Abstract
For 0<α≤2, a super-α-stable motion X in $\mathsf{R}^{d}$ with branching of index 1+β∈(1, 2) is considered. Fix arbitrary t>0. If d<α/β, a dichotomy for the density function of the measure Xt holds: the density function is locally Hölder continuous if d=1 and α>1+β but locally unbounded otherwise. Moreover, in the case of continuity, we determine the optimal local Hölder index.
Citation
Klaus Fleischmann. Leonid Mytnik. Vitali Wachtel. "Optimal local Hölder index for density states of superprocesses with (1+β)-branching mechanism." Ann. Probab. 38 (3) 1180 - 1220, May 2010. https://doi.org/10.1214/09-AOP501
Information