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Using time-reversal, we introduce a stochastic integral for zero-energy
additive functionals of symmetric Markov processes, extending earlier work
of S. Nakao. Various properties of such stochastic integrals are discussed and
an Itô formula for Dirichlet processes is obtained.

1. Introduction and framework. It is well known that stochastic integrals
and Itô’s formula for semimartingales play a central role in modern probability the-
ory. However, there are many important classes of Markov processes that are not
semimartingales. For example, symmetric diffusions on Rd whose infinitesimal
generators are elliptic operators in divergence form L = ∑d

i,j=1
∂

∂xi
(aij (x) ∂

∂xj
)

with merely measurable coefficients need not be semimartingales. Even when
X is a Brownian motion in Rd and u ∈ W 1,2(Rd) := {u ∈ L2(Rd;dx) | |∇u| ∈
L2(Rd;dx)}, the process u(Xt) is not generally a semimartingale. To study such
processes, Fukushima obtained the following substitute for Itô’s formula (see [7]):
for u ∈ W 1,2(Rd),

u(Xt) = u(X0) + Mu
t + Nu

t for t ≥ 0,(1.1)

Px-a.s. for quasi-every x ∈ Rd , where Mu is a square-integrable martingale and
Nu is a continuous additive functional of zero energy. The decomposition (1.1)
is called Fukushima’s decomposition and holds for a general symmetric Markov
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process X and for u ∈ F , where (E ,F ) is the Dirichlet space for X. In this pa-
per, a stochastic process ξ = {ξt , t ≥ 0} under some σ -finite measure P is called a
Dirichlet process if ξ has locally finite quadratic variation under P. The composite
process u(X) is a Dirichlet process under Pm, where m is the Lebesgue measure on
Rd , as it has finite quadratic variation on compact time intervals. Nakao introduced
a stochastic integral

∫ t
0 f (Xs) dNu

s in [14] by using a Riesz representation theorem
in a suitably constructed Hilbert space. Nakao’s stochastic integral played an im-
portant role in the study of lower order perturbation of diffusion processes by Lunt,
Lyons and Zhang [12] and by Fitzsimmons and Kuwae [5]. However, Nakao’s de-
finition of the stochastic integral

∫ t
0 f (Xs) dNu, requiring u to be in the domain of

the Dirichlet form of X and f to be square-integrable with respect to the energy
measure of u, is too restrictive to be useful in the study of lower-order perturbation
for symmetric Markov processes with discontinuous sample paths, such as stable
processes. Such a study requires stochastic integrals for more general integrators
as well as integrands. The purpose of this paper is to present a new way of defining
the stochastic integral for Dirichlet processes associated with a symmetric Markov
process. Our new approach uses only the time-reversal operator for the process
X and is therefore more direct and provides additional insight into stochastic in-
tegration for Dirichlet processes. This approach enables us to define �(M) [see
(1.5)] for any locally square-integrable martingale additive functional (MAF) M ,
subject to some mild conditions. Thus, it not only recovers Nakao’s results in [14],
but also extends them significantly. The new stochastic integral allows us to study
various transforms for symmetric Markov processes, a project that is carried out in
a subsequent paper [2].

A more detailed description of the current paper appears below.
Let X = {�,F∞,Ft ,Xt , θt , ζ,Px, x ∈ E} be an m-symmetric right Markov

process with a Lusin state space E, where m is a σ -finite measure with full
support on E. Its associated Dirichlet space (E ,F ) on L2(E;m) is known to
be quasi-regular (see [13]). By [1], (E ,F ) is quasi-homeomorphic to a reg-
ular Dirichlet space on a locally compact separable metric space. Using this
quasi-homeomorphism, there is no loss of generality in assuming that X is an
m-symmetric Hunt process on a locally compact metric space E such that its as-
sociated Dirichlet space (E ,F ) is regular on L2(E;m) and that m is a positive
Radon measure with full topological support on E. We assume this throughout the
sequel.

Without loss of generality, we can take � to be the canonical path space
D([0,∞[→ E	) of right-continuous, left-limited (rcll, for short) functions from
[0,∞[ to E	, for which 	 is a trap [i.e., if ω(t) = 	, then ω(s) = 	 for all s > t].
For any ω ∈ �, we set Xt(ω) := ω(t). Let ζ(ω) := inf{t ≥ 0 | Xt(ω) = 	} be the
lifetime of X. As usual, F∞ and Ft are the minimal augmented σ -algebras ob-
tained from F 0∞ := σ {Xs | 0 ≤ s < ∞} and F 0

t := σ {Xs | 0 ≤ s ≤ t}, respectively,
under Px ; see the next section for more details. We sometimes use a filtration de-
noted by (Mt ) on (�,M) in order to represent several filtrations, for example,
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(F 0
t ), (F 0

t+) on (�,F 0∞), (Ft ) on (�,F∞) and others introduced later. We use θt

to denote the shift operator defined by θt (ω)(s) := ω(t + s), t, s ≥ 0. Let ω	 be the
path starting from 	. Then, ω	(s) ≡ 	 for all s ∈ [0,∞[. Note that θζ(ω)(ω) = ω	

if ζ(ω) < ∞, {ω	} ∈ F 0
0 ⊂ F 0

t for all t > 0 and Px({ω	}) ≤ Px(X0 = 	) = 0 for
x ∈ E. For a Borel subset B of E, τB := inf{t > 0 | Xt /∈ B} (the exit time of B) is
an (Ft )-stopping time. If B is closed, then τB is an (F 0

t+)-stopping time. Also, ζ is
an (F 0

t )-stopping time because {ζ ≤ t} = {Xt = 	} ∈ F 0
t , t ≥ 0. The transition

semigroup of X, {Pt , t ≥ 0}, is defined by

Ptf (x) := Ex[f (Xt)] = Ex[f (Xt) : t < ζ ], t ≥ 0.

Each Pt may be viewed as an operator on L2(E;m); collectively, these operators
form a strongly L2-continuous semigroup of self-adjoint contractions. The Dirich-
let form associated with X is the bilinear form

E(u, v) := lim
t↓0

1

t
(u − Ptu, v)m

defined on the space

F :=
{
u ∈ L2(E;m)

∣∣∣ sup
t>0

t−1(u − Ptu,u)m < ∞
}
.

Here, we use the notation (f, g)m := ∫
E f (x)g(x)m(dx).

For the reader’s convenience, we recall the following definitions from [13] and
[7].

DEFINITION 1.1. (i) An increasing sequence {Fn}n≥1 of closed subsets of E

is an E -nest (or simply nest) if and only if
⋃

n≥1 FFn is E1-dense in F , where
E1 = E + (·, ·)L2(E,m) and

FFn := {u ∈ F :u = 0 m-a.e. on E \ Fn}.

(ii) A subset N ⊂ E is E -polar if and only if there is an E -nest {Fn}n≥1 such
that N ⊂ ⋂

n≥1(E \ Fn).
(iii) A function f on E is said to be quasi-continuous if there is an E -nest

{Fn}n≥1 such that f |Fn is continuous on Fn for each n ≥ 1; we denote this situation
briefly by writing f ∈ C({Fn}).

(iv) A statement depending on x ∈ A is said to hold quasi-everywhere (q.e. in
abbreviation) on A if there is an E -polar set N ⊂ A such that the statement is true
for every x ∈ A \ N .

(v) A nearly Borel subset N ⊂ E is called properly exceptional if m(N) = 0
and

Px(Xt ∈ E	 \ N for t ≥ 0 and Xt− ∈ E	 \ N for t > 0) = 1

for every x ∈ E \ N.
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It is known (cf. [7]) that a family {Fn} of closed sets is an E -nest if and only if

Px

(
lim

n→∞ τFn = ζ

)
= 1 for q.e. x ∈ E.

It is also known that a properly exceptional set is E -polar and that every E -polar
set is contained in a properly exceptional set. Every element u in F admits a
quasi-continuous m-version. We assume throughout this section that functions in
F are always represented by their quasi-continuous m-versions. In the sequel, the
abbreviations CAF, PCAF and MAF stand for “continuous additive functional,”
“positive continuous additive functional” and “martingale additive functional,” re-
spectively; the definitions of these terms can be found in [7].

Let
◦

M and Nc denote, respectively, the space of MAF’s of finite energy and the
space of continuous additive functionals of zero energy. For u ∈ F , Fukushima’s
decomposition holds:

u(Xt) − u(X0) = Mu
t + Nu

t for every t ∈ [0,∞[,(1.2)

Px -a.s. for q.e. x ∈ E, where Mu ∈ ◦
M and Nu ∈ Nc.

A positive continuous additive functional (PCAF) of X (call it A) determines a
measure μ = μA on the Borel subsets of E via the formula

μ(f ) =↑ lim
t↓0

1

t
Em

[∫ t

0
f (Xs) dAs

]
,(1.3)

in which f :E → [0,∞] is Borel measurable. Here, ↑ limt↓0 indicates an increas-
ing limit as t ↓ 0. The measure μ is necessarily smooth, in the sense that μ charges
no E -polar set of X and there is an E -nest {Fn} of closed subsets of E such that
μ(Fn) < ∞ for each n ∈ N. Conversely, given a smooth measure μ, with A = Aμ.
In the sequel, we refer to this bijection between smooth measures and PCAF’s as
the Revuz correspondence and to μ as the Revuz measure of Aμ.

If M is a locally square-integrable martingale additive functional (MAF) of X

on the random time interval [[0, ζ [[, then the process 〈M〉 (the dual predictable
projection of [M]) is a PCAF (Proposition 2.8) and the associated Revuz measure
[as in (1.3)] is denoted by μ〈M〉. More generally, if Mu is the martingale part in the
Fukushima decomposition of u ∈ F , then 〈Mu,M〉 is a CAF locally of bounded
variation and we have the associated Revuz measure μ〈Mu,M〉, which is locally the
difference of smooth (positive) measures. For u ∈ F , the Revuz measure μ〈Mu〉 of
〈Mu〉 will usually be denoted by μ〈u〉.

Let (N(x, dy),Ht) be a Lévy system for X; that is, N(x, dy) is a kernel on
(E	,B(E	)) and Ht is a PCAF with bounded 1-potential such that for any non-
negative Borel function φ on E	 ×E	 vanishing on the diagonal and any x ∈ E	,

Ex

[∑
s≤t

φ(Xs−,Xs)

]
= Ex

[∫ t

0

∫
E	

φ(Xs, y)N(Xs, dy) dHs

]
.
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To simplify notation, we will write

Nφ(x) :=
∫
E	

φ(x, y)N(x, dy)

and

(Nφ ∗ H)t :=
∫ t

0
Nφ(Xs) dHs.

Let μH be the Revuz measure of the PCAF H . The jumping measure J and the
killing measure κ of X are then given by

J (dx, dy) = 1
2N(x, dy)μH (dx) and κ(dx) = N(x, {	})μH (dx).

These measures feature in the Beurling–Deny decomposition of E : for f,g ∈ F ,

E(f, g) = E (c)(f, g) +
∫
E×E

(
f (x) − f (y)

)(
g(x) − g(y)

)
J (dx, dy)

+
∫
E

f (x)g(x)κ(dx),

where E (c) is the strongly local part of E .
For u ∈ F , the martingale part Mu

t in (1.2) can be decomposed as

Mu
t = M

u,c
t + M

u,j
t + M

u,κ
t for every t ∈ [0,∞[,

Px-a.s. for q.e. x ∈ E, where M
u,c
t is the continuous part of the martingale Mu and

M
u,j
t = lim

ε↓0

{ ∑
0<s≤t

(
u(Xs) − u(Xs−)

)
1{|u(Xs)−u(Xs−)|>ε}1{s<ζ }

−
∫ t

0

(∫
{y∈E:|u(y)−u(Xs)|>ε}

(
u(y) − u(Xs)

)
N(Xs, dy)

)
dHs

}
,

M
u,κ
t =

∫ t

0
u(Xs)N(Xs, {	}) dHs − u(Xζ−)1{t≥ζ }

are the jump and killing parts of Mu, respectively. All three terms in this decom-

position of Mu are elements of
◦

M; see Theorem A.3.9 of [7]. The limit in the
expression for Mu,j is in the sense of convergence in the norm of the space of
MAF’s of finite energy and of convergence in probability under Px for q.e. x ∈ E

(see [7]).
Let N ∗

c ⊂ Nc denote the class of continuous additive functionals of the form
Nu + ∫ ·

0 g(Xs) ds for some u ∈ F and g ∈ L2(E;m). Nakao [14] constructed a

linear map � from
◦

M into N ∗
c in the following way. It is shown in [14] that, for

every Z ∈ ◦
M, there is a unique w ∈ F such that

E1(w,f ) = 1
2μ〈Mf +Mf,κ ,Z〉(E) for every f ∈ F .(1.4)
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This unique w is denoted by γ (Z). The operator � is now defined by

�(Z)t := N
γ(Z)
t −

∫ t

0
γ (Z)(Xs) ds for every Z ∈ ◦

M .(1.5)

Nakao showed that �(Z) is characterized by the following equation

lim
t↓0

1

t
Eg·m[�(Z)t ] = −1

2
μ〈Mg+Mg,κ ,Z〉(E) for every g ∈ Fb.(1.6)

Here, Fb := F ∩ L∞(E;m). So, in particular, we have �(Mu) = Nu for u ∈ F .
Nakao [14] then used the operator � to define a stochastic integral∫ t

0
f (Xs) dNu

s := �(f ∗ Mu)t − 1
2〈Mf,c + Mf,j ,Mu,c + Mu,j 〉t ,(1.7)

where u ∈ F , f ∈ F ∩ L2(E;μ〈u〉) and (f ∗ Mu)t := ∫ t
0 f (Xs−) dMu

s . If we de-
fine

Ñc := {N ∈ Nc | N = Nu + Aμ for some u ∈ F

and some signed smooth measure μ},
then we see, by (1.5), that

∫ ·
0 f (Xs) dNu

s ∈ Ñc if u ∈ F and f ∈ F ∩ L2(E;μ〈u〉).
However, the conditions imposed on the integrand f (Xt) and on the integrator
Nu in Nakao’s stochastic integral are too restrictive for certain applications, in
particular the perturbation theory of general symmetric Markov processes, which
requires more general integrators as well as integrands; see [2].

The purpose of this paper is to provide a new way of defining �(M) and Nakao’s
stochastic integral for zero-energy AF’s Nu.

