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REVERSIBILITY OF CHORDAL SLE

BY DAPENG ZHAN

University of California, Berkeley

We prove that the chordal SLEκ trace is reversible for κ ∈ (0,4].

1. Introduction. Stochastic Loewner evolutions (SLEs) are introduced by
Oded Schramm [11] to describe the scaling limits of some lattice models, whose
scaling limits satisfy conformal invariance and Markov property. The basic prop-
erties of SLE are studied in [9]. There are several different versions of SLE.
A chordal SLE is defined in a simply connected domain, which is about some
random curve in the domain that grows from one boundary point to another.

So far it has been proved that the chordal SLE6 is the scaling limit of the ex-
plorer line of the site percolation on the triangular lattice with half open and half
closed boundary conditions ([13] and [2]); the chordal SLE8 is the scaling limit
of UST Peano curve with half free and half wired boundary conditions [6]; the
chordal SLE4 is the scaling limit of the contour line of the two-dimensional dis-
crete Gaussian free field with suitable boundary values [12]; and the chordal SLE2
is the scaling limit of LERW started near one boundary point, conditioned to leave
the domain near the other boundary point [17]. In [5], the SLE8/3 is proved to sat-
isfy the restriction property. From these results, we know that the chordal SLEκ

trace is reversible for κ = 6,8,4,2,8/3.
In [9], it is conjectured that the chordal SLEκ trace is reversible for all κ ∈ [0,8].

Scott Sheffield proposed that the reversibility can be derived from the relationship
with the Gaussian free field [10]. In this paper we will prove this conjecture for
κ ∈ (0,4] using only techniques of probability theory and stochastic processes.
The main idea of this paper is as follows.

Suppose (β(t)) is a chordal SLEκ trace in a simply connected domain D from a
prime end a to another prime end b. From the Markov property of SLE, for a fixed
time t0, conditioned on the curve β([0, t0]), the rest of the curve (β(t) : t ≥ t0)

has the same distribution as a chordal SLEκ trace in Dt0 := D \ β([0, t0]) from
β(t0) to b. Assume that the chordal SLEκ trace is reversible. Then the reversal of
(β(t) : t ≥ t0) has the same distribution as the chordal SLEκ trace in Dt0 from b to
β(t0). On the other hand, since (β(t) : t ≥ t0) is a part of the SLEκ trace in D from
a to b, so from the reversibility, the reversal of (β(t) : t ≥ t0) should be a part of
SLEκ trace in D from b to a. Suppose γ is an SLEκ trace in Dt0 from b to β(t0).
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From the above discussion, if we integrate γ against all possible curves β([0, t0]),
we should get a part of the SLEκ trace in D from b to a, assuming that the chordal
SLEκ trace is reversible.

To prove the reversibility, we want to find a coupling of two SLEκ traces, one
is from a to b, the other is from b to a, such that the two curves visit the same set
of points. If such coupling exists, we choose a pair of disjoint hulls, each of which
contains some neighborhood of a or b in H, and stop the two traces when they
leave one of the two hulls, respectively. Before these stopping times, the two traces
are disjoint from each other. The joint distribution of the two traces up to these
stopping time should agree with that of β and γ discussed in the last paragraph up
to the same stopping times. The Girsanov Theorem suggests that this distribution
is absolutely continuous w.r.t. that of two independent chordal SLEκ traces (one
from a to b, the other from b to a) stopped on leaving the above two hulls. And the
Radon–Nikodym derivative is described by a two-dimensional local martingale,
which has the property that when one variable is fixed, it is a local martingale in
the other variable. This is the M(·, ·) in Theorem 4.1. It is closely related with
Julien Dubédat’s work about commutation relations for SLE [3].

Using the M(·, ·), we may construct a portion of the coupling up to certain
stopping times. To construct the global coupling, the difficulty arises when the two
hulls collide, and the absolute continuity blows up after that time. In fact, we can
not expect that the global coupling we are looking for is absolutely continuous
w.r.t. two independent SLE. Instead, the coupling measure will be the weak limit
of a sequence of absolutely continuous coupling measures. Each measure in the
sequence is generated from some two-dimensional bounded martingale, which is
the M∗(·, ·) in Theorem 6.1. The important property of M∗ is that, on the one
hand, it carries the information of M as much as we want; on the other hand, it is
uniformly bounded, and remains to be a martingale even after the two hulls collide.
So M∗ can be used as the Radon–Nikodym derivative to define a global coupling
measure.

It is known that, for κ > 8, the chordal SLEκ trace is not reversible [15]. So far
the reversibility for κ ∈ (4,8) is still unknown. Although the results about martin-
gales in this paper hold for all κ > 0, the argument in the last step of the proof
essentially uses the property that, for κ ∈ (0,4], the chordal SLEκ trace does not
touch the boundary other than the initial and end points.

The technique developed in this paper may have other usage. For example, it is
used in [15] to prove the Duplantier’s duality conjecture about SLE. It may also
be used to study the reversal of the trace of other variations of SLE, for example,
SLE(κ, ρ) [5], continuous LERW [14] and annulus SLE [15, 16].

This paper is organized in the following way. In Section 2 we give the defini-
tion of the chordal SLE and some other basic notation, and then present the main
theorem of this paper. In Section 3 we study the relations of two SLE that grow
in the same domain. In Section 4 we present the two-dimensional local martingale
M , and check its property by direct calculation of stochastic analysis. In Section 5
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we give some stopping times up to which M is bounded. And at the end of Sec-
tion 5 we give a detailed explanation of the meaning of M . In Section 6 we use
the local martingale to construct some two-dimensional bounded martingale M∗.
In Section 7 we use M∗ to construct a sequence of coupling measures. The limit of
these measures in some suitable sense is also a coupling measure. We finally prove
that, under the limit measure, the two SLEκ traces coincide with each other.

2. Chordal Loewner equation and chordal SLE. Let H = {z ∈ C : Im z > 0}
denote the upper half complex plane. If H is a bounded closed subset of H such
that H \ H is simply connected, then we call H a hull in H w.r.t. ∞. For such
H , there is a unique ϕH that maps H \ H conformally onto H such that ϕH (z) =
z+ c

z
+O(1/z2) as z → ∞ for some c ≥ 0. Such c is called the half-plane capacity

of H , and is denoted by hcap(H).

PROPOSITION 2.1. Suppose � is an open neighborhood of x0 ∈ R in H. Sup-
pose W maps � conformally into H such that, for some r > 0, if z → (x0 − r, x0 +
r) in �, then W(z) → R. So W extends conformally across (x0 − r, x0 + r) by the
Schwarz reflection principle. Then for any ε > 0, there is some δ > 0 such that if
a hull H in H w.r.t. ∞ is contained in {z ∈ H : |z − x0| < δ}, then W(H) is also a
hull in H w.r.t. ∞, and

|hcap(W(H)) − W ′(x0)
2 hcap(H)| ≤ ε|hcap(H)|.

PROOF. This is Lemma 2.8 in [4]. �

For a real interval I , let C(I) denote the real-valued continuous function on I .
Suppose ξ ∈ C([0, T )) for some T ∈ (0,+∞]. The chordal Loewner equation
driven by ξ is as follows:

∂tϕ(t, z) = 2

ϕ(t, z) − ξ(t)
, ϕ(0, z) = z.(2.1)

For 0 ≤ t < T , let K(t) be the set of z ∈ H such that the solution ϕ(s, z) blows up
before or at time t . We call K(t) and ϕ(t, ·), 0 ≤ t < T , chordal Loewner hulls and
maps, respectively, driven by ξ . Then for each t ∈ [0, T ), ϕ(t, ·) maps H \ K(t)

conformally onto H. Suppose for every t ∈ [0, T ),

β(t) := lim
z∈H,z→ξ(t)

ϕ(t, ·)−1(z) ∈ H ∪ R

exists, and β(t), 0 ≤ t < T , is a continuous curve. Then for every t ∈ [0, T ), K(t)

is the complement of the unbounded component of H \ β((0, t]). We call β the
chordal Loewner trace driven by ξ . In general, such trace may not exist.

We say (K(t),0 ≤ t < T ) is a Loewner chain in H w.r.t. ∞, if each K(t) is
a hull in H w.r.t. ∞; K(0) = ∅; K(s) � K(t) if s < t ; and for each fixed a ∈
(0, T ), the extremal length [1] of the curve in H \K(t + ε) that disconnects K(t +
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ε) \ K(t) from ∞ tends to 0 as ε → 0+, uniformly in t ∈ [0, a]. If u(t), 0 ≤
t < T , is a continuous (strictly) increasing function, and satisfies u(0) = 0, then
(K(u−1(t)),0 ≤ t < u(T )) is also a Loewner chain in H w.r.t. ∞, where u(T ) :=
supu([0, T )). It is called the time-change of (K(t)) through u. Here is a simple
example of the Loewner chain. Suppose β(t), 0 ≤ t < T , is a simple curve with
β(0) ∈ R and β(t) ∈ H for t ∈ (0, T ). Let K(t) = β((0, t]) for 0 ≤ t < T . Then
(K(t),0 ≤ t < T ) is a Loewner chain in H w.r.t. ∞. It is called the Loewner chain
generated by β .

If H1 ⊂ H2 are two hulls in H w.r.t. ∞, let H2/H1 := ϕH1(H2 \ H1). Then
H2/H1 is also a hull in H w.r.t. ∞, ϕH2/H1 = ϕH2 ◦ ϕ−1

H1
, and hcap(H2/H1) =

hcap(H2) − hcap(H1). If H1 ⊂ H2 ⊂ H3 are three hulls in H w.r.t. ∞, then
H2/H1 ⊂ H3/H1 and (H3/H1)/(H2/H1) = H3/H2.

PROPOSITION 2.2. (a) Suppose K(t) and ϕ(t, ·), 0 ≤ t < T , are chordal
Loewner hulls and maps, respectively, driven by ξ ∈ C([0, T )). Then (K(t),0 ≤
t < T ) is a Loewner chain in H w.r.t. ∞, ϕK(t) = ϕ(t, ·), and hcap(K(t)) = 2t for
any 0 ≤ t < T . Moreover, for every t ∈ [0, T ),

{ξ(t)} = ⋂
ε∈(0,T −t)

K(t + ε)/K(t).(2.2)

(b) Let (L(s),0 ≤ s < S) be a Loewner chain in H w.r.t. ∞. Let v(s) =
hcap(L(s))/2, 0 ≤ s < S. Then v is a continuous increasing function with u(0) =
0. Let T = v(S) and K(t) = L(v−1(t)), 0 ≤ t < T . Then K(t), 0 ≤ t < T , are
chordal Loewner hulls driven by some ξ ∈ C([0, T )).

