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CUTPOINTS AND RESISTANCE OF RANDOM WALK PATHS

BY ITAI BENJAMINI, ORI GUREL-GUREVICH AND ODED SCHRAMM

The Weizmann Institute of Science, Microsoft Research and Microsoft Research

We construct a bounded degree graph G, such that a simple random
walk on it is transient but the random walk path (i.e., the subgraph of all
the edges the random walk has crossed) has only finitely many cutpoints, al-
most surely. We also prove that the expected number of cutpoints of any tran-
sient Markov chain is infinite. This answers two questions of James, Lyons
and Peres [A Transient Markov Chain With Finitely Many Cutpoints (2007)
Festschrift for David Freedman].

Additionally, we consider a simple random walk on a finite connected
graph G that starts at some fixed vertex x and is stopped when it first visits
some other fixed vertex y. We provide a lower bound on the expected effective
resistance between x and y in the path of the walk, giving a partial answer to
a question raised in [Ann. Probab. 35 (2007) 732–738].

1. Introduction. In this paper, we study natural geometric and potential the-
oretic properties of the simple random walk path on general graphs. Given a
graph G, a simple random walk on G is a Markov chain, {Xt }∞t=0, on the ver-
tices of the graph, such that the distribution of Xt+1 given the current state Xt , is
uniform among the neighbors of Xt . Given a sample of the simple random walk,
the path of the walk (denoted PATH) is the subgraph consisting of all the vertices
visited and edges traversed by the walk.

Given a rooted graph (G,g0), a vertex x of G is a cutpoint if it separates the
root g0 from infinity, that is, if removing x from G would result in g0 being in a
finite connected component. A vertex is a cutpoint of the path of a walk if it is a
cutpoint of (PATH,X0).

In [1, 2] it was shown that the path of a simple random walk is always a recurrent
graph, that is, a simple random walk on the path returns to the origin, almost surely.
If G is of bounded degree and the path has infinitely many cutpoints, then the path
is obviously recurrent. Indeed, this is the case when G is the Euclidean lattice, as
shown in [5, 6]. The question arises naturally: does the path of a simple random
walk on every graph have infinitely many cutpoints, almost surely?

This question was raised in [4], where an example of a nearest neighbor random
walk on the integers that has only finitely many cut-times almost surely is provided.
A cut-time is a time t such that the past of the walk {X0, . . . ,Xt} is disjoint from its
future {Xt+1, . . .}. Clearly, a cut-time t induces a cutpoint Xt , but not vice verse.
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Indeed, in the example in [4], the path of the walk is simply the integers, and so
every vertex (but 0) is a cutpoint. Moreover, [4] left open the question of whether
there is such a simple random walk on a bounded degree graph.

Returning to our question, we answer it in the negative.

THEOREM 1. There exists a bounded degree graph G such that the path of
the simple random walk on G has finitely many cutpoints, almost surely.

In Section 3, we construct an ad hoc example and prove it has the claimed
property. In Section 4, we argue that subgraphs of Z

d , d ≥ 3, spanned by ver-
tices satisfying x1 ≤ f (x2, . . . , xn) for an appropriate choice of f also exhibit this
property.

In [4] it is noted that in their example (as well as in similar examples in [3]), the
expected number of cut-times is infinite. We show that this is, in fact, the case for
any transient Markov chain.

THEOREM 2. For every transient Markov chain the expected number of cut-
times (and hence cutpoints) of the path is infinite.

Lastly, we consider the resistance of the path when considered as an electrical
network with each edge being a unit resistor. As mentioned, in [1, 2] it is proved
that the path of a simple random walk is recurrent, almost surely, and therefore
its resistance to infinity is infinite. In Section 6 we give a quantitative version of
this theorem, providing explicit bounds on the resistance of a finite portion of the
path, in terms of the maximal degree of G and the probability of return from the
boundary of the finite portion to the origin.

2. Open questions. Some open questions present themselves: under what
conditions does the path of a random walk have a.s. infinitely many cutpoints?
This question was largely resolved in [3] for the special case of nearest neighbors
walks on the integers. For general (bounded degree) graphs, we find the following
2 questions interesting:

• Does a strictly positive lim inf speed of a simple random walk imply having a.s.
infinitely many cut points of its path?

• Does the path of a simple random walk on any transient vertex transitive graph
have a.s. infinitely many cut points?