For a finite rcll AF Mt , it is known (see [3], Lemma 3.2) that there is a Borel
function ϕ on E × E with ϕ(x, x) = 0 for all x ∈ E so that

Mt − Mt− = ϕ(Xt−,Xt) for every t ∈]0, ζ [,Pm-a.e.(1.8)

Such a ϕ is uniquely determined up to J -negligible sets. We will call ϕ the jump
function of M . When M = Mu, u ∈ F , the jump function ϕ for Mu can be taken to
be as ϕ(x, y) = u(y)−u(x) for (x, y) ∈ E ×E, with u(	) := 0. We have a similar
result for locally square-integrable MAF’s on [[0, ζ [[ [see Definition 2.5(iii) for
the definition of a locally square-integrable MAF on [[0, ζ [[]. Let M be a locally
square-integrable MAF on [[0, ζ [[. There then exists a jump function ϕ on E × E

for M satisfying the property (1.8) (see Corollary 2.9). Assume that∫ t

0

∫
E

(
ϕ̂21{|ϕ̂|≤1} + |ϕ̂|1{|ϕ̂|>1}

)
(Xs, y)N(Xs, dy) dHs < ∞

(1.9)
for every t < ζ,
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Px-a.s. for q.e. x ∈ E, where ϕ̂(x, y) := ϕ(x, y) + ϕ(y, x) for x, y ∈ E. By
Lemma 3.2 below, there is a unique purely discontinuous local MAF K on [[0, ζ [[
with

Kt − Kt− = −ϕ̂(Xt−,Xt) for t < ζ, Px-a.s. for q.e. x ∈ E.

Define Pm-a.e. on [0, ζ [,
�(M)t := −1

2

(
Mt + Mt ◦ rt + ϕ(Xt ,Xt−) + Kt

)
for t ∈ [0, ζ [,

where rt is the time-reversal operator at time t > 0. Note that since X is symmet-
ric, the measure Pm, when restricted to {t < ζ }, is invariant under rt . This time
reversibility plays an important role in this paper. So, �(M) is clearly well defined
on [[0, ζ [[ under the σ -finite measure Pm. It will be shown in Theorem 2.18 and
Remark 3.4(ii) below that �(M) is a continuous even AF of X on [[0, ζ [[ admit-
ting m-null set. Note that when M = Mu for some u ∈ F , ϕ(x, y) = u(y) − u(x)

is antisymmetric and so ϕ̂ = 0. Thus, Pm-a.e. on {t < ζ },
�(Mu)t := −1

2

(
Mu

t + Mu
t ◦ rt + u(Xt−) − u(Xt)

) = Nu
t .

The last identity follows by applying the time-reversal operator to both sides
of (1.2) and using the fact that Nu

t ◦ rt = Nu
t Pm-a.e. on [[0, ζ [[ (cf. [4], Theo-

rem 2.1). It then follows for every u ∈ F that �(Mu) = �(Mu) on [[0, ζ [[ Pm-a.e.
We will show in Theorem 3.6 below that this holds when Mu is replaced by any

M ∈ ◦
M. Therefore, under the σ -finite measure Pm, � is a genuine extension of

Nakao’s map �.
A function f is said to be locally in F (denoted as f ∈ Floc) if there is an

increasing sequence of finely open Borel sets {Dk, k ≥ 1} with
⋃∞

k=1 Dk = E q.e.
and for every k ≥ 1, there is fk ∈ F such that f = fk m-a.e. on Dk . For two
subsets A,B of E, we denote A = B q.e. if A�B := (A \ B) ∪ (B \ A) is E -polar.
By definition, every f ∈ Floc admits a quasi-continuous m-version, so we may
assume that all f ∈ Floc are quasi-continuous. We then have f = fk q.e. on Dk .
For f ∈ Floc, Mf,c is well defined as a continuous MAF on [[0, ζ [[ of locally finite
energy. Moreover, for f ∈ Floc and a locally square-integrable MAF M on [[0, ζ [[,

t �→ (f ∗ M)t :=
∫ t

0
f (Xs−) dMs

is a locally square-integrable MAF on [[0, ζ [[. Here, for a locally square-integrable
MAF M on [[0, ζ [[, denote by Mc its continuous part, which is also a locally
square-integrable MAF on [[0, ζ [[ (see Theorem 8.23 in [9]).

DEFINITION 1.2 (Stochastic integral). Suppose that M is a locally square-
integrable MAF on [[0, ζ [[ and that f ∈ Floc. Let ϕ :E×E → R be a jump function



938 CHEN, FITZSIMMONS, KUWAE AND ZHANG

for M and assume that ϕ satisfies condition (1.9). Define, on [[0, ζ [[,∫ t

0
f (Xs−) d�(M)s

:= �(f ∗ M)t − 1
2〈Mf,c,Mc〉t

+ 1
2

∫ t

0

∫
E

(
f (y) − f (Xs)

)
ϕ(y,Xs)N(Xs, dy) dHs,

whenever �(f ∗ M) is well defined and the third term in the right-hand side of
(3.10) is absolutely convergent.

The above stochastic integral is well defined on [[0, ζ [[ under the σ -finite mea-
sure Pm and extends that of Nakao (1.7). [See Remark 3.9(i) and Theorem 3.10
below.] We will show in Theorem 4.7 below that it enjoys a generalized Itô for-
mula.

2. Additive functionals. In this section, we will prove some facts about ad-
ditive functionals, to be used later. We begin with some details on the completion
of filtrations. Let P (E) be the family of all probability measures on E. For each
ν ∈ P (E), let F ν∞ (resp., F ν

t ) be the Pν -completion of F 0∞ (resp., Pν -completion
of F 0

t in F ν∞) and set F∞ := ⋂
ν∈P (E) F

ν∞ and Ft := ⋂
ν∈P (E) F

ν
t . Let F m∞ (resp.,

F m
t ) be the Pm-completion of F 0∞ (resp., Pm-completion of F 0

t in F m∞ ). Although
m may not be a finite measure on E, we do have F∞ ⊂ F m∞ , Ft ⊂ F m

t because
for g ∈ L1(E;m) with 0 < g ≤ 1 on E satisfying gm ∈ P (E), Pgm-negligibility
is the same as Pm-negligibility.

For a fixed filtration (Mt ) on (�,M), we recall the notions of (Mt )-predictabil-
ity, (Mt )-optionality and (Mt )-progressive measurability as follows (see [15] for
more details). On [0,∞[×�, the (Mt )-predictable [resp., (Mt )-optional] σ -field
P (Mt ) [resp., O(Mt )] is defined as the smallest σ -field over [0,∞[×� contain-
ing all Pν(M)-evanescent sets for all ν ∈ P (E	) and with respect to which all
Mt -adapted lcrl (left-continuous, right-limited) (resp., rcll) processes are measur-
able. A process φ(s,ω) on [0,∞[×� is said to be (Mt )-progressively measurable
provided [0, t]×� � (s,ω) �→ φ(s,ω) is B([0, t])⊗Mt -measurable for all t > 0.
It is well known that (Mt )-predictability implies (Mt )-optionality, which in turn
implies (Mt )-progressive measurability.

For [0,∞]-valued functions S, T on � with S ≤ T , we employ the usual nota-
tion for stochastic intervals; for example,

[[S,T [[ := {(t,ω) ∈ [0,∞[×� | S(ω) ≤ t < T (ω)},
the other species of stochastic intervals being defined analogously. We write
[[S]] := [[S,S]] for the graph of S. Note that these are all subsets of [0,∞[×�.
If S and T are (Mt )-stopping times, then [[S,T ]], [[S,T [[, . . . and [[S]] are (Mt )-
optional (see Theorem 3.16 in [9]).
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DEFINITION 2.1 (AF). An (Ft )-adapted [resp., (F m
t )-adapted] process A =

(At )t≥0 with values in [−∞,∞] is said to be an additive functional (AF in short)
(resp., AF admitting m-null set) if there exist a defining set � ∈ F∞ and an E -polar
(resp., m-null) set N satisfying the following conditions:

(i) Px(�) = 1 for all x ∈ E \ N ;
(ii) θt� ⊂ � for all t ≥ 0; in particular, ω	 ∈ � and P	(�) = 1 because ω	 =

θζ(ω)(ω) for all ω ∈ �;
(iii) for all ω ∈ �, A·(ω) is right-continuous with left limits on [0, ζ(ω)[,

A0(ω) = 0, |At(ω)| < ∞ for t < ζ(ω) and At+s(ω) = At(ω) + As(θtω) for all
t, s ≥ 0;

(iv) for all t ≥ 0, At(ω	) = 0; in particular, under the additivity in (iii),
At(ω) = Aζ(ω)(ω) for all t ≥ ζ(ω) and ω ∈ �.

An AF A (admitting m-null set) is called right-continuous with left limits
(rcll AF in brief) if Aζ(ω)− exists for each ω ∈ �. An AF A (admitting m-null
set) is said to be finite [resp., continuous additive functional (CAF in brief)] if
|At(ω)| < ∞, t ∈ [0,∞[ (resp. t �→ At(ω) is continuous on [0,∞[) for each
ω ∈ �. A [0,∞[-valued CAF is called a positive continuous additive functional
(PCAF in short). Two AF’s A and B are called equivalent if there exists a com-
mon defining set � ∈ F∞ and an E -polar set N such that At(ω) = Bt(ω) for all
t ∈ [0,∞[ and ω ∈ �. We call A = (At )t≥0 an AF on [[0, ζ [[ or a local AF (ad-
mitting m-null set) if A is (Ft )-adapted and satisfies (i), (ii), (iv) and the property
(iii)′ in which (iii) is modified so that the additivity condition is required only
for t + s < ζ(ω). The notions of rcll AF, CAF and PCAF on [[0, ζ [[ are defined
similarly. Two AF’s on [[0, ζ [[, A and B , are called equivalent if there exists a
common defining set � ∈ F∞ and an E -polar set N such that At(ω) = Bt(ω) for
all t ∈ [0, ζ [ and ω ∈ �.

REMARK 2.2. Any PCAF A on [[0, ζ [[ can be extended to a PCAF by setting

At(ω) :=
{

lim
u↑ζ

Au(ω), if t ≥ ζ(ω) > 0,

0, if t ≥ ζ(ω) = 0,

for ω ∈ � and setting At(ω) ≡ 0 for ω ∈ �c. The (Ft )-adaptedness of this ex-
tended A holds as follows: for a fixed T > 0, we know {At ≤ T } ∩ {t < ζ } ∈ Ft .
From this, we have the Fζ -measurability of {Aζ ≤ T }. Indeed, {Aζ ≤ T } =⋂

t∈Q+{At ≤ T , t < ζ } ∈ Fζ as {At ≤ T , t < ζ } ∈ Fζ for any t ≥ 0. Thus, {At ≤
T } ∩ {t ≥ ζ } = {Aζ ≤ T } ∩ {t ≥ ζ } ∈ Ft . Therefore, {At ≤ T } ∈ Ft for any T > 0,
which gives the (Ft )-adaptedness of A. Noting that ζ ◦ θt = ζ − t if t < ζ and
ζ ◦ θt = 0 if t ≥ ζ , we conclude that Aζ = At + Aζ ◦ θt for any t ∈ [0,∞[ on �.
Consequently, At+s = At + As ◦ θt holds for any t, s ∈ [0,∞[ on �.

The following lemma is a special case of [14], Theorem 2.2.
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LEMMA 2.3. Let A,B be PCAF’s such that for m-a.e. x ∈ E, Ex[At ] =
Ex[Bt ] for all t ≥ 0 and suppose that the Revuz measure μA has finite total mass.
A is then equivalent to B .

REMARK 2.4. The above lemma may fail if the condition μA(E) < ∞ is not
satisfied. For example, take E = Rd with d ≥ 2 and let X be Brownian motion
on Rd and μA(dx) = |x|−d−1 dx. μA is then a smooth measure and corresponds
to a PCAF A of X. Let Bt = At + t , which is a PCAF of X with Revuz measure
μA(dx) + dx. However,

Ex[At ] =
∫ t

0

(∫
Rd

p(s, x, y)|y|−d−1 dy

)
ds = ∞ = Ex[Bt ]

for every x ∈ Rd \ {0}.
Here, p(s, x, y) = (2πt)−d/2 exp(−|x−y|2/(2t)) is the transition density function
of X.

As usual, if T is an (Ft )-stopping time and M a process, then MT is the stopped
process defined by MT

t := Mt∧T . Following [9], we give the notion of local mar-
tingales of interval type.

DEFINITION 2.5 (Processes of interval type). Let D be a class of (Ft )-adapted
processes and denote by Dloc its localization (resp., by Df -loc its localization by
a nest of finely open Borel sets); that is, M ∈ Dloc (resp., M ∈ Df -loc) if and
only if there exists a sequence Mn ∈ D and an increasing sequence of stopping
times Tn with Tn → ∞ (resp., a nest {Gn} of finely open Borel sets) such that
MTn = (Mn)Tn (resp., Mt = Mn

t for t < τGn ) for each n. Here, a family {Gn}
of finely open Borel sets is called a nest if Px(limn→∞ τGn = ζ ) = 1 for q.e.
x ∈ E. (However, see Lemma 3.1.) Clearly, D ⊂ Dloc (resp., D ⊂ Df -loc) and
(Dloc)loc = Dloc [resp., (Df -loc)f -loc = Df -loc]. If D is a subclass of AF’s, then
so is Dloc [for if M ∈ Dloc, then there exist Mn and Tn as above and for each
ω and t, s ≥ 0, there exists n ∈ N with s + t < Tn(ω) and s < Tn(θtω), hence
Mt+s(ω) = Mt(ω) + Ms(θtω)], while Df -loc is contained in the class of AF’s on
[[0, ζ [[.

(i) B ⊂ [0,∞[×� is called a set of interval type if there exists a nonnegative
random variable S such that for each ω ∈ �, the section Bω := {t ∈ [0,∞[|(t,ω) ∈
B} is [0, S(ω)] or [0, S(ω)[ and Bω �= ∅.

