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ROSENTHAL TYPE INEQUALITIES FOR FREE CHAOS

BY MARIUS JUNGE,1 JAVIER PARCET2 AND QUANHUA XU

University of Illinois at Urbana-Champaign, Consejo Superior de
Investigaciones Científicas and Université de France-Comté

Let A denote the reduced amalgamated free product of a family
A1,A2, . . . ,An of von Neumann algebras over a von Neumann subalgebra
B with respect to normal faithful conditional expectations Ek : Ak → B. We
investigate the norm in Lp(A) of homogeneous polynomials of a given de-
gree d. We first generalize Voiculescu’s inequality to arbitrary degree d ≥ 1
and indices 1 ≤ p ≤ ∞. This can be regarded as a free analogue of the clas-
sical Rosenthal inequality. Our second result is a length-reduction formula
from which we generalize recent results of Pisier, Ricard and the authors. All
constants in our estimates are independent of n so that we may consider in-
finitely many free factors. As applications, we study square functions of free
martingales. More precisely, we show that, in contrast with the Khintchine
and Rosenthal inequalities, the free analogue of the Burkholder–Gundy in-
equalities does not hold in L∞(A). At the end of the paper we also consider
Khintchine type inequalities for Shlyakhtenko’s generalized circular systems.

Introduction and main results. A strong interplay between harmonic analy-
sis, probability theory and Banach space geometry can be found in the works of
Burkholder, Gundy, Kwapień, Maurey, Pisier, Rosenthal and many others carried
out mostly in the 1970s. Norm estimates for sums of independent random vari-
ables, as well as martingale inequalities, play a prominent role. Let us mention, for
instance, the classical Khintchine and Rosenthal inequalities, Fefferman’s duality
theorem and the inequalities of Burkholder and Burkholder–Gundy for martin-
gales. On the other hand, in the last two decades the noncommutative analogues
of these aspects have been considerably developed. Important tools in this process
come from free probability, operator space theory and theory of noncommutative
martingales.

In this paper we continue this line of research by studying Lp-estimates for
homogeneous polynomials of free random variables. Our results are motivated by
the classical Rosenthal inequality [38]. That is, given a family f1, f2, f3, . . . of

Received December 2005; revised October 2006.
1Supported in part by the NSF Grant DMS-03-01116.
2Supported in part by Grant MTM2004-00678 and by “Programa Ramón y Cajal, 2005”, Spain.
AMS 2000 subject classifications. 46L54, 42A61, 46L07, 46L52.
Key words and phrases. Khintchine inequality, Rosenthal inequality, reduced amalgamated free

product, free random variables, homogeneous polynomial.

1374

http://www.imstat.org/aop/
http://dx.doi.org/10.1214/009117906000000962
http://www.imstat.org
http://www.ams.org/msc/


ROSENTHAL TYPE INEQUALITIES FOR FREE CHAOS 1375

independent, mean-zero random variables over a probability space �, we have∥∥∥∥∥
n∑

k=1

fk

∥∥∥∥∥
Lp(�)

∼cp

(
n∑

k=1

‖fk‖2
2

)1/2

+
(

n∑
k=1

‖fk‖p
p

)1/p

,(Rp)

for 2 ≤ p < ∞. We use A ∼c B for c−1A ≤ B ≤ cA and A �c B for A ≤ cB.
The growth rate for the constant cp as p → ∞ is p/ logp (see [12]) and so
the Rosenthal inequality fails on L∞(�). In sharp contrast are Voiculescu’s in-
equality [44] and its operator-valued analogue [14] which are valid in L∞. Let
A = A1 ∗ A2 ∗ · · · ∗ An denote the reduced free product of a family A1,A2, . . . ,An

of von Neumann algebras equipped with normal faithful (n.f. for short) states
φ1, φ2, . . . , φn, respectively. Then, given a1 ∈ A1, a2 ∈ A2, . . . , an ∈ An mean-zero
random variables (i.e., freely independent) in A and a collection b1, b2, . . . , bn ∈
B(H) of bounded linear operators on some Hilbert space H , Voiculescu’s in-
equality claims that∥∥∥∥∥

n∑
k=1

ak ⊗ bk

∥∥∥∥∥
A⊗̄B(H)

∼c sup
1≤k≤n

‖ak ⊗ bk‖Ak⊗̄B(H)

+
∥∥∥∥∥
(

n∑
k=1

φk(a
∗
k ak)b

∗
kbk

)1/2∥∥∥∥∥
B(H)

(V∞)

+
∥∥∥∥∥
(

n∑
k=1

φk(aka
∗
k )bkb

∗
k

)1/2∥∥∥∥∥
B(H)

for some universal positive constant c. The equivalence (V∞) was proved by
Voiculescu [44] in the tracial scalar-valued case. The general case as stated above
(or, more generally, using amalgamated free product) can be found in [14]. This re-
sult can be regarded as the operator-valued free analogue of the Rosenthal inequal-
ity for homogeneous free polynomials of degree 1 and p = ∞. Quite surprisingly,
the L∞-estimates (which do not hold in the classical case) are easier to obtain in
the free case by virtue of the Fock space representation. In contrast with the classi-
cal situation, the passage from L∞ to Lp in the free setting is much more delicate.
This is mainly because of the fact that a concrete Fock space representation does
not seem available for Lp(A).

Our first contribution in this paper consists of generalizing Voiculescu’s in-
equality to homogeneous free polynomials of arbitrary degree d and to any index
1 ≤ p ≤ ∞. Let us be more precise and fix some notation. Assume that B is a
common von Neumann subalgebra of A1,A2, . . . ,An such that there is a normal
faithful conditional expectation Ek : Ak → B for each k. Let A be the reduced
amalgamated free product ∗BAk of A1,A2, . . . ,An over B with respect to the Ek .
E :A → B will denote the corresponding conditional expectation and PA(p, d)

the subspace of Lp(A) of homogeneous free polynomials of degree d . Then, given
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1 ≤ k ≤ n, we consider the map Qk on PA(p, d) which collects all reduced words
starting and ending with a letter in Ak . Then we have the following result.

THEOREM A. If 2 ≤ p ≤ ∞ and a1, a2, . . . , an ∈ PA(p, d), we have∥∥∥∥∥
n∑

k=1

Qk(ak)

∥∥∥∥∥
p

�cd7

(
n∑

k=1

‖Qk(ak)‖p
p

)1/p

+
∥∥∥∥∥
(

n∑
k=1

E(Qk(ak)
∗Qk(ak))

)1/2∥∥∥∥∥
p

+
∥∥∥∥∥
(

n∑
k=1

E(Qk(ak)Qk(ak)
∗)

)1/2∥∥∥∥∥
p

,

while the reverse inequality holds up to a constant less than or equal to cd .

We note that the operator-valued case is also contemplated in Theorem A since
we are allowing amalgamation; see Remark 1.1 below for more details. On the
other hand, we also point out that, since freeness implies noncommutative inde-
pendence, the case of degree 1 polynomials for 2 ≤ p < ∞ follows from the non-
commutative analogue of Rosenthal’s inequality [17, 18]. However, the constants
obtained in this way are not uniformly bounded as p → ∞; see Remark 2.13 for a
more detailed discussion. Finally, we should also emphasize that Theorem A can
be easily generalized to the case 1 ≤ p ≤ 2 by duality; see Remark 3.7 for the
details.

Our second major result is a length-reduction formula for homogeneous free
polynomials in Lp(A). Again, we need to fix some notation. In what follows,
� will denote a finite index set and we shall keep the terminology for A, B and
E :A → B. Then, we use the following notation suggested by quantum mechanics∥∥∥∥∥∑

α∈�

b(α)〈a(α)|
∥∥∥∥∥
p

=
∥∥∥∥∥
( ∑

α,β∈�

b(α)E(a(α)a(β)∗)b(β)∗
)1/2∥∥∥∥∥

p

,

∥∥∥∥∥∑
α∈�

|a(α)〉b(α)

∥∥∥∥∥
p

=
∥∥∥∥∥
( ∑

α,β∈�

b(α)∗E(a(α)∗a(β))b(β)

)1/2∥∥∥∥∥
p

,

where a(α) ∈ Lq(A) and b(α) ∈ Lr(A) with 1/q + 1/r = 1/p. Finally, given
1 ≤ k ≤ n, we consider the map Lk (resp. Rk) on PA(p, d) which collects the
reduced words starting (resp. ending) with a letter in Ak . Thus, we have

Qk = LkRk = RkLk.

We shall write PA(d) for PA(p, d) with p = ∞. Our second result is the follow-
ing.

THEOREM B. Let 2 ≤ p ≤ ∞ and let xk(α) ∈ Lp(Ak) with E(xk(α)) = 0 for
each 1 ≤ k ≤ n and α running over a finite set �. Let wk(α) ∈ PA(d) for some



ROSENTHAL TYPE INEQUALITIES FOR FREE CHAOS 1377

d ≥ 0 and satisfying Rk(wk(α)) = 0 for all 1 ≤ k ≤ n and every α ∈ �. Then, we
have the equivalence∥∥∥∥∥∑

k,α

wk(α)xk(α)

∥∥∥∥∥
Lp(A)

∼cd2

∥∥∥∥∥∑
k,α

wk(α)〈xk(α)|
∥∥∥∥∥
p

+
∥∥∥∥∥∑

k,α

|wk(α)〉xk(α)

∥∥∥∥∥
p

.

Similarly, if Lk(wk(α)) = 0, we have∥∥∥∥∥∑
k,α

xk(α)wk(α)

∥∥∥∥∥
Lp(A)

∼cd2

∥∥∥∥∥∑
k,α

|xk(α)〉wk(α)

∥∥∥∥∥
p

+
∥∥∥∥∥∑

k,α

xk(α)〈wk(α)|
∥∥∥∥∥
p

.