We conjecture that the answer to both questions is positive.
Theorem 1 can be easily generalized to show that for every positive integer k,

the path in our example has only finitely many minimal cutsets of size k (i.e.,
sets whose removal from the path disconnect X0 from infinity). This is done by
choosing a suitably large M in the proof. Since the construction itself does not
depend on M , we know that there are actually only finitely many finite minimal
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cutsets in the path. Furthermore, by allowing M to depend of the layer and slowly
tend to infinity, one can get an explicit lower bound on the rooted isoperimetric
profile of the path. It is well known (see, e.g., [7]) that any graph satisfying a
large enough rooted isopermietric inequality is transient. In our context the natural
question is this:

• Given an isoperimetric profile f which does not imply transience, is there a
bounded degree graph Gf , such that the path of a simple random walk on Gf

satisfies the rooted f -isoperimetric inequality? In other words, is there some
upper bound on the isoperimetric profile of the path?

3. Proof of Theorem 1.

3.1. Construction. Let En be a sequence of d-regular expanders, where En

has n vertices. The graph we describe is composed of layers, Gj for j ∈ N, where
edges are only within a single layer or between adjacent layers. Fix some α > 1.
For 2k/kα ≤ j < 2k+1/(k + 1)α , we let Gj be a copy of E2k . (Actually, this only
defines Gj for j ≥ j0 for some j0 ∈ N, which depends on α. For j ∈ N∩[0, j0), we
take Gj = Gj0 .) If Gj and Gj+1 are of the same size, we connect x ∈ Gj with y ∈
Gj+1 if x and y are connected in E2k . If Gj+1 is twice the size of Gj , we choose
some bipartite graph on the vertices of Gj ∪ Gj+1 which has 2d edges attached
to each vertex in Gj and d edges attached to each vertex in Gj+1. Denote the
resulting graph G. We claim that this G has the properties we seek in Theorem 1.

3.2. Proof. Let Zt = (Xt , Yt ) be a simple random walk on G, where Xt marks
the layer, and Yt the location in VXt (here, Vx denotes the set of vertices at layer x).
Since the expanders are of constant degree, the probability of the walk moving up,
down or staying in the same layer is independent of the position inside the layer.
Therefore, Xt is a (lazy) random walk on N, which can be easily described as
follows. Let w(j, j + 1) = w(j + 1, j) denote the number of edges connecting
Gj and Gj+1, and let w(j, j) be twice the number of edges of Gj . Then Xt is
the network random walk on the network (N,w), and ηXt is a martingale, where
ηj := ∑∞

i=j ri and ri := 1/w(i, i + 1). In particular, the probability that such a
walk starting from j ever returns to 0 is ηj/η0. Since rj � j−1 log−α(j), where
� means that the ratio is bounded and bounded away from zero, we have ηj �
log1−α(j), and Xt is transient.

The Markov chain Xt is the kind of chain which is given in [4] as an example
of a Markov chain with a.s. only finitely many cut-times. We will analyze the walk
more thoroughly in the following.

Fix some 0 < β < 1 and j ∈ N+. Write

j− := 	j − jβ
,
j+ := �j + jβ�.
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Define s0 = s0(j) := inf{t ∈ N :Xt = j−}, t0 = t0(j) := inf{t ∈ N :Xt = j+} and
inductively si = si(j) := inf{t > ti−1 :Xt = j−} and ti = ti(j) := inf{t > si :Xt =
j+}. (As usual, the convention inf ∅ = ∞ is used.) The linking of j is defined
as �(j) := sup{i ∈ N : ti < ∞}. We fix some constant M ∈ N+, and say that j is
linked if �(j) ≥ M . Let Ij be the event that j is not linked, and let pj := P(Ij ).

LEMMA 3. Almost surely, the set of j ∈ N that are not linked is finite.

PROOF. Let pj be the probability that j is not linked. When the walk is at j+,
the probability of it never reaching j− again is

1 − ηj+
ηj−

= 1

ηj−

j−−1∑
i=j−

ri .

Since ηj � log1−α(j) and ri � j−1 log−α(j) for any i ∈ {j−, . . . , j+}, we get that
this probability is � jβ−1 log−1(j). Thus,

pj � Mjβ−1 log−1(j) � jβ−1 log−1(j),

since M is constant.
We would like to estimate P(Ii | Ij ) for i < j (or more precisely some variant

thereof). For technical reasons we impose the condition i < j−.
Note that Ij depends only on those steps of the walk between a visit to j+ and

the next visit to j−, if it occurs. Therefore, the rest of the walk, that is, between
visits to j− and j+, as well as before the first visit to j+, retains the law of the
network walk when conditioning on Ij . Let Q = Q(j) denote the segments of the
path between visits to j+ and visits to j−. More precisely, the kth segment is

Qk = Qk(j) := (Xtk ,Xtk+1, . . . ,Xsk )

for k ∈ {0,1, . . . , �(j) − 1},
Q� := (Xt�,Xt�+1, . . .)

for k = � = �(j), and finally

Q = Q(j) := (Q1,Q2, . . . ,Q�).