(ii) Let B be an (Ft )-optional set of interval type. A real-valued stochas-
tic process M on B [i.e., M1B = (Mt(ω)1B(t,ω))t≥0 is a real-valued stochas-
tic process] is said to be in DB if and only if there exists N ∈ D such that
M1B = N1B and is said to be locally in D on B [write M ∈ (Dloc)

B ] if and
only if S := DBc is the debut of Bc and there exists an increasing sequence of
(Ft )-stopping times {Sn} with limn→∞ Sn = S and a sequence of Mn ∈ D such
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that Bω ⊂ ⋃∞
n=1[0, Sn(ω)] Px -a.s. ω ∈ � and (M1B)Sn = (Mn1B)Sn for all n ∈ N

and t ≥ 0, Px-a.s. ω ∈ � for q.e. x ∈ E. Clearly, DB ⊂ (Dloc)
B . Moreover,

DB2 ⊂ DB1 and (Dloc)
B2 ⊂ (Dloc)

B1 for any pair of (Ft )-optional sets B1, B2
of interval type with B1 ⊂ B2.

(iii) Let B be an (Ft )-optional set of interval type. We set

M1 := {M | M is a finite rcll AF,Ex[|Mt |] < ∞,

Ex[Mt ] = 0 for E -q.e. x ∈ E and all t ≥ 0}
and speak of an element of (M1)B [resp., (M1

loc)
B ] as being an MAF on B (resp.,

a local MAF on B). Similarly,

M := {M | M is a finite rcll AF,Ex[M2
t ] < ∞,

Ex[Mt ] = 0 for E -q.e. x ∈ E and all t ≥ 0}
and an element of MB [resp., (Mloc)

B ] is a square-integrable MAF on B (resp.,
locally square-integrable MAF on B). We further set

Mc : = {M ∈ M | M is a CAF},
Md : = {M ∈ M | M is a purely discontinuous AF}

and an element of (Mc
loc)

B [resp., (Md
loc)

B ] is called a locally square-integrable
continuous MAF on B (resp., locally square-integrable purely discontinuous MAF
on B). For M ∈ (Mloc)

B , M admits a unique decomposition M = Mc + Md with
Mc ∈ (Mc

loc)
B and Md ∈ (Md

loc)
B (see Theorem 8.23 in [9]). In these definitions,

we omit the usage “on B” when B = [0,∞[×�.

For a [0,∞]-valued function R on � and A ⊂ �, RA := R · 1A + (+∞) · 1Ac

is called the restriction of R on A. Clearly, R ≤ RA.

REMARK 2.6. When B = [[0,R[[ for a given (Ft )-stopping time R, there
is another notion of “locally in D on B ,” obtained by replacing (M1B)Sn =
(Mn1B)Sn with MSn1B = (Mn)Sn1B in our definition; this is a weaker notion than
ours because t �→ 1B(t,ω) is decreasing and 1B(t,ω)1B(s,ω) = 1B(t,ω) for s ≤ t

and ω ∈ �. This weaker notion is described in [15].

DEFINITION 2.7 (MAF locally of finite energy). Recall that
◦

M is the totality
of MAF’s of finite energy, that is,

◦
M:=

{
M ∈ M

∣∣∣ e(M) := lim
t↓0

1

2t
Em[M2

t ] < ∞
}
.

We say that an AF M on [[0, ζ [[ is locally in
◦

M (and write M ∈ ◦
Mf -loc) if there ex-

ists a sequence {Mn} in
◦

M and a nest {Gn} of finely open Borel sets such that
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Mt = Mn
t for t < τGn for each n ∈ N. In case X is a diffusion process with

no killing inside E, we can define the predictable quadratic variation 〈M〉 for

M ∈ ◦
Mf -loc as follows. First, note that Mn

t∧τGn
= Mm

t∧τGn
for n < m because of

the continuity of Mn. Owing to the uniqueness of Doob–Meyer decomposition,
we see that 〈Mn〉t∧τGn

= 〈Mm〉t∧τGn
. The predictable quadratic variation 〈M〉 of

M ∈ ◦
Mf -loc as a PCAF is well defined by setting 〈M〉t = 〈Mn〉t , t < τGn, n ∈ N,

with Remark 2.2 and by choosing an appropriate defining set and E -polar set

of 〈M〉, where Mn ∈ ◦
M and {Gn} is a nest of finely open Borel sets such that

Mt = Mn
t , t < τGn .

PROPOSITION 2.8. (Mloc)
[[0,ζ [[ ⊂ ◦

Mf -loc. More precisely, for each M ∈
(Mloc)

[[0,ζ [[, there exists a nest {Gk} of finely open Borel sets such that 1Gk
∗M ∈ ◦

M
for each k ∈ N and the predictable quadratic variation process 〈M〉 can be con-
structed as a PCAF.

PROOF. Let M ∈ (Mloc)
[[0,ζ [[. There then exists an increasing sequence {Tn}

of stopping times with limn→∞ Tn = ζ (Px-a.s. ω ∈ � for q.e. x ∈ E) and
Mn ∈ Mloc such that Mt∧Tn1[0,ζ [(t ∧ Tn) = Mn

t∧Tn
1[0,ζ [(t ∧ Tn) holds for all t ≥ 0

Px-a.s. for q.e. x ∈ E. We may assume that it holds for all ω ∈ � by changing
the sample space. Note that [0, ζ(ω)[⊂ ⋃∞

n=1[0, Tn(ω)] for all ω ∈ �. Hence,
Mm

t∧Tn
1[0,ζ [(t ∧ Tn) = Mn

t∧Tn
1[0,ζ [(t ∧ Tn) for n < m. As noted in Definition 2.5,

we see that M is an AF on [[0, ζ [[. Owing to the uniqueness of the Doob–Meyer de-
composition for semimartingales on [[0, ζ [[ (see [9]), we have 〈Mm〉t∧Tn1[0,ζ [(t ∧
Tn) = 〈Mn〉t∧Tn1[0,ζ [(t ∧Tn) for n < m. Thus, we have 〈Mm〉t = 〈Mn〉t for t < Tn

and n < m. The predictable quadratic variation 〈M〉 of M is therefore well defined
by setting 〈M〉t := 〈Mn〉t for t < Tn. Setting 〈M〉t := 〈M〉ζ := lims↑ζ 〈M〉s for all
t ≥ ζ , we obtain a PCAF because of Remark 2.2. Let μ〈M〉 be the Revuz measure
corresponding to 〈M〉 and {Fk} an E -nest of closed sets such that μ〈M〉(Fk) < ∞
for each k, and let Gk be the fine interior of Fk . {Gk} is then a nest. In view of the
proofs of Theorem 5.6.1 and Lemma 5.6.2 in [7], the stochastic integral 1Gk

∗ M

is of finite energy with e(1Gk
∗ M) = 1

2μ〈M〉(Gk) and its predictable quadratic
variation 〈1Gk

∗ M〉 is a PCAF. Let μk (resp., μk) be the Revuz measure corre-

sponding to 〈1Gk
∗ M〉 (resp., 〈1Gk

∗ M,M〉). By Lemma 5.6.2 in [7], for Mi ∈ ◦
M

and fi ∈ L2(E;dμ〈Mi〉) (i = 1,2), we have f1f2dμ〈M1,M2〉 = dμ〈f1∗M1,f2∗M2〉,
hence

∫ t
0 (f1f2)(Xs) d〈M1,M2〉s = 〈f1 ∗ M1, f2 ∗ M2〉t . From this, we see that

〈μk,f
2〉 = 〈μk,f

2〉 = 〈1Gk
μ〈M〉, f 2〉 for any f ∈ L2(E;μ〈M〉); consequently,

we have μk = μk = 1Gk
μ〈M〉 by μ〈M〉(Gk) < ∞. This yields 〈1Gk

∗ M〉t =
〈1Gk

∗ M,M〉t = ∫ t
0 1Gk

(Xs) d〈M〉s for t < ζ , hence 〈M − 1Gk
∗ M〉t = 0 for

t < τGk
. Therefore, Mt = (1Gk

∗ M)t for t < τGk
and 1Gk

∗ M ∈ ◦
M. �
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COROLLARY 2.9. Let M be a locally square-integrable MAF on [[0, ζ [[,
that is, M ∈ (Mloc)

[[0,ζ [[. There then exists a Borel function ϕ on E × E with
ϕ(x, x) = 0 for all x ∈ E such that

Mt − Mt− = ϕ(Xt−,Xt) for every t ∈]0, ζ [, Pm-a.e.

PROOF. By the proof of Proposition 2.8, there exists an E -nest {Fk} such that

for each k ∈ N Mk := 1Fk
∗ M ∈ ◦

M and Mt = Mk
t , t < τFk

. Let ϕk be the jump
function corresponding to Mk . We then have ϕk(Xt−,Xt) = ϕ�(Xt−,Xt), t < τFk

,
Pm-a.e., for k < �. From this, we see that ϕk = ϕ� J -a.e. on Fk ×Fk . We construct
a Borel function ϕ on E × E in the following manner. We set F0 := ∅, ϕ(x, y) :=
ϕk(x, y) for (x, y) ∈ Fk × Fk \ (Fk−1 × Fk−1), k ∈ N, ϕ(x, y) := 0 if (x, y) ∈
E × E \ (

⋃∞
k=1 Fk × ⋃∞

k=1 Fk). ϕ then satisfies ϕ(x, x) = 0 for x ∈ E. We also
have ϕ = ϕk J -a.e. on Fk × Fk . Consequently, ϕ(Xt−,Xt) = ϕk(Xt−,Xt), t <

τFk
, Pm-a.e. This means that Mt −Mt− = ϕ(Xt−,Xt), t < τFk

, Pm-a.e. Therefore,
Mt − Mt− = ϕ(Xt−,Xt), 0 < t < ζ Pm-a.e. �

We recall the definition of the shift operator θs and the time-reversal operator rt
on the path space �. For each s ≥ 0, the shift operator θs is defined by θsω(t) :=
ω(t + s) for t ∈ [0,∞[. Given a path ω ∈ {t < ζ }, the operator rt is defined by

rt (ω)(s) :=
{

ω
(
(t − s)−)

, if 0 ≤ s ≤ t ,
ω(0), if s ≥ t .

(2.1)

Here, for r > 0, ω(r−) := lims↑r ω(s) is the left limit at r and we use the con-
vention that ω(0−) := ω(0). For a path ω ∈ {t ≥ ζ }, we set rt (ω) := ω	. We note
that

lim
s↓0

rt (ω)(s) = ω(t−) = rt (ω)(0) and

(2.2)
lim
s↑t

rt (ω)(s) = ω(0) = rt (ω)(t).

A key consequence of the m-symmetry assumption on the Hunt process X is that
the measure Pm, when restricted to {t < ζ }, is invariant under the time-reversal
operator rt .

Clearly for t, s > 0, θs : � → � is F m
t+s/F

m
t -measurable. The following lemma

deals with the measurability issue of the time-reversal operator rt .

LEMMA 2.10. For each t > 0, rt : � → � is F 0
t /F 0∞-measurable and

F m
t /F m

t -measurable.

PROOF. Let Fi ∈ B(E	) and si ∈ [0,∞[, i = 1,2, . . . , n, with s1 < s2 <

· · · < sk ≤ t < sk+1 < · · · < sn for some k ∈ {1,2, . . . , n}. Then,
r−1
t (

⋂n
i=1 X−1

si
(Fi)) = ⋂n

i=1(Xsi ◦ rt )
−1(Fi) is equal to

⋂k
i=1({X(t−si )− ∈ Fi, t <
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ζ } ∪ {	 ∈ Fi, t ≥ ζ }) ∩ ⋂n
i=k+1({X0 ∈ Fi, t < ζ } ∪ {	 ∈ Fi, t ≥ ζ }) ∈ F 0

t . Next,
we show the F m

t /F m
t -measurability of rt . Take C ∈ F m

t . There then exist D ∈ F 0
t

and N ∈ F 0∞ such that C � D ⊂ N and Pm(N) = 0. Since Pm({ω	}) = 0, by delet-
ing {ω	} = {ω ∈ � | ζ(ω) = 0} ∈ F 0

0 ⊂ F 0
t , we may assume that ω	 /∈ C ∪D∪N .

Then, r−1
t (C) � r−1

t (D) ⊂ r−1
t (N), r−1

t (D), r−1
t (N) ∈ F 0

t and Pm(r−1
t (N)) =

Pm(r−1
t (N) ∩ {t < ζ }) + 1N(ω	)Pm(t ≥ ζ ) = Pm(N ∩ {t < ζ }) = 0. �

DEFINITION 2.11. For any t > 0, we say that two sample paths ω and ω′ are
t-equivalent if ω(s) = ω′(s) for all s ∈ [0, t]. We say that two sample paths ω and
ω′ are pre-t-equivalent if ω(s) = ω′(s) for all s ∈ [0, t[.

For an rcll AF At adapted to (F 0
t )t≥0, At(ω) = At(ω

′) if ω and ω′ are
t-equivalent At−(ω) = At−(ω′) if ω and ω′ are pre-t-equivalent. These conclu-
sions may fail to hold if the measurability conditions are not satisfied. We need the
following notion.

DEFINITION 2.12 (PrAF). A process A = (At )t≥0 with values in R :=
[−∞,∞] is said to be a progressively additive functional (PrAF in short) (resp.,
PrAF admitting m-null set) if A is (Ft )-adapted [resp., (F m

t )-adapted] and there
exist defining sets � ∈ F∞, �t ∈ Ft [resp., � ∈ F m∞ , �t ∈ F m

t ] for each t > 0 and
an E -polar (resp., m-null) set N satisfying the following conditions:

(i) Px(�) = 1 for all x ∈ E \ N , � ⊂ �t ⊂ �s for every t > s > 0 and � =⋂
t>0 �t ;

(ii) θt� ⊂ � for all t ≥ 0 and θt−s(�t ) ⊂ �s for all s ∈]0, t[, and, in particular,
ω	 ∈ � ⊂ �t and P	(�) = P	(�t) = 1 under (i);

(iii) for all ω ∈ �t , A(ω) is defined on [0, t[, is right continuous on [0, t ∧ζ(ω)[
and has left limit on ]0, t]∩ ]0, ζ(ω)[ such that A0(ω) = 0, |As(ω)| < ∞ for s ∈
[0, t ∧ ζ(ω)[ and Ap+q(ω) = Ap(ω) + Aq(θpω) for all p,q ≥ 0 with p + q < t ;

(iv) for all t ≥ 0, At(ω	) = 0;
(v) for any t > 0 and pre-t-equivalent paths ω,ω′ ∈ �, ω ∈ �t implies that

ω′ ∈ �t , As(ω) = As(ω
′) for any s ∈ [0, t[ and As−(ω) = As−(ω′) for any s ∈

]0, t].
Furthermore, A is called an rcll PrAF (or an rcll PrAF admitting m-null set) if, for
each t > 0 and ω ∈ �t , s �→ As(ω) is right-continuous on [0, t[ and has left-hand
limits on ]0, t] and a PrAF (or a PrAF admitting m-null set) is said to be finite
(resp., continuous) if |As(ω)| < ∞ for all s ∈ [0, t[ (resp., continuous on [0, t[) for
every ω ∈ �t .