PROOF. This is almost the same as Theorem 2.6 in [4]. �

Let B(t) be a (standard linear) Brownian motion, κ ∈ (0,∞), and ξ(t) =√
κB(t), 0 ≤ t < ∞. Let K(t) and ϕ(t, ·), 0 ≤ t < ∞, be the chordal Loewner

hulls and maps, respectively, driven by ξ . Then we call (K(t)) the standard chordal
SLEκ . From [9], the chordal Loewner trace β(t), 0 ≤ t < ∞, driven by ξ exists
almost surely. Such β is called the standard chordal SLEκ trace. We have β(0) = 0
and limt→∞ β(t) = ∞. If κ ∈ (0,4], then β is a simple curve, β(t) ∈ H for t > 0,
and K(t) = β((0, t]) for t ≥ 0; if κ ∈ (4,∞), then β is not a simple curve. If
κ ∈ [8,∞), then β visits every z ∈ H; if κ ∈ (0,8), then the Lebesgue measure of
the image of β in C is 0.

Suppose D � C is a simply connected domain, and a 
= b are two prime ends
[1] of D. Then there is W that maps (H;0,∞) conformally onto (D;a, b). We
call the image of the standard chordal SLEκ under W the chordal SLEκ in D

from a to b, which is denoted by SLEκ(D;a → b). Such W is not unique, but
the SLEκ(D;a → b) defined through different W have the same distribution up
to a linear time-change because the standard chordal SLEκ satisfies the scaling
property. The main theorem in this paper is as follows.
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THEOREM 2.1. Suppose κ ∈ (0,4], β1(t), 0 ≤ t < ∞, is an SLEκ(D;a → b)

trace, and β2(t), 0 ≤ t < ∞, is an SLEκ(D;b → a) trace. Then the set {β1(t) : 0 <

t < ∞} has the same distribution as {β2(t) : 0 < t < ∞}.

3. Ensemble of two chordal Loewner chains. In this section we study the
relations of two chordal Loewner chains that grow together. Some computations
were done in [3–5] and other papers. We will give self-contained arguments for all
results in this section. Suppose Kj(t) and ϕj (t, ·), 0 ≤ t < Sj , are chordal Loewner
hulls and maps, respectively driven by ξj ∈ C([0, Sj )), j = 1,2. Assume that for
any t1 ∈ [0, S1) and t2 ∈ [0, S2), K1(t1) ∩ K2(t2) = ∅, then K1(t1) ∪ K2(t2) is a
hull in H w.r.t. ∞. Fix j 
= k ∈ {1,2} and t0 ∈ [0, Sk). For 0 ≤ t < Sj , let

Kj,t0(t) = (
Kj(t) ∪ Kk(t0)

)
/Kk(t0) = ϕk(t0,Kj (t)).(3.1)

Since ϕk(t0, ·) maps H\Kk(t0) conformally onto H, so from conformal invariance
of extremal length, (Kj,t0(t),0 ≤ t < Sj ) is also a Loewner chain in H w.r.t. ∞.
Let vj,t0(t) = hcap(Kj,t0(t))/2 for 0 ≤ t < Sj , and Lj,t0(t) = Kj,t0(v

−1
j,t0

(t)) for
0 ≤ t < Sj,t0 := vj,t0(Sj ). From Proposition 2.2, Lj,t0(t), 0 ≤ t < Sj,t0 , are chordal
Loewner hulls driven by some ηj,t0 ∈ C([0, Sj,t0)). Let ψj,t0(t, ·), 0 ≤ t < Sj,t0 ,
denote the corresponding chordal Loewner maps. Let ξj,t0(t) = ηj,t0(vj,t0(t))

and ϕj,t0(t, ·) = ψj,t0(vj,t0(t), ·) for 0 ≤ t < Sj . Since ψj,t0(t, ·) = ϕLj,t0 (t) for
0 ≤ t < Sj,t0 , so ϕj,t0(t, ·) = ϕKj,t0 (t) for 0 ≤ t < Sj . We use ∂1 and ∂z to denote the
partial derivatives of ϕj (·, ·) and ϕj,t0(·, ·) w.r.t. the first (real) and second (com-
plex) variables, respectively, inside the bracket; and use ∂0 to denote the partial
derivative of ϕj,t0(·, ·) w.r.t. the subscript t0.

Fix j 
= k ∈ {1,2}, t ∈ [0, Sj ) and s ∈ [0, Sk). Since ϕk(s, ·) = ϕKk(s), ϕj (t, ·) =
ϕKj (t), ϕj,s(t, ·) = ϕKj,s(t) and ϕk,t (s, ·) = ϕKk,t (s), so from (3.1), for any z ∈ H \
(Kj (t) ∪ Kk(s)),

ϕKj (t)∪Kk(s)(z) = ϕk,t (s, ϕj (t, z)) = ϕj,s(t, ϕk(s, z)).(3.2)

Fix ε ∈ (0, Sj − t). Since Kj,s(r) = (Kj (r) ∪ Kk(s))/Kk(s) for r ∈ [0, Sj ), so

Lj,s(vj,s(t + ε))

Lj,s(vj,s(t))
= Kj,s(t + ε)

Kj,s(t)
= Kj(t + ε) ∪ Kk(s)

Kj (t) ∪ Kk(s)

= ϕKj (t)∪Kk(s)

(
Kj(t + ε) \ Kj(t)

)
(3.3)

= ϕk,t

(
s,Kj (t + ε)/Kj (t)

)
.

From Proposition 2.2 and (3.3), we have

{ξj (t)} = ⋂
ε>0

Kj(t + ε)/Kj (t)(3.4)
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and

{ξj,s(t)} = {ηj,s(vj,s(t))} = ⋂
ε>0

Lj,s

(
vj,s(t + ε)

)
/Lj,s(vj,s(t))(3.5)

= ⋂
ε>0

(
Kj(t + ε) ∪ Kk(s)

)
/
(
Kj(t) ∪ Kk(s)

)
.(3.6)

From (3.3)–(3.5), we have

ξj,s(t) = ϕk,t (s, ξj (t)).(3.7)

From Proposition 2.2 again, we have hcap(Kj (t + ε)/Kj (t)) = 2ε and

hcap
(
Lj,s

(
vj,s(t + ε)

)
/Lj,s(vj,s(t))

) = 2
(
vj,s(t + ε) − vj,s(t)

)
.

So from Proposition 2.1 and (3.3), we have

v′
j,s(t) = ∂zϕk,t (s, ξj (t))

2.(3.8)

Since ϕj,s(t, z) = ψj,s(vj,s(t), z), so for fixed s ∈ [0, Sk), (t, z) �→ ϕj,s(t, z) is
C1,a differentiable, where the superscript “a” means analytic, and

∂1ϕj,s(t, z) = 2v′
j,s(t)

ψj,s(vj,s(t), z) − ηj,s(vj,s(t))
(3.9)

= 2 ∂zϕk,t (s, ξj (t))
2

ϕj,s(t, z) − ϕk,t (s, ξj (t))
.

From (3.2), we see that (s, t, z) �→ ϕj,s(t, z) is C1,1,a differentiable. Differentiate
(3.9) using ∂z, and then divide both sides by ∂zϕj,s(t, z). We get

∂1 ln(∂zϕj,s(t, z)) = −2 ∂zϕk,t (s, ξj (t))
2

(ϕj,s(t, z) − ϕk,t (s, ξj (t)))2 .(3.10)

Differentiate (3.10) using ∂z. We get

∂1

(
∂2
z ϕj,s(t, z)

∂zϕj,s(t, z)

)
= 4 ∂zϕk,t (s, ξj (t))

2 ∂zϕj,s(t, z)

(ϕj,s(t, z) − ϕk,t (s, ξj (t)))3 .(3.11)

Differentiate (3.11) using ∂z. We get

∂1∂z

(
∂2
z ϕj,s(t, z)

∂zϕj,s(t, z)

)
= 4 ∂zϕk,t (s, ξj (t))

2 ∂2
z ϕj,s(t, z)

(ϕj,s(t, z) − ϕk,t (s, ξj (t)))3

(3.12)

− 12 ∂zϕk,t (s, ξj (t))
2 ∂zϕj,s(t, z)

2

(ϕj,s(t, z) − ϕk,t (s, ξj (t)))4 .
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LEMMA 3.1. For any j 
= k ∈ {0,1}, t ∈ [0, Sj ) and s ∈ [0, Sk), we have

∂0ϕk,t (s, ξj (t)) = −3 ∂2
z ϕk,t (s, ξj (t));(3.13)

∂0 ∂zϕk,t (s, ξj (t))

∂zϕk,t (s, ξj (t))
= 1

2
·
(

∂2
z ϕk,t (s, ξj (t))

∂zϕk,t (s, ξj (t))

)2

− 4

3
· ∂3

z ϕk,t (s, ξj (t))

∂zϕk,t (s, ξj (t))
.(3.14)

PROOF. Differentiating both sides of the second “=” in (3.2) w.r.t. t , we get

∂0ϕk,t (s, ϕj (t, z)) + ∂zϕk,t (s, ϕj (t, z)) ∂1ϕj (t, z) = ∂1ϕj,s(t, ϕk(s, z))

for any z ∈ H \ (Kj (t) ∪ Kk(s)). So from (2.1), (3.2) and (3.9),

∂0ϕk,t (s, ϕj (t, z)) = 2 ∂zϕk,t (s, ξj (t))
2

ϕk,t (s, ϕj (t, z)) − ϕk,t (s, ξj (t))
− 2 ∂zϕk,t (s, ϕj (t, z))

ϕj (t, z) − ξj (t)

for any z ∈ H \ (Kj (t) ∪ Kk(s)). Since ϕj (t, ·) maps H \ (Kj (t) ∪ Kk(s)) confor-
mally onto H \ Kk,t (s), so for any w ∈ H \ Kk,t (s),

∂0ϕk,t (s,w) = 2 ∂zϕk,t (s, ξj (t))
2

ϕk,t (s,w) − ϕk,t (s, ξj (t))
− 2 ∂zϕk,t (s,w)

w − ξj (t)
.(3.15)

In the above equation, let w → ξj (t) in H \ Kk,t (s). From the Taylor expansion of
ϕk,t (s, ·) at ξj (t), we get (3.13). Differentiating (3.15) using ∂z, we get

∂0 ∂zϕk,t (s,w) = −2 ∂zϕk,t (s, ξj (t))
2 ∂zϕk,t (s,w)

(ϕk,t (s,w) − ϕk,t (s, ξj (t)))2

− 2 ∂2
z ϕk,t (s,w)

w − ξj (t)
+ 2 ∂zϕk,t (s,w)

(w − ξj (t))2 .