Now, when the network walk is started at j− the probability that it hits j+ before
i− is at least some constant c > 0 (because i < j−). The probability of the walk
started at i+ to hit j+ before i− is

ηi+ − ηi−
ηj+ − ηi−

� iβ

j − i
.

Thus, the conditional independence noted above implies that when i < j− on the
event �(j) < M we have

P(Ii | Q(j)) ≥ P
(
�(i) = 0 | Q(j)

) � c�(j) iβ

j − i
� iβ

j − i
,(1)
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where the implied and explicit constants may depend on α, β and M .
Let Ak = ∑

2k<j≤2k+1 1Ij
. For 2k < j ≤ 2k+1 we have pj � jβ−1 log−1(j) �

2kβ−k/k. Therefore, E(Ak) = ∑
2k<j≤2k+1 pj � 2kβ/k. Also, E(Ak−1 + Ak) �

2kβ/k.
Next, we would like to bound E(Ak−1 +Ak | Ak > 0). If Ak > 0 then Ij occurs,

for some 2k < j ≤ 2k+1. Let j∗ be the largest of this set; that is, j∗ := max{j ∈
(2k,2k+1] : Ij holds}. Note that j∗ = j is Q(j)-measurable. Therefore,

E(Ak−1 + Ak | Ak > 0) ≥ min
2k<j≤2k+1

E(Ak−1 + Ak | j∗ = j,Ak > 0)

≥ min
2k<j≤2k+1

inf
z

j−∑
i=2k−1

P
(
Ii | Q(j) = z

)
,

where the infimum is over all possible z such that {Q(j) = z} ∩ {j∗ = j} is possi-
ble. Thus, (1) gives

E(Ak−1 + Ak | Ak > 0) ≥ c min
2k<j≤2k+1

j−∑
i=2k−1

iβ

j − i
� 2kβk(1 − β) � 2kβk.

Therefore, P(Ak > 0) = E(Ak−1 + Ak)/E(Ak−1 + Ak | Ak > 0) � 1/k2. Thus,∑∞
k=1 P(Ak > 0) < ∞, which implies that a.s. at most finitely many k satisfy

Ak > 0. �

Returning to the full random walk Zt we prove that if j is a linked point (vertex)
of the walk Xt then the probability of any point in Vj being a cutpoint of Zt is small
(for suitable β and M).

Fix j and first assume for simplicity that there is no k such that j− ≤ 2k/kα ≤
j+; then Xt is a martingale in this range. Call a segment of the random walk
timeline, s, s + 1, . . . , t , a pass around j if Xs = j−, Xt = j+ and Xi is neither j−
nor j+ for i = s + 1, . . . , t − 1. In other words, in a pass, the walk starts at j− and
ends at j+, all the while staying between these two endpoints. If j is linked then
there are at least M (time-)disjoint passes around it. Note that we might as well
have used the passes in the reverse direction (from j+ to j−), getting 2M passes,
but since M is arbitrary, there is no need for this.

If s, . . . , t is a pass around j , then Xs, . . . ,Xt is a delayed simple random walk
on N, started at j− and conditioned on hitting j+ before returning to j−. Next, we
prove some simple facts about the typical behavior of such a walk.

3.3. Interlude: Two elementary facts about SRW. Let x0, x1, . . . be a simple
random walk on Z, started at x0 = 0. Let τi = min{t > 0 | xt = i} be the hitting
time of i (excluding the starting position). Let a ∈ N+. We are interested in the
behavior of the walk conditioned on τa < τ0.
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LEMMA 4.

P(τa < t | τa < τ0) < 2ate−a2/4t .

PROOF. For any s ≤ t , a Chernoff bound yields P(xs ≥ a) ≤ 2e−a2/4s ≤
2e−a2/4t . By a union bound, P(τa < t) ≤ 2te−a2/4t . Since we condition on an
event of probability P(τa < τ0) = 1/a, the conditional probability cannot increase
by more than a factor of a. �

Note: this is far from the best bound, but it suffices for our purposes. Using the
reflection principle and the central limit theorem one can get a bound of the form
Cεe

−a2/(2+ε)t for any ε > 0, if not better.
Assume, for simplicity, that a is even and let b = a/2. Let B = {t < τa :xt = b},

that is, the set of times where the walk visits b before hitting a.