We say that an AF A on [[0, ζ [[ (resp., AF A on [[0, ζ [[ admitting m-null set) is a
PrAF on [[0, ζ [[ (resp., PrAF on [[0, ζ [[ admitting m-null set) if A is (Ft )-adapted
[resp., (F m

t )-adapted] and there exist � ∈ F∞, �t ∈ Ft (resp., � ∈ F m∞ , �t ∈ F m
t )

for each t > 0 and an E -polar (resp., m-null) set N such that (i′), (ii), (iii′), (iv) and
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(v′) hold—(i′): Px(�) = 1 for all x ∈ E \ N , � ⊂ �t for all t > 0, � = ⋂
t>0 �t

and �t ∩ {t < ζ } ⊂ �s ∩ {s < ζ } for s < t ; (iii′): for each ω ∈ �t ∩ {t < ζ }, the
same conclusion as in (iii) holds; (v′): for any t > 0 and pre-t-equivalent paths
ω,ω′ ∈ � ∩ {t < ζ }, the same conclusion as in (v) holds.

The notion of rcll PrAF on [[0, ζ [[ (or rcll PrAF admitting m-null set) is simi-
larly defined.

REMARK 2.13. (i) Our notion of PrAF is different from what is found in
Walsh [16].

(ii) Every PrAF (resp., PrAF on [[0, ζ [[) is an AF (resp., AF on [[0, ζ [[).
(iii) The MAF Mu and the CAF Nu of 0-energy appearing in Fukushima’s

decomposition (1.2) can be regarded as finite rcll PrAF’s in view of the proof of
Theorem 5.2.2 in [7]. In this case, the defining sets for Mu as PrAF are given by

� := {ω ∈ � | Mun
s−(ω) converges uniformly on ]0, t] for ∀t ≥ 0

for some subsequence nk} ∈ F∞,

�t := {ω ∈ � | Mun
s−(ω) converges uniformly on ]0, t]

for some subsequence nk} ∈ Ft

for every t > 0, where M
un
t := un(Xt) − un(X0) − ∫ t

0 (un(Xs) − fn(Xs)) ds with
fn := n(u − nRn+1u) and un := R1fn = nRn+1u. Hence, an MAF of stochastic
integral type

∫ t
0 g(Xs−) dMu

s [g,u ∈ F with g ∈ L2(E;μ〈u〉)] can be regarded as
a finite rcll PrAF. Consequently, any MAF of finite energy can also be regarded
as an rcll PrAF, in view of the assertion of Lemma 5.6.3 in [7] and Lemma 2.14
below.

(iv) Every M ∈ ◦
Mf -loc can be regarded as a PrAF on [[0, ζ [[, hence every M ∈

M
[[0,ζ [[
loc is also. Since every local martingale can be written as the sum of a local

martingale with bounded jumps (and hence a locally square-integrable martingale)
and a local martingale of finite variation, we conclude that every local MAF is a
PrAF.

LEMMA 2.14. Let (An) be a sequence of finite rcll PrAF’s with defining sets
�n ∈ F∞ and �n

t ∈ Ft . For each t > 0, set

�t :=
{
ω ∈ ⋂

n∈N

�n
t

∣∣∣ An converges uniformly on [0, t[
}

∈ Ft

and

� :=
{
ω ∈ ⋂

n∈N

�n
∣∣∣ An converges uniformly on [0, t[ for every t ∈ [0,∞[

}
∈ F∞.
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Suppose that there exists an E -polar set N such that Px(�) = 1 for x ∈ E \ N . If
we define At := limn→∞ An

t on �, then A is a finite rcll PrAF with its defining sets
�, �t .

PROOF. We only show that for any t > 0 and pre-t-equivalent paths ω,ω′,
ω ∈ �t implies that ω′ ∈ �t . Suppose that ω ∈ �t and ω is pre-t-equivalent
to ω′. It easy to see that ω′ ∈ ⋂

n∈N �n
t . We then see the uniform convergence of

An
s−(ω′) = An

s−(ω) for s ∈]0, t]. Therefore, ω′ ∈ �t , As(ω
′) = As(ω) for s ∈ [0, t[

and As−(ω′) = As−(ω) for s ∈]0, t]. �

Recall that {θt , t > 0} denotes the time-shift operators on the path space for the
process X.

LEMMA 2.15. For t, s > 0:

(i) θt rt+sω is s-equivalent to rsω if t + s < ζ(ω) or s ≥ ζ(ω);
(ii) rt θsω is pre-t-equivalent to rt+sω and, moreover, if ω is continuous at s,

then rt θsω is t-equivalent to rt+sω.

PROOF. (i) We may assume that t + s < ζ(ω). For v ∈ [0, s],
θt rt+sω(v) = ω

(
(s − v)−) = rsω(v)

and so θt rt+sω is s-equivalent to rsω.
(ii) Note that t + s < ζ(ω) is equivalent to t < ζ(θsω). It follows from the

definition, if t + s < ζ(ω), that

(rt θsω)(v) =
{

ω
(
(t + s − v)−)

, if 0 ≤ v < t ,
ω(s), if v = t ,

(2.3)

while rt+sω(v) = ω((t + s − v)−) for 0 ≤ v ≤ t . Hence, typically, rt θsω is only
pre-t-equivalent to rt+sω. �

Fix t > 0. Set H t
s := Ft for s ∈ [0, t] and H t

s := Fs for s ∈]t,∞[. (H t
s )s≥0 is

then a filtration over (�,F∞) and Fs ⊂ H t
s for all s ≥ 0.

LEMMA 2.16. The following assertions hold for any fixed t > 0:

(i) if we let ϕ be a Borel function on E × E and set X0− := X0, then
[0,∞[×� � (s,ω) �→ 1[[0,ζ [[(s,ω)1�t (ω)ϕ(Xs−(ω),Xs(ω)) is (H t

s )-optional for
any �t ∈ Ft ;

(ii) if we let A be an rcll PrAF with defining sets � ∈ F∞, �t ∈ Ft and we set
A0−(ω) := 0 and At

s(ω) := 1�t (ω)(1[0,t](s)As(ω) + 1]t,∞[(s)At (ω)) for ω ∈ �,
then [0,∞[×� � (s,ω) �→ 1[[0,ζ [[(s,ω)(At

s(ω) − At
s−(ω)) is (H t

s )-optional.
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PROOF. (i) Note that 1[[0,ζ [[ is (H t
s )-predictable. The assertion is clear if ϕ =

f ⊗ g for bounded Borel functions f,g on E	. The monotone class theorem for
functions gives us the desired result.

(ii) Since At is (H t
s )-adapted and rcll on � and At− is (H t

s )-adapted and lcrl on
�, (s,ω) �→ As(ω) is (H t

s )-optional and (s,ω) �→ At
s−(ω) is (H t

s )-predictable.
Consequently, (s,ω) �→ At

s(ω) − At
s−(ω) is (H t

s )-optional. �

By Lemma 3.2 of [3], for a finite rcll AF A = (At )t≥0, there is a Borel function
ϕ :E × E → R with ϕ(x, x) = 0 for all x ∈ E such that

At − At− = ϕ(Xt−,Xt) for every t ∈]0, ζ [, Pm-a.e.(2.4)

Moreover, if ϕ̃ is another such function, then J (ϕ �= ϕ̃) = 0. As before, we refer
to such a function ϕ as a jump function for A. Recall that if M ∈ M

[[0,ζ [[
loc , then

there exists a jump function ϕ (unique in the above sense) so that Mt − Mt− =
ϕ(Xt−,Xt) for t ∈]0, ζ [, Pm-a.e.

LEMMA 2.17. Let A be a finite rcll PrAF with defining sets {�,�t, t ≥ 0}.
There then exists a real-valued Borel function ϕ on E	 × E	 with ϕ(x, x) = 0 for
x ∈ E	 such that A with defining sets

�̃ := {ω ∈ � | As(ω) − As−(ω) = ϕ(Xs−(ω),Xs(ω)) for s ∈]0, ζ(ω)[},
�̃t := {ω ∈ �t | As(ω) − As−(ω) = ϕ(Xs−(ω),Xs(ω)) for s ∈]0, t[∩ ]0, ζ(ω)[}

is again an rcll PrAF admitting m-null set. The analogous assertion holds for
PrAF’s on [[0, ζ [[ and, in particular, for elements of (Mloc)

[[0,ζ [[.

PROOF. Let ϕ :E	 × E	 → R be a Borel function vanishing on the diagonal
and define �̃, �̃t in terms of ϕ, as above. Clearly, �̃ = ⋂

t>0 �̃t , �̃t ⊂ �̃s for
s < t . Moreover, we see that θt �̃ ⊂ �̃ for t ≥ 0 and θt−s(�̃t ) ⊂ �̃s for s < t . For
two pre-t-equivalent paths ω,ω′, we see that ω ∈ �̃t implies that ω′ ∈ �̃t .

By the previous lemma,

� := {
(s,ω) | 1[[0,ζ [[(s,ω)1�t (ω)

(
At

s(ω) − At
s−(ω) − ϕ(Xs−(ω),Xs(ω))

) �= 0
}

is (H t
s )-progressively measurable for any fixed t > 0 and the debut of � is

D�(ω) := inf
{
s ≥ 0 | 1[[0,ζ [[(s,ω)1�t (ω)

(
At

s(ω) − At
s−(ω)

− ϕ(Xs−(ω),Xs(ω))
) �= 0

}
,

which is an (H t
s )-stopping time by (A5.1) in [15]. In particular,{

ω ∈ � | 1[[0,ζ [[(s,ω)1�t (ω)
(
As(ω) − As−(ω) − ϕ(Xs−(ω),Xs(ω))

) = 0

for s ∈ [0, t[}
= {ω ∈ � | t < D�(ω)} ∈ H t

t = Ft .
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Hence,

{ω ∈ �t | As(ω) − As−(ω) − ϕ(Xs−(ω),Xs(ω)) = 0 for s ∈]0, t[∩ ]0, ζ(ω)[}
= {ω ∈ �t | As(ω) − As−(ω) − ϕ(Xs−(ω),Xs(ω)) = 0

for s ∈ [0, t[∩ [0, ζ(ω)[}
= {

ω ∈ �t | 1[[0,ζ [[(s,ω)
(
As(ω) − As−(ω) − ϕ(Xs−(ω),Xs(ω))

) = 0

for s ∈ [0, t[}
∈ Ft .

Therefore, �̃t ∈ Ft and �̃ ∈ F∞. The proof for PrAF’s on [[0, ζ [[ is similar, so we
omit it. �

The following theorem is a key to our extension of Nakao’s operator �. Its proof
is complicated by measurability issues, but the idea behind it is fairly transparent.
We will use the convention X0−(ω) := X0(ω).

THEOREM 2.18 (Dual PrAF). Let A be a finite rcll PrAF on [[0, ζ [[ with defin-
ing sets �, �t admitting m-null set. Suppose that there is a Borel function ϕ on
E×E with ϕ(x, x) = 0 for x ∈ E such that ϕ(Xs−(ω),Xs(ω)) = As(ω)−As−(ω)

for all s ∈]0, t[∩]0, ζ [ and all ω ∈ �t . Set

Ât (ω) := At(rt (ω)) + ϕ(Xt(ω),Xt−(ω))
(2.5)

for t ∈ [0, ζ(ω)[ and Ât (ω) := 0 for t ∈ [ζ(ω),∞[.
Â is then an rcll PrAF on [[0, ζ [[ admitting m-null set such that

Ât = At− ◦ rt + ϕ(Xt ,Xt−) and Ât − Ât− = ϕ(Xt ,Xt−)

for all t ∈]0, ζ [, Pm-a.e.

PROOF. Let � ∈ F∞, �t ∈ F m
t , t > 0 be the defining sets of A admitting m-

null set. We easily see r−1
t (�t ) ∩ {t < ζ } ⊂ r−1

s (�s) ∩ {s < ζ } for s ∈]0, t[ by use
of Lemma 2.15(i) and θt−s�t ⊂ �s .

Set �̂t := r−1
t (�t ) for t > 0 and �̂ := ⋂

t>0 �̂t . We then see that �̂ =⋂
t>0,t∈Q �̂t by use of r−1

t (�t ) ∩ {t ≥ ζ } = {t ≥ ζ } and the monotonicity of

r−1
t (�t ) ∩ {t < ζ }. Indeed, we have �̂ ⊂ ⋂

t>0,t∈Q �̂t ⊂ (�̂s ∩ {s < ζ }) ∪ {t ≥ ζ }
for any 0 < s < t with t ∈ Q. Taking the intersection over t ∈]s,∞[∩Q, we have
�̂ ⊂ ⋂

t>0,t∈Q �t ⊂ �̂s for all s > 0, which yields the assertion.
We prove θt �̂ ⊂ �̂ for each t ≥ 0, in particular, θt �̂ ⊂ θs�̂ and, equiva-

lently, θ−1
s �̂ ⊂ θ−1

t �̂ if s ∈ [0, t]. Suppose that ω ∈ �̂. Then, rt+sω ∈ �t+s . If
t + s < ζ(ω), then rt+sω ∈ �s , otherwise rt+sω = ω	 ∈ �s . Hence, we have
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rsθtω ∈ �s , by Lemma 2.15(ii). Therefore, rsθtω ∈ �s for all s > 0, which im-
plies that θtω ∈ �̂.

Next, we prove θt−s(�̂t ) ⊂ �̂s for s ∈]0, t[. Take ω ∈ �̂t . Then, rsθt−sω is
pre-s-equivalent to rtω ∈ �t ⊂ �s , by Lemma 2.15(ii) and hence rsθt−sω ∈ �s .
Therefore, θt−sω ∈ �̂s for all s ∈]0, t[.

From �t ⊂ F m
t , we obtain �̂t ∈ F m

t , by Lemma 2.10. Since (�̂t )
c =

r−1
t ((�t )

c) = r−1
t ((�t )

c) ∩ {t < ζ } holds by noting ω	 ∈ �t , we have
Pm((�̂t )

c) = Pm((�̂)c) = 0.
By (2.2), v �→ rs(ω)(v) is continuous at v = s. Hence, on �̂t ∩ {t < ζ }, we

have ϕ(Xs−,Xs) ◦ rs = ϕ(Xs,Xs−) ◦ rs = 0, in particular, As ◦ rs = As− ◦ rs for
s ∈]0, t[.

