0,∞)),

which results from quasistationarity of ν̃, implies that

∀f ∈ C∞
c ((0,∞)) : 〈ν̃, (Lκ + λ)f 〉 =

∫
g(x)(Lκ + λ)f (x) d�(x) = 0.(A.1)

This means that for any 0 < c < d ,

g ∈ D(T ∗
c,d) and T ∗

c,dg = 0,

where T ∗
c,d denotes the adjoint [taken in the Hilbert space L2((c, d),�)] of the

minimal operator Tc,d defined as the restriction of the differential operator Lκ + λ

to C∞
c ((c, d)). The domain of T ∗

c,d is given by

D(T ∗
c,d) =

{
f ∈ L2((c, d),�)|f,γf ′ absolutely continuous in (c, d) and

(A.2) −1

2γ
(γf ′)′ + (κ + λ)f ∈ L2((c, d),�)

}
,



QUASILIMITING BEHAVIOR 209

and for f ∈ D(T ∗
c,d) one has T ∗

c,d = −1
2γ

(γf ′)′ + (κ + λ)f . Since c, d ∈ (0,∞) are
arbitrary we conclude that

−1

2γ
(γf )′(x) + (κ + λ)f (x) = 0 in (0,∞).(A.3)

Due to the regularity of the boundary point 0 we conclude (using standard ODE
theory) that

lim
x→0+g(x) ∈ R

exists. �

A.1. Very short summary of extension theory. In this section we give a
summary of the analytic results we applied in Lemma 3.1, a full account of which
can be found in Chapter 10 of Weidmann (2000). For an arbitrary symmetric op-
erator S in a complex Hilbert space H let Ran(S − z) denote the image of the
linear operator S − z and let Ran(S − z)⊥ denote its orthonal complement. Set
β+ := dim Ran(S + i)⊥ and β− := dim Ran(S − i)⊥. Observe that in the sym-
metric case dim Ran(S ± i)⊥ = dim Ker(S∗ ∓ i). Thus the deficiency indices give
the dimension of the solution space of the equation (S∗ ∓ i)u = 0 (u ∈ H). The
pair (β+, β−) are called the deficiency numbers of S and describes the “number”
of self-adjoint extensions of S. If in the notation of the beginning of Section 2.1
S = τp,q,V is, for example, a (minimal) Sturm–Liouville differential expression on
the interval (a1, a2), then one always has β+ = β−. Moreover,

(β+, β−) =

⎧⎪⎪⎨⎪⎪⎩
(0,0), if a1 and a2 are both limit point boundaries,
(1,1), if one boundary point is limit point and

the other boundary point limit circle,
(2,2), if a1 and a2 are both limit circle boundaries.

We note that these formulas follow immediately from the definition of limit-point
type/limit-circle type, the remark appearing after Definition 2.4 and the fact that
the deficiency indices give the dimensions of the space of solutions to eigenvalue
equations. The case (β+, β−) = (0,0) corresponds to essential self-adjointness,
that is, the case, where there is is only one self-adjoint extension. Moreover, if
(β+, β−) = (m,m) a symmetric extension T of S [i.e., D(S) ⊂ D(T ), T � D(S) =
S] is self adjoint if and only if D(T )/D(S) has dimension m. Thus in this case
self-adjoint extensions of S are exactly the m-dimensional symmetric extensions.
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