LEMMA 5. For every m ∈ N,

P(|B| > m | τa < τ0) < 2e−2m/a.

PROOF. First, condition on τb < τ0. Every time the walk visits b, there is
probability of 1/(b − 1) that the walk never returns to b before hitting {0, a}.
Therefore,

P(|B| > m,τa < τ0 | τb < τ0) ≤
(

1 − 1

b − 1

)m

<

(
1 − 2

a

)m

≤ e−2m/a.

Since P(τa < τ0 | τb < τ0) = 1/2, we get the extra factor of 2 in our bound. �

Note: these two lemmas apply also to lazy simple random walks. In Lemma 4,
laziness only improves the bound, as it takes longer to reach a. [One has to account
for the change in P(τa < τ0), but this is rather minor.] In Lemma 5, the bound
changes to 2e−2Ck/a with C depending on the probability to stay in place.

3.4. Proof, continued. Returning to our original setup, we use Lemma 4 to
show that different passes around j tend to intersect each other. We continue to
assume that there is no integer k such that j− ≤ 2k/kα ≤ j+.

LEMMA 6. Let Aj (s) be the event that there is a pass around j starting at
time s, and on Aj (s) let τ be the final time of the pass. Let {vi : i = j−, . . . , j − 1}
be arbitrary points in G, where vi ∈ Vi . Then

P
({Zs, . . . ,Zτ } ∩ {vi : i = j−, . . . , j − 1} = ∅ | Aj (s)

)
< Ce−jβ−1/2−ε

holds for any ε > 0 and some C depending on ε.
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PROOF. Consider only the part of the pass until the first time τ ′ ≥ s when it
it first hits Vj . By Lemma 4 we get that the conditional probability [given Aj (s)]
that τ ′ − s < jβ+1/2 is at most O(1)j2β+1/2 exp(−jβ−1/2/4).

In the time range t ∈ {s, s + 1, . . . , τ }, the walk Yt is a simple random walk on
E2k , where, by assumption 2k/kα ≤ j− < j < j+ ≤ 2k+1/(k + 1)α . By the mixing
property of the expanders we chose, there is some C > 0 such that the distribution
of the walk after Ck � C log j steps is j−2 � 2−2k-close (in total variation) to
uniform. Therefore, the probability of being at any specific vertex is at least 1

22−k .
This holds conditional on the entire history of the walk except for the last C log j

steps.
Therefore, every C log j steps the walk has a probability of at least 2−k−1 of

intersecting {vi | i = j−, . . . , j − 1} (conditional on Xt to be between j− and j in
this range). Thus, the probability of not intersecting {vi | i = j−, . . . , j − 1} until
time jβ+1/2 is bounded by (1 − 2−k−1)j

β+1/2/C log j . Since 2k � j logα j , we get a
bound of O(1) exp(−jβ−1/2/C logα+1 j).

Both this probability and P(τ ′ − s < jβ+1/2) are asymptotically smaller then
exp(−jβ−1/2−ε). Thus, we get the required bound. �

The same conclusion also applies to a set of points {vi | i = j + 1, . . . , j+} on
the other side of j . Let τj = min{t | Xt = j} and σj = max{t | Xt = j} be the first
and last visits to Vj .

COROLLARY 7. Conditional on {Z0, . . . ,Zτj
} and {Zσj

, . . .} an independent

pass around j intersects both with probability at least 1 − Cejβ−1/2−ε
.

PROOF. These two sets each contain at least one element of each Vi for i =
j−, . . . , j − 1 and i = j + 1, . . . , j+. �

To conclude the proof, we just need to show, using Lemma 5, that the probability
of the random walk to hit a specific point during a pass is low.

LEMMA 8. Let v be an arbitrary point in Vj . With the notation of Lemma 6,
we have

P
(
v ∈ {Zs, . . . ,Zτ } | Aj (s),Zs

)
< Cjβ−1

for some constant C.

PROOF. Let B = {t1 < · · · < tm} be the set of times between s and τ that the
walk is in Vj . By Lemma 5, we have

P(m > C1j
β log j) < 2j−2C1 .(2)

Obviously, ti − s ≥ jβ for any i, that is, the random walk took at least jβ steps
before reaching Vj . By the mixing property of the expanders we chose, there is
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some C2 > 0 such that the distribution on Ys+jβ , conditioned on the history until

time s, is e−C2j
β
-close (in total variation) to uniform. Since the distance to the

uniform distribution can only decrease, we have, for any i

P
(
Zti = v | Aj (s),Zs

)
< |Vj |−1 + e−C2j

β

< C3j
−1 log−α j.

