Translator Disclaimer
September 2009 Small deviations of general Lévy processes
Frank Aurzada, Steffen Dereich
Ann. Probab. 37(5): 2066-2092 (September 2009). DOI: 10.1214/09-AOP457

Abstract

We study the small deviation problem logℙ(sup t∈[0, 1]|Xt|≤ɛ), as ɛ→0, for general Lévy processes X. The techniques enable us to determine the asymptotic rate for general real-valued Lévy processes, which we demonstrate with many examples.

As a particular consequence, we show that a Lévy process with nonvanishing Gaussian component has the same (strong) asymptotic small deviation rate as the corresponding Brownian motion.

Citation

Download Citation

Frank Aurzada. Steffen Dereich. "Small deviations of general Lévy processes." Ann. Probab. 37 (5) 2066 - 2092, September 2009. https://doi.org/10.1214/09-AOP457

Information

Published: September 2009
First available in Project Euclid: 21 September 2009

zbMATH: 1187.60035
MathSciNet: MR2561441
Digital Object Identifier: 10.1214/09-AOP457

Subjects:
Primary: 60G51

Rights: Copyright © 2009 Institute of Mathematical Statistics

JOURNAL ARTICLE
27 PAGES


SHARE
Vol.37 • No. 5 • September 2009
Back to Top