A large part of this paper will be devoted to the proofs of Theorems A and B.
One of the key points in both proofs is the main complementation result in [37] (cf.
Theorem 2.1 below) since it allows us to use interpolation starting from the case
p = ∞, for which both results hold with constants independent of d . Our main
application of Theorem B is a Khintchine type inequality. In the classical case,
Khintchine’s inequality is a particular case of Rosenthal’s inequality with relevant
constant cp ∼ √

p as p → ∞. However, as in the Rosenthal/Voiculescu case, the
free analogue of Khintchine’s inequality holds in L∞. Indeed, the first example
of this phenomenon was found by Leinert [23], who replaced the Bernoulli ran-
dom variables by the operators λ(g1), λ(g2), . . . , λ(gn) arising from the generators
g1, g2, . . . , gn of a free group Fn via the left regular representation λ. More gen-
erally, if Wd denotes the subset of reduced words in Fn of length d and C∗

λ(Fn)

stands for the reduced C∗-algebra on Fn, Haagerup [8] proved that∥∥∥∥∥ ∑
w∈Wd

αwλ(w)

∥∥∥∥∥
C∗

λ(Fn)

∼1+d

( ∑
w∈Wd

|αw|2
)1/2

.(H∞)

There are two ways to extend these inequalities. The first step consists of con-
sidering operator-valued coefficients. In the classical case, the operator-valued
analogue is the so-called noncommutative Khintchine inequality by Lust-Piquard
and Pisier [24, 25]. Leinert’s result was extended to the operator-valued case by
Haagerup and Pisier in [10], while Haagerup’s inequality (H∞) was generalized
by Buchholz [3]. Finally, the result in [3] has been recently extended to arbitrary
indices 1 ≤ p ≤ ∞ by Pisier and Parcet in [27].

The second step consists in replacing the free generators by arbitrary free ran-
dom variables and C∗

λ(Fn) by a reduced amalgamated free product von Neumann
algebra A. In this case we find the recent paper [37] by Ricard and the third-named
author, where Buchholz’s result was extended to arbitrary reduced amalgamated
free products; see also [4] and [26] for the case of q-Gaussians.

In this paper we shall apply Theorem B to generalize the main results of [27,
37] and to do so we need to combine the brackets | 〉 and 〈 |; see Section 3 below
for precise definitions. We obtain the following Khintchine-type inequality.
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THEOREM C. Let x be a d-homogeneous free polynomial

x = ∑
α∈�

∑
j1 =j2 =···=jd

xj1(α) · · ·xjd
(α) ∈ Lp(A)

for some 2 ≤ p ≤ ∞. Then we have

cd−5/2(�1 + �2) ≤ ‖x‖p ≤ cdd!2(�1 + �2)

where �1 is given by

d∑
s=0

∥∥∥∥∥∑
α∈�

∑
j1 =···=jd

|xj1(α) · · ·xjs (α)〉〈xjs+1(α) · · ·xjd
(α)|

∥∥∥∥∥
p

,

and �2 has the form

d∑
s=1

(
n∑

js=1

∥∥∥∥∥∑
α∈�

∑
1≤j1 =···=js−1≤n

1≤js+1 =···=jd≤n

js−1 =js =js+1

|xj1(α) · · ·xjs−1(α)〉xjs (α)

× 〈xjs+1(α) · · ·xjd
(α)|

∥∥∥∥∥
p

p

)1/p

.

Our proof of Theorem C is an inductive application of Theorem B and provides
a natural explanation of the norms �1 and �2. This leads naturally to three terms
if d = 1, 5 terms if d = 2, and so on. . . . We refer to Section 3 below for a more
detailed explanation of the norms �1 and �2. In the case of p = ∞, this result
was obtained in [37] in a slightly different form but with an equivalence constant
depending linearly on the degree d , which is essential for the applications there.
The inductive nature of our arguments leads to worse constant; see Remark 3.8 for
the better constant in the lower estimate.

In the last part of the paper we shall apply our techniques to studying square
functions of free martingales and Khintchine type inequalities for generalized cir-
cular systems. More precisely, we first study the free analogue of the Burkholder–
Gundy inequalities [5]. The noncommutative version of these inequalities was ob-
tained by Pisier and the Xu in [34]. Thus, since any free martingale is a noncom-
mutative martingale, the only interesting case seems to be p = ∞. In contrast with
the free Khintchine and Rosenthal inequalities, we shall prove that the free ana-
logue of the Burkholder–Gundy inequalities does not hold in L∞(A). To be more
precise, let us consider an infinite family A1,A2,A3, . . . of von Neumann algebras
equipped with distinguished normal faithful states and the associated reduced free
product A = ∗kAk . We consider the natural filtration

An = A1 ∗ A2 ∗ · · · ∗ An with conditional expectation En :A → An.
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Any martingale adapted to this filtration is called a free martingale. Now, let Kn be
the best constant for which the lower estimate below holds for all free martingales
x1, x2, . . . in L∞(A):

max

{∥∥∥∥∥
( 2n∑

k=1

dxk dx∗
k

)1/2∥∥∥∥∥∞
,

∥∥∥∥∥
( 2n∑

k=1

dx∗
k dxk

)1/2∥∥∥∥∥∞

}
≤ Kn

∥∥∥∥∥
2n∑

k=1

dxk

∥∥∥∥∥∞
.

Then we have the following result.

THEOREM D. Kn satisfies Kn ≥ c logn for some absolute positive con-
stant c.

The last section is devoted to Khintchine-type inequalities for Shlyakhtenko’s
generalized circular variables [39] and Hiai’s generalized q-Gaussians [11]. In
these particular cases, the resulting inequalities are much nicer than those of The-
orem C. The Khintchine inequalities for 1-homogeneous polynomials of gen-
eralized Gaussians were already proved in [47]; see Theorem 5.1 for an ex-
plicit formulation. We obtain here its natural extension for Hiai’s generalized
q-Gaussians. Namely, let us consider a system of q-generalized circular vari-
ables gqk = λk�q(ek) + µk�

∗
q(e−k) (see Section 5 for precise definitions) and

let 	q denote the von Neumann algebra generated by these variables in the
GNS-construction with respect to the vacuum state φq(·) = 〈�, ·�〉q . Then, if dφq

denotes the density associated to the state φq , we have the following inequalities
for the Lp-variables:

gqk,p = d
1/(2p)
φq

gqkd
1/(2p)
φq

.

THEOREM E. Let N be a von Neumann algebra and 1 ≤ p ≤ ∞. Let us con-
sider a finite sequence x1, x2, . . . , xn in Lp(N ). Then, the following equivalences
hold up to a constant cq depending only on q:

(i) If 1 ≤ p ≤ 2, then∥∥∥∥∥
n∑

k=1

xk ⊗ gqk,p

∥∥∥∥∥
p

∼cq inf
xk=ak+bk

∥∥∥∥∥
(

n∑
k=1

λ
2/p
k µ

2/p′
k aka

∗
k

)1/2∥∥∥∥∥
p

+
∥∥∥∥∥
(

n∑
k=1

λ
2/p′
k µ

2/p
k b∗

kbk

)1/2∥∥∥∥∥
p

.

(ii) If 2 ≤ p ≤ ∞, then∥∥∥∥∥
n∑

k=1

xk ⊗ gqk,p

∥∥∥∥∥
p

∼cq max

{∥∥∥∥∥
(

n∑
k=1

λ
2/p
k µ

2/p′
k xkx

∗
k

)1/2∥∥∥∥∥
p

,

∥∥∥∥∥
(

n∑
k=1

λ
2/p′
k µ

2/p
k x∗

k xk

)1/2∥∥∥∥∥
p

}
.
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Moreover, if Gqp denotes the closed subspace of Lp(	q) generated by the sys-
tem of the generalized q-Gaussians (gqk,p)k≥1, there exists a completely bounded
projection γ qp :Lp(	q) → Gqp satisfying

‖γ qp‖cb ≤
(

2√
1 − |q|

)|1−2/p|
.

In our last result we calculate the Khintchine inequalities for 2-homogeneous
polynomials of generalized free gaussians gk = λk�(ek) + µk�

∗(e−k) (corre-
sponding to the case of q = 0). As we shall see, our method is also valid for
d-homogeneous polynomials and the resulting inequalities can be regarded as
asymmetric versions of the main inequalities in [27]. Let 	 denote the von Neu-
mann algebra generated by the system of gk’s in the GNS-construction with respect
to the vacuum state φ(·) = 〈�, ·�〉. Our result reads as follows:

THEOREM F. Let N be a von Neumann algebra and 1 ≤ p ≤ ∞. Let us con-
sider a finite double indexed family x = (xij )i,j≥1 in Lp(N ) and define the follow-
ing norms associated to x:

Mp(x) =
∥∥∥∥∥∑
i =j

(µiλj )
1/p(λiµj )

1/p′
xij ⊗ eij

∥∥∥∥∥
Sp(Lp(N ))

,

Rp(x) =
∥∥∥∥∥
(∑

i =j

(µiµj )
2/p′

(λiλj )
2/pxij x

∗
ij

)1/2∥∥∥∥∥
Lp(N )

,

Cp(x) =
∥∥∥∥∥
(∑

i =j

(µiµj )
2/p(λiλj )

2/p′
x∗
ij xij

)1/2∥∥∥∥∥
Lp(N )

.

Then, the following equivalences hold up to an absolute positive constant c:

(i) If 1 ≤ p ≤ 2, then∥∥∥∥∥∑
i =j

xij ⊗ d
1/(2p)
φ gigjd

1/(2p)
φ

∥∥∥∥∥
p

∼c inf
x=a+b+c

Rp(a) + Mp(b) + Cp(c).

(ii) If 2 ≤ p ≤ ∞, then∥∥∥∥∥∑
i =j

xij ⊗ d
1/(2p)
φ gigjd

1/(2p)
φ

∥∥∥∥∥
p

∼c max{Rp(x),Mp(x),Cp(x)}.

Moreover, if Gp,2 denotes the subspace of Lp(	) generated by the system{
d

1/(2p)
φ gigjd

1/(2p)
φ | 1 ≤ i = j < ∞}

,

there exists a projection γp,2 :Lp(	) → Gp,2 with cb-norm uniformly bounded
on p.
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We conclude the Introduction with some general remarks. We shall assume
some familiarity with Voiculescu’s free probability [43–45] and Pisier’s vector-
valued noncommutative integration [31]. In fact, we will be concerned only with
the vector-valued Schatten classes and their column/row subspaces. On the other
hand, since we are working over (amalgamated) free product von Neumann al-
gebras, we shall need to use Haagerup noncommutative Lp-spaces [9, 41]. As is
well known, Haagerup Lp-spaces have trivial intersection and thereby do not form
an interpolation scale. However, the complex interpolation method will be a ba-
sic tool in this paper. This problem is solved by means of Kosaki’s definition of
Lp-spaces; see [20, 42]. We also refer the reader to Chapter 1 in [15] or to the
survey [35] for a quick review of Haagerup’s and Kosaki’s definitions of noncom-
mutative Lp-spaces and the compatibility between them. In particular, using such
compatibility, in what follows we shall use the complex interpolation method with-
out further details. At some specific points, we shall also need some basic notions
from operator space theory [7, 32], Hilbert modules [22] and Tomita’s modular
theory [19, 30]. Along the paper, c will denote an absolute positive constant that
may change from one instance to another.