Combining with (2) yields

P
(
v ∈ B | Aj (s),Zs

) ≤ P(m > C1j
β log j) +

C1j
β log j∑

i=1

P
(
Zti = v | Aj (s),Zs

)
≤ 2j−2C1 + C1j

β log jC3j
−1 log−α j ≤ Cjβ−1

for a proper choice of C1. �

We now argue that our above conclusions also apply when there is some k ∈
N satisfying j− ≤ 2k/kα ≤ j+. For j large, there is clearly at most one such k.
Let j̃ be the value of 	2k/kα
, that is, between j− and j+. The argument used
in the proof of Lemma 6 can just be applied to the set {vi : i0 ≤ i ≤ i1}, where
j− ≤ i0 ≤ i1 ≤ j − 1, i1 − i0 is proportional to jβ and j̃ /∈ [i0, i1]. The next issue
is that Xt does not behave like a martingale when in the range [j−, j+]. However,
if we define g(i) = i for i ≤ j̃ and g(i) = j̃ + (i − j̃ )/2 for i ≥ j̃ , then g(Xt)

behaves as a martingale while Xt ∈ [j−, j+], and the analogue of Lemma 5 holds
with easy modifications to the proof. Finally, it is easy to adapt the proof Lemma 8
as well. The crucial point here is that the edges connecting Vj̃ and Vj̃+1 maintain
the uniform distribution. In other words, as the random walk passes from Vj̃ to
Vj̃+1 (or vice verse) its distribution can only get closer to uniform. Therefore, we
can safely ignore the steps between these layers when calculating the distance to
uniform. Since there are plenty of steps to spare, the analysis remains valid.

Putting it all together we get:

COROLLARY 9. If j is linked and v ∈ Vj , then

P(v is a cutpoint) < CjM(β−1).

PROOF. Each pass around j connects {Z0, . . . ,Zτj
} and {Zσj

, . . .} without
passing through v with probability at least 1 − Cjβ−1, regardless of the history
of the walk. Thus, the probability that every one of the M passes fails to do so is
bounded by CjM(β−1). �

Now, for 1
2 < β < 1 and M > 2/(1 − β) + 2, the expected number of cutpoints

in any Vj for linked j is finite. Since all but finitely many layers are linked, the
theorem is proved.
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4. Other graphs with finitely many cutpoints. The examples provided by
Theorem 1 are perhaps not the most natural ones. Are there simpler examples
exhibiting this phenomenon?

There are. In fact, we claim that a suitably chosen subgraph of Z
d , for d ≥ 3, is

such an example. Given a function f : R+ → R
+, define the horn of f in Z

d to be

Hd
f = {(x1, x2, . . . , xd) ∈ Z

d;x1 ≥ 0, x2
2 + · · · + x2

d ≤ f 2(x1)}.
That is, the part of the positive half space where the distance to the x1-axis is less

then f (x1). Taking f = d−1
√

x logα(x), for α > 1, we get a “barely transient” graph,
similar to our original construction. The layers in this graph are sets of points
having the same x1 coordinate. The size of the ith layer is roughly f d−1(i) =
i logα(i). Standard arguments can be used to construct a flow in Hd

f from the
origin to infinity having finite energy, thus showing that this graph is transient.

The difference between Hd
f and our previous example is twofold: the layers

are connected differently, and the layers themselves are obviously not expanders,
but some subset of Z

d−1 instead. Below is an outline of how to deal with these
differences.

First, since the layers are not even regular, we cannot separate the horizontal
movement (along the x1 axis) from the vertical (all other directions). In order to
prove Lemma 3 in this case, one has to give some bounds on the minimal and max-
imal probability of escape from layer j (minimal and maximal w.r.t. the location
inside the layer). The argument of Lemma 3 is rather robust, so the proof should
be adaptable.

Second, since the layers are not expanders, the walk on them does not mix as
rapidly, which interferes with the proof of Lemma 6. The mixing time of layer i

in Hd
f is of order f 2(i) = (i logα(i))2/(d−1). If d ≥ 4, then this is less then i2/3+ε .

Going through the proof of Lemma 6 we see that one can get a bound of order
e−jβ−5/6−ε

in this case, which is enough to proceed with the rest of the proof when
5/6 < β .