Let w → ξj (t) in H \ Kk,t (s), then we get (3.14) from the Taylor expansion. �

4. Two-dimensional continuous local martingale. Let κ ∈ (0,4] and x1 <

x2 ∈ R. Let X1(t) and X2(t) be two independent Bessel process of dimension
3−8/κ started from (x2 −x1)/

√
κ . Let Tj denote the first time that Xj(t) visits 0,

which exists and is finite because 3 − 8/κ ≤ 1. For j = 1,2, let Yj (t) = √
κXj (t),

0 ≤ t ≤ Tj . Then there are two independent Brownian motions B1(t) and B2(t)

such that, for j = 1,2 and 0 ≤ t ≤ Tj ,

Yj (t) = (x2 − x1) + (−1)j
√

κBj (t) +
∫ t

0

κ − 4

Yj (s)
ds.

Fix j 
= k ∈ {1,2}. For 0 ≤ t ≤ Tj , let

ξj (t) = xj + √
κBj (t) + (−1)j

∫ t

0

κ − 6

Yj (s)
ds,

pj (t) = xk − (−1)j
∫ t

0

2

Yj (s)
ds.
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Then ξj (0) = xj , pj (0) = xk and ξj (t) − pj (t) = (−1)jYj (t), 0 ≤ t ≤ Tj . Thus,

dξj (t) = √
κ dBj (t) + κ − 6

ξj (t) − pj (t)
dt and dpj (t) = 2dt

pj (t) − ξj (t)
(4.1)

for 0 ≤ t < T . Let Kj(t) and ϕj (t, ·), 0 ≤ t ≤ Tj , denote the chordal Loewner hulls
and maps driven by ξj (t), 0 ≤ t ≤ Tj . Then (Kj (t),0 ≤ t < Tj ) are an SLE(κ, κ −
6) process [5] started from xj with force point at xk ; Tj is the first time that xk is
swallowed by Kj(t); and ϕj (t, xk) = pj (t), 0 ≤ t < Tj . It is well known (e.g., [3])
that after a time-change, (Kj (t),0 ≤ t < Tj ) has the same distribution as a chordal
SLEκ(H;xj → xk). Since κ ≤ 4, so there is a crosscut βj (t), 0 ≤ t ≤ Tj , in H
from xj to xk , such that Kj(t) = βj ((0, t]) for 0 ≤ t < Tj [9]. Here a crosscut in
H from a ∈ R to b ∈ R is a simple curve β(t), 0 ≤ t ≤ T , that satisfies β(0) = a,
β(T ) = b, and β(t) ∈ H for 0 < t < T .

For j = 1,2, let (F
j
t ) denote the filtration generated by (Bj (t)). Then (ξj ) is

(F
j
t )-adapted, and Tj is an (F

j
t )-stopping time. Let

D = {(t1, t2) ∈ [0, T1) × [0, T2) :K1(t1) ∩ K2(t2) = ∅}.
For 0 ≤ tk < Tk , let Tj (tk) ∈ (0, Tj ] be the maximal such that Kj(t) ∩ Kk(tk) 
= ∅
for 0 ≤ t < Tj (tk). Now we use the notation in the last section. Let (t1, t2) ∈ D .
Since ϕk,tj (tk, ·) = ϕKk,tj

(tk), so ϕk,tj (tk, ·) maps H\Kk,tj (tk) conformally onto H.
By the Schwarz reflection principle, ϕk,tj (tk, ·) extends conformally to �Kk,tj

(tk),

where for a hull H in H w.r.t. ∞, �H = C \ (H ∪ {z : z ∈ H } ∪ [inf(H ∩
R), sup(H ∩ R)]) (cf. [17]). For j 
= k ∈ {0,1} and h ∈ Z≥0, let Aj,h(t1, t2) =
∂h
z ϕk,tj (tk, ξj (tj )). The definition makes sense since ξj (tj ) ∈ �Kk,tj

(tk). Moreover,
we have Aj,h ∈ R for any h ≥ 0 since ϕk,tj (tk, ·) is real valued on a real open inter-
val containing ξj (tj ). From (3.2), we see that Aj,0(t1, t2) = ϕK1(t1)∪K2(t2)(βj (tj )),
j = 1,2. Since K1(t1) lies to the left of K2(t2), so A1,0(t1, t2) < A2,0(t1, t2).
Since ϕk,tj (tk, ·) maps a part of the upper half plane to the upper half plane,
so Aj,1(t1, t2) > 0, j = 1,2. For (t1, t2) ∈ D , define E(t1, t2) = A2,0(t1, t2) −
A1,0(t1, t2) > 0,

N(t1, t2) = A1,1(t1, t2)A2,1(t1, t2)

E(t1, t2)2 = A1,1(t1, t2)A2,1(t1, t2)

(A2,0(t1, t2) − A1,0(t1, t2))2 > 0(4.2)

and

M(t1, t2)
(4.3)

=
(

N(t1, t2)N(0,0)

N(t1,0)N(0, t2)

)α

exp
(
−λ

∫ t1

0

∫ t2

0
2N(s1, s2)

2 ds2 ds1

)
> 0,

where

α = α(κ) = 6 − κ

2κ
, λ = λ(κ) = (8 − 3κ)(6 − κ)

2κ
.(4.4)

Note that M(t1,0) = M(0, t2) = 1 for any 0 ≤ t1 < T1 and 0 ≤ t2 < T2.
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REMARK. If κ < 8/3, that is, λ > 0, then

exp
(
−λ

∫ t1

0

∫ t2

0
2N(s1, s2)

2 ds2 ds1

)
is the probability that in a loop soup [7] in H with intensity λ, there is no loop that
intersects both K1(t1) and K2(t2).

THEOREM 4.1. (i) For any fixed (F 2
t )-stopping time t̄2 with t̄2 < T2,

(M(t1, t̄2),0 ≤ t1 < T1(t̄2)) is a continuous (F 1
t1

× F 2
t̄2
)t1≥0-local martingale, and

∂1M

M

∣∣∣∣
(t1,t̄2)

=
(

3 − κ

2

)((
A1,2

A1,1
+ 2A1,1

A2,0 − A1,0

)∣∣∣∣
(t1,t̄2)

− 2

p1(t1) − ξ1(t1)

)
(4.5)

× ∂B1(t1)√
κ

.

(ii) For any fixed (F 1
t )-stopping time t̄1 with t̄1 < T1, (M(t̄1, t2),0 ≤ t2 <

T2(t̄1)) is a continuous (F 1
t̄1

× F 2
t2
)t2≥0-local martingale, and

∂2M

M

∣∣∣∣
(t̄1,t2)

=
(

3 − κ

2

)((
A2,2

A2,1
+ 2A2,1

A1,0 − A2,0

)∣∣∣∣
(t̄1,t2)

− 2

p2(t2) − ξ2(t2)

)
(4.6)

× ∂B2(t2)√
κ

.

PROOF. Since ϕ2,t1(0, ·) = idH, ϕ1,0(t1, ·) = ϕ1(t1, ·), and ξ2(0) = x2, so

A1,0(t1,0) = ϕ2,t1(0, ξ1(t1)) = ξ1(t1), A1,1(t1,0) = 1;

A2,0(t1,0) = ϕ1,0(t1, ξ2(0)) = ϕ1(t1, x2) = p1(t1), A2,1(t1,0) = ∂zϕ1(t1, x2).

Thus, N(t1,0) = ∂zϕ1(t1, x2)/(p1(t1)− ξ1(t1))
2. From the chordal Loewner equa-

tion, we get

∂t1∂zϕ1(t1, x2) = −2 ∂zϕ1(t1, x2)

(ϕ1(t1, x2) − ξ1(t1))2 = −2 ∂zϕ1(t1, x2)

(p1(t1) − ξ1(t1))2 .

From (4.1), we get

∂t1

(
p1(t1) − ξ1(t1)

) = −∂ξ1(t1) + 2 ∂t1

p1(t1) − ξ1(t1)
.

From the above two formulas and Itô’s formula, we get

∂1N(t1,0)α/(αN(t1,0)α) = 2 ∂ξ1(t1)/
(
p1(t1) − ξ1(t1)

)
.(4.7)

Now fix an (F 2
t )-stopping time t̄2 with t̄2 < T2. Then we get a filtration (F 1

t ×
F 2

t̄2
)t≥0. Since B1(t) and B2(t) are independent, so B1(t) is an (F 1

t × F 2
t̄2
)t≥0-

Brownian motion. Then T1(t̄2) is an (F 1
t × F 2

t̄2
)t≥0-stopping time, Aj,h(t, t̄2),
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j = 1,2, E(t, t̄2), N(t, t̄2) and M(t, t̄2) are defined for t ∈ [0, T1(t̄2)). From the
chordal Loewner equation and (3.2), ϕ1,t̄2(t, ·) and ϕ2,t (t̄2, ·), 0 ≤ t < T1(t̄2), are
(F 1

t × F 2
t̄2
)t≥0-adapted. Since A1,h(t, t̄2) = ∂h

z ϕ2,t (t̄2, ξ1(t)), so from Itô’s for-

mula, (A1,h(t1, t̄2),0 ≤ t1 < T1(t̄2)) satisfies the (F 1
t × F 2

t̄2
)t≥0-adapted SDE:

∂1A1,h(t1, t̄2) = A1,h+1(t1, t̄2) ∂ξ1(t1)
(4.8)

+
(
∂0 ∂h

z ϕ2,t1(t̄2, ξ1(t1)) + κ

2
A1,h+2(t, t̄2)

)
∂t1.