1. Amalgamated free products. We begin by recalling the construction of
the reduced amalgamated free product of a family of von Neumann algebras.
Amalgamated free products of C∗-algebras, which we also outline below, were
introduced by Voiculescu [43]. Let A1,A2, . . . ,An be a family of von Neumann
algebras and let B be a common von Neumann subalgebra of all of them. We
assume that there are normal faithful conditional expectations Ek : Ak → B. In
addition, we also assume the existence of a von Neumann algebra A containing
B with a normal faithful conditional expectation E :A → B and the existence of
∗-homomorphisms πk : Ak → A such that

E ◦ πk = Ek and πk |B = idB .

The family A1,A2, . . . ,An is called freely independent over E if

E(πj1(a1)πj2(a2) · · ·πjm(am)) = 0

whenever ak ∈ Ajk
are such that E(πjk

(ak)) = 0 for all 1 ≤ k ≤ m and j1 = j2 =
· · · = jm. In what follows we may identify Ak with the von Neumann subalgebra
πk(Ak) of A with no risk of confusion. In particular, we may use E or Ek indistinc-
tively over Ak . Moreover, for notational convenience, we shall only use E almost
all the time. In the scalar case, B is the complex field and the conditional expecta-
tions E and E1,E2, . . . ,En are replaced by normal faithful states.

As in the scalar-valued case, operator-valued freeness admits a natural Fock
space representation. We first assume that A1,A2, . . . ,An are C∗-algebras having
B as a common C∗-subalgebra. Let us consider the mean-zero subspaces

◦
Ak = {ak ∈ Ak|E(ak) = 0}.
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We define the Hilbert B-module
◦
Aj1 ⊗B

◦
Aj2 ⊗B · · · ⊗B

◦
Ajm

equipped with the B-valued inner product

〈a1 ⊗ · · · ⊗ am,a′
1 ⊗ · · · ⊗ a′

m〉 = Ejm(a∗
m · · ·Ej2(a

∗
2Ej1(a

∗
1a′

1)a
′
2) · · ·a′

m).

Then, the usual Fock space is replaced by the Hilbert B-module

HB = B ⊕ ⊕
m≥1

⊕
j1 =j2 =···=jm

◦
Aj1 ⊗B

◦
Aj2 ⊗B · · · ⊗B

◦
Ajm.

The direct sums above are assumed to be B-orthogonal. Let L(HB) stand for
the algebra of adjointable maps on HB . Recall that a linear right B-module map
T :HB → HB is called adjointable if there exists S :HB → HB such that

〈x,Ty〉 = 〈Sx, y〉 for all x, y ∈ HB .

Let us also recall how elements of Ak act on HB . We decompose any ak ∈ Ak as

ak = ◦
ak + Ek(ak).

An element in B acts on HB by left multiplication. Therefore, it suffices to define
the action of mean-zero elements. The ∗-homomorphism πk : Ak → L(HB) has
the following form:

πk(
◦
ak)(xj1 ⊗ · · · ⊗ xjm)

=


◦
ak ⊗ xj1 ⊗ xj2 ⊗ · · · ⊗ xjm, if k = j1,

E(
◦
akxj1)xj2 ⊗ · · · ⊗ xjm

⊕(◦
akxj1 − E(

◦
akxj1)

) ⊗ xj2 ⊗ · · · ⊗ xjm, if k = j1.

This definition also applies for the empty word. Then, since the algebra L(HB)

is a C∗-algebra [22], we can define the reduced B-amalgamated free product
C∗(∗BAk) as the C∗-closure of linear combinations of operators of the form

πj1(a1)πj2(a2) · · ·πjm(am).

The C∗-algebra C∗(∗BAk) is usually denoted in the literature by

∗k(Ak,Ek).

However, we shall use a more relaxed notation; see Remark 1.2 below.
Now we assume that A1,A2, . . . ,An and B are von Neumann algebras and that

B comes equipped with a normal faithful state ϕ :B → C. This provides us with
the induced n.f. states φ :A → C and φk : Ak → C given by

φ = ϕ ◦ E and φk = ϕ ◦ Ek.
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The Hilbert space

L2(
◦
Aj1 ⊗B

◦
Aj2 ⊗B · · · ⊗B

◦
Ajm, ϕ)

is obtained from
◦
Aj1 ⊗B

◦
Aj2 ⊗B · · · ⊗B

◦
Ajm by considering the inner product

〈a1 ⊗ · · · ⊗ am,a′
1 ⊗ · · · ⊗ a′

m〉ϕ = ϕ(〈a1 ⊗ · · · ⊗ am,a′
1 ⊗ · · · ⊗ a′

m〉).
Then we define the orthogonal direct sum

Hϕ = L2(B) ⊕ ⊕
m≥1

⊕
j1 =j2 =···=jm

L2(
◦
Aj1 ⊗B

◦
Aj2 ⊗B · · · ⊗B

◦
Ajm, ϕ).

Let us consider the ∗-representation λ :L(HB) → B(Hϕ) defined by (λ(T)x) =
Tx. The faithfulness of λ is implied by the fact that ϕ is also faithful. Indeed,
assume that λ(T∗T) = 0, then we have

〈T∗Tx, x〉ϕ = ϕ(〈Tx,Tx〉) = 0 for all x ∈ HB .

Since ϕ is faithful, Tx = 0 (as an element in HB ) for all x ∈ HB , and so T = 0.
Then, the B-amalgamated reduced free product ∗BAk is defined as the weak∗
closure of C∗(∗BAk) in B(Hϕ). After decomposing

ak = ◦
ak + E(ak)

and identifying
◦
Ak with λ(πk(

◦
Ak)), we can think of ∗BAk as

∗BAk =
(
B ⊕ ⊕

m≥1

⊕
j1 =j2 =···=jm

◦
Aj1

◦
Aj2 · · · ◦

Ajm

)′′
.

Again, the usual notation for ∗BAk is a bit more explicit one ∗̄k(Ak,Ek).

Let us consider the orthogonal projections

Q∅ :Hϕ → L2(B),

Qj1···jm :Hϕ → L2(
◦
Aj1 ⊗B

◦
Aj2 ⊗B · · · ⊗B

◦
Ajm, ϕ).

Then E :∗BAk → B is given by E(a) = Q∅aQ∅ and the mappings

EAk
:∗BAk � a �→ QAk

aQAk
∈ Ak (QAk

= Q∅ + Qk),

are n.f. conditional expectations. In particular, it turns out that A1,A2, . . . ,An are
von Neumann subalgebras of ∗BAk freely independent over E. Reciprocally, if
E :A → B is an n.f. conditional expectation and A1,A2, . . . ,An is a collection of
von Neumann subalgebras of A freely independent over E and generating A, then
A is isomorphic to ∗BAk .
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REMARK 1.1. Let A = A1 ∗ A2 ∗ · · · ∗ An be a reduced free product of von
Neumann algebras (i.e., A is amalgamated over the complex field) equipped with
its natural n.f. state φ. Let B be a σ -finite von Neumann algebra, not necessar-
ily included in A. A relevant example of the construction outlined above is the
following. Let us consider the conditional expectation E :A ⊗̄B → B defined by
E(a⊗b) = φ(a)1A ⊗b. Then A1 ⊗̄B,A2 ⊗̄B, . . . ,An ⊗̄B are freely independent
subalgebras of A ⊗̄B over E. In particular, we obtain

M = A ⊗̄B = ∗B(Ak ⊗̄B).

Therefore, taking B to be B(�2), it turns out that the complete boundedness of a
map u :Lp(A) → Lp(A) is equivalent to the boundedness (with the same norm)
of the map u ⊗ idB :Lp(M) → Lp(M). In other words, since our results are pre-
sented for general amalgamated free products, complete boundedness follows au-
tomatically and is instrumental in some of our arguments. This will be used below
without any further reference.

REMARK 1.2. Let A be a von Neumann algebra equipped with an n.f. state φ

and B a von Neumann subalgebra of A. According to Takesaki [40], the existence
and uniqueness of an n.f. conditional expectation E :A → B is equivalent to the in-
variance of B under the action of the modular automorphism group σ

φ
t associated

to (A, φ). Moreover, in that case we have φ ◦ E = φ and following Connes [6],

E ◦ σ
φ
t = σ

φ
t ◦ E.

In what follows we shall assume this invariance in all the von Neumann sub-
algebras considered. Hence, we may think of a natural conditional expectation
E :A → B. This somehow justifies our relaxed notation for reduced amalgamated
free products, where we do not make explicit the associated conditional expecta-
tions. This should not cause any confusion since only reduced free products are
considered here.

2. Rosenthal/Voiculescu type inequalities. In this section we present a free
analogue of Rosenthal’s inequality (Rp). Let A be the amalgamated reduced free
product ∗BAk with 1 ≤ k ≤ n and B a common von Neumann subalgebra of the
Ak’s, equipped with an n.f. state ϕ. As we have already seen, the state ϕ induces
an n.f. state φ on A by setting φ = ϕ ◦ E. Given a nonnegative integer d , we shall
write PA(d) for the closure of elements of the form

a = ∑
α∈�

∑
j1 =j2 =···=jd

aj1(α)aj2(α) · · ·ajd
(α),(1)

with ajk
(α) ∈ ◦

Ajk
and α running over a finite set �. In other words, PA(d) is the

subspace of A of homogeneous free polynomials of degree d . When d is 0, the
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expression (1) does not make sense. PA(0) is meant to be B. Then we define the
space PA(p, d) as the closure in Lp(A) of

PA(d)d
1/p
φ ,

where dφ denotes the density of the state φ. Note that, by using approximation
with analytic elements, we might have well located the density dφ on the left of
PA(d) with no consequence in the definition of PA(p, d).

Similarly, QA(d) denotes the subspace of polynomials of degree less than or
equal to d in A and

QA(p, d) =
d⊕

k=0

PA(p, k) with PA(p,0) = Lp(B).

The complementation result below from [37] is crucial for our further purposes.
Indeed, it was proved there that PA(d) and QA(d) are complemented in A with
projection constants controlled by 4d and 2d + 1 respectively. Thus, transposition
and complex interpolation yield the following result for 1 ≤ p ≤ ∞.

THEOREM 2.1. The following results hold:

(a) PA(p, d) is complemented in Lp(A) with projection constant ≤ 4d .
(b) QA(p, d) is complemented in Lp(A) with projection constant ≤ 2d + 1.