What about d = 3? The proof as written does not work since the mixing time of
layer i is now more then i. However, the proof of Lemma 6 did not use the mixing
of our random walk optimally. We only sampled the walk once every mixing time
steps and ignored the rest of the steps. For d = 3, one needs to improve on that by
first proving that if we have an n × n × n cube, consisting of n layers, with at least
one marked vertex in each layer, then the probability of a simple random walk,
started somewhere in the middle layer, to visit one of the marked vertices before
reaching the first or last layer, decays only logarithmically in n.

Since layer i is roughly
√

i logα(i) by
√

i logα(i), and the pass length is iβ ,
which we may take to be bigger than

√
i logα(i), the random walk would have

more than iβ−1/2−ε opportunities to intersect the marked vertices (i.e., previous
passes), which yields an exponentially small probability of failing to do so. Of
course, to prove this in full detail, one would have to also deal with the behavior
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of the walk near the boundary of the layers, which definitely would add significant
complications. We do not pursue this here.

5. Proof of Theorem 2. Next, we prove that even though the number of cut-
points can be finite a.s., its expectation is always infinite. This is true for any tran-
sient Markov chain, not necessarily reversible.

Let Xi be a transient Markov chain, S its state space and T the transition prob-
ability matrix.

Define f (s) to be the probability that a chain with the same law, started at s,
will ever visit X0 (the starting state of X). This function is harmonic for all s �= X0.
Therefore, f (Xi) is a martingale, as long as Xi �= X0.

First, we deal with the special case when the chain is irreducible. In that case,
f is positive everywhere, that is, there is a positive probability of returning to X0
from any vertex.

The chain is transient, thus limi→∞ f (Xi) = 0, almost surely. Let Mn be the
sequence of minima of f (Xi) and in the times in which these minima are achieved.
More precisely, in+1 = min{i | i > in, f (Xi) < f (Xin)} and Mn = f (Xin). This
sequence is infinite since f (Xi) > 0 due to irreducibility.

Given in−1 and in, let jn = min{j | j > in, f (Xj ) ≥ Mn−1}, which is the first
time j ≥ in at which the value of f (Xj ) exceeds the previously obtained min-
imum, or infinity if this never happens. Note that jn is a stopping time. By ap-
plying the optional stopping theorem, together with the positivity of f , we get
E(f (Xjn) | Mn) ≤ Mn, where we take f (X∞) = limj→∞ f (Xj ) = 0. By defi-
nition, f (Xjn) ≥ Mn−1 > Mn if jn < ∞. Therefore, P(jn < ∞ | Mn,Mn−1) ≤
Mn

Mn−1
.

Notice that if jn = ∞ then in must be a cut-time (and Xin a cutpoint), since
f (Xi) ≥ Mn−1 for i < in and f (Xi) < Mn for i ≥ in. Thus, given Mn−1 and Mn

the probability that in is a cut-time is at least 1 − Mn

Mn−1
.

Recall that Mn is a monotone decreasing sequence, tending to 0. For any such
sequence, we have

∑∞
n=1(1 − Mn

Mn−1
) = ∞, since

∏∞
n=1

Mn

Mn−1
= 0. Putting it all

together, we get

∞∑
n=1

P(in is a cut-time) =
∞∑

n=1

E
(
P(Xin is a cut-time | Mn,Mn−1)

)

≥
∞∑

n=1

E

(
1 − Mn

Mn−1

)
= E

( ∞∑
n=1

(
1 − Mn

Mn−1

))
= ∞.

What happens if our chain is not irreducible? In that case the state space can
be decomposed into irreducible components. These are equivalence classes of the
equivalence relation consisting of pairs (x, y) for which one can get from x to y
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with positive probability (in possibly more than one step), and one can get from y

to x with positive probability.
If there is positive probability that the chain eventually stays in some fixed

equivalence class S, then we may consider for some x ∈ S the probability to get
to x, and the previous proof applies to show that the expected number of cut-times
is infinite. Otherwise the number of cut-times is infinite almost surely, because
each transition into a new equivalence class is necessarily a cut time.

6. Bounding the resistance of the path. Even though the path of a simple
random walk might have only finitely many cutpoints, it is a recurrent subgraph
of G, as shown in [2]. In other words, the resistance of the path, from any vertex
to infinity, is infinite. Here we provide a bound on the rate of increase of the resis-
tance, useful mostly when G is of bounded degree. The proof uses the technique
of [2], combined with ideas from [1]. For the sake of completeness, we reproduce
the relevant lemmas from [1] and [2].