The remainder of the proof is devoted to showing that Â is an rcll PrAF on [0, ζ [
with defining sets �̂, �̂t such that on �̂t ∩ {t < ζ }, Âs = As− ◦ rs + ϕ(Xs,Xs−),
s ∈]0, t[. First, note that for ω ∈ �̂, |Ât (ω)| < ∞ for any t ∈]0, ζ(ω)[ because,
by taking T ∈]t, ζ(ω)[, rT ω ∈ �T implies that rtω ∈ �t , hence |At−(rtω)| < ∞.
Moreover, for ω ∈ �̂t ∩ {t < ζ }, we see that rsω ∈ �s ∩ {s < ζ } and |As−(rsω)| <
∞ for all 0 < s < t .

For two pre-t-equivalent paths ω,ω′ ∈ � ∩ {t < ζ } with t > 0, we show that
ω ∈ �̂t implies ω′ ∈ �̂t and Âs(ω) = Âs(ω

′) for s ∈ [0, t[. Recall that ω ∈ �̂t ∩
{t < ζ } ⊂ �̂s ∩{s < ζ } for s ∈ [0, t] and note that ω and ω′ are s-equivalent for any
s ∈ [0, t[. On the other hand, s < ζ(ω) is equivalent to s < ζ(ω′) for any s ∈ [0, t[.
We then see that rsω ∈ �s is s-equivalent to rsω

′ for any s ∈ [0, t], which implies
that rsω

′ ∈ �s for any ]0, t] and As−(rsω) = As−(rsω
′) for any s ∈ [0, t].

Fix t > 0. On �̂t ∩{t < ζ } and for any p,q > 0 with p+q < t , by Lemma 2.15,

Âp+q = A(p+q)− ◦ rp+q + ϕ
(
Xp+q,X(p+q)−

)
= (Ap + Aq− ◦ θp) ◦ rp+q + ϕ

(
Xp+q,X(p+q)−

)
= Ap ◦ rp+q + Aq− ◦ θp ◦ rp+q + ϕ

(
Xp+q,X(p+q)−

)
= (

Ap− ◦ rp+q + ϕ(Xp−,Xp) ◦ rp+q

) + Aq− ◦ rq + ϕ
(
Xp+q,X(p+q)−

)
= (

Ap− ◦ rp ◦ θq + ϕ(Xq,Xq−)
) + (

Âq − ϕ(Xq,Xq−)
)

+ ϕ
(
Xp+q,X(p+q)−

)
= (

Âp − ϕ(Xp,Xp−)
) ◦ θq + Âq + ϕ

(
Xp+q,X(p+q)−

)
= Âp ◦ θq + Âq .

On �̂t ∩ {t < ζ }, again by Lemma 2.15 and (2.2), for any s > 0 and u ∈]0, s[,
Âs − Âs−u = Âu ◦ θs−u

= (
Au− ◦ ru + ϕ(Xu,Xu−)

) ◦ θs−u

= Au− ◦ ru ◦ θs−u + ϕ(Xs,Xs−)

= Au− ◦ rs + ϕ(Xs,Xs−).
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So,

lim
u↓0

(Âs − Âs−u) = ϕ(Xs,Xs−).

This shows that Â has left limit at s ∈]0, t[ and Âs − Âs− = ϕ(Xs,Xs−).
To show the right continuity of Â on �̂t ∩ {t < ζ } at any s ∈]0, t[, note that for

any u ∈]0, t − s[, by Lemma 2.15 and (2.2),

Âs+u − Âs = Âu ◦ θs

= (
Au− ◦ ru + ϕ(Xu,Xu−)

) ◦ θs

= Au− ◦ ru ◦ θs + ϕ
(
Xs+u,X(s+u)−

)
= Au− ◦ rs+u + ϕ

(
Xs+u,X(s+u)−

)
.

Since (Av −Av−)◦rs+v = ϕ(Xv−,Xv)◦rs+v = ϕ(Xs,Xs−), while, by Lemma 2.15
and (2.2),

(Av − Av−) ◦ rs+v = lim
u↓0

(Av − Av−u) ◦ rs+v

= lim
u↓0

Au ◦ θv−u ◦ rs+v

= lim
u↓0

Au− ◦ rv+u + ϕ(Xs,Xs−),

we conclude that

lim
u↓0

Au− ◦ rs+u = 0.

On the other hand, for any s ≥ 0,

lim
u↓0

ϕ
(
Xs+u,X(s+u)−

) = lim
u↓0

ϕ
(
X(v−u)−,Xv−u

) ◦ rs+v

= lim
u↓0

(
Av−u − A(v−u)−

) ◦ rs+v

= (Av− − Av−) ◦ rs+v = 0.

Hence, we have, for s > 0,

lim
u↓0

(Âs+u − Âs) = 0.

In other words, Â is right-continuous at any s ∈]0, t[ on �̂t ∩ {t < ζ }. We also see
that

lim
u<s,s↓0,u↓0

(Âs+u − Âs) = 0.

We can thus define the limit Â0(ω) := lims↓0 Âs(ω) for ω ∈ �̂t ∩ {t < ζ } for any
t > 0. We also see that Â0(ω) = lims↓0 Âs−(ω) for ω ∈ �̂t ∩ {t < ζ } for any t > 0
because lims↓0 ϕ(Xs,Xs−) = 0. Next, we prove that Â0(ω) = 0 for ω ∈ �̂t ∩ {t <
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ζ } for any t > 0. Take ω ∈ �̂t ∩ {t < ζ } for some fixed t > 0. It suffices to show
that limu↓0 Âs−u(θuω) = Âs(ω) for s ∈ [0, t[. Owing to Lemma 2.15(ii), we have

Âs−u(θuω) = A(s−u)−(rs−uθuω) + ϕ(Xs(ω),Xs−(ω))

= A(s−u)−(rsω) + ϕ(Xs(ω),Xs−(ω))

= As−u(rsω) − ϕ(Xu(ω),Xu−(ω)) + ϕ(Xs(ω),Xs−(ω))

= As−u(rsω) − Âu(ω) + Âu−(ω) + ϕ(Xs(ω),Xs−(ω))

→ As−(rsω) + ϕ(Xs(ω),Xs−(ω)) as u ↓ 0

= Âs(ω).

The F m
t -measurability of Ât is clear from (2.5). This proves the theorem. �

3. Stochastic integral for Dirichlet processes. The following fact will be
used repeatedly in this section. Since a Hunt process is quasi-left continuous, for
each fixed t > 0, we have Xt− = Xt , Px-a.s. for every x ∈ E.

Before embarking on the definition of our stochastic integral, we prepare the
following lemma for later use.

LEMMA 3.1. The following assertions hold.

(i) Let {Gn} be an increasing sequence of finely open Borel sets. The following
are then equivalent:

(a) {Gn} is a nest, that is, Px(limn→∞ σE\Gn ∧ ζ = ζ ) = 1 for q.e. x ∈ E;
(b) E = ⋃∞

n=1 Gn q.e.;
(c) Px(limn→∞ σE\Gn = ∞) = 1 for m-a.e. x ∈ E;
(d) Px(limn→∞ σE\Gn = ∞) = 1 for q.e. x ∈ E.

In particular, for an increasing sequence {Fn} of closed sets, {Fn} is an E -nest if
and only if Px(limn→∞ σE\Fn = ∞) = 1 for m-a.e. x ∈ E.

(ii) For a function f on E, f ∈ Floc if and only if there exist an E -nest {Fk} of
closed sets and {fk | k ∈ N} ⊂ Fb such that f = fk q.e. on Fk .

PROOF. (i) For the implications (i)(a) ⇐⇒ (i)(b), see Theorem 4.6 in [11]. The
implication (i)(d) �⇒ (i)(a) is clear. Next, we show (i)(b) �⇒ (i)(c). Since each
Gn is finely open, it is quasi-open by Theorem 4.6.1(i) in [7]. So, there exists a
common nest {A�} of closed sets such that (E \Gn)∩A� is closed for all n, � ∈ N.
Set σ := limn→∞ σE\Gn . We then have that for all n ∈ N, XσE\Gn

∈ E \ Gn Px -
a.s. on {σ < ∞} for q.e. x ∈ E. We have Px(lim�→∞ σE\A�

= ∞) = 1 q.e. x ∈ E.
Since σ(ω) < ∞ and lim�→∞ σE\A�

(ω) = ∞ together imply σ(ω) < σE\A�0
(ω)

for some �0 = �0(ω) ∈ N, we have that there exists �0 ∈ N such that σE\Gn <
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σE\A�
for all n > � ≥ �0, Px -a.s. on {σ < ∞} for q.e. x ∈ E. This means that

Px(σ < ∞) ≤ Px

(
lim

�→∞
{XσE\Gn

∈ (E \ Gn) ∩ A� for all n > �,σ < ∞}
)

≤ lim
�→∞

Px

(
XσE\Gn

∈ (E \ G�) ∩ A� for all n > �,σ < ∞)
≤ lim

�→∞
Px

(
Xσ ∈ (E \ G�) ∩ A�,σ < ∞)

≤ lim
�→∞

Px(Xσ ∈ E \ G�,σ < ∞)

= Px

(
Xσ ∈ E \

∞⋃
�=1

G�,σ < ∞
)

= 0

for m-a.e. x ∈ E because of the E -polarity of E \ ⋃∞
�=1 G�, where we use the

quasi-left continuity of X up to ∞ and the closedness of (E \ G�) ∩ A�. The
implication (i)(c) ⇐⇒ (i)(d) follows from the fact that x �→ Px(σ < ∞) is the limit
of a decreasing sequence of excessive functions and Lemma 4.1.7 in [7].

(i) The “if” part is clear by (i) because τFk
= τGk

, where Gk is the fine interior
of Fk . We only prove the “only if” part. Take f ∈ Floc. There then exist {fk | k ∈
N} ⊂ F and an increasing sequence {Gk} of finely open sets with E = ⋃∞

k=1 Gk

q.e. such that f = fk m-a.e. on Gk . We may take fk ∈ Fb for each k ∈ N by
replacing fk with (−k) ∨ fk ∧ k and Gk with Gk ∩ {|f | < k}. Note that f and

fk are quasi-continuous, so f = fk q.e. on Gk . Taking an E -quasi-closure Gk
E

of

Gk , we have f = fk q.e. on Gk
E

(see [10] for the definition of E -quasi-closure).

Let {An} be a common E -nest of closed sets such that for each k,n ∈ N, Gk
E ∩An

is closed. Set Fk := Gk
E ∩ Ak . By (i), {Gk} is a nest, hence Gk

E
is a nest of q.e.

finely closed sets because of τGk
≤ τ

Gk
E . Here, we recognize Gk

E
as a finely closed

Borel sets by deleting an E -polar set. Since {An} is a nest of closed sets, {Fk} is
also, that is, Pm(limk→∞ τFk

�= ζ ) = 0. Therefore, {Fk} is an E -nest of closed sets.
We easily see that for each k ∈ N, f = fk q.e. on Fk . �

Recall that any locally square-integrable MAF M on [[0, ζ [[ admits a jump func-
tion ϕ on E × E with ϕ(x, x) = 0 for x ∈ E such that 	Mt = ϕ(Xt−,Xt) for

t ∈]0, ζ [, Pm-a.e. When M ∈ ◦
M, we can strengthen this statement by replacing

]0, ζ [ with ]0,∞[ in view of Fukushima’s decomposition and the combination of
Theorem 5.2.1 and Lemma 5.6.3 in [7].

LEMMA 3.2. Let φ be a Borel function on E	 × E	 satisfying φ(x, x) = 0
for all x ∈ E	.

(i) Suppose that

N
(
1E×E(|φ|2 ∧ |φ|))μH ∈ S.



STOCHASTIC CALCULUS FOR SYMMETRIC MARKOV PROCESSES 953

There then exists a unique, purely discontinuous local MAF K on [[0, ζ [[ [i.e.,
K ∈ (M1

loc)
[[0,ζ [[] such that Kt − Kt− = φ(Xt−,Xt) for all t ∈ [0, ζ [, Px-a.s. for

q.e. x ∈ E.
(ii) If

N
(
1E×E	(|φ|2 ∧ |φ|))μH ∈ S,

then K can be taken to be a local MAF (i.e., K ∈ M1
loc) and Kt − Kt− =

φ(Xt−,Xt) for all t ∈ [0,∞[, Px -a.s. for q.e. x ∈ E.

PROOF. The proof of (ii) is similar to that of (i), so we only prove (i). By mar-
tingale theory (see, e.g. [9]), the hypothesis implies that the compensated process

K
(2)
t := ∑

0<s≤t

φ(Xs−,Xs)1{|φ(Xs−,Xs)|>1}1{s<ζ }

−
∫ t

0

∫
E

N(Xs, dy)φ(Xs, y)1{|φ(Xs,y)|>1} dHs

is a local MAF of X of finite variation on [[0, ζ [[ and

K
(1)
t := lim

ε→0

( ∑
0<s≤t

φ(Xs−,Xs)1{ε<|φ(Xs−,Xs)|≤1}1{s<ζ }

−
∫ t

0

∫
E

N(Xs, dy)φ(Xs, y)1{ε<|φ(Xs,y)|≤1} dHs

)
is a purely discontinuous locally square-integrable MAF of X on [[0, ζ [[. Thus,
K := K(1) +K(2) is a purely discontinuous MAF on [[0, ζ [[ with jump function φ.
The uniqueness is clear from martingale theory. �

DEFINITION 3.3. Let M be a local MAF on [[0, ζ [[ [i.e., M ∈ (M1
loc)

[[0,ζ [[]
with jump function ϕ. Assume that for q.e. x ∈ E, Px -a.s.∫ t

0

∫
E

(
ϕ̂21{|ϕ̂|≤1} + |ϕ̂|1{|ϕ̂|>1}

)
(Xs, y)N(Xs, dy) dHs < ∞

(3.1)
for every t < ζ,

where ϕ̂(x, y) := ϕ(x, y) + ϕ(y, x). Define, Pm-a.e. on [[0, ζ [[,
�(M)t := −1

2

(
Mt + Mt ◦ rt + ϕ(Xt ,Xt−) + Kt

)
for t ∈ [0, ζ [,(3.2)

where Kt is the purely discontinuous local MAF on [[0, ζ [[ with

Kt − Kt− = −ϕ̂(Xt−,Xt) for every t < ζ, Px-a.s.(3.3)

for q.e. x ∈ E.
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REMARK 3.4. (i) The condition (3.1) is nothing but N(1E×E(|ϕ̂|2∧|ϕ̂|))μH ∈
S. In particular, condition (3.1) is satisfied by the jump function of any element of
(Mloc)

[[0,ζ [[.

(ii) It follows from Remark 2.13(iv) and Theorem 2.18 that �(M) is a con-
tinuous PrAF admitting m-null set on [[0, ζ [[. (This is because Remark 2.13(iv)
and Theorem 2.18 imply that the process defined on [0, ζ [ by Bt := Mt ◦ rt +
ϕ(Xt ,Xt−) is an rcll PrAF, with left-limit process Bt− = Bt − ϕ(Xt ,Xt−). It fol-
lows that �(M) is rcll on [0, ζ [ and that �(M)t− = �(M)t for all t ∈]0, ζ [, Pm-
a.e.) Note that −Kt := ∑

s≤t ϕ̂(Xs−,Xs)1{s<ζ } − ∫ t
0

∫
E ϕ̂(Xs, y)N(Xs, dy) dHs ,

t < ζ , satisfies Kt = Kt ◦ rt Pm-a.e. on {t < ζ } for fixed t > 0. In view of Theo-
rem 2.18, it is then clear from the definition that � is a linear operator that maps
local MAF’s on [[0, ζ [[ satisfying condition (3.1) into even CAF’s on [[0, ζ [[ ad-
mitting m-null set.

(iii) If {Mn,n ≥ 1} is a sequence of MAF’s having finite energy and converging
in probability to M , then it is easy to see that Mn

t ◦ rt , ϕn(Xt−,Xt) = Mn
t − Mn

t−
and ϕn(Xt ,Xt−) converge to Mt ◦ rt , ϕ(Xt−,Xt) = Mt − Mt− and ϕ(Xt ,Xt−)

in probability, respectively, under Pm. Hence, we have that �(Mn)t converges to
�(M)t in measure for each t > 0.

(iv) For u ∈ F ,

�(Mu)t = −1
2

(
Mu

t + Mu
t ◦ rt + u(Xt−) − u(Xt)

) = Nu
t ,

Pm-a.e. on {t < ζ }, for each fixed t ≥ 0. The first equality above is just the def-
inition of �(Mu), while the second follows by applying rt to both sides of (1.2)
because Xt = Xt− and Nu ◦ rt = Nu

t , Pm-a.e. on {t < ζ }. (The last property is
proved in [4], Theorem 2.1, when X is a diffusion, but the same proof works for
general symmetric Markov process X.) Since both �(Mu)t and Nu

t are continuous
in t , we even have, Pm-a.e.,

�(Mu)t = Nu
t for all t < ζ.

We are going to show that �(M) defined above coincides on [0, ζ [ with �(M)

defined in (1.5) by Nakao when M is an MAF of finite energy. An AF Z is called
even (resp., odd) if and only if Zt ◦ rt = Zt (resp., Zt ◦ rt = −Zt ), Pm-a.e. on
{t < ζ } for each t > 0. For an rcll process Z with Z0 = 0 and T > 0, we define

RT Zt := (RT Z)t := ZT − − Z(T −t)− for 0 ≤ t ≤ T ,

with the convention Z0− = Z0 = 0. Note that RT Zt so defined is an rcll process in
t ∈ [0, T ].

LEMMA 3.5. Suppose that Z is an rcll PrAF. Then, Pm-a.e. on {T < ζ },
RT Zt =

{
Zt ◦ rT , if Z is even,
−Zt ◦ rT , if Z is odd,

for every t ∈ [0, T ].(3.4)
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PROOF. Let Z be an rcll PrAF and let T > 0. By Lemma 2.15,

Zt ◦ rT = (ZT − ZT −t ◦ θt ) ◦ rT = ZT ◦ rT − ZT −t ◦ rT −t

(3.5)
for all t < T .

When Z is even,

Zt ◦ rT = ZT − ZT −t = ZT − − Z(T −t)− = RT Zt,

Pm-a.e. on {T < ζ } for each fixed 0 ≤ t < T . Since both sides are right-continuous
in t ∈ [0, T [, we have, Pm-a.e., RT Zt = Zt ◦ rT for every t ∈ [0, T ]. When Z is an
odd AF of Z, (3.4) can be proven similarly. �

THEOREM 3.6. For an MAF M of finite energy, �(M) defined above coin-
cides on [[0, ζ [[ with �(M) defined in (1.5), Pm-a.e.

PROOF. For u ∈ F and 0 < t < T , since Nu is an even CAF, by Lemma 3.5,

(Mu
t + 2Nu

t ) ◦ rT = (
u(Xt) − u(X0) + Nu

t

) ◦ rT

= u
(
X(T −t)−

) − u(XT −) + Nu
T − − Nu

(T −t)−
= Mu

(T −t)− − Mu
T −

= −RT Mu
t .

Since both (Mu
t +2Nu

t )◦rT and RT Mu
t are right-continuous in t , we have, Pm-a.e.

on {T < ζ },
RT Mu

t = −(Mu
t + 2Nu

t ) ◦ rT for every t ∈ [0, T ].(3.6)

For u ∈ D(L) ⊂ F and v ∈ Fb, define Mt = ∫ t
0 v(Xs−) dMu

s , which is an MAF
of finite energy. Note that, since u ∈ D(L), Nu

t = ∫ t
0 Lu(Xs) ds is a continuous

process of finite variation. For each fixed 0 < t < T and n ≥ 1, define ti = it/n

and si = T − t + ti . Using the standard Riemann sum approximation of the Itô
integral and of the covariance process [Mv,Mu], we have, Pm-a.e. on {T < ζ },

MT − MT −t + [Mv,Mu]T − [Mv,Mu]T −t

= lim
n→∞

(
n−1∑
i=0

v(Xsi )(M
u
si+1

− Mu
si
) + (Mv

si+1
− Mv

si
)(Mu

si+1
− Mu

si
)

)

= lim
n→∞

(
n−1∑
i=0

v(Xsi+1)(M
u
si+1

− Mu
si
) − (Nv

si+1
− Nv

si
)(Mu

si+1
− Mu

si
)

)

= lim
n→∞

n−1∑
i=0

v(Xsi+1)(M
u
si+1

− Mu
si
)
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= lim
n→∞

n−1∑
i=0

v(XT −t+ti )(RT Mu
t−ti

− RT Mu
t−ti+1

)

= lim
n→∞

(
n−1∑
i=0

v(Xt−ti+1)(M
u
t−ti+1

− Mu
t−ti

+ 2Nu
t−ti+1

− 2Nu
t−ti

)

)
◦ rT

= −
(∫ t

0
v(Xs−) d(Mu

s + 2Nu
s )

)
◦ rT ,

where in the third equality, we used the fact that Nu has zero energy, while in the
second to the last equality, we used (3.6). Note that the stochastic integral involving
Nu in the last equality is just the Lebesgue–Stieltjes integral since Nu is of finite
variation. Also, note that Xt = Xt−, Pm-a.e., for each fixed t > 0. So, we have, for
each fixed t < T , Pm-a.e. on {T < ζ },

RT Mt + RT [Mv,Mu]t = −
(∫ t

0
v(Xs−) d(Mu

s + 2Nu
s )

)
◦ rT .

Since both sides are right-continuous in t ∈ [0, T ], we have, Pm-a.e. on {T < ζ },
RT Mt + RT [Mv,Mu]t = −

(∫ t

0
v(Xs−)d(Mu

s + 2Nu
s )

)
◦ rT

(3.7)
for every t ∈ [0, T ].

By [14], Theorem 3.1 and (1.7),∫ t

0
v(Xs−) dNu

s =
∫ t

0
v(Xs) dNu

s = �(M)t − 1
2〈Mv,c + Mv,j ,Mu,c + Mu,j 〉t .

It follows that Pm-a.e. on {T < ζ },
RT Mt + RT [Mv,Mu]t

= −(
Mt + 2�(M)t − 〈Mv,c + Mv,j ,Mu,c + Mu,j 〉t ) ◦ rT

= −(
Mt + 2�(M)t − 〈Mv,c,Mu,c〉t − 〈Mv,j ,Mu,j 〉t ) ◦ rT

for all t ≤ T .

Recall that

[Mv,Mu]t = 〈Mv,c,Mu,c〉t + ∑
s≤t

(Mv
s − Mv

s−)(Mu
s − Mu

s−)

= 〈Mv,c,Mu,c〉t + ∑
s≤t

(
v(Xs) − v(Xs−)

)(
u(Xs) − u(Xs−)

)
.

Taking t = T and noting that both �(M) and 〈Mv,c,Mu,c〉 are continuous even
AF’s, we have, from above, that, Pm-a.e. on {t < ζ },

�(M)t = −1
2

(
Mt + Mt ◦ rt + v(Xt)

(
u(Xt−) − u(Xt)

) + Kt

)
,(3.8)
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where

Kt = ∑
s≤t

(
v(Xs) − v(Xs−)

)(
u(Xs) − u(Xs−)

) − 〈Mv,j ,Mu,j 〉t

is the purely discontinuous MAF with Kt − Kt− = (v(Xt ) − v(Xt−))(u(Xt) −
u(Xt−)). Note that the right-hand side of (3.8) is right-continuous on [0, ζ [,
Pm-a.e. [cf. Remark 3.4(ii)]. Also, observe that Mt − Mt− = ϕ(Xt−,Xt), where
ϕ(x, y) = v(x)(u(y) − u(x)), and that

Kt − Kt− = −ϕ(Xt−,Xt) − ϕ(Xt ,Xt−).

This shows that �(M)t = �(M)t , Pm-a.e. on {t < ζ } for each fixed t ≥ 0. Since
both processes are continuous in t ∈ [0, ζ [, we have, Pm-a.e.,

�(M) = �(M) on [0, ζ [
for an MAF M of the form Mt = ∫ t

0 v(Xs−) dMu
s with u ∈ D(L) and v ∈ Fb.

By Lemma 5.4.5 in [6], such MAF’s form a dense subset in the space of MAF’s
having finite energy. Thus, by Lemma 3.1 in Nakao [14] and Remark 3.4(iii), we
have, for a general MAF M of finite energy, �(M)t = �(M)t Pm-a.e. on {t < ζ }
for every fixed t ≥ 0. Since both processes are continuous in t ∈ [0, ζ [, it follows
that �(M) = �(M) on [[0, ζ [[, Pm-a.e. �

THEOREM 3.7. Let M be a locally square-integrable MAF on [[0, ζ [[ with
jump function ϕ. Suppose that ϕ satisfies condition (3.1). Then, for every t > 0,

lim
n→∞

n−1∑
�=0

(
�(M)(�+1)t/n − �(M)�t/n

)2 = 0,(3.9)

where the convergence is in Pgm-measure on {t < ζ } for any g ∈ L1(E;m) with
0 < g ≤ 1 m-a.e.

PROOF. By (1.5) and Theorem 3.6, (3.9) clearly holds when M is an MAF of
finite energy. For a locally square-integrable MAF M on [[0, ζ [[, there is an E -nest

{Fk} of closed sets such that 1Fk
∗ M ∈ ◦

M for each k ≥ 1 in view of the proof of
Proposition 2.8 and so (3.9) holds with 1Fk

∗ M in place of M . For each fixed
k ≥ 1,

�(M)t = �(1Fk
∗ M)t − 1

2Kk
t , Pm-a.e. on [0, τFk

[,
where Kk

t is a purely discontinuous local MAF on [[0, ζ [[ with

Kk
t − Kk

t− = 1Fc
k
(Xt−)ϕ(Xt−,Xt) + 1Fc

k
(Xt )ϕ(Xt ,Xt−) for t < ζ.

Since 1Fk
∗ M ∈ ◦

M, we have∫
E

N(1Fk×Eϕ2) dμH =
∫
E

N(1E×Fk
ϕ2) dμH < ∞.
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Consequently, by Lemma 3.2, we have the existence of a purely discontinuous
local MAF on [[0, ζ [[ with jumps given by 1Fk

(Xt−)ϕ(Xt−,Xt) + 1Fk
(Xt)ϕ(Xt ,

Xt−), t < ζ . So, we obtain the existence of such Kk
t . Since the square bracket

of Kk is given by
∑

s≤t 1Fc
k
(Xs−)ϕ2(Xs−,Xs) + 1Fc

k
(Xs)ϕ

2(Xs,Xs−) and it van-
ishes at t < τFk

, we have, for each fixed t > 0,

lim
n→∞

n−1∑
�=0

(
�(M)(�+1)t/n − �(M)�t/n

)2 = 0 in Pgm-measure on {t < τFk
}.

Passing to the limit as k ↑ ∞ establishes (3.9). �

We are now in a position to define stochastic integrals against �(M) as integra-
tor. Note that, for f ∈ Floc, Mf,c is well defined as a continuous MAF on [[0, ζ [[ of
locally finite energy (see Theorem 8.2 in [9]). Moreover, for f ∈ Floc and a locally
square-integrable MAF M on [[0, ζ [[,

t �→ (f ∗ M)t :=
∫ t

0
f (Xs−) dMs

is a locally square-integrable MAF on [[0, ζ [[.
DEFINITION 3.8 (Stochastic integral). Suppose that M is a locally square-

integrable MAF on [[0, ζ [[ and f ∈ Floc. Let ϕ :E × E → R be a jump function
for M and assume that ϕ satisfies condition (3.1). Define, Pm-a.e. on [[0, ζ [[,∫ t

0
f (Xs−) d�(M)s

:= �(f ∗ M)t − 1
2〈Mf,c,Mc〉t(3.10)

+ 1
2

∫ t

0

∫
E

(
f (y) − f (Xs)

)
ϕ(y,Xs)N(Xs, dy) dHs,

whenever �(f ∗ M) is well defined and the third term in the right-hand side of
(3.10) is absolutely convergent.

REMARK 3.9. (i) Under the above condition, the stochastic integral is clearly
well defined on [[0, ζ [[ under Pm and is a PrAF of X admitting m-null set.

(ii) Here are some sufficient conditions for every term on the right-hand side
of (3.10) to be well defined. In addition to the conditions in Definition 3.8, we
assume that, Pm-a.e.,∫ t

0

∫
E

(
f (Xs) − f (y)

)2
N(Xs, dy) dHs < ∞ for every t < ζ(3.11)

and that ∫ t

0

∫
E

ϕ(y,Xs)
2N(Xs, dy) dHs < ∞ for every t < ζ.(3.12)
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The first and third terms on the right-hand side of (3.10) are then well defined. This
is because N(1E×E|ϕ̂|)μH ∈ S implies that N(1E×E|f ϕ̂|)μH ∈ S, and

f (x)ϕ(x, y) + f (y)ϕ(y, x) = f (x)ϕ̂(x, y) + (
f (y) − f (x)

)
ϕ(y, x),

so �(f ∗ M) is well defined on [0, ζ [ in view of the condition (3.1) for f ∗ M ,
(3.11) and (3.12). Condition (3.11) is satisfied when f is a bounded function in
Floc or f ∈ F . This is because, when f ∈ F , the left-hand side of (3.11) is just
〈Mf,j 〉t . When f is a bounded function in Floc, by Lemma 3.1(i), there exist a
nest {Fn | n ∈ N} of closed sets and a sequence of functions {fn | n ∈ N} ⊂ Fb

such that f = fn q.e. on Fn for every n ≥ 1. Note that for each n ≥ 1, Mfn,d is a
square-integrable, purely discontinuous martingale and

M
fn,d
t − M

fn,d
t− = fn(Xt) − fn(Xt−).

So, t �→ ∑
s≤t (fn(Xs) − fn(Xs−))2 is Px -integrable for q.e. x ∈ E. Since f is

bounded, we have, for each n ≥ 1, that

t �→ ∑
s≤t∧τFn

(
f (Xs) − f (Xs−)

)2

= ∑
s<t∧τFn

(
f (Xs) − f (Xs−)

)2 + (
f (Xt∧τFn

) − f (Xt∧τFn−)
)2

= ∑
s<t∧τFn

(
fn(Xs) − fn(Xs−)

)2 + (
f (Xt∧τFn

) − f (Xt∧τFn−)
)2

is an increasing process and is Px -integrable for each fixed t ≥ 0 for q.e. x ∈ E.
Similarly, At := ∑

s≤t (f (Xs)− f (Xs−))2 is locally integrable in the sense of De-
finition 5.18 in [9]. Indeed, for a stopping time Tn := inf{t > 0 | At > n}, ATn =
ATn− + (f (XTn) − f (XTn−))2 is bounded, hence Px-integrable for q.e. x ∈ E.
Note that the dual predictable projection of At is nothing but

∫ t
0

∫
E	

(f (Xs) −
f (y))2N(Xs, dy) dHs . The dual predictable projection of

∑
s≤t∧τFn

(f (Xs) −
f (Xs−))2 is then given by

∫ t∧τFn

0

∫
E	

(f (Xs)−f (y))2N(Xs, dy) dHs from Corol-
lary 5.24 in [9], which is Px-integrable for q.e. x ∈ E. This implies that (3.11)
holds for every t < τFn . Therefore, (3.11) holds for every t < ζ .

Condition (3.12) is satisfied when Md is Pm-square-integrable. Indeed,

Em

[∑
s≤t

ϕ2(Xs,Xs−) : t < ζ

]
= Em

[[Md ]t ◦ rt : t < ζ
]

= Em

[[Md ]t : t < ζ
]
< ∞.

Corollary 4.5 in [8] then tells us that

lim
t→0

1

t
Em

[∑
s≤t

ϕ2(Xs,Xs−) : t < ζ

]
= lim

t→0

1

t
Em

[∑
s≤t

ϕ2(Xs,Xs−)

]
,
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which implies that

Em

[∫ t

0

∫
E

ϕ(y,Xs)
2N(Xs, dy) dHs

]
< ∞

for all t > 0 by way of its subadditivity. Hence, we obtain (3.12).
(iii) Suppose that f ∈ F . Let Kt be a purely discontinuous local MAF on

[[0, ζ [[ with Kt − Kt− = −ϕ(Xt−,Xt) − ϕ(Xt ,Xt−) on ]0, ζ [. Then,

〈Mf,j ,Mj + K〉t = −
∫ t

0

∫
E

(
f (y) − f (Xs)

)
ϕ(y,Xs)N(Xs, dy) dHs.

In this case, (3.10) can be rewritten as∫ t

0
f (Xs−) d�(M)s = �(f ∗ M)t − 1

2〈Mf,c + Mf,j ,Mc + Mj + K〉t(3.13)

on [0, ζ [. So, when M = Mu for some u ∈ F and f ∈ F ∩ L2(E;μ〈u〉),∫ t
0 f (Xs−) d�(M)s on [0, ζ [ is just the

∫ t
0 f (Xs) ◦ d�(M)s defined by (1.7). This

shows that the stochastic integral given in Definition 3.8 extends Nakao’s defini-
tion (1.7) of stochastic integral first introduced in [14].

THEOREM 3.10. The stochastic integral in (3.10) is well defined. That is, if M

and M̃ are two locally square-integrable MAF’s on [[0, ζ [[ such that all conditions
in Definition 3.3 for M and M̃ are satisfied and �(M) ≡ �(M̃) on [[0, ζ [[, then
for every f ∈ Floc for which

∫ t
0 f (Xs−)d�(M)s and

∫ t
0 f (Xs−) d�(M̃)s are well

defined, we have, Pm-a.e.,∫ t

0
f (Xs−) d�(M)s =

∫ t

0
f (Xs−) d�(M̃)s on [0, ζ [.

PROOF. It is equivalent to show that∫ t

0
f (Xs−) d�(M − M̃)s = 0 on [0, ζ [.

By taking M to be M − M̃ , we may and will assume that M̃ = 0. Moreover,
a localization argument allows us to assume that f is bounded. Let ϕ : E ×E → R

be a jump function for M . Let Kt be the purely discontinuous local MAF on [[0, ζ [[
with

Kt − Kt− = −ϕ(Xt−,Xt) − ϕ(Xt ,Xt−) for t < ζ.

Since �(M) ≡ 0, we have

Mt + Mt ◦ rt + ϕ(Xt ,Xt−) + Kt = 0 on [0, ζ [.(3.14)

Thus, by (3.5) and (3.14), on {T < ζ },
Mt ◦ rT = MT ◦ rT − MT −t ◦ rT −t

= −MT − KT + MT −t + KT −t(3.15)

− ϕ(XT ,XT −) + ϕ
(
XT −t ,X(T −t)−

)
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for every t ∈ [0, T ]. Using the standard Riemann sum approximation and (3.15),
we have, for f ∈ F ,

(f ∗ M)t ◦ rt + f (Xt)ϕ(Xt ,Xt−)

= −(f ∗ M)t − (f ∗ K)t − [Mf ,M + K]t
= −(f ∗ M)t − (f ∗ K)t − 〈Mf,c,Mc〉t

+ ∑
s≤t

(
f (Xs) − f (Xs−)

)
ϕ(Xs,Xs−)

Pm-a.e. on {t < ζ } for each fixed t ≥ 0. Consequently, we have, for f ∈ Floc,
Pm-a.e. for all t ∈ [0, ζ [,

(f ∗ M)t ◦ rt + f (Xt)ϕ(Xt ,Xt−)

= −(f ∗ M)t − (f ∗ K)t − 〈Mf,c,Mc〉t(3.16)

+ ∑
s≤t

(
f (Xs) − f (Xs−)

)
ϕ(Xs,Xs−),

since both sides are right-continuous in t ∈ [0, ζ [. Let K̃ be the purely discontinu-
ous local MAF on [[0, ζ [[ with

K̃t − K̃t− = −f (Xt−)ϕ(Xt−,Xt) − f (Xt)ϕ(Xt ,Xt−) for all t ∈ [0, ζ [.
Then, for f ∈ Floc, we have, by (3.16),

�(f ∗ M)t = −1
2

(
(f ∗ M)t + (f ∗ M) ◦ rt + f (Xt)ϕ(Xt ,Xt−) + K̃t

)
= 1

2

(∫ t

0
f (Xs−) dKs + 〈Mf,c,Mc〉t

− ∑
s≤t

(
f (Xs) − f (Xs−)

)
ϕ(Xs,Xs−) − K̃t

)
.

Thus,∫ t

0
f (Xs−) d�(M)s

= �(f ∗ M)t − 1
2〈Mf,c,Mc〉t

+ 1
2

∫ t

0

∫
E

(
f (y) − f (Xs)

)
ϕ(y,Xs)N(Xs, dy) dHs

= 1
2

∫ t

0
f (Xs−) dKs − 1

2

∑
s≤t

(
f (Xs) − f (Xs−)

)
ϕ(Xs,Xs−) − 1

2K̃t

+ 1
2

∫ t

0

∫
E

(
f (y) − f (Xs)

)
ϕ(y,Xs)N(Xs, dy) dHs.
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Note that

K̃t = −∑
s≤t

(
f (Xs−)ϕ(Xs−,Xs) + f (Xs)ϕ(Xs,Xs−)

)
(3.17)

+
∫ t

0

∫
E

(
f (Xs)ϕ(Xs, y) + f (y)ϕ(y,Xs)

)
N(Xs, dy) dHs

and that

Kt = lim
ε→0

(
−∑

s≤t

(
ϕ̂1{|ϕ̂|>ε}

)
(Xs−,Xs) + (

N(ϕ̂1{|ϕ̂|>ε}) ∗ H
)
t

)
,(3.18)

where ϕ̂(x, y) := ϕ(x, y) + ϕ(y, x). It follows that∫ t

0
f (Xs−) d�(M)s = 0 for all t < ζ,

Pm-a.e. �

REMARK 3.11. The above proof actually shows that if �(M) = �(M̃) on
[0, T ] ∩ [0, ζ [, then, Pm-a.e.,∫ t

0
f (Xs−) d�(M)s =

∫ t

0
f (Xs−) d�(M̃)s on [0, T ] ∩ [0, ζ [.

4. Further study of the stochastic integral.

THEOREM 4.1. Suppose that f ∈ Floc and that M is a locally square-
integrable MAF on [[0, ζ [[ satisfying (3.1) such that �(M) is a continuous
process A of finite variation on [[0, ζ [[. Assume that the stochastic integral t �→∫ t

0 f (Xs−) d�(M)s is well defined. Then, Pm-a.e.,∫ t

0
f (Xs−) d�(M)s =

∫ t

0
f (Xs) dAs on [0, ζ [,

where the integral on the right-hand side is the Lebesgue–Stieltjes integral.

PROOF. Let ϕ :E × E → R be a Borel function with ϕ(x, x) = 0 for x ∈ E

such that ϕ(Xt−,Xt) = Mt − Mt− for t ∈ [0, ζ [, Pm-a.e. Let Kt be the purely
discontinuous local MAF on [[0, ζ [[ with

Kt − Kt− = −ϕ(Xt−,Xt) − ϕ(Xt ,Xt−) for t ∈]0, ζ [.
Since �(M) = A on [0, ζ [,

Mt ◦ rt + ϕ(Xt ,Xt−) = −Mt − Kt − 2At for all t ∈ [0, ζ [.
Thus, by (3.5), for every T > t > 0, on {T < ζ },

Mt ◦ rT = −MT − KT − 2AT + MT −t + KT −t
(4.1)

+ 2AT −t − ϕ(XT ,XT −) + ϕ
(
XT −t ,X(T −t)−

)
.
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Now, fix f ∈ Floc; as before, we may assume, without loss of generality, that f is
bounded. Using the standard Riemann sum approximation, we obtain, on {t < ζ },

(f ∗ M)t ◦ rt + f (Xt)ϕ(Xt ,Xt−)

= −(f ∗ M)t − (f ∗ K)t − 2(f ∗ A)t − [Mf ,M + K + 2A]t
= −(f ∗ M)t − (f ∗ K)t − 2(f ∗ A)t − 〈Mf,c,Mc〉t

+ ∑
s≤t

(
f (Xs) − f (Xs−)

)
ϕ(Xs,Xs−).

Consequently, we have, Pm-a.e. for all t ∈ [0, ζ [,
(f ∗ M)t ◦ rt + f (Xt)ϕ(Xt ,Xt−)

= −(f ∗ M)t − (f ∗ K)t − 2(f ∗ A)t − 〈Mf,c,Mc〉t(4.2)

+ ∑
s≤t

(
f (Xs) − f (Xs−)

)
ϕ(Xs,Xs−)

since both sides are right-continuous in t ∈ [0, ζ [. Let K̃ be the purely discontinu-
ous local MAF on [[0, ζ [[ with

K̃t − K̃t− = −f (Xt−)ϕ(Xt−,Xt) − f (Xt)ϕ(Xt ,Xt−) for all t ∈ [0, ζ [.
Then, by (4.2),

�(f ∗ M)t = −1
2

(
(f ∗ M)t + (f ∗ M) ◦ rt + f (Xt)ϕ(Xt ,Xt−) + K̃t

)
= 1

2

(∫ t

0
f (Xs−) dKs + 2

∫ t

0
f (Xs−) dAs + 〈Mf,c,Mc〉t

− ∑
s≤t

(
f (Xs) − f (Xs−)

)
ϕ(Xs,Xs−) − K̃t

)
.

Thus, ∫ t

0
f (Xs−) d�(M)s

= �(f ∗ M)t − 1
2〈Mf,c,Mc〉t

+ 1
2

∫ t

0

∫
E

(
f (y) − f (Xs)

)
ϕ(y,Xs)N(Xs, dy) dHs

= 1
2

∫ t

0
f (Xs−) dKs +

∫ t

0
f (Xs−) dAs

− 1
2

∑
s≤t

(
f (Xs) − f (Xs−)

)
ϕ(Xs,Xs−) − 1

2K̃t

+ 1
2

∫ t

0

∫
E

(
f (y) − f (Xs)

)
ϕ(y,Xs)N(Xs, dy) dHs.
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It now follows from (3.17)–(3.18) that, Pm-a.e.,∫ t

0
f (Xs−) d�(M)s =

∫ t

0
f (Xs−) dAs for all t ∈ [0, ζ [.

This proves the theorem. �

Note that if f,g ∈ Floc, then fg ∈ Floc.

THEOREM 4.2. Let f,g ∈ Floc and let M be a locally square-integrable MAF
on [[0, ζ [[ satisfying (3.1). Then Pm-a.e.,∫ t

0
g(Xs−) d

(∫ s

0
f (Xr−) d�(M)r

)
(4.3)

=
∫ t

0
f (Xs−)g(Xs−) d�(M)s for every t < ζ,

whenever all of the integrals involved are well defined.