REMARK 2.2. In what follows we shall write

�A(p, d) :Lp(A) → PA(p, d) and 	A(p, d) :Lp(A) → QA(p, d)

for the natural projections determined by Theorem 2.1. It is worthy of mention
that both projections above are completely determined by the natural projections
�A(∞, d) and 	A(∞, d) from [37]. More precisely, given x ∈ A, we have

�A(p, d)(xd
1/p
φ ) = �A(∞, d)(x)d

1/p
φ and

(2)
	A(p, d)(xd

1/p
φ ) = 	A(∞, d)(x)d

1/p
φ .

In particular, by the density of the subspace Ad
1/p
φ in Lp(A), the relations above

completely determine the projections �A(p, d) and 	A(p, d). This will be essen-
tial in what follows for the interpolation of the spaces PA(p, d) and QA(p, d) by
the complex method. Another relevant fact implicitly used in the sequel is that both
�A(∞, d) and 	A(∞, d) commute with the modular automorphism group of φ.
Indeed, this follows from the action of the modular group σ

φ
t on reduced words

σ
φ
t (aj1aj2 · · ·ajd

) = σ
φ
t (aj1)σ

φ
t (aj2) · · ·σφ

t (ajd
).
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2.1. The mappings Lk and Rk . Elements in
◦
Ak will be called mean-zero let-

ters of Ak . Given 1 ≤ k ≤ n, we consider the map Lk on PA(p, d) which collects
all the reduced words starting with a mean-zero letter in Ak . Similarly, the map Rk

collects all the reduced words ending with a mean-zero letter in Ak . That is, if a is
given by the expression (1), we have

Lk(a) = ∑
α∈�

∑
j1=k =j2 =···=jd

aj1(α)aj2(α) · · ·ajd
(α),

Rk(a) = ∑
α∈�

∑
j1 =j2 =···=k=jd

aj1(α)aj2(α) · · ·ajd
(α).

Of course, both Lk and Rk vanish on PA(p,0). The mappings Lk and Rk were
introduced by Voiculescu [44] and clearly satisfy Lk(a

∗) = Rk(a)∗. They are
clearly B-bimodule maps which commute with the modular automorphism group
and with densities as in (2). Note also that Lk and Rk can also be regarded as
orthogonal projections on L2(A). Thus, when p = 2, we need no restriction to the
subspaces of homogeneous polynomials. In this particular case, we shall denote
Lk and Rk respectively by Lk and Rk . Now we prove some fundamental freeness
relations that will be used throughout the whole paper with no further reference.

LEMMA 2.3. If 1 ≤ i, j ≤ n and ai, aj ∈ PA(d), we have

Li[ai − Ri (ai)]∗[aj − Rj (aj )]Lj = δij E
([ai − Ri (ai)]∗[aj − Rj (aj )])Lj ,(3)

(1 − Li)[Ri (ai)]∗[Rj (aj )](1 − Lj ) = δij E
([Ri(ai)]∗[Rj (aj )])(1 − Lj ).(4)

PROOF. By the GNS construction on (A, φ), we know that A acts on L2(A)

by left multiplication. Thus, we may regard the left-hand sides of (3) and (4) as
mappings on L2(A). To prove (3), we first note that

[ai − Ri(ai)]∗[aj − Rj (aj )]
is a linear combination of words of the following form:

wxy = x∗
id

x∗
id−1

· · ·x∗
i1
yj1 · · ·yjd−1yjd

,

where xis ∈ ◦
Ais , yjs ∈ ◦

Ajs and

i1 = i2 = · · · = id = i,

j = jd = · · · = j2 = j1.

When i1 = j1, it turns out that wxy is a reduced word and, since jd = j , the
map wxyLj can only act as a tensor so that the range of wxyLj lies in the ortho-
complement of Li(L2(A)), since id = i. In other words, in that case we have

LiwxyLj = 0 = LiE(wxy)Lj .
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When i1 = j1, we may write wxy = w′
xy + w′′

xy with

w′
xy = x∗

id
x∗
id−1

· · ·x∗
i2

E(x∗
i1
yj1)yj2 · · ·yjd−1yjd

.

If d ≥ 2, the argument above implies again that Liw
′′
xyLj = 0 since w′′

xy is a reduced
word not starting with mean-zero letters in Ai nor ending with mean-zero letters
in Aj . Then it is clear that we can iterate the same argument and obtain

LiwxyLj = LiE(x∗
id

· · ·E(x∗
i1
yj1) · · ·yjd

)Lj = LiE(wxy)Lj = δij E(wxy)Lj .

The second identity follows easily by freeness. Summing up, we obtain (3).
The proof of (4) is quite similar. Indeed, now we may write [Ri(ai)]∗[Rj (aj )]

as a linear combination of words wxy with the form given above and satisfying

i1 = i2 = · · · = id = i,

j = jd = · · · = j2 = j1.

Then the arguments above lead to the following identity:

(1 − Li )wxy(1 − Lj ) = (1 − Li )E(x∗
id

· · ·E(x∗
i1
yj1) · · ·yjd

)(1 − Lj )

= δij E(x∗
id

· · ·E(x∗
i1
yj1) · · ·yjd

)(1 − Lj )

= δij E(wxy)(1 − Lj ),

where the second identity holds because the only way not to have

E(x∗
id

· · ·E(x∗
i1
yj1) · · ·yjd

) = 0

is the case where the indices is and js fit, that is, is = js for 1 ≤ s ≤ d . Therefore,
since i = id and jd = j , the symbol δij appears. Summing up one more time, we
obtain the identity (4). This completes the proof. �

REMARK 2.4. The assumption that ai and aj are homogeneous and of the
same degree is essential in Lemma 2.3. Indeed, the following counterexample was
brought to our attention by Ken Dykema. Let F2 denote a free group on two gen-
erators g1, g2 and let λ : F2 → B(�2(F2)) stand for the left regular representation.
Let Ak be the von Neumann algebra generated by λ(gk) for k = 1,2. In this case,
A = A1 ∗A2 is the von Neumann algebra generated by λ and the conditional expec-
tation E is just 1Aτ , where τ is the natural trace on A. Then we consider the (non-
homogeneous) polynomial a = λ(g2) + λ(g2g1g2). Clearly, we have R1(a) = 0
and

a∗a = (
λ(g2)

∗ + λ(g2g1g2)
∗)(

λ(g2) + λ(g2g1g2)
)

= E(a∗a) + λ(g1g2) + λ(g1g2)
∗.

Taking, for instance, h = δg1g2 , we see that

L1a
∗aL1(h) = L1E(a∗a)L1(h) + δg1g2g1g2 = L1E(a∗a)L1(h).
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Thus, identity (3) does not hold for a. A similar counterexample can be constructed
for (4). In particular, since identities (3) and (4) are essential in most of our results
below, this explains why this paper is written in terms of homogeneous polynomi-
als.

LEMMA 2.5. If 1 ≤ p ≤ ∞ and a1, a2, . . . , an ∈ PA(p, d),∥∥∥∥∥
(

n∑
k=1

Rk(ak)
∗Rk(ak)

)1/2∥∥∥∥∥
p

≤ cd2

∥∥∥∥∥
(

n∑
k=1

a∗
k ak

)1/2∥∥∥∥∥
p

,

∥∥∥∥∥
(

n∑
k=1

Rk(ak)Rk(ak)
∗
)1/2∥∥∥∥∥

p

≤ cd2

∥∥∥∥∥
(

n∑
k=1

aka
∗
k

)1/2∥∥∥∥∥
p

.

Moreover, the same inequalities hold with the operator Lk instead of Rk .

PROOF. Recall that we noted previously that Lk(a
∗) = Rk(a)∗. Conse-

quently, it suffices to prove the inequalities for the Rk’s. On the other hand, in
the row/column terminology (i.e., taking Rn

p and Cn
p to be the first row and column

of the Schatten class Sn
p), the two terms on the right-hand side are the norms of

(a1, a2, . . . , an) in Rn
p(Lp(A)) and Cn

p(Lp(A)), respectively. According to [31],
both spaces embed completely isometrically into and are completely contractively
complemented in the space

Sn
p(Lp(A)) = Lp(Mn ⊗ A) = Lp

(∗Mn⊗B(Mn ⊗ Ak)
) = Lp(An).

Therefore, by means of Theorem 2.1 (applied to the amplified algebra An), we
know that PAn(p, d) is complemented in Lp(An) with projection constant 4d .
Using the same projection restricted to Rn

p(Lp(A)) and Cn
p(Lp(A)), we con-

clude that the respective subspaces of homogeneous polynomials Rn
p(PA(p, d))

and Cn
p(PA(p, d)) form interpolation scales with equivalent norms up to a con-

stant 4d . By this observation, it suffices to show that the assertion holds for p = 1
and p = ∞ with constant in both cases controlled by cd . In fact, in the latter case
we shall even prove that the constant does not depend on d . This will be used
sometimes in the paper without further reference. We prove the desired estimates
in several steps.

Step 1. Let us prove the first inequality of Rk’s for p = ∞. The GNS construc-
tion on (A, φ) implies that A acts on L2(A) by left multiplication. Thus, we may
regard akLk , Rk(ak)(1 − Lk) and (idA − Rk)(ak)Lk as mappings on L2(A). Note
that 1 is understood here as the identity map on L2(A), while idA denotes the
identity map on A. In particular, since we have

Rk(ak) = akLk + Rk(ak)(1 − Lk) − (idA − Rk)(ak)Lk,
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we obtain, by the triangle inequality [with eij denoting the usual matrix units in
B(�2)],∥∥∥∥∥

(
n∑

k=1

Rk(ak)
∗Rk(ak)

)1/2∥∥∥∥∥∞
≤

∥∥∥∥∥
n∑

k=1

ek1 ⊗ akLk

∥∥∥∥∥∞

+
∥∥∥∥∥

n∑
k=1

ek1 ⊗ Rk(ak)(1 − Lk)

∥∥∥∥∥∞

+
∥∥∥∥∥

n∑
k=1

ek1 ⊗ (idA − Rk)(ak)Lk

∥∥∥∥∥∞
.

If A1,A2,A3 denote respectively the terms on the right-hand side, we have

A1 =
∥∥∥∥∥
(

n∑
k=1

ekk ⊗ ak

)(
n∑

k=1

ek1 ⊗ Lk

)∥∥∥∥∥∞
≤ max

1≤k≤n
‖ak‖∞

∥∥∥∥∥
n∑

k=1

Lk

∥∥∥∥∥
1/2

∞
.

Thus, since
∑

k Lk = 1 − E, we find

A1 ≤
∥∥∥∥∥
(

n∑
k=1

a∗
k ak

)1/2∥∥∥∥∥∞
.