From (3.9) and (3.10), we have

∂1A2,0(t1, t2) = 2A1,1(t1, t2)
2

E(t1, t2)
∂t1,

(4.9)
∂1A2,1(t1, t2)

A2,1(t1, t2)
= −2A1,1(t1, t2)

2

E(t1, t2)2 ∂t1.

From (4.8), (4.9) and Lemma 3.1, we have

∂1A1,0 = A1,1 ∂ξ1(t1) +
(

κ

2
− 3

)
A1,2 ∂t1(4.10)

and

∂1A1,1

A1,1
= A1,2

A1,1
∂ξ1(t1) +

(
1

2
·
(

A1,2

A1,1

)2

+
(

κ

2
− 4

3

)
· A1,3

A1,1

)
∂t1,(4.11)

where “(t1, t̄2)” are omitted. Since E = A2,0 − A1,0, from (4.9) and (4.10), we
have

∂1E = −A1,1 ∂ξ1(t1) +
(2A2

1,1

E
+

(
3 − κ

2

)
A1,2

)
∂t1.(4.12)

Let Ch = A1,h for h ∈ Z≥0. From (4.9)–(4.12) and Itô’s formula, we have

∂1N
α

αNα
=

(
C2

C1
+ 2C1

E

)
∂ξ1(t1) + (8 − 3κ)

(
1

4
· C2

2

C2
1

− 1

6
· C3

C1

)
∂t1.(4.13)

The above SDE is (F 1
t × F 2

t̄2
)t≥0-adapted. Now (4.7) is also an (F 1

t × F 2
t̄2
)t≥0-

adapted SDE since B1(t) is an (F 1
t ×F 2

t̄2
)t≥0-Brownian motion. Thus, from (4.1),

(4.7), (4.13) and Itô’s formula, we have

∂1(N(t1, t̄2)/N(t1,0))α

α(N(t1, t̄2)/N(t1,0))α

=
(

C2(t1, t̄2)

C1(t1, t̄2)
+ 2C1(t1, t̄2)

E(t1, t̄2)
− 2

p1(t1) − ξ1(t1)

)√
κ ∂B1(t1)(4.14)

+ (8 − 3κ)

(
1

4
· C2(t1, t̄2)

2

C1(t1, t̄2)2 − 1

6
· C3(t1, t̄2)

C1(t1, t̄2)

)
∂t1.
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Since Cj(t1, t2) = ∂
j
z ϕ2,t1(t2, ξ1(t1)), so ∂2Cj(t1, t2) = ∂1 ∂

j
z ϕ2,t1(t2, ξ1(t1)),

and (
1

4
· C2

2

C2
1

− 1

6
· C3

C1

)∣∣∣∣
(t1,t2)

= 1

12
(∂2

z /∂z)ϕ2,t1(t2, ξ1(t1))
2

− 1

6
∂z(∂

2
z /∂z)ϕ2,t1(t2, ξ1(t1)).

From (3.11) and (3.12), we have

∂

∂t2
[(∂2

z /∂z)ϕ2,t1(t2, ξ1(t1))
2] = 8A2

2,1C2

E3

∣∣∣∣
(t1,t2)

,

∂

∂t2
[∂z(∂

2
z /∂z)ϕ2,t1(t2, ξ1(t1))] =

(4A2
2,1C2

E3 − 12A2
2,1C

2
1

E4

)∣∣∣∣
(t1,t2)

.

From the above three formulas, we get

∂2

(
1

4
· C2

2

C2
1

− 1

6
· C3

C1

)∣∣∣∣
(t1,t2)

= 2A2
2,1C

2
1

E4

∣∣∣∣
(t1,t2)

= 2N(t1, t2)
2.

Since ϕ2,t1(0, ·) = idH, so ∂
j
z ϕ2,t1(0, ·) = 0 for j ≥ 2. Thus, C2(t1,0) =

C3(t1,0) = 0. So

1

4
· C2(t1, t2)

2

C1(t1, t2)2 − 1

6
· C3(t1, t2)

C1(t1, t2)
=

∫ t2

0
2N(t1, s2)

2 ds2.(4.15)

Then (4.5) follows from (4.3)–(4.4) and (4.14)–(4.15); (4.6) follows from the sym-
metry. �

Now we make some improvement over the above theorem. Let t̄2 be an (F 2
t )-

stopping time with t̄2 < T2. Suppose R is an (F 1
t × F 2

t̄2
)t≥0-stopping time with

R < T1(t̄2). Let FR,t̄2 denote the σ -algebra obtained from the filtration (F 1
t ×

F 2
t̄2
)t≥0 and its stopping time R, that is, E ∈ FR,t̄2 iff for any t ≥ 0, E ∩ {R ≤ t} ∈

F 1
t × F 2

t̄2
. For every t ≥ 0, R + t is also an (F 1

t × F 2
t̄2
)t≥0-stopping time. So we

have a filtration (FR+t,t̄2)t≥0. Since (ξ1(t)) and (p1(t)) are (F 1
t ×F 2

t̄2
)t≥0-adapted,

so (ξ1(R + t), t ≥ 0), (p1(R + t), t ≥ 0), (ϕ1(R + t, ·), t ≥ 0)) and (K1(R + t), t ≥
0) are (FR+t,t̄2)t≥0-adapted. Suppose I ∈ [0, t̄2] is FR,t̄2 -measurable. From I ≤ t̄2
we have T1(I ) ≥ T1(t̄2) > R. Then ϕ1,I (R + t, ·) and ϕ2,R+t (I, ·) are defined for
0 ≤ t < T1(I ) − R.

LEMMA 4.1. T1(I ) − R is an (FR+t,t̄2)t≥0-stopping time and (ϕ1,I (R +
t, ·),0 ≤ t < T1(I ) − R) and (ϕ2,R+t (I, ·),0 ≤ t < T1(I ) − R) are (FR+t,t̄2)t≥0-
adapted.
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PROOF. Since T1(I ) − R > t iff K1(R + t) ∩ K2(I ) = ∅, and that (ϕ1(R +
t, ·)), and (K1(R + t)) are FR+t,t̄2 -adapted, so from (3.2), we suffice to show
that ϕ2(I, ·) is FR,t̄2 -measurable. Fix n ∈ N. Let In = �nI�/n. For m ∈ N ∪
{0}, let En(m) = {m/n ≤ In < (m + 1)/n}. Then En(m) is FR,t̄2 -measurable,
and In = m/n on En(m). Since m/n ≤ t̄2 and In = m/n on En(m), so In

agrees with (m/n) ∧ t̄2 on En(m). Now (m/n) ∧ t̄2 is an (F 2
t )-stopping time,

and F 2
(m/n)∧t̄2

⊂ F 2
t̄2

⊂ FR,t̄2 . So ϕ2((m/n) ∧ t̄2, ·) is FR,t̄2 -measurable. Since
ϕ2(In, ·) = ϕ2((m/n) ∧ t̄2, ·) on En(m), and En(m) is FR,t̄2 -measurable for each
m ∈ N ∪ {0}, so ϕ2(In, ·) is FR,t̄2 -measurable. Since ϕ2(In, ·) → ϕ2(I, ·) as n →
∞, so ϕ2(I, ·) is also FR,t̄2 -measurable. Then we are done. �

Let BR
1 (t) = B1(R + t) − B1(R), 0 ≤ t < ∞. Since B1(t) is an (F 1

t × F 2
t̄2
)t≥0-

Brownian motion, so BR
1 (t) is an (FR+t,t̄2)t≥0-Brownian motion. Then (ξ1(R+ t))

satisfies the (FR+t,t̄2)t≥0-adapted SDE:

dξ1(R + t) = √
κ dBR

1 (t) + κ − 6

ξ1(R + t) − p1(R + t)
dt.

The SDEs in the proof of Theorem 4.1 still hold if t1 is replaced by R + t , t̄2 is
replaced by I , and B1(t1) is replaced by BR

1 (t1). The difference is that the SDEs
now are all (FR+t,t̄2)t≥0-adapted. So we have the following theorem.

THEOREM 4.2. (i) Suppose t̄2 is an (F 2
t )-stopping time with t̄2 < T2. Suppose

R is an (F 1
t × F 2

t̄2
)t≥0-stopping time with R < T1(t̄2). Let I ∈ [0, t̄2] be FR,t̄2 -

measurable. Then (M(R + t, I ),0 ≤ t < T1(I )−R) is a continuous (FR+t,t̄2)t≥0-
local martingale.

(ii) Suppose t̄1 is an (F 1
t )-stopping time with t̄1 < T1. Suppose I is an (F 1

t̄1
×

F 2
t )t≥0-stopping time with I < T2(t̄1). Let R ∈ [0, t̄1] be Ft̄1,I -measurable. Then

(M(R, I + t),0 ≤ t < T2(R) − I ) is a continuous (Ft̄1,I+t )t≥0-local martingale.

PROOF. (i) follows from the above argument. (ii) follows from the symmetry.
�

5. Boundedness. We now use the notation and results in Section 5.2 of [17].
Let H be a nonempty hull in H w.r.t. ∞. Then aH = inf{H ∩R}, bH = sup{H ∩R},
�H = C \ (H ∪ {z : z ∈ H } ∪ [aH ,bH ]), and H(H) is the set of hulls in H w.r.t.
∞ that are contained in H . From Lemma 5.4 in [17], any sequence (Kn) in H(H)

contains a subsequence (Ln) such that ϕLn

l.u.−→ ϕK (converges locally uniformly)
in �H for some K ∈ H(H). We now make some improvement over this result.
Let QH = H ∩ R. Then QH is a closed subset of [aH ,bH ]. Let

�∗
H = �H ∪ ([aH ,bH ] \ QH) = C \ (H ∪ {z : z ∈ H } ∪ QH),
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which may strictly contain �H . For any K ∈ H(H), ϕK extends conformally to
�∗

H by the Schwarz reflection principle, and ϕ′
K(x) > 0 for any x ∈ R \ QH from

(5.1) in [17], so ϕK preserves the order on R \ QH .

LEMMA 5.1. Suppose (Kn) is a sequence in H(H). Then it contains some

subsequence (Ln) such that ϕLn

l.u.−→ ϕK in �∗
H for some K ∈ H(H).