PROOF. Let ϕ :E × E → R be a Borel function with ϕ(x, x) = 0 for x ∈ E

such that, Pm-a.e.,

ϕ(Xt−,Xt) = Mt − Mt− for all t ∈]0, ζ [.
Let Kt and K̃t be the purely discontinuous local MAF’s on [[0, ζ [[ with

Kt − Kt− = −ϕ(Xt−,Xt) − ϕ(Xt ,Xt−) for t ∈]0, ζ [
and

K̃t − K̃t− = −f (Xt−)ϕ(Xt−,Xt) − f (Xt)ϕ(Xt ,Xt−) for t ∈]0, ζ [,
respectively. The left-hand side of (4.3) is then equal to∫ t

0
g(Xs−) d�(f ∗ M)s − 1

2

∫ t

0
g(Xs−) d〈Mf,c,Mc〉s

+ 1
2

∫ t

0

∫
E

g(Xs)
(
f (y) − f (Xs)

)
ϕ(y,Xs)N(Xs, dy) dHs

= �(fg ∗ M)t − 1
2〈Mg,c, (f ∗ M)c〉t

+ 1
2

∫ t

0

∫
E

(
g(y) − g(Xs)

)
f (y)ϕ(y,Xs)N(Xs, dy) dHs

− 1
2

∫ t

0
g(Xs−) d〈Mf,c,Mc〉s

+ 1
2

∫ t

0

∫
E

g(Xs)
(
f (y) − f (Xs)

)
ϕ(y,Xs)N(Xs, dy) dHs

= �(fg ∗ M)t − 1
2〈Mfg,c,Mc〉t
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+ 1
2

∫ t

0

∫
E

(
f (y)g(y) − f (Xs)g(Xs)

)
ϕ(y,Xs)N(Xs, dy) dHs

=
∫ t

0
f (Xs−)g(Xs−) d�(M)s.

This proves the theorem. �

Let J denote the class of stochastic processes that can be written as the sum of
an (Ft )-semimartingale Y and �(M) for a locally square-integrable MAF M on
[[0, ζ [[ satisfying the condition of Definition 3.3. The last two theorems imply that
the following stochastic integral is well defined for integrators Z ∈ J.

DEFINITION 4.3. For f ∈ Floc and Z = Y + �(M) ∈ J, define on, [0, ζ [,∫ t

0
f (Xs−) dZs :=

∫ t

0
f (Xs−) dYs +

∫ t

0
f (Xs−) d�(M)s,

whenever the latter stochastic integral is well defined.

To establish Itô’s formula, we need the following result.

THEOREM 4.4. Let f ∈ Floc and let M be a locally square-integrable MAF
on [[0, ζ [[ such that

∫ ·
0 f (Xs−) d�(M) is well defined on [0, ζ [. Then, for every

t > 0, Pm-a.e. on {t < ζ },∫ t

0
f (Xs−) d�(M)s = lim

n→∞
n−1∑
�=0

f (X�t/n)
(
�(M)(�+1)t/n − �(M)�t/n

)
.(4.4)

Here, the convergence is in measure with respect to Pgm on {t < ζ } for every
g ∈ L1(E;m) with 0 < g ≤ 1 m-a.e.

PROOF. By (3.5), Ms ◦ rt = Mt ◦ rt − Mt−s ◦ rt−s for all s < t . Let ϕ :E ×
E → R be a Borel function with ϕ(x, x) = 0 for x ∈ E such that ϕ(Xt−,Xt) =
Mt − Mt− for all t ∈ [0, ζ [. Let K be the purely discontinuous local MAF on
[[0, ζ [[ with

Kt − Kt− = −ϕ(Xt−,Xt) − ϕ(Xt ,Xt−) for t ∈]0, ζ [.
Then, for each fixed t > 0, Pm-a.e. on {t < ζ },

lim
n→∞

n−1∑
�=0

f (X�t/n)
(
�(M)(�+1)t/n − �(M)�t/n

)
= −1

2(f ∗ M)t − 1
2(f ∗ K)t

+ 1
2 lim

n→∞
n−1∑
�=0

f (X�t/n)
(
M(�+1)t/n ◦ r(�+1)t/n − M�t/n ◦ r�t/n

)
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= −1
2(f ∗ M)t − 1

2(f ∗ K)t

− 1
2 lim

n→∞

[
n−1∑
�=0

f
(
X(�+1)t/n

)(
M(�+1)t/n − M�t/n

)] ◦ rt

= −1
2(f ∗ M)t − 1

2(f ∗ K)t − 1
2(f ∗ M)t ◦ rt − 1

2 [Mf ,M]t ◦ rt

= −1
2(f ∗ M)t − 1

2(f ∗ K)t − 1
2(f ∗ M)t ◦ rt − 1

2〈Mf,c,Mc〉t
− 1

2

∑
s≤t

(
f (Xs−) − f (Xs)

)
ϕ(Xs,Xs−)

= �(f ∗ M)t + 1
2K̃t − 1

2(f ∗ K)t − 1
2〈Mf,c,Mc〉t

− 1
2

∑
s≤t

(
f (Xs−) − f (Xs)

)
ϕ(Xs,Xs−)

=
∫ t

0
f (Xs−) d�(M)s,

where K̃ in the penultimate equality is the purely discontinuous local MAF on
[[0, ζ [[ with K̃s − K̃s− = −f (Xs−)ϕ(Xs−,Xs)− f (Xs)ϕ(Xs,Xs−) for s ∈]0, ζ [.

�

REMARK 4.5. (i) Theorem 4.4 immediately implies Theorems 3.10 and 4.1.

(ii) By (3.9),∫ t

0
f (Xs−) d�(M)s = lim

n→∞
n−1∑
�=0

f
(
X(�+1)t/n

)(
�(M)(�+1)t/n − �(M)�t/n

)
(4.5)

holds in Pgm-measure on {t < ζ } for any g ∈ L1(E;m) with 0 < g ≤ 1 m-a.e.
Hence, we could denote this stochastic integral by either

∫ t
0 f (Xs) d�(M)s or∫ t

0 f (Xs) ◦ d�(M)s . Here,
∫ t

0 f (Xs) ◦ d�(M)s is the Fisk–Stratonovich type in-
tegral: for t < ζ∫ t

0
f (Xs) ◦ d�(M)s

(4.6)

:= lim
n→∞

n−1∑
�=0

f (X(�+1)t/n) + f (X�t/n)

2

(
�(M)(�+1)t/n − �(M)�t/n

)
.

(iii) For any f ∈ Floc and Pm-square-integrable MAF M , by way of the
Riemann sum approximation (4.4), we can extend the stochastic integral∫ t

0 f (Xs−) d�(M)s without imposing further conditions. Indeed, let {G�} be a
nest of finely open Borel sets and f� ∈ Fb with f = f� m-a.e. on G� [see
the explanation for the condition (3.11) in Remark 3.9]. By (4.4), we see
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0 fn(Xs−) d�(M)s = ∫ t

0 f�(Xs−) d�(M)s for t < τGn and n < �. We can then
define

∫ t
0 f (Xs−) d�(M)s = ∫ t

0 fn(Xs−) d�(M)s for t < τGn for each n ∈ N and,

consequently, for all t < ζ Pm-a.e. More strongly, for M ∈ ◦
M and f ∈ Floc, we can

define
∫ t

0 f (Xs−) d�(M)s for all t ∈ [0,∞[ Pm-a.e. Indeed, by Remark 3.9(ii), our

stochastic integral fn ∗ �(M) for M ∈ ◦
M agrees with that defined by Nakao [14]

on [0, ζ [ Pm-a.e., while the latter is defined as a CAF of X for all t ≥ 0. This
implies that lims↑ζ (fn ∗ �(M))s exists and is finite Pm-a.e. After we extend our
definition of stochastic integral fn ∗ �(M) beyond [0, ζ [ by(

fn ∗ �(M)
)
t = (

fn ∗ �(M)
)
ζ = lim

s↑ζ

(
fn ∗ �(M)

)
s for t ≥ ζ,

fn ∗ �(M) becomes a CAF of X on [0,∞[ Pm-a.e. With this extension for each
n < �, we have

∫ t
0 f (Xs−) d�(M)s = ∫ t

0 f�(Xs−) d�(M)s for t < σE\Gn , Pm-a.e.
Owing to Lemma 3.1(i) and the existence of the limit limt↑ζ

∫ t
0 f (Xs−) d�(M)s

Pm-a.e., we obtain the stochastic integral
∫ t

0 f (Xs−) d�(M)s , on [0,∞[, Pm-a.e.

for any f ∈ Floc and M ∈ ◦
M, extending the stochastic integral of Nakao [14].

Remark 4.5(iii) says that the stochastic integral f ∗ �(M)t :=∫ t
0 f (Xs−) d�(M)s can be defined for t ∈ [0,∞[, Pm-a.e., for every f ∈ Floc and

M ∈ ◦
M. We shall refine this statement from m-almost every starting point x ∈ E

to quasi-every x ∈ E.

LEMMA 4.6. For f ∈ Floc and M ∈ ◦
M, the stochastic integral f ∗ �(M)t :=∫ t

0 f (Xs−) d�(M)s can be defined for all t ∈ [0,∞[, Px-a.s. for q.e. x ∈ E, in
particular, f ∗ �(M) is a CAF of X on [0,∞[.

PROOF. Since f ∈ Floc, we have {fk | k ∈ N} ⊂ Fb and a nest {Gk | k ∈ N} of
finely open Borel sets such that f = fk q.e. on Gk . We know that the stochastic
integral fk ∗ �(M) is defined Px-a.s. for q.e. x ∈ E. Let �k be the defining set
admitting an E -polar set for the CAF fk ∗ �(M) of zero energy and set

� :=
{
ω ∈

∞⋂
k=1

�k

∣∣∣ for any k, � ∈ N with k < �,

∫ t

0
fk(Xs−(ω)) d�(M)s(ω)

=
∫ t

0
f�(Xs−(ω)) d�(M)s(ω) for t < σE\Gk

(ω)

}
.

Then, Px(�
c) = 0, m-a.e. x ∈ E. Hence, for each s > 0, Px(θ

−1
s (�c)) =

Ps(P·(�c))(x) = 0 for q.e. x ∈ E. Setting �̂ := ⋂∞
k=1 �k ∩ ⋂

s∈Q++ θ−1
s (�), we
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have Px(�̂) = 1 for q.e. x ∈ E. For ω ∈ �̂ with t < σE\Gk
(ω), we can find small

s0(= s0(ω)) > 0 such that t + s0 < σE\Gk
(ω). We then see that t < σE\Gk

(θsω)

for any rational s ∈]0, s0[. Hence, for such ω, we have for k < � and any rational
s ∈]0, s0[∫ t+s

s
fk(Xv−(ω)) d�(M)v(ω) =

∫ t+s

s
f�(Xv−(ω)) d�(M)v(ω).

Letting s → 0 and noting that ω ∈ �k , k ∈ N, we have that for k < �, fk ∗�(M)t =
f� ∗ �(M)t for t < σE\Gk

, Px-a.s. for q.e. x ∈ E. By Lemma 3.1(i), we know
that Px(limk→∞ σE\Gk

= ∞) = 1 for q.e. x ∈ E. Therefore, we obtain that the
stochastic integral f ∗ �(M) defined as in Remark 4.5(4.5) can be established
Px-a.s. for q.e. x ∈ E. This completes the proof. �

THEOREM 4.7 (Generalized Itô formula). Suppose that � ∈ C2(Rd) and u =
(u1, . . . , ud) ∈ F d . Then, for q.e. x ∈ E, Px-a.s. for all t ∈ [0,∞[,

�(u(Xt)) − �(u(X0))

=
d∑

k=1

∫ t

0

∂�

∂xk

(u(Xs−)) duk(Xs)

+ 1

2

d∑
i,j=1

∫ t

0

∂2�

∂xi ∂xj

(u(Xs−)) d〈Mui,c,Muj ,c〉s(4.7)

+ ∑
s≤t

(
�(u(Xs)) − �(u(Xs−))

−
d∑

k=1

∂�

∂xk

(u(Xs−))
(
uk(Xs) − uk(Xs−)

))
.

PROOF. Note that both sides appearing in (4.7) are Px -a.s. defined for q.e. x ∈
E in view of Lemma 4.6. First, we show this Itô formula (4.7) under Pm for a fixed
t ≥ 0. Note that � ◦ u ∈ Floc and that

uk(Xt) = uk(X0) + M
uk
t + N

uk
t = uk(X0) + M

uk
t + �(Muk)t .

This version of Itô’s formula follows from Theorems 3.7 and 4.4 by a line of
reasoning similar to that used to prove Itô’s formula for semimartingales (cf. [9]).
Since both sides in (4.7) are right-continuous, (4.7) holds under Pm.

Second, we refine the starting point. Recall that � consists of rcll paths. Let
It (ω) be the difference of the left-hand side and the right-hand side of (4.7). Let
� be the intersection of all of the defining sets of AF’s appearing in the for-
mula and {ω ∈ � | It (ω) = 0,∀t ∈ [0,∞[}. Then, Px(�

c) = 0, m-a.e. x ∈ E.
Let �̂ be the intersection of the defining sets of AF’s appearing in the formula
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and
⋂

s∈Q++ θ−1
s (�). We then have Px(�̂) = 1 for q.e. x ∈ E, as in the proof of

Lemma 4.6. Take ω ∈ �̂. For any positive rational s > 0, we then have It (θsω) = 0,
that is,

�(u(Xt+s(ω))) − �(u(Xs(ω)))

=
d∑

k=1

∫ t+s

s

∂�

∂xk

(u(Xv−(ω))) duk(Xv(ω))

+ 1

2

d∑
i,j=1

∫ t+s

s

∂2�

∂xi ∂xj

(u(Xv−(ω))) d〈Mui,c,Muj ,c〉v(ω)

+ ∑
s<v≤t+s

(
�(u(Xv(ω))) − �(u(Xv−(ω)))

−
d∑

k=1

∂�

∂xk

(u(Xv−(ω)))
(
uk(Xv(ω)) − uk(Xv−(ω))

))
.

Letting s → 0 and using the right-continuity of s �→ u(Xs) and stochastic integrals,
we have It (ω) = 0. This completes the proof. �
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