We follow the definitions in [2], adapted to finite graphs. Let G be a finite graph,
with two marked vertices, X0 and Y0. Let Xi be a simple random walk on G,
started at X0 and stopped when hitting Y0. Let v(x) be the probability of a simple
random walk on G, started at x, to hit X0 before Y0. Let s = max{v(y) :y ∼ Y0}
and let d = max{deg(x) :x �= Y0}.

Denote by Ceff(v ↔ u;H) the effective conductance between v and u in the
network H . Let PATH be the subgraph of G consisting of all the edges the random
walk crossed before hitting Y0. We would like to bound the conductance of PATH
from one end to the other.

THEOREM 10.

E
(
Ceff(X0 ↔ Y0;PATH)

) ≤ 12 log(d)

log(1/s)
.

In fact, a stronger form of Theorem 10 will be proved, where the conductance
of each edge of PATH is equal to the number of times in which the random walk
used that edge.

Recall that the effective resistance is the reciprocal of the effective conductance.
Using the convexity of the function 1/x and Jensen’s inequality we get the follow-
ing corollary.

COROLLARY 11.

E
(
Reff(X0 ↔ Y0;PATH)

) ≥ log(1/s)

12 log(d)
.

We shall now provide the lemmas necessary to proceed with the proof of Theo-
rem 10. Note that in PATH the degree of Y0 is always 1, since the random walk is



CUTPOINTS AND RESISTANCE OF RANDOM WALK PATHS 1133

stopped there. Therefore, the conductance is always bounded by 1, so the bound is
interesting only when s is small. Hence, we will assume that s < 1/d for the rest
of the proof.

LEMMA 12. If x and y are adjacent vertices of G \ {Y0}, then v(x) ≤ dv(y).

PROOF. This follows immediately from the harmonicity of v. �

Now, divide the vertices of G into sets Gi = {x ∈ V (G) | d−i−1 < v(x) ≤ d−i}.
By the lemma above we get that all the edges in G are within some Gi or between
Gi and Gi+1 for some i. The following lemma bounds the conductance of these
slices of the graph. This is similar to [2], Lemma 2.3.

LEMMA 13.

Ceff(Gi ↔ Gi+2;G) ≤ 2di+1Ceff(X0 ↔ Y0;G).

PROOF. Since v(X0) = 1 and v(Y0) = 0, the total current flowing through
G is equal to Ceff(X0 ↔ Y0;G). Now, subdivide every edge (x, y) connecting
Gi with Gi+1, by adding a new vertex z and replacing the edge (x, y) by edges
(x, z) and (z, y) having conductances cxz = (v(x) − v(y))/(v(x) − d−i−1) and
czy = (v(x) − v(y))/(d−i−1 − v(y)). This subdivision will result in a network
with v(z) = d−i−1 and all other voltages unchanged. Denote the set of new vertices
by Z. Similarly, subdividing the edges between Gi+1 and Gi+2 yields a new set
Z′ of vertices with voltage of d−i−2. If we run current from Gi to Gi+2 in the
modified network G̃, then all the current must flow through Z and Z′. Hence,
Ceff(Gi ↔ Gi+2;G) ≤ Ceff(Z ↔ Z′; G̃). However,

Ceff(Z ↔ Z′; G̃) = Ceff(X0 ↔ Y0;G)

d−i−1 − d−i−2 ,(3)

since the total current from X0 to Y0 in G̃ is Ceff(X0 ↔ Y0;G) and the voltage
difference between Z and Z′ is d−i−1 − d−i−2. Since d ≥ 2 we get the required
inequality. �

Denote by N(x, y) the number of times the random walk crossed the edge
(x, y), in either direction. Then G := (G,E(N)) is a new network, with the same
edges as in G, but each edge (x, y) has a conductance equal to the expected num-
ber of crossing of (x, y).

LEMMA 14.