On the other hand, by (4), we have

A2 =
∥∥∥∥∥

n∑
k=1

(1 − Lk)Rk(ak)
∗Rk(ak)(1 − Lk)

∥∥∥∥∥
1/2

∞

=
∥∥∥∥∥

n∑
k=1

E(Rk(ak)
∗Rk(ak))(1 − Lk)

∥∥∥∥∥
1/2

∞
.

Now, since Lk commutes with B, the last term is∑
k

E(Rk(ak)
∗Rk(ak))

1/2(1 − Lk)E(Rk(ak)
∗Rk(ak))

1/2

≤ ∑
k

E(Rk(ak)
∗Rk(ak)).

Next, we observe that

E(Rk(ak)
∗Rk(ak)) ≤ E(a∗

k ak).(5)

Indeed, since ak is mean-zero,

ak = ∑
j

Rj (ak);
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so, by freeness,

E(a∗
k ak) = ∑

i,j

E(Ri (ak)
∗Rj (ak)) = ∑

j

E(Rj (ak)
∗Rj (ak))

≥ E(Rk(ak)
∗Rk(ak)).

This proves (5). Combining the estimates above, we find

A2 ≤
∥∥∥∥∥

n∑
k=1

E(a∗
k ak)

∥∥∥∥∥
1/2

∞
≤

∥∥∥∥∥
(

n∑
k=1

a∗
k ak

)1/2∥∥∥∥∥∞
.

The estimate for A3 is similar to the one for A2:

A3 =
∥∥∥∥∥

n∑
k=1

Lk[ak − Rk(ak)]∗[ak − Rk(ak)]Lk

∥∥∥∥∥
1/2

∞

=
∥∥∥∥∥

n∑
k=1

E
([ak − Rk(ak)]∗[ak − Rk(ak)])Lk

∥∥∥∥∥
1/2

∞

≤
∥∥∥∥∥

n∑
k=1

E
([ak − Rk(ak)]∗[ak − Rk(ak)])

∥∥∥∥∥
1/2

∞
,

where the last inequality follows once more from the fact that Lk commutes
with B. Now, using that E(a∗Rk(a)) = E(Rk(a)∗Rk(a)) for any homogeneous
polynomial a, we easily find

E
([ak −Rk(ak)]∗[ak −Rk(ak)]) = E

(
a∗
k ak −Rk(ak)

∗Rk(ak)
) ≤ E(a∗

k ak).(6)

Step 2. Now we prove the second inequality for Rk’s. As above, we have∥∥∥∥∥
(

n∑
k=1

Rk(ak)Rk(ak)
∗
)1/2∥∥∥∥∥∞

≤
∥∥∥∥∥

n∑
k=1

e1k ⊗ akLk

∥∥∥∥∥∞

+
∥∥∥∥∥

n∑
k=1

e1k ⊗ Rk(ak)(1 − Lk)

∥∥∥∥∥∞

+
∥∥∥∥∥

n∑
k=1

e1k ⊗ (idA − Rk)(ak)Lk

∥∥∥∥∥∞
.

We write B1,B2,B3 for the terms on the right-hand side. The estimate of B1 is
trivial:

B1 =
∥∥∥∥∥
(

n∑
k=1

e1k ⊗ ak

)(
n∑

k=1

ekk ⊗ Lk

)∥∥∥∥∥∞
≤

∥∥∥∥∥
(

n∑
k=1

aka
∗
k

)1/2∥∥∥∥∥∞
.
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On the other hand, by (4) and (5), we may write

B2 =
∥∥∥∥∥

n∑
i,j=1

eij ⊗ (1 − Li )Ri(ai)
∗Rj (aj )(1 − Lj )

∥∥∥∥∥
1/2

∞

=
∥∥∥∥∥

n∑
k=1

ekk ⊗ E(Rk(ak)
∗Rk(ak))(1 − Lk)

∥∥∥∥∥
1/2

∞
≤ max

1≤k≤n
‖E(a∗

k ak)‖1/2∞ .

Finally, to estimate B3, we use (3) and (6):

B3 =
∥∥∥∥∥

n∑
i,j=1

eij ⊗ Li[ai − Ri(ai)]∗[aj − Rj (aj )]Lj

∥∥∥∥∥
1/2

∞

=
∥∥∥∥∥

n∑
k=1

ekk ⊗ E
([ak − Rk(ak)]∗[ak − Rk(ak)])Lk

∥∥∥∥∥
1/2

∞

≤ max
1≤k≤n

∥∥E
([ak − Rk(ak)]∗[ak − Rk(ak)])∥∥1/2

∞

≤ max
1≤k≤n

‖E(a∗
k ak)‖1/2∞ .

Step 3. Now we use a duality argument to prove the same estimates in L1(A).
Recall dφ denotes the density associated to the state φ of A. Let a ∈ PA(d) and
x ∈ A be a finite sum of reduced words. Then we have

〈x,Rk(dφa)〉 = trA(x∗Rk(dφa)) = trA(dφRk(a)x∗)
= ϕ(E(Rk(a)x∗)) = ϕ(E(aLk(x

∗)))(7)

= trA(dφaRk(x)∗) = 〈Rk(x), dφa〉.
Therefore, since we have

Rn
1 (PA(d,1))∗ �4d Rn∞(PA(d)),

from Theorem 2.1, we may use approximation and deduce∥∥∥∥∥∑
k

e1k ⊗ Rk(ak)

∥∥∥∥∥
1

≤ 4d sup
‖x‖Rn∞(PA(d))≤1

∑
k

〈xk,Rk(ak)〉

= 4d sup
‖x‖Rn∞(PA(d))≤1

∑
k

〈Rk(xk), ak〉
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≤ 4d sup
‖x‖Rn∞(PA(d))≤1

∥∥∥∥∥
(∑

k

Rk(xk)Rk(xk)
∗
)1/2∥∥∥∥∥∞

∥∥∥∥∥
(∑

k

aka
∗
k

)1/2∥∥∥∥∥
1

.

By step 2, ∥∥∥∥∥
(∑

k

Rk(ak)Rk(ak)
∗
)1/2∥∥∥∥∥

1

≤ 12d

∥∥∥∥∥
(∑

k

aka
∗
k

)1/2∥∥∥∥∥
1

.

Using step 1 and columns instead of rows, we get the remaining estimate. �

REMARK 2.6. A detailed reading of the proof of Lemma 2.5 shows that the
constant is controlled by cd2 for 1 ≤ p ≤ 2 and by cd for 2 ≤ p ≤ ∞. More-
over, the same arguments are valid to show that Lemma 2.5 also holds replacing
Lk or Rk by Qk = LkRk = RkLk (to be used below). These generalizations of
Lemma 2.5 will be used several times in the sequel.

REMARK 2.7. In Remark 2.4 we have partially justified why this paper is
written in terms of homogeneous polynomials. On the other hand, Lemma 2.5 for
n = 1 shows that Lk and Rk are bounded operators when acting on PA(p, d) for
any 1 ≤ p ≤ ∞ and d ≥ 1. Another relevant fact which justifies the use of homoge-
neous polynomials is that Lk and Rk are not bounded on L∞(A). The following
simple counterexample was brought to our attention by Ana Maria Popa. Con-
sider again the free group F2 with two generators g1, g2 and keep the terminology
employed in Remark 2.4. Let H be the subgroup of F2 generated by w = g1g2.
Of course, it is clear that H is isomorphic to Z and that λ(H)′′ � L∞(T). More-
over, we obviously have L1(λ(wk)) = δk>0λ(wk). In particular, if A = λ(F2)

′′
denotes the reduced group von Neumann algebra, it turns out that the restriction
of L1 :A → A to λ(H) behaves as 1

2(idL∞(T) + H), where H denotes the Hilbert
transform on the circle. The claim follows since the Hilbert transform is known
to be unbounded on L∞(T). Moreover, the same example also shows that the
map Qk = RkLk (to be used below) is unbounded on L∞(A). Indeed, Q1 is not
bounded on the subspace λ(Hg1)

′′ since

Q1(λ(wkg1)) = δk>0λ(wkg1).

PROPOSITION 2.8. If a1, a2, . . . , an ∈ PA(d), we have∥∥∥∥∥
n∑

k=1

Lk(ak)

∥∥∥∥∥∞
∼c max

{∥∥∥∥∥
n∑

k=1

Lk(ak)
∗Lk(ak)

∥∥∥∥∥
1/2

∞
,

∥∥∥∥∥
n∑

k=1

E(Lk(ak)Lk(ak)
∗)

∥∥∥∥∥
1/2

∞

}
,

∥∥∥∥∥
n∑

k=1

Rk(ak)

∥∥∥∥∥∞
∼c max

{∥∥∥∥∥
n∑

k=1

Rk(ak)Rk(ak)
∗
∥∥∥∥∥

1/2

∞
,

∥∥∥∥∥
n∑

k=1

E(Rk(ak)
∗Rk(ak))

∥∥∥∥∥
1/2

∞

}
.
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PROOF. Once more, we only prove the assertion for Rk . We have∥∥∥∥∥
n∑

k=1

Rk(ak)

∥∥∥∥∥∞
≤

∥∥∥∥∥
n∑

k=1

Rk(ak)Lk

∥∥∥∥∥∞
+

∥∥∥∥∥
n∑

k=1

Rk(ak)(1 − Lk)

∥∥∥∥∥∞

=
∥∥∥∥∥

n∑
k=1

Rk(ak)LkRk(ak)
∗
∥∥∥∥∥

1/2

∞

+
∥∥∥∥∥

n∑
i,j=1

(1 − Li )Ri (ai)
∗Rj (aj )(1 − Lj )

∥∥∥∥∥
1/2

∞

=
∥∥∥∥∥

n∑
k=1

Rk(ak)LkRk(ak)
∗
∥∥∥∥∥

1/2

∞

+
∥∥∥∥∥

n∑
k=1

E(Rk(ak)
∗Rk(ak))(1 − Lk)

∥∥∥∥∥
1/2

∞
.

The first term is clearly bounded by
∑

k Rk(ak)Rk(ak)
∗. For the second term, we

argue as in the proof of Lemma 2.5. That is, using that Lk commutes with B, we
can write

∑
k E(Rk(ak)

∗Rk(ak))(1 − Lk) as∑
k

E(Rk(ak)
∗Rk(ak))

1/2(1 − Lk)E(Rk(ak)
∗Rk(ak))

1/2.

Thus, we obtain the upper estimate∥∥∥∥∥
n∑

k=1

Rk(ak)

∥∥∥∥∥∞
≤

∥∥∥∥∥
n∑

k=1

Rk(ak)Rk(ak)
∗
∥∥∥∥∥

1/2

∞
+

∥∥∥∥∥
n∑

k=1

E(Rk(ak)
∗Rk(ak))

∥∥∥∥∥
1/2

∞
.