PROOF. From the argument after Corollary 5.1 in [17], there is MH > 0 such
that |ϕK(z) − z| ≤ MH for any K ∈ H(H) and z ∈ �H . After the extension, we
have |ϕK(z) − z| ≤ MH for any K ∈ H(H) and z ∈ �∗

H . So {ϕKn(z) − z :n ∈
N} is a normal family in �∗

H . Then (Kn) contains a subsequence (Ln) such that

ϕLn(z) − z
l.u.−→ f (z) in �∗

H for some f that is analytic in �∗
H . So ϕLn

l.u.−→ g in
�∗

H , where g(z) := z + f (z) is analytic in �∗
H . From Lemma 5.4 in [17], we may

assume that ϕLn

l.u.−→ ϕK in �H for some K ∈ H(H). Thus, g = ϕK in �H . Since

they are both analytic in �∗
H , so g = ϕK in �∗

H . Thus, ϕLn

l.u.−→ ϕK in �∗
H . �

LEMMA 5.2. If y1 < y2 < aH or y1 > y2 > bH , then ϕ′
H (y1) > ϕ′

H (y2).

PROOF. This follows from differentiating (5.1) in [17] for z ∈ R \ [cH , dH ],
and the fact that ϕH is increasing on (−∞, aH ) and (bH ,∞), and maps them to
(−∞, cH ) and (dH ,∞), respectively. �

Let HP denote the set of (H1,H2) such that Hj is a hull in H w.r.t. ∞
that contains some neighborhood of xj in H, j = 1,2, and H1 ∩ H2 = ∅.
Let (H1,H2) ∈ HP. Then bH1 < aH2 , H1 ∪ H2 is a hull in H w.r.t. ∞, and
QH1∪H2 = QH1 ∪ QH2 ⊂ [aH1, bH1] ∪ [aH2, bH2]. Let Tj (Hj ) be the first time

that Kj(t) ∩ H \ Hj 
= ∅, j = 1,2. Then Tj (Hj ) is an (F
j
t )-stopping time,

0 < Tj(Hj ) < Tj , and Kj(t) ⊂ Hj for 0 ≤ t ≤ Tj (Hj ). Thus,

Tj (Hj ) = hcap(Kj (Tj (Hj )))/2 ≤ hcap(Hj )/2.(5.1)

THEOREM 5.1. For any (H1,H2) ∈ HP, there are C2 > C1 > 0 depending
only on H1 and H2 such that M(t1, t2) ∈ [C1,C2] for any (t1, t2) ∈ [0, T1(H1)] ×
[0, T2(H2)].

PROOF. Let (H1,H2) ∈ HP and H = H1 ∪ H2. Throughout this proof, we use
Cn, n ∈ N, to denote some positive constant that depends only on H1 and H2. From
(4.3) and (5.1), we suffice to show that for some C4 > C3 > 0, N(t1, t2) ∈ [C3,C4]
for (t1, t2) ∈ [0, T1(H1)] × [0, T2(H2)]. Fix (t1, t2) ∈ [0, T1(H1)] × [0, T2(H2)].
First suppose t1, t2 > 0. Fix j 
= k ∈ {1,2}. For any sj ∈ [0, tj ), from (3.4) we have
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ξj (sj ) ∈ Kj(tj )/Kj (sj ), so

ξj (sj ) ∈ [
aKj (tj )/Kj (sj ), bKj (tj )/Kj (sj )

]
⊂ [

cKj (tj )/Kj (sj ), dKj (tj )/Kj (sj )

] ⊂ [
cKj (tj ), dKj (tj )

]
,

where the second and third inclusions follow from Lemma 5.2 and Lemma 5.3 in
[17]. Let sj → tj . We get ξj (tj ) ∈ [cKj (tj ), dKj (tj )]. For sj ∈ [0, tj ), from (3.6) and
(3.7),

Aj,0(sj , tk) = ϕk,sj (tk, ξj (sj )) ∈ (
Kj(tj ) ∪ Kk(tk)

)
/
(
Kj(sj ) ∪ Kk(tk)

)
,

which implies that Aj,0(sj , tk) ∈ [cKj (tj )∪Kk(tk), dKj (tj )∪Kk(tk)] ⊂ [cH , dH ]. Let
sj → tj . We get Aj,0(tj , tk) ∈ [cH , dH ]. This also holds for Ak,0(tj , tk). Thus,

|E(tj , tk)| = |Aj,0(tj , tk) − Ak,0(tj , tk)| ≤ dH − cH .(5.2)

Fix q1, q2, r1, r2 ∈ R with r1 < aH1 ≤ bH1 < q1 < q2 < aH2 ≤ bH2 < r2.
From Lemma 5.1, there are C6 > C5 > 0 such that, for x = q1, q2, r1, r2,
∂zϕK1(t1)∪K2(t2)(x), ∂zϕ1(t1, x) and ∂zϕ2(t2, x) all lie in [C5,C6]. Fix j 
= k ∈
{1,2}. From (3.2) there are C8 > C7 > 0 such that, for x = qj , rj , ∂zϕk,tj (tk, ϕj (tj ,

x)) ∈ [C7,C8]. Since [aKj (tj ), bKj (tj )] ⊂ [aHj
, bHj

], so rj is disconnected from
qj in R by [aKj (tj ), bKj (tj )]. Since ϕj (tj , ·) = ϕKj (tj ), so ϕj (tj , rj ) is discon-
nected from ϕj (tj , qj ) in R by [cKj (tj ), dKj (tj )]. Since ξj (tj ) ∈ [cKj (tj ), dKj (tj )],
so ξj (tj ) lies between ϕj (tj , rj ) and ϕj (tj , qj ). Since rj and qj lie on the
same side of Kk(tk), so ϕj (tj , rj ), ξj (tj ), and ϕj (tj , qj ) lie on the same side
of ϕj (tj ,Kk(tk)) = Kk,tj (tk). Since ϕk,tj (tk, ·) = ϕKk,tj

(tk), so from Lemma 5.2,
∂zϕk,tj (tk, ξj (tj )) lies between ∂zϕk,tj (tk, ϕj (tj , rj )) and ∂zϕk,tj (tk, ϕj (tj , qj )).
Thus,

Aj,1(tj , tk) = ∂zϕk,tj (tk, ξj (tj )) ∈ [C7,C8].(5.3)

From (3.2) and the above argument, we see that Aj,0(tj , tk) = ϕk,tj (tk, ξj (tj )) lies
between ϕKj (tj )∪Kk(tk)(rj ) and ϕKj (tj )∪Kk(tk)(qj ) for j = 1,2. Since r1 < q1 <

q2 < r2, so

ϕK1(t2)∪K2(t2)(r1) < ϕK1(t1)∪K2(t2)(q1) < ϕK1(t1)∪K2(t2)(q2) < ϕK1(t1)∪K2(t2)(r2).

From Lemma 5.1, there is C9 > 0 such that ∂zϕK1(t1)∪K2(t2)(x) ≥ C9 for x ∈
[q1, q2]. So

|E(t1, t2)| ≥ ϕK1(t1)∪K2(t2)(q2) − ϕK1(t1)∪K2(t2)(q1) ≥ C9(q2 − q1).(5.4)

From (5.2), (5.3) and (5.4), we have C4 > C3 > 0 such that N(t1, t2) ∈ [C3,C4]
for (t1, t2) ∈ (0, T1(H1)] × (0, T2(H2)]. By letting t1 or t2 tend to 0, we obtain the
above inequality in the case t1 or t2 equals to 0. So we are done. �

Now we explain the meaning of M(t1, t2). Fix (H1,H2) ∈ HP. Let μ denote the
joint distribution of (ξ1(t) : 0 ≤ t ≤ T1) and (ξ2(t) : 0 ≤ t ≤ T2). From Theorem 4.1



1486 D. ZHAN

and Theorem 5.1, we have
∫

M(T1(H1), T2(H2)) dμ = E[M(T1(H1), T2(H2))] =
M(0,0) = 1. Note that M(T1(H1), T2(H2)) > 0. Suppose ν is a measure on
F 1

T1(H1)
× F 2

T2(H2)
such that dν/dμ = M(T1(H1), T2(H2)). Then ν is a prob-

ability measure. Now suppose the joint distribution of (ξ1(t),0 ≤ t ≤ T1(H1))

and (ξ2(t),0 ≤ t ≤ T2(H2)) is ν instead of μ. Fix an (F 2
t )-stopping time t̄2

with t̄2 ≤ T2(H2). From (4.1), (4.5) and the Girsanov theorem [8], there is an
(F 1

t × F 2
t̄2
)-Brownian motion B̃1(t) such that ξ1(t1) satisfies the (F 1

t1
× F 2

t̄2
)-

adapted SDE for 0 ≤ t1 ≤ T1(H1):

dξ1(t1) = √
κ dB̃1(t1)

(5.5)

+
(

3 − κ

2

)(
A1,2(t1, t̄2)

A1,1(t1, t̄2)
+ 2A1,1(t1, t̄2)

A2,0(t1, t̄2) − A1,0(t1, t̄2)

)
dt1.

From (4.10) and (5.5), we have

dA1,0(t1, t̄2) = A1,1(t1, t̄2)
√

κ dB̃1(t) + (6 − κ)A1,1(t1, t̄2)
2 dt1

A2,0(t1, t̄2) − A1,0(t1, t̄2)
.(5.6)

Recall that A1,0(t1, t̄2) = ϕ2,t1(t̄2, ξ1(t1)) = ξ1,t̄2(t1) = η1,t̄2(v1,t̄2(t1)), and
v′

1,t̄2
(t1) = A1,1(t1, t̄2)

2 [see (3.8)]. From (5.6), there is a Brownian motion B̂1(t1)

such that

dη1,t̄2(s1) = √
κ dB̂1(s1) + (κ − 6) ds1

η1,t̄2(s1) − A2,0(v
−1
1,t̄2

(s1), t̄2)
.(5.7)

Since A2,0(v
−1
1,t̄2

(s1), t̄2) = ϕ1,t̄2(v
−1
1,t̄2

(s1), ξ2(t̄2)) = ψ1,t̄2(s1, ξ2(t̄2)) and ψ1,t̄2(s, ·),
0 ≤ s ≤ v1,t̄2(T1(H1)), are chordal Loewner maps driven by η1,t̄2(s), so the chordal
Loewner hulls L1,t̄2(s), 0 ≤ s ≤ v1,t̄2(T1(H1)), driven by η1,t̄2(s) are a part of the
chordal SLE(κ, κ − 6) process started from η1,t̄2(0) = ϕ2(t̄2, x1) with force point
at A2,0(v

−1
1,t̄2

(0), t̄2) = ξ2(t̄2). Thus, after a time-change, it is a chordal SLEκ in

H from ϕ2(t̄2, x1) to ξ2(t̄2). Note that ϕ2(t̄2, ·)−1 maps H conformally onto H \
β2((0, t̄2]), maps L1,t̄2(v1,t̄2(t1)) onto K1(t1) = β1((0, t1]), and takes ϕ2(t̄2, x1) and
ξ2(t̄2) to x1 and β2(t̄2), respectively. Thus, β1(t), 0 ≤ t ≤ T1(H1), is the time-
change of a chordal SLEκ trace in H \ β2((0, t̄2]) from x1 to β2(t̄2), stopped on
hitting H \ H1. Similarly, for any (F 1

t )-stopping time t̄1 with t̄1 ≤ T1(H1), β2(t),
0 ≤ t ≤ T2(H2), is a time-change of a chordal SLEκ trace in H \ β1((0, t̄1]) from
x2 to β1(t̄1) stopped on hitting H \ H2.

6. Constructing new martingales.

THEOREM 6.1. For any (Hm
1 ,Hm

2 ) ∈ HP, 1 ≤ m ≤ n, there is a continu-
ous function M∗(t1, t2) defined on [0,∞]2 that satisfies the following proper-
ties: (i) M∗ = M on [0, T1(H

m
1 )] × [0, T2(H

m
2 )] for m = 1, . . . , n; (ii) M∗(t,0) =
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M∗(0, t) = 1 for any t ≥ 0; (iii) M∗(t1, t2) ∈ [C1,C2] for any t1, t2 ≥ 0, where
C2 > C1 > 0 are constants depending only on Hm

j , j = 1,2, 1 ≤ m ≤ n; (iv) for

any (F 2
t )-stopping time t̄2, (M∗(t1, t̄2), t1 ≥ 0) is a bounded continuous (F 1

t1
×

F 2
t̄2
)t1≥0-martingale; and (v) for any (F 1

t )-stopping time t̄1, (M∗(t̄1, t2), t2 ≥ 0) is

a bounded continuous (F 1
t̄1

× F 2
t2
)t2≥0-martingale.

PROOF. We will first define M∗ and then check its properties. The first
quadrant [0,∞]2 is divided by the horizontal or vertical lines {xj = Tj (H

m
j )},

1 ≤ m ≤ n, j = 1,2, into small rectangles, and M∗ is piecewise defined on each
rectangle. Theorem 4.2 will be used to prove the martingale properties.

Let Nn := {k ∈ N :k ≤ n}. Write T k
j for Tj (H

k
j ), k ∈ Nn, j = 1,2. Let S ⊂

Nn be such that
⋃

k∈S[0, T k
1 ] × [0, T k

2 ] = ⋃n
k=1[0, T k

1 ] × [0, T k
2 ], and

∑
k∈S k ≤∑

k∈S′ k if S′ ⊂ Nn also satisfies this property. Such S is a random nonempty set,
and |S| ∈ Nn is a random number. Define a partial order “�” on [0,∞]2 such
that (s1, s2) � (t1, t2) iff s1 ≤ t1 and s2 ≤ t2. If (s1, s2) � (t1, t2) and (st , s2) 
=
(t1, t2), we write (s1, s2) ≺ (t1, t2). Then for each m ∈ Nn, there is k ∈ S such that
(T m

1 , T m
2 ) � (T k

1 , T k
2 ); and for each k ∈ S, there is no m ∈ Nn such that (T k

1 , T k
2 ) ≺

(T m
1 , T m

2 ).
There is a map σ from {1, . . . , |S|} onto S such that if 1 ≤ k1 < k2 ≤ |S|, then

T
σ(k1)

1 < T
σ(k2)
1 , T

σ(k1)
2 > T

σ(k2)
2 .(6.1)

Define T
σ(0)
1 = T

σ(|S|+1)
2 = 0 and T

σ(|S|+1)
1 = T

σ(0)
2 = ∞. Then (6.1) still holds

for 0 ≤ k1 < k2 ≤ |S| + 1.
Extend the definition of M to [0,∞] × {0} ∪ {0} × [0,∞] such that M(t,0) =

M(0, t) = 1 for t ≥ 0. Fix (t1, t2) ∈ [0,∞]2. There are k1 ∈ N|S|+1 and k2 ∈ N|S| ∪
{0} such that

T
σ(k1−1)
1 ≤ t1 ≤ T

σ(k1)
1 , T

σ(k2+1)
2 ≤ t2 ≤ T

σ(k2)
2 .(6.2)

If k1 ≤ k2, let

M∗(t1, t2) = M(t1, t2).(6.3)

It k1 ≥ k2 + 1, let

M∗(t1, t2) = (
M

(
T

σ(k2)
1 , t2

)
M

(
T

σ(k2+1)
1 , T

σ(k2+1)
2

)
· · ·M(

T
σ(k1−1)
1 , T

σ(k1−1)
2

)
M

(
t1, T

σ(k1)
2

))
(6.4)

× (
M

(
T

σ(k2)
1 , T

σ(k2+1)
2

)
· · ·M(

T
σ(k1−2)

1 , T
σ(k1−1)
2

)
M

(
T

σ(k1−1)
1 , T

σ(k1)
2

))−1
.

In the above formula, there are k1 − k2 + 1 terms in the numerator, and k1 − k2
terms in the denominator. For example, if k1 − k2 = 1, then

M∗(t1, t2) = M
(
T

σ(k2)
1 , t2

)
M

(
t1, T

σ(k1)
2

)
/M

(
T

σ(k2)
1 , T

σ(k1)
2

)
.
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We need to show that M∗(t1, t2) is well defined. First, we show that the M(·, ·)
in (6.3) and (6.4) are defined. Note that M is defined on

Z :=
|S|+1⋃
k=0

[
0, T

σ(k)
1

] × [
0, T

σ(k)
2

]
.

If k1 ≤ k2, then t1 ≤ T
σ(k1)
1 ≤ T

σ(k2)
1 and t2 ≤ T

σ(k2)
2 , so (t1, t2) ∈ Z. Thus,

M(t1, t2) in (6.3) is defined. Now suppose k1 ≥ k2 + 1. Since t2 ≤ T
σ(k2)
2 and

t1 ≤ T
σ(k1)
1 , so (T

σ(k2)
1 , t2), (t1, T

σ(k1)
2 ) ∈ Z. It is clear that (T

σ(k)
1 , T

σ(k)
2 ) ∈ Z for

k2 + 1 ≤ k ≤ k1 − 1. Thus, the M(·, ·) in the numerator of (6.4) are defined. For
k2 ≤ k ≤ k1 − 1, T

σ(k)
1 ≤ T

σ(k+1)
1 , so (T

σ(k)
1 , T

σ(k+1)
2 ) ∈ Z. Thus, the M(·, ·) in

the denominator of (6.4) are defined.
Second, we show that the value of M∗(t1, t2) does not depend on the choice of

(k1, k2) that satisfies (6.2). Suppose (6.2) holds with (k1, k2) replaced by (k′
1, k2),

and k′
1 
= k1. Then |k′

1 − k1| = 1. We may assume k′
1 = k1 + 1. Then t1 = T

σ(k1)
1 .

Let M ′∗(t1, t2) denote the M∗(t1, t2) defined using (k′
1, k2). There are three cases.

Case 1. k1 < k′
1 ≤ k2. Then from (6.3), M ′∗(t1, t2) = M(t1, t2) = M∗(t1, t2).

Case 2. k1 = k2 and k′
1 − k2 = 1. Then T

σ(k2)
1 = T

σ(k1)
1 = t1. So from (6.3)

and (6.4),

M ′∗(t1, t2) = M
(
T

σ(k2)
1 , t2

)
M

(
t1, T

σ(k1)
2

)
/M

(
T

σ(k2)
1 , T

σ(k1)
2

)
= M(t1, t2) = M∗(t1, t2).

Case 3. k′
1 > k1 > k2. From (6.4) and that T

σ(k1)
1 = t1, we have

M ′∗(t1, t2)

= M(T
σ(k2)

1 , t2)M(T
σ(k2+1)
1 , T

σ(k2+1)
2 ) · · ·M(T

σ(k1)
1 , T

σ(k1)
2 )M(t1, T

σ(k1+1)
2 )

M(T
σ(k2)
1 , T

σ(k2+1)
2 ) · · ·M(T

σ(k1−1)
1 , T

σ(k1)
2 )M(T

σ(k1)
1 , T

σ(k1+1)
2 )

= M(T
σ(k2)

1 , t2)M(T
σ(k2+1)
1 , T

σ(k2+1)
2 ) · · ·M(t1, T

σ(k1)
2 )

M(T
σ(k2)
1 , T

σ(k2+1)
2 ) · · ·M(T

σ(k1−1)
1 , T

σ(k1)
2 )

= M∗(t1, t2).

Similarly, if (6.2) holds with (k1, k2) replaced by (k1, k
′
2), then M∗(t1, t2) defined

using (k1, k
′
2) has the same value as M(t1, t2). Thus, M∗ is well defined.

From the definition, it is clear that for each k1 ∈ N|S|+1 and k2 ∈ N|S| ∪ {0}, M∗
is continuous on [T σ(k1−1)

1 , T
σ(k1)
1 ] × [T σ(k2+1)

2 , T
σ(k2)
1 ]. Thus, M∗ is continuous

on [0,∞]2. Let (t1, t2) ∈ [0,∞]2. Suppose (t1, t2) ∈ [0, T m
1 ] × [0, T m

2 ] for some

m ∈ Nn. There is k ∈ N|S| such that (T m
1 , T m

2 ) � (T
σ(k)

1 , T
σ(k)
2 ). Then we may

choose k1 ≤ k and k2 ≥ k such that (6.2) holds, so M∗(t1, t2) = M(t1, t2). Thus,
(i) is satisfied. If t1 = 0, we may choose k1 = 1 in (6.2). Then either k1 ≤ k2 or
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k2 = 0. If k1 ≤ k2, then M∗(t1, t2) = M(t1, t2) = 1 because t1 = 0. If k2 = 0, then

M∗(t1, t2) = M
(
T

σ(0)
1 , t2

)
M

(
t1, T

σ(1)
2

)
/M

(
T

σ(0)
1 , T

σ(1)
2

) = 1

because T
σ(0)

1 = t1 = 0. Similarly, M∗(t1, t2) = 0 if t2 = 0. So (ii) is also satisfied.
And (iii) follows from Lemma 5.1 and the definition of M∗.

Now we prove (iv). Suppose (t1, t2) ∈ [0,∞]2 and t2 ≥ ∨n
m=1 T m

2 = T
σ(1)
2 .

Then (6.2) holds with k2 = 0 and some k1 ∈ {1, . . . , |S| + 1}. So k1 ≥ k2 + 1.
Since T

σ(k2)
1 = 0 and M(0, t) = 1 for any t ≥ 0, so from (6.4) we have

M∗(t1, t2) = M(T
σ(k2+1)
1 , T

σ(k2+1)
2 ) · · ·M(T

σ(k1−1)
1 , T

σ(k1−1)
2 )M(t1, T

σ(k1)
2 )

M(T
σ(k2+1)
1 , T

σ(k2+2)
2 ) · · ·M(T

σ(k1−1)
1 , T

σ(k1)
2 )

.

The right-hand side of the above equality has no t2. So M∗(t1, t2) = M∗(t1,∨n
m=1 T m

2 ) for any t2 ≥ ∨n
m=1 T m

2 . Similarly, M∗(t1, t2) = M∗(
∨n

m=1 T m
1 , t2) for

any t1 ≥ ∨n
m=1 T m

1 .
Fix an (F 2

t )-stopping time t̄2. Since M∗(·, t̄2) = M∗(·, t̄2 ∧ (
∨n

m=1 T m
2 )), and

t̄2 ∧ (
∨n

m=1 T m
2 ) is also an (F 2

t )-stopping time, so we may assume that t̄2 ≤∨n
m=1 T m

2 . Let I0 = t̄2. For s ∈ N ∪ {0}, define

Rs = sup{T m
1 :m ∈ Nn, T

m
2 ≥ Is};

(6.5)
Is+1 = sup{T m

2 :m ∈ Nn, T
m
2 < Is, T

m
1 > Rs}.

Here we set sup(∅) = 0. Then we have a nondecreasing sequence (Rs) and a non-
increasing sequence (Is). Let S and σ(k), 0 ≤ k ≤ |S| + 1, be as in the definition
of M∗. From the property of S, for any s ∈ N ∪ {0},

Rs = sup{T k
1 :k ∈ S,T k

2 ≥ Is}.(6.6)

Suppose for some s ∈ N∪{0}, there is m ∈ Nn that satisfies T m
2 < Is and T m

1 > Rs .
Then there is k ∈ S such that T k

j ≥ T m
j , j = 1,2. If T k

2 ≥ Is , then from (6.6)

we have Rs ≥ T k
1 ≥ T m

1 , which contradicts that T m
1 > Rs . Thus, T k

2 < Is . Now
T k

2 < Is , T k
1 ≥ T m

1 > Rs , and T k
2 ≥ T m

2 . Thus, for any s ∈ N ∪ {0},
Is+1 = sup{T k

2 :k ∈ S,T k
2 < Is, T

k
1 > Rs}.(6.7)

First suppose t̄2 > 0. Since t̄2 ≤ ∨n
m=1 T m

2 = T
σ(0)
2 , so there is a unique

k2 ∈ N|S| such that T
σ(k2)

2 ≥ t̄2 > T
σ(k2+1)

2 . From (6.6) and (6.7), we have Rs =
T

σ(k2+s)
1 for 0 ≤ s ≤ |S| − k2; Rs = T

σ(|S|)
1 for s ≥ |S| − k2; Is = T

σ(k2+s)
2

for 1 ≤ s ≤ |S| − k2; and Is = 0 for s ≥ |S| − k2 + 1. Since R0 = T
σ(k2)

1 and

t̄2 ≤ T
σ(k2)
2 , so from (i),

M∗(t1, t̄2) = M(t1, t̄2) for t1 ∈ [0,R0].(6.8)
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Suppose t1 ∈ [Rs−1,Rs] for some s ∈ N|S|−k2 . Let k1 = k2 + s. Then T
σ(k1−1)
1 ≤

t1 ≤ T
σ(k1)
1 . Since Is = T

σ(k2+s)
2 = T

σ(k1)
2 , so from (6.4),

M∗(t1, t̄2)/M∗(Rs−1, t̄2) = M(t1, Is)/M(Rs−1, Is),
(6.9)

for t1 ∈ [Rs−1,Rs].
Note that if s ≥ |S| − k2 + 1, (6.9) still holds because Rs = Rs−1. Suppose t1 ≥
Rn. Since n ≥ |S| − k2, so Rn = T

σ(|S|)
1 = ∨n

m=1 T m
1 . From the discussion at the

beginning of the proof of (iv), we have

M∗(t1, t̄2) = M∗(Rn, t̄2), for t1 ∈ [Rn,∞].(6.10)

If t̄2 = 0, (6.8)–(6.10) still hold because all Is = 0 and so M∗(t1, t̄2) = M(t1, Is) =
M(t1,0) = 1 for any t1 ≥ 0.

Let R−1 = 0. We claim that for each s ∈ N ∪ {0}, Rs is an (F 1
t × F 2

t̄2
)t≥0-

stopping time and Is is FRs−1,t̄2 -measurable. Recall that FRs−1,t̄2 is the σ -algebra
obtained from the filtration (F 1

t × F 2
t̄2
)t≥0 and its stopping time Rs−1. It is clear

that R−1 = 0 is an (F 1
t ×F 2

t̄2
)t≥0-stopping time, and I0 = t̄2 is FR−1,t̄2 -measurable.

Now suppose Is is FRs−1,t̄2 -measurable. Since Is ≤ t̄2 and Rs−1 ≤ Rs , so for any
t ≥ 0, {Rs ≤ t} = {Rs−1 ≤ t} ∩ Et , where

Et =
n⋂

m=1

({T m
2 < Is} ∪ {T m

1 ≤ t})

=
n⋂

m=1

( ⋃
q∈Q

({T m
2 < q ≤ t̄2} ∩ {q < Is}) ∪ {T m

1 ≤ t}
)
.

Thus, Et ∈ FRs−1,t̄2 ∨ (F 1
t × F 2

t̄2
), and so {Rs ≤ t} ∈ F 1

t × F 2
t̄2

for any t ≥ 0.

Therefore, Rs is an (F 1
t × F 2

t̄2
)t≥0-stopping time. Next we consider Is+1. For any

h ≥ 0,

{Is+1 > h} =
n⋃

m=1

({h < T m
2 < Is} ∩ {T m

1 > Rs})

=
n⋃

m=1

( ⋃
q∈Q

({h < T m
2 < q < t̄2} ∩ {q < Is}) ∩ {T m

1 > Rs}
)

∈ FRs,t̄2 .

Thus, Is+1 is FRs,t̄2 -measurable. So the claim is proved by induction.
Since t̄2 ≤ ∨n

m=1 T m
2 < T2, so from Theorem 4.2, for any s ∈ Nn, (M(Rs−1 +

t, Is),0 ≤ t < T1(Is) − Rs−1) is a continuous (FRs−1+t,t̄2)t≥0-local martingale.
For m ∈ Nn, if T m

2 ≥ Is , then T m
1 < T1(T

m
2 ) ≤ T1(Is). So from (6.5) we have

Rs < T1(Is). From (6.9), we find that (M∗(Rs−1 + t, t̄2),0 ≤ t ≤ Rs − Rs−1) is a
continuous (FRs−1+t,t̄2)t≥0-local martingale for any s ∈ Nn. From Theorem 4.1
and (6.8), (M∗(t, t̄2),0 ≤ t ≤ R0) is a continuous (Ft,t̄2)t≥0-local martingale.
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From (6.10), (M∗(Rn + t, t̄2), t ≥ 0) is a continuous (FRn+t,t̄2)t≥0-local martin-
gale. Thus, (M∗(t, t̄2), t ≥ 0) is a continuous (Ft,t̄2)t≥0-local martingale. Since by
(iii) M∗(t1, t2) ∈ [C1,C2], so this local martingale is a bounded martingale. Thus,
(iv) is satisfied. Finally, (v) follows from the symmetry in the definition of (6.3)
and (6.4) of M∗. �

7. Coupling measures.

PROOF OF THEOREM 2.1. From conformal invariance, we may assume that
D = H, a = x1 and b = x2. Let ξj (t) and βj (t), 0 ≤ t ≤ Tj , j = 1,2, be as in
Section 4. For j = 1,2, let μj denote the distribution of (ξj (t),0 ≤ t ≤ Tj ). Let
μ = μ1 × μ2. Then μ is the joint distribution of ξ1 and ξ2, since they are indepen-
dent.

Let Ĉ = C ∪ {∞} be the Riemann sphere with spherical metric. Let �Ĉ denote
the space of nonempty compact subsets of Ĉ endowed with the Hausdorff metric.
Then �Ĉ is a compact metric space. For a chordal Loewner trace β(t), 0 ≤ t ≤ T ,
let G(β) := {β(t) : 0 ≤ t ≤ T } ∈ �Ĉ. For j = 1,2, let μ̄j denote the distribution of
G(βj ), which is a probability measure on �Ĉ. We want to prove that μ̄1 = μ̄2. Let
μ̄ = μ̄1 × μ̄2, which is the joint distribution of G(β1) and G(β2).

Let HP∗ be the set of (H1,H2) ∈ HP such that, for j = 1,2, Hj is a polygon
whose vertices have rational coordinates. Then HP∗ is countable. Let (Hm

1 ,Hm
2 ),

m ∈ N, be an enumeration of HP∗. For each n ∈ N, let Mn∗ (t1, t2) be the M∗(t1, t2)
given by Theorem 6.1 for (Hm

1 ,Hm
2 ), 1 ≤ m ≤ n, in the above enumeration.

For each n ∈ N, define νn = (νn
1 , νn

2 ) such that dνn/dμ = Mn∗ (∞,∞). From
Theorem 6.1, Mn∗ (∞,∞) > 0 and

∫
Mn∗ (∞,∞) dμ = E[Mn∗ (∞,∞)] = 1, so νn

is a probability measure. Then dνn
1 /dμ1 = E[Mn∗ (∞,∞)|F 2∞] = Mn∗ (∞,0) = 1.

Thus, νn
1 = μ1. Similarly, νn

2 = μ2. So each νn is a coupling of μ1 and μ2.
For each n ∈ N, suppose (ζ n

1 (t),0 ≤ t ≤ Sn
1 ) and (ζ n

2 (t),0 ≤ t ≤ Sn
2 ) have the

joint distribution νn. Let γ n
j (t), 0 ≤ t ≤ Sj , j = 1,2, be the chordal Loewner trace

driven by ζ n
j . Let ν̄n = (ν̄n

1 , ν̄n
2 ) denote the joint distribution of G(γ n

1 ) and G(γ n
2 ).

Since �Ĉ × �Ĉ is compact, so (ν̄n, n ∈ N) has a subsequence (ν̄nk :k ∈ N) that
converges weakly to some probability measure ν̄ = (ν̄1, ν̄2) on �Ĉ × �Ĉ. Then for
j = 1,2, ν̄

nk

j → ν̄j weakly. For n ∈ N and j = 1,2, since νn
j = μj , so ν̄n

j = μ̄j .
Thus, ν̄j = μ̄j , j = 1,2. So ν̄j , j = 1,2, is supported by the space of graphs of
crosscuts in H. From Proposition 2.2, there are ζ1 ∈ C([0, S1]) and ζ2 ∈ C([0, S2])
such that the joint distribution of G(γ1) and G(γ2) is ν̄, where γj (t) is the chordal
Loewner trace driven by ζj (t), j = 1,2.

Now fix m ∈ N. From Theorem 4.1, M(T1(H
m
1 ), T2(H

m
2 )) is positive and

F 1
T1(H

m
1 )

× F 2
T2(H

m
2 )

-measurable, and
∫

M(T1(H
m
1 ), T2(H

m
2 )) dμ = 1. Define ν(m)

on F 1
T1(H

m
1 )

× F 2
T2(H

m
2 )

such that dν(m)/dμ = M(T1(H
m
1 ), T2(H

m
2 )). Then ν(m) is
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a probability measure. From Theorem 6.1, if n ≥ m, then

dνn

dμ

∣∣∣∣
F 1

T1(Hm
1 )

×F 2
T2(Hm

2 )

= E
[
Mn∗ (∞,∞)|F 1

T1(H
m
1 ) × F 2

T2(H
m
2 )

]
= Mn∗ (T1(H

m
1 ), T2(H

m
2 )) = M(T1(H

m
1 ), T2(H

m
2 )).

Thus, ν(m) equals the restriction of νn to F 1
T1(H

m
1 )

× F 2
T2(H

m
2 )

if n ≥ m.
For a chordal Loewner trace γ (t), 0 ≤ t ≤ S, and a hull H in H w.r.t. 0 that

contains some neighborhood of γ (0) in H, let GH(γ ) := {γ (t) : 0 ≤ t ≤ TH } ∈ �Ĉ,
where TH is the first t such that γ (t) ∈ H \ H or t = S. Then GH(γ ) ⊂ G(γ ). Let
ν̄n
(m) denote the distribution of (GHm

1
(γ n

1 ),GHm
2
(γ n

2 )). Then ν̄n
(m) is determined by

the distribution of (ζ n
1 , ζ n

2 ) restricted to F 1
T1(H

m
1 )

× F 2
T2(H

m
2 )

, which equals ν(m) if

n ≥ m. Let ν̄(m) = ν̄m
(m). Then ν̄n

(m) = ν̄(m) for n ≥ m.
Let τ

nk

(m) denote the distribution of (G(γ
nk

1 ),G(γ
nk

2 ),GHm
1
(γ

nk

1 ),GHm
2
(γ

nk

2 )).

Then τ
nk

(m) is supported by �, which is the set of (L1,L2,F1,F2) ∈ �4
Ĉ

such that

Fj ⊂ Lj for j = 1,2. It is easy to check that � is a closed subset of �4
Ĉ

. Then

(nk) has a subsequence (n′
k) such that τ

n′
k

(m) converges weakly to some probability

measure τ(m) on �. Since the marginal of τ
n′

k

(m) at the first two variables equals ν̄n′
k ,

and ν̄n′
k → ν̄ weakly, so the marginal of τ(m) at the first two variables equals ν̄.

Since the marginal of τ
n′

k

(m) at the last two variables equals ν̄
n′

k

(m), which equals ν̄(m)

if n′
k ≥ m, so the marginal of τ(m) at the last two variables equals ν̄(m).

Let the �-valued random variable (L1,L2,F1,F2) have the distribution τ(m).
Then ν̄ is the distribution of (L1,L2) and ν̄(m) is the distribution of (F1,F2).
Note that ν̄(m) is supported by the space of pairs of curves (α1, α2) such that,
for j = 1,2, αj is a simple curve whose one end is xj , the other end lies on
∂Hm

j ∩ H, and whose other part lies in the interior of Hm
j . For j = 1,2, since

Lj = G(γj ), so from the properties of � and ν̄(m), we have Fj = GHm
j
(γj ),

which means that (GHm
1
(γ1),GHm

2
(γ2)) has the distribution ν̄(m). Since the distri-

bution of (GHm
1
(γ1),GHm

2
(γ2)) determines the distribution of (ζ1, ζ2) restricted to

F 1
T1(H

m
1 )

× F 2
T2(H

m
2 )

, so the distribution of (ζ1, ζ2) restricted to F 1
T1(H

m
1 )

× F 2
T2(H

m
2 )

equals ν(m). Since dν(m)/dμ = M(T1(H
m
1 ), T2(H

m
2 )), so from the discussion af-

ter the proof of Theorem 5.1, for any (F 2
t )-stopping time t̄2 with t̄2 ≤ T2(H

m
2 ),

(γ1(t),0 ≤ t ≤ T1(H
m
1 )) is a time-change of a chordal SLEκ trace in H\γ2((0, t̄2])

from x1 to γ2(t̄2) stopped on hitting H \ Hm
1 .

Now fix an (F 2
t )-stopping time t̄2 with t̄2 < T2. Recall that T1(t̄2) is the maximal

such that γ1([0, T1(t̄2))) is disjoint from γ2([0, t̄2]). For n ∈ N, define

Rn = sup{T1(H
m
1 ) :m ∈ Nn, t̄2 ≤ T2(H

m
2 )}.
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Here we set sup(∅) = 0. Then for any t ≥ 0,

{Rn ≤ t} =
n⋂

m=1

({t̄2 > T2(H
m
2 )} ∪ {T1(H

m
1 ) ≤ t}) ∈ F 1

t × F 2
t̄2
.

So Rn is an (F 1
t × F 2

t̄2
)t≥0-stopping time for each n ∈ N. For m ∈ Nn, let t̄m2 =

t̄2 ∧ T2(H
m
2 ). Then t̄m2 is an (F 2

t )-stopping time, and t̄m2 ≤ T2(H
m
2 ). From the

last paragraph, we conclude that γ1(t), 0 ≤ t ≤ T1(H
m
1 ), is a time-change of a

part of the chordal SLEκ trace in H \ γ1((0, t̄m2 ]) from x1 to γ2(t̄
m
2 ). Let En,m =

{t̄2 ≤ T2(H
m
2 )} ∩ {Rn = T1(H

m
1 )}. Since on each En,m, t̄2 = t̄m2 and Rn = T1(H

m
1 ),

and {Rn > 0} = ⋃n
m=1 En,m, so γ1(t), 0 ≤ t ≤ Rn, is a time-change of a part of

the chordal SLEκ trace in H \ γ1((0, t̄2]) from x1 to γ2(t̄2). Let R∞ = ∨∞
n=1 Rn.

Then γ1(t), 0 ≤ t < R∞, is a time-change of a part of the chordal SLEκ trace in
H \ γ1((0, t̄2]) from x1 to γ2(t̄2).

For each n ∈ N and m ∈ Nn, if t̄2 ≤ T2(H
m
2 ), then T1(H

m
2 ) < T1(t̄2), so

Rn < T1(t̄2). Thus, R∞ ≤ T1(t̄2). If R∞ < T1(t̄2), then γ1((0,R∞]) is disjoint
from γ2((0, t̄2]), so there is (Hm

1 ,Hm
2 ) ∈ HP∗ such that γ1((0,R∞]) and γ2((0, t̄2])

are contained in the interiors of Hm
1 and Hm

2 , respectively. Then t̄2 ≤ T2(H
m
2 )

and Rm ≤ R∞ < T1(H
m
1 ), which contradicts the definition of Rm. Thus, R∞ =

T1(t̄2). So γ1(t), 0 ≤ t < T1(t̄2), is a time-change of a part of the chordal SLEκ

trace in H \ γ1((0, t̄2]) from x1 to γ2(t̄2). From the definition of T1(t̄2) we have
γ1(T1(t̄2)) ∈ G(γ2). Thus, γ1(t), 0 ≤ t < T1(t̄2), is a time-change of a full chordal
SLEκ trace in H \ γ1((0, t̄2]) from x1 to γ2(t̄2). Since κ ∈ (0,4], so almost surely
γ1(T1(t̄2)) = γ2(t̄2). Thus, γ2(t̄2) ∈ G(γ1) almost surely.

For n ∈ N and q ∈ Q≥0, let t̄
n,q
2 = q ∧ T2(H

n
2 ). Then each t̄

n,q
2 is an (F 2

t )-
stopping time with t̄

q,n
2 < T2. Since N × Q≥0 is countable, so almost surely

γ2(t̄
q,n
2 ) ∈ G(γ1) for every n ∈ N and q ∈ Q≥0. Since Q≥0 is dense in R≥0,

γ2 is continuous, and G(γ1) is closed, so almost surely for every n ∈ N,
γ2([0, T2(H

n
2 )]) ⊂ G(γ1). Since T2 = ∨∞

n=1 T2(H
n
2 ), so G(γ2) ⊂ G(γ1) almost

surely. Similarly, G(γ1) ⊂ G(γ2) almost surely. Thus, G(γ1) = G(γ2) almost
surely. Since for j = 1,2, the distribution of G(γj ) equals the distribution of
G(βj ), which is the SLEκ trace in H from xj to x3−j , so we are done. �
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