Ceff(Gi ↔ Gi+2;G) ≤ 4.
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PROOF. Let G̃,Z and Z′ be as in the proof of the previous lemma. We use
Ẽ to denote the expectation with respect to the random walk on the network G̃,
and likewise use C̃xy to denote the conductance of an edge in G̃, etc. Suppose
that an edge (x, y) in G is subdivided in G̃ into (x, z) and (z, y). In that case
E(N(x, y)) ≤ Ẽ(N(z, y)), because the random walk on the graph G can be cou-
pled with a random walk on the network G̃ so that they stay together, except that
the walk on G̃ may traverse from x to z and back to z or from y to z and back to
y, while the first random walk stays in x or y, respectively, and similarly for the
other subdivided edges. Let G̃ be the network whose underlying graph is that of
G̃ and where the conductance of every edge is the expected number of times the
random walk on G̃ uses that edge. The above comparison implies that

Ceff(Gi ↔ Gi+2;G) ≤ Ceff(Z ↔ Z′; G̃).(4)

Let (x, y) be an edge of G̃ in the part of G̃ between Z and Z′. We have
Ẽ(N(x, y)) = g̃(x)C̃xy/C̃x + g̃(y)C̃xy/C̃y , where g̃(x) is the expected number
of visits to x before hitting Y0 and C̃x = ∑

y∼x C̃xy . By reversibility of the random
walk, we have g̃(x)/C̃x = ṽ(x)g̃(X0)/C̃X0 . Since g̃(X0)/C̃X0 = 1/Ceff(X0 ↔
Y0; G̃) we have

Ẽ(N(x, y)) = ṽ(x) + ṽ(y)

Ceff(X0 ↔ Y0; G̃)
C̃xy ≤ 2d−i−1

Ceff(X0 ↔ Y0; G̃)
C̃xy.(5)

Combining the above estimates, we get

Ceff(Gi ↔ Gi+2;G)
(4)≤ Ceff(Z ↔ Z′; G̃)

(5)≤ Ceff(Z ↔ Z′; G̃)
2d−i−1

Ceff(X0 ↔ Y0; G̃)

(3)= Ceff(X0 ↔ Y0;G)

d−i−1 − d−i−2

2d−i−1

Ceff(X0 ↔ Y0; G̃)

= 2
d

d − 1
≤ 4.

The penultimate equality is valid since the subdivision has no effect on the ef-
fective conductance between X0 and Y0. �

Let GN denote the network on the graph G where the conductance of any edge
(x, y) is the number of times in which the random walk path traverses that edge.
Observe that

E
(
Ceff(X0 ↔ Y0;GN)

) ≤ Ceff(X0 ↔ Y0;G)(6)

follows immediately from the concavity of Ceff (see [2] for a proof).
Now, we can complete the proof.
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PROOF OF THEOREM 10. First, notice that since 1 ≤ N(x, y) for every edge
(x, y) ∈ PATH, we know that Ceff(X0 ↔ Y0;PATH) ≤ Ceff(X0 ↔ Y0;GN). Next,
from (6) we get that E(Ceff(X0 ↔ Y0;GN)) ≤ Ceff(X0 ↔ Y0;G). To bound this
conductance, we note that Ceff(X0 ↔ Y0;G) ≤ Ceff(G0 ↔ Gn;G), where n =
	log(1/s)/ log(d)
, because, X0 is contained in G0 and by the definition of s, Gn

separates X0 from Y0.
Next, we contract every even Gi to a single vertex. Since Ceff(Gi ↔ Gi+2;G) ≤

4, we have that

Ceff(G0 ↔ Gn;G) ≤ 4

	n/2
 = 4

	q/2
 ,

where q = log(1/s)/ log(d). If q ≥ 12, this gives

E
(
Ceff(X0 ↔ Y0;GN)

) ≤ 12 logd

log(1/s)
,(7)

while if q < 12, this holds as well, because the right-hand side is larger than 1 and
in GN the effective conductance between X0 and Y0 is at most 1. This completes
the proof. �

To illustrate the theorem and the estimate (7), consider the two-dimensional
lattice Z

2 and the random walk is started at the origin and stopped upon reach-
ing Euclidean distance larger than some large r > 0. We may then contract the
vertices of Z

2 outside the disk of radius r to a single vertex Y0. Then d = 4
and s = 	((r log r)−1), so our bound on the expected conductance of PATH is
O(1/ log r). Of course, the conductance in Z

2 itself is also 	(1/ log r), and thus
the theorem does not give any new bound in this case. However, the specializa-
tion to this setting of the bound (7) is nontrivial, since a typical edge in PATH is
actually expected to have a multiplicity of roughly log r .

Perhaps a more interesting example is obtained stopping the walk at distance r ,
but considering the expected conductance of GN or of PATH to distance r/2.
Here, our theorem does not apply as is, but it is easy to see that by choosing
n = 	(log log r) appropriately the above proof gives a bound of O(1/ log log r)

on the expected conductance. To appreciate this bound, note that in this case there
will typically be many more edges near the target distance of r/2 that are in PATH.
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