For the lower estimate, using freeness, we clearly have∥∥∥∥∥
n∑

k=1

E(Rk(ak)
∗Rk(ak))

∥∥∥∥∥∞

=
∥∥∥∥∥

n∑
i,j=1

E(Ri (ai)
∗Rj (aj ))

∥∥∥∥∥∞
(8)

≤
∥∥∥∥∥

n∑
k=1

Rk(ak)

∥∥∥∥∥
2

∞
.

Thus, it remains to show that∥∥∥∥∥
n∑

k=1

Rk(ak)Rk(ak)
∗
∥∥∥∥∥

1/2

∞
≤ c

∥∥∥∥∥
n∑

k=1

Rk(ak)

∥∥∥∥∥∞
.
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To that aim, we observe from (8) and the calculation above that∥∥∥∥∥
n∑

k=1

Rk(ak)Lk

∥∥∥∥∥∞
≤

∥∥∥∥∥
n∑

k=1

Rk(ak)

∥∥∥∥∥∞
+

∥∥∥∥∥
n∑

k=1

Rk(ak)(1 − Lk)

∥∥∥∥∥∞

≤ 2

∥∥∥∥∥
n∑

k=1

Rk(ak)

∥∥∥∥∥∞
.

Hence, since the term

S(a, ε) =
∥∥∥∥∥

n∑
k=1

εkRk(ak)Lk

∥∥∥∥∥∞
+

∥∥∥∥∥
n∑

k=1

E((εkRk(ak))
∗(εkRk(ak)))

∥∥∥∥∥
1/2

∞
is independent of any choice of signs ε = (ε1, . . . , εn) ∈ � = {±1}n, we find∥∥∥∥∥

n∑
k=1

εkRk(ak)

∥∥∥∥∥∞
≤ S(a, ε) ≤ 3

∥∥∥∥∥
n∑

k=1

Rk(ak)

∥∥∥∥∥∞
.(9)

Therefore, we obtain∥∥∥∥∥
n∑

k=1

Rk(ak)Rk(ak)
∗
∥∥∥∥∥∞

=
∥∥∥∥∥
∫
�

n∑
i,j=1

εiRi(ai)εjRj (aj )
∗dε

∥∥∥∥∥∞

≤
∫
�

∥∥∥∥∥
n∑

i,j=1

εiRi (ai)εjRj (aj )
∗
∥∥∥∥∥∞

dε

≤
∫
�

∥∥∥∥∥
n∑

i=1

εiRi (ai)

∥∥∥∥∥∞

∥∥∥∥∥
n∑

j=1

εjRj (aj )
∗
∥∥∥∥∥∞

dε

≤ 9

∥∥∥∥∥
n∑

k=1

Rk(ak)

∥∥∥∥∥
2

∞
.

This is the remaining inequality to complete the proof of the lower estimate. �

COROLLARY 2.9. If 2 ≤ p ≤ ∞ and a1, a2, . . . , an ∈ PA(p, d), we have∥∥∥∥∥
n∑

k=1

Lk(ak)

∥∥∥∥∥
p

≤ cd2 max

{∥∥∥∥∥
n∑

k=1

Lk(ak)Lk(ak)
∗
∥∥∥∥∥

1/2

p/2

,

∥∥∥∥∥
n∑

k=1

Lk(ak)
∗Lk(ak)

∥∥∥∥∥
1/2

p/2

}
,

∥∥∥∥∥
n∑

k=1

Rk(ak)

∥∥∥∥∥
p

≤ cd2 max

{∥∥∥∥∥
n∑

k=1

Rk(ak)Rk(ak)
∗
∥∥∥∥∥

1/2

p/2

,

∥∥∥∥∥
n∑

k=1

Rk(ak)
∗Rk(ak)

∥∥∥∥∥
1/2

p/2

}
.

PROOF. We only prove the second inequality. According to Proposition 2.8,
the case p = ∞ follows with constant 3, while the case p = 2 holds with constant 1
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by orthogonality. Therefore, it suffices to show that we can interpolate. To that aim,
we observe that the term of the right-hand side can be rewritten as

max

{∥∥∥∥∥
n∑

k=1

e1k ⊗ Rk(ak)

∥∥∥∥∥
Sn

p(Lp(A))

,

∥∥∥∥∥
n∑

k=1

ek1 ⊗ Rk(ak)

∥∥∥∥∥
Sn

p(Lp(A))

}
.

In other words, this is the norm of (Rk(ak)) in

RCn
p(Lp(A)) = Rn

p(Lp(A)) ∩ Cn
p(Lp(A)).

On the other hand, by Theorem 2.1, we know that Rn
p(PA(p, d)) and Cn

p(PA(p, d))

are complemented respectively in Rn
p(Lp(A)) and Cn

p(Lp(A)) with projec-
tion constant less than or equal to 4d . Thus, taking the same projection on
RCn

p(Lp(A)) and using that RCn
p(Lp(A)) is an interpolation scale (see [25, 31]),

we conclude that RCn
p(PA(p, d)) is an interpolation scale with equivalent norms

up to a constant controlled by cd . Then we need to consider the subspace
of RCn

p(PA(p, d)) made up of elements for which the kth component is in
Rk(Lp(A)). The associated projection is

�R = ∑
k

δk ⊗ Rk,

where (δk) denotes the common basis of R and C when (R,C) is viewed as a
compatible couple. According to Lemma 2.5 and Remark 2.6, the projection �R is
bounded and of norm ≤ cd . Therefore, the family of spaces �R(RCn

p(PA(p, d))),
2 ≤ p ≤ ∞, forms an interpolation scale with equivalent norms up to a constant
controlled by cd2. This completes the proof. �

2.2. Proof of Theorem A and applications. We now study generalizations of
Voiculescu’s inequality [44], originally formulated for 1-homogeneous polynomi-
als in a free product von Neumann algebra. Our main result is Theorem A (stated
in the Introduction), which extends Voiculescu’s inequality in three aspects: we
allow amalgamation, homogeneous free polynomials of arbitrary degree and our
inequalities hold in Lp(A) for 2 ≤ p ≤ ∞. In particular, Theorem A can be re-
garded as a generalization of Rosenthal’s inequality (Rp) in the free setting.

The notation

Qk = RkLk = LkRk

for the projection onto words starting and ending in
◦
Ak is crucial for our analysis.

LEMMA 2.10. If a ∈ PA(d), we have

max
1≤k≤n

‖Qk(a)‖∞ +
∥∥∥∥∥

n∑
k=1

E(Qk(a)∗Qk(a))

∥∥∥∥∥
1/2

∞
+

∥∥∥∥∥
n∑

k=1

E(Qk(a)Qk(a)∗)
∥∥∥∥∥

1/2

∞
≤ c‖a‖∞.
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Moreover, if a1, a2, . . . , an ∈ PA(d), we have∥∥∥∥∥
n∑

k=1

Qk(ak)

∥∥∥∥∥∞
∼c max

1≤k≤n
‖Qk(ak)‖∞ +

∥∥∥∥∥
(

n∑
k=1

E(Qk(ak)
∗Qk(ak))

)1/2∥∥∥∥∥∞

+
∥∥∥∥∥
(

n∑
k=1

E(Qk(ak)Qk(ak)
∗)

)1/2∥∥∥∥∥∞
.

PROOF. According to the proof of Lemma 2.5, we know that Lk and Rk

are bounded maps on PA(d) with constant 3. In particular, we find ‖Qk(a)‖∞ ≤
9‖a‖∞. On the other hand, using the identities

E(a∗a) = ∑
k

E(Lk(a)∗Lk(a)) = ∑
k

E(Rk(a)∗Rk(a)),

for homogeneous polynomials [cf. the proof of (5)] we easily obtain the estimate∥∥∥∥∥
n∑

k=1

E(Qk(a)∗Qk(a))

∥∥∥∥∥∞
=

∥∥∥∥∥
n∑

k=1

E(Rk(Lk(a))∗Rk(Lk(a)))

∥∥∥∥∥∞

≤
∥∥∥∥∥

n∑
k=1

E(Lk(a)∗Lk(a))

∥∥∥∥∥∞
= ‖E(a∗a)‖∞ ≤ ‖a‖2∞.

Using this estimate for a∗, we deduce the first assertion.
To prove the second one, we note that Qk(ak) = Qk(a) for a = ∑

k Qk(ak).
In particular, the lower estimate follows from the first assertion. For the upper
estimate, we use

n∑
k=1

Qk(ak) =
n∑

k=1

LkQk(ak)Lk +
n∑

k=1

Qk(ak)(1 − Lk) +
n∑

k=1

(1 − Lk)Qk(ak)Lk.

The first term on the right-hand side clearly gives the maximum. The remaining
two terms can be estimated by identity (4) in the same way as we did in Proposi-
tion 2.8. This completes the proof. �

LEMMA 2.11. Let ak ∈ PA(p, d) and signs εk = ±1.

(i) If 1 ≤ p < 2, we have∥∥∥∥∥
n∑

k=1

εkQk(ak)

∥∥∥∥∥
p

≤ cd2

∥∥∥∥∥
n∑

k=1

Qk(ak)

∥∥∥∥∥
p

.

(ii) If 2 ≤ p ≤ ∞, we have∥∥∥∥∥
n∑

k=1

εkQk(ak)

∥∥∥∥∥
p

≤ cd

∥∥∥∥∥
n∑

k=1

Qk(ak)

∥∥∥∥∥
p

.
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PROOF. If a ∈ PA(p, d), we claim that∥∥∥∥∥
n∑

k=1

εkRk(a)

∥∥∥∥∥
p

≤ cd2

∥∥∥∥∥
n∑

k=1

Rk(a)

∥∥∥∥∥
p

for 1 ≤ p < 2,

(10) ∥∥∥∥∥
n∑

k=1

εkRk(a)

∥∥∥∥∥
p

≤ cd

∥∥∥∥∥
n∑

k=1

Rk(a)

∥∥∥∥∥
p

for 2 ≤ p ≤ ∞.

The second inequality clearly holds with constant 1 for p = 2. On the other hand,
according to (9), it also holds for p = ∞ with constant 3. Therefore, since any a ∈
PA(p, d) satisfies a = ∑

k Rk(a), our claim follows for 2 ≤ p ≤ ∞ by complex
interpolation from Theorem 2.1.

Then a duality argument yields the first inequality in the claim. Indeed, by Theo-
rem 2.1, one more time, we have PA(p, d)∗ � PA(p′, d) with equivalence constant
controlled by 4d . Therefore, given 1 ≤ p ≤ 2, an element a ∈ PA(p, d) and signs
ε1, ε2, . . . , εn, we choose x ∈ PA(p′, d) of norm one such that∥∥∥∥∥

n∑
k=1

εkRk(a)

∥∥∥∥∥
p

≤ 4d trA

(
x∗

n∑
k=1

εkRk(a)

)

= 4d trA

(
n∑

k=1

εkLk(x
∗)a

)

≤ 4d‖a‖p

∥∥∥∥∥
n∑

k=1

εkRk(x)

∥∥∥∥∥
p′

≤ cd2‖a‖p.

Taking a = ∑
k Rk(ak), we see that (10) implies∥∥∥∥∥

n∑
k=1

εkRk(ak)

∥∥∥∥∥
p

≤ cd2

∥∥∥∥∥
n∑

k=1

Rk(ak)

∥∥∥∥∥
p

for 1 ≤ p < 2,

(11) ∥∥∥∥∥
n∑

k=1

εkRk(ak)

∥∥∥∥∥
p

≤ cd

∥∥∥∥∥
n∑

k=1

Rk(ak)

∥∥∥∥∥
p

for 2 ≤ p ≤ ∞.

Therefore, the lemma immediately follows from (11) since Qk = RkQk . �

LEMMA 2.12. If 1 ≤ p ≤ 2 and a1, a2, . . . , an ∈ QA(p, d), we have∥∥∥∥∥
n∑

k=1

Qk(ak)

∥∥∥∥∥
p

≤ cd4

(
n∑

k=1

‖ak‖p
p

)1/p

.

PROOF. Using the boundedness of the projection 	A(p, d) from Remark 2.2
and complex interpolation, it suffices to see that the inequalities associated to the
extremal indices hold with constant controlled by cd3. In the case p = 2, this
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follows by orthogonality with constant 1. When p = 1, we decompose the ak’s
into their homogeneous parts and use the boundedness of

Qk ◦ �A(1, s) :L1(A) → PA(1, s).

Indeed, by step 3 in the proof of Lemma 2.5 and Remark 2.6, we have

‖Qk ◦ �A(1, s)‖1 ≤ c(1 + s)‖�A(1, s)‖1.

Therefore, we find∥∥∥∥∥
n∑

k=1

Qk(ak)

∥∥∥∥∥
1

≤
n∑

k=1

‖Qk(ak)‖1 ≤
n∑

k=1

d∑
s=0

‖Qk(�A(1, s)(ak))‖1

≤
n∑

k=1

d∑
s=0

c(1 + s)‖�A(1, s)(ak)‖1 ≤ c

n∑
k=1

d∑
s=0

(1 + s)2‖ak‖1

= c

(
d∑

s=0

(1 + s)2

)(
n∑

k=1

‖ak‖1

)
≤ cd3

n∑
k=1

‖ak‖1.

This proves the remaining estimate. The proof is complete. �

PROOF OF THEOREM A. Lemma 2.10 implies the assertion for p = ∞. Thus,
we may assume in what follows that 2 ≤ p < ∞. Let us prove the lower estimate.
First we observe that Lp(A) has Rademacher cotype p for 2 ≤ p < ∞. This,
combined with Lemma 2.11, yields(

n∑
k=1

∥∥Qk(ak)
∥∥p
p

)1/p

≤
∫
�

∥∥∥∥∥
n∑

k=1

εkQk(ak)

∥∥∥∥∥
p

dε ≤ cd

∥∥∥∥∥
n∑

k=1

Qk(ak)

∥∥∥∥∥
p

.(12)

For the second term, we use

n∑
k=1

E(Qk(ak)
∗Qk(ak)) =

n∑
i,j=1

E(Qi (ai)
∗Qj (aj )).

Hence, by the contractivity of E,∥∥∥∥∥
n∑

k=1

E(Qk(ak)
∗Qk(ak))

∥∥∥∥∥
p/2

≤
∥∥∥∥∥

n∑
k=1

Qk(ak)

∥∥∥∥∥
2

p

.

The third term is estimated in the same way. Therefore, the lower estimate holds
with constant cd . Now we prove the upper estimate. To that aim, we proceed in two
steps. First we prove the case 2 ≤ p ≤ 4 and after that we shall apply an induction
argument.
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Step 1. Since Rk(Qk(ak)) = Qk(ak), we may apply Corollary 2.9 and obtain∥∥∥∥∥
n∑

k=1

Qk(ak)

∥∥∥∥∥
p

≤ cd2

(∥∥∥∥∥
n∑

k=1

Qk(ak)Qk(ak)
∗
∥∥∥∥∥

1/2

p/2
(13)

+
∥∥∥∥∥

n∑
k=1

Qk(ak)
∗Qk(ak)

∥∥∥∥∥
1/2

p/2

)
.

Then we observe that

Qk(ak)Qk(ak)
∗ = E(Qk(ak)Qk(ak)

∗) + Qk(Qk(ak)Qk(ak)
∗),(14)

Qk(ak)
∗Qk(ak) = E(Qk(ak)

∗Qk(ak)) + Qk(Qk(ak)
∗Qk(ak)).(15)

Let us first assume that 2 ≤ p ≤ 4. Note that Qk(ak)Qk(ak)
∗ is not necessarily

homogeneous. However, it is not difficult to see that it is a polynomial in Lp/2(A)

of degree 2d − 1. Therefore, it follows from Lemma 2.12 that∥∥∥∥∥
n∑

k=1

Qk(Qk(ak)Qk(ak)
∗)

∥∥∥∥∥
p/2

≤ cd4

(
n∑

k=1

‖Qk(ak)Qk(ak)
∗‖p/2

p/2

)2/p

= cd4

(
n∑

k=1

‖Qk(ak)‖p
p

)2/p

.

By (14) and the triangle inequality, we deduce∥∥∥∥∥
n∑

k=1

Qk(ak)Qk(ak)
∗
∥∥∥∥∥

1/2

p/2

≤
∥∥∥∥∥

n∑
k=1

E(Qk(ak)Qk(ak)
∗)

∥∥∥∥∥
1/2

p/2

+ cd2

(
n∑

k=1

‖Qk(ak)‖p
p

)1/p

.

Taking adjoints, we obtain a similar estimate for the last term of (13). Hence, given
any index 2 ≤ p ≤ 4, we have proved that the assertion holds with Cp(d) ≤ c0d

4

for some absolute constant c0.
Step 2. Now we proceed by induction and assume the assertion is proved in

Lp/2(A) with constant Cp/2(d) for some 4 < p < ∞. Of course, we still have
(13), (14) and (15) at our disposal. Thus, arguing as above, it suffices to estimate
the term ∥∥∥∥∥

n∑
k=1

Qk(Qk(ak)Qk(ak)
∗)

∥∥∥∥∥
1/2

p/2

.
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Let us write xk = Qk(ak)Qk(ak)
∗. As observed above, we know that xk is a poly-

nomial of degree 2d − 1. Hence, we may use the projections �A(p, s) from Re-
mark 2.2 and obtain the following inequality for xks = �A(p, s)(xk):∥∥∥∥∥

n∑
k=1

Qk(xk)

∥∥∥∥∥
p/2

≤
2d−1∑
s=1

∥∥∥∥∥
n∑

k=1

Qk(xks)

∥∥∥∥∥
p/2

.

By the induction hypothesis, we have

2d−1∑
s=1

∥∥∥∥∥
n∑

k=1

Qk(xks)

∥∥∥∥∥
p/2

≤
2d−1∑
s=1

Cp/2(s)(As + Bs + Cs).

By Remark 2.6, the first term on the right-hand side is estimated by

As =
(

n∑
k=1

‖Qk(xks)‖p/2
p/2

)2/p

≤ cs

(
n∑

k=1

‖�A(p, s)(xk)‖p/2
p/2

)2/p

≤ cs2

(
n∑

k=1

‖Qk(ak)‖p
p

)2/p

.

The second term is given by

Bs =
∥∥∥∥∥

n∑
k=1

E(Qk(xks)
∗Qk(xks))

∥∥∥∥∥
1/2

p/4

.

Using xk = ∑
s xks , freeness and (15), we have, for all 1 ≤ s ≤ 2d − 1,

E(Qk(xks)
∗Qk(xks)) ≤ ∑

r

E(Qk(xkr)
∗Qk(xkr))

= ∑
q,r

E(Qk(xkq)
∗Qk(xkr))

= E(Qk(xk)
∗Qk(xk))

= E
((

xk − E(xk)
)∗(

xk − E(xk)
))

= E(x∗
k xk) − E(xk)

∗E(xk) ≤ E(x∗
k xk).

Then we apply Lemma 5.2 of [17] and then obtain

Bs ≤
∥∥∥∥∥

n∑
k=1

E(x∗
k xk)

∥∥∥∥∥
1/2

p/4

=
∥∥∥∥∥

n∑
k=1

E|Qk(ak)
∗|4

∥∥∥∥∥
1/2

p/4

≤
∥∥∥∥∥

n∑
k=1

E(Qk(ak)Qk(ak)
∗)

∥∥∥∥∥
(p−4)/(2p−4)

p/2

(
n∑

k=1

‖Qk(ak)‖p
p

)2/(2p−4)

.
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The same estimate holds for Cs . Now, by homogeneity, we may assume that(
n∑

k=1

‖Qk(ak)‖p
p

)1/p

+
∥∥∥∥∥

n∑
k=1

E[Qk(ak)
∗Qk(ak)]

∥∥∥∥∥
1/2

p/2

+
∥∥∥∥∥

n∑
k=1

E[Qk(ak)Qk(ak)
∗]

∥∥∥∥∥
1/2

p/2

= 1.

Then combining the inequalities so far obtained, we deduce

2d−1∑
s=1

∥∥∥∥∥
n∑

k=1

Qk(xks)

∥∥∥∥∥
p/2

≤
2d−1∑
s=1

Cp/2(s)(2 + cs2).

Chasing through the inequalities above, we obtain the estimate

Cp(d) ≤ √
cd7/2

√
Cp/2(d),

for some absolute constant c. Taking c big enough so that c0 ≤ c and recalling that
Cp(d) ≤ c0d

4 ≤ cd7 for 2 ≤ p ≤ 4, it turns out that the growth of the constant
Cp(d) as d → ∞ is controlled by cd7. This proves the assertion. �

REMARK 2.13. A noncommutative analogue of Rosenthal’s inequality for
general von Neumann algebras (nonnecessarily free products) was obtained in [17,
18]; see also [46] for the proof and the notion of noncommutative independence
employed in it. As we have pointed out in the Introduction, recalling that freeness
implies this notion of independence, Theorem A for d = 1 and 2 ≤ p < ∞ follows
from the noncommutative Rosenthal inequality. However, the constants in [17, 18]
are not uniformly bounded as p → ∞, in sharp contrast with Theorem A. Simi-
larly, one could try to derive Theorem A for d ≥ 1 and 2 ≤ p < ∞ by proving that
Q1(a1),Q2(a2), . . . ,Qn(an) are independent in the sense of [18]. Nevertheless,
this alternative approach to Theorem A would provide constants depending on p,
rather than on d .

Since any a ∈ PA(p, d) satisfies

a =
n∑

k=1

Lk(a) =
n∑

k=1

Rk(a),

the following result characterizes the Lp norm of all homogeneous free polynomi-
als.

COROLLARY 2.14. If 2 ≤ p ≤ ∞ and a1, a2, . . . , an ∈ PA(p, d), we have∥∥∥∥∥
n∑

k=1

Lk(ak)

∥∥∥∥∥
p

∼cd7

∥∥∥∥∥
n∑

k=1

Lk(ak)
∗Lk(ak)

∥∥∥∥∥
1/2

p/2

+
∥∥∥∥∥

n∑
k=1

E(Lk(ak)Lk(ak)
∗)

∥∥∥∥∥
1/2

p/2
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and∥∥∥∥∥
n∑

k=1

Rk(ak)

∥∥∥∥∥
p

∼cd7

∥∥∥∥∥
n∑

k=1

Rk(ak)Rk(ak)
∗
∥∥∥∥∥

1/2

p/2

+
∥∥∥∥∥

n∑
k=1

E(Rk(ak)
∗Rk(ak))

∥∥∥∥∥
1/2

p/2

.

PROOF. By (10), we have∥∥∥∥∥
n∑

k=1

Rk(ak)Rk(ak)
∗
∥∥∥∥∥

1/2

p/2

=
∥∥∥∥∥
∫
�

n∑
i,j=1

εiRi (ai)εjRj (aj )
∗ dε

∥∥∥∥∥
1/2

p/2

≤
(∫

�

∥∥∥∥∥
n∑

i=1

εiRi (ai)

∥∥∥∥∥
p

∥∥∥∥∥
n∑

j=1

εjRj (aj )
∗
∥∥∥∥∥
p

dε

)1/2

≤ cd

∥∥∥∥∥
n∑

k=1

Rk(ak)

∥∥∥∥∥
p

.

On the other hand, by freeness,

n∑
k=1

E(Rk(ak)
∗Rk(ak)) = E

((
n∑

i=1

Ri(ai)

)∗(
n∑

j=1

Rj (aj )

))
.

Therefore, by the contractivity of E,∥∥∥∥∥
n∑

k=1

E(Rk(ak)
∗Rk(ak))

∥∥∥∥∥
1/2

p/2

≤
∥∥∥∥∥

n∑
k=1

Rk(ak)

∥∥∥∥∥
p

.

This gives the lower estimate.
For the upper estimate, we assume that 2 ≤ p < ∞, since the case p = ∞ was

already proved in Proposition 2.8. Now we use the second inequality stated in
Corollary 2.9:∥∥∥∥∥

n∑
k=1

Rk(ak)

∥∥∥∥∥
p

≤ cd2

(∥∥∥∥∥
n∑

k=1

Rk(ak)Rk(ak)
∗
∥∥∥∥∥

1/2

p/2

+
∥∥∥∥∥

n∑
k=1

Rk(ak)
∗Rk(ak)

∥∥∥∥∥
1/2

p/2

)
.

On the other hand, it is clear that
n∑

k=1

Rk(ak)
∗Rk(ak) =

n∑
k=1

E(Rk(ak)
∗Rk(ak))+

n∑
k=1

Qk(Rk(ak)
∗Rk(ak)).(16)

Hence, it suffices to estimate the last term on the right-hand side. This part of the
proof is similar to the corresponding one of the proof of Theorem A. Again, we
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observe that xk = Rk(ak)
∗Rk(ak) is no longer homogeneous but a polynomial of

degree ≤ 2d . Our argument for this term depends on the value of p.
Step 1. If 2 ≤ p ≤ 4, we apply Lemma 2.12 and obtain∥∥∥∥∥

n∑
k=1

Qk(xk)

∥∥∥∥∥
1/2

p/2

≤ cd2

(
n∑

k=1

‖xk‖p/2
p/2

)1/p

= cd2

(
n∑

k=1

‖Rk(ak)‖p
p

)1/p

≤ cd2

∥∥∥∥∥
n∑

k=1

Rk(ak)Rk(ak)
∗
∥∥∥∥∥

1/2

p/2

,

where the last inequality holds for 2 ≤ p ≤ ∞ and follows by complex interpo-
lation. Hence, in the case 2 ≤ p ≤ 4, we have proved the upper estimate with
constant cd4.

Step 2. If 4 < p < ∞, we take xks = �A(p, s)(xk) and write∥∥∥∥∥
n∑

k=1

Qk(xk)

∥∥∥∥∥
1/2

p/2

≤
( 2d∑

s=1

∥∥∥∥∥
n∑

k=1

Qk(xks)

∥∥∥∥∥
p/2

)1/2

≤ √
2d max

1≤s≤2d

∥∥∥∥∥
n∑

k=1

Qk(xks)

∥∥∥∥∥
1/2

p/2

.

By Theorem A, we have∥∥∥∥∥
n∑

k=1

Qk(xks)

∥∥∥∥∥
p/2

∼cs7

(
n∑

k=1

‖Qk(xks)‖p/2
p/2

)2/p

+
∥∥∥∥∥

n∑
k=1

E(Qk(xks)
∗Qk(xks))

∥∥∥∥∥
1/2

p/4

+
∥∥∥∥∥

n∑
k=1

E(Qk(xks)Qk(xks)
∗)

∥∥∥∥∥
1/2

p/4

= As + Bs + Cs .

These terms are estimated as in the proof of Theorem A (step 2):

As ≤ cs2

(
n∑

k=1

‖Rk(ak)‖p
p

)2/p

.

Similarly, we have

max(Bs,Cs) ≤
∥∥∥∥∥

n∑
k=1

E(Rk(ak)
∗Rk(ak))

∥∥∥∥∥
(p−4)/(2p−4)

p/2

(
n∑

k=1

‖Rk(ak)‖p
p

)2/(2p−4)

.

On the other hand, by homogeneity, we may assume that∥∥∥∥∥
n∑

k=1

Rk(ak)Rk(ak)
∗
∥∥∥∥∥

1/2

p/2

+
∥∥∥∥∥

n∑
k=1

E(Rk(ak)
∗Rk(ak))

∥∥∥∥∥
1/2

p/2

= 1.
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Using the estimates above and(
n∑

k=1

‖Rk(ak)‖p
p

)1/p

≤
∥∥∥∥∥

n∑
k=1

Rk(ak)Rk(ak)
∗
∥∥∥∥∥

1/2

p/2

,

we obtain ∥∥∥∥∥
n∑

k=1

Qk(xk)

∥∥∥∥∥
1/2

p/2

≤ √
2d max

1≤s≤2d
[cs7(2 + cs2)]1/2,

for 4 < p < ∞. Therefore, by Corollary 2.9 and (16), we find∥∥∥∥∥
n∑

k=1

Rk(ak)

∥∥∥∥∥
p

≤ cd7.

This and step 1 yield the assertion for Rk’s. For Lk’s, we take adjoints. �

COROLLARY 2.15. If 2 ≤ p ≤ ∞ and a ∈ PA(p, d), we have

‖a‖p ∼cd14

∥∥∥∥∥
n∑

i,j=1

eij ⊗ LiRj (a)

∥∥∥∥∥
Sn

p(Lp(A))

+ ‖E(aa∗)1/2‖Lp(B) + ‖E(a∗a)1/2‖Lp(B).

PROOF. We use a = ∑n
k=1 Rk(a) and Corollary 2.14:

‖a‖p ∼cd7

∥∥∥∥∥
n∑

k=1

Rk(a)Rk(a)∗
∥∥∥∥∥

1/2

p/2

+
∥∥∥∥∥

n∑
k=1

E(Rk(a)∗Rk(a))

∥∥∥∥∥
1/2

p/2

= A + B.

To estimate A, we use Corollary 2.14 for the Lk’s∥∥∥∥∥
n∑

k=1

Rk(a)Rk(a)∗
∥∥∥∥∥

1/2

p/2

=
∥∥∥∥∥

n∑
k=1

e1k ⊗ Rk(a)

∥∥∥∥∥
Sn

p(Lp(A))

∼cd7

∥∥∥∥∥
n∑

i=1

ei1 ⊗ Li

(
n∑

j=1

e1j ⊗ Rj (a)

)∥∥∥∥∥
Sn2

p (Lp(A))

+
∥∥∥∥∥

n∑
i=1

E

((
n∑

j=1

e1j ⊗ LiRj (a)

)(
n∑

j=1

e1j ⊗ LiRj (a)

)∗)∥∥∥∥∥
1/2

Sn
p/2(Lp/2(B))
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=
∥∥∥∥∥

n∑
i,j=1

eij ⊗ LiRj (a)

∥∥∥∥∥
Sn

p(Lp(A))

+
∥∥∥∥∥e11 ⊗

n∑
i,j=1

E((LiRj (a))(LiRj (a))∗)
∥∥∥∥∥

1/2

Sn
p/2(Lp/2(B))

=
∥∥∥∥∥

n∑
i,j=1

eij ⊗ LiRj (a)

∥∥∥∥∥
Sn

p(Lp(A))

+ ‖E(aa∗)1/2‖Lp(B).

On the other hand, it is clear that

B =
∥∥∥∥∥

n∑
k=1

E(Rk(a)∗Rk(a))

∥∥∥∥∥
1/2

p/2

= ‖E(a∗a)1/2‖Lp(B).

Thus, since we have used equivalences at each step, the proof is complete. �

REMARK 2.16. By decomposing a free polynomial of degree d into its ho-
mogeneous parts, we automatically obtain trivial generalizations of Theorem A
and Corollaries 2.14 and 2.15 for nonhomogeneous free polynomials of a fixed
degree d . Most of the forthcoming results in this paper are susceptible of this kind
of generalization.

3. A length-reduction formula. In this section we prove a length-reduction
formula for polynomials in the free product. One more time, our standard assump-
tions are that A = ∗BAk , where 1 ≤ k ≤ n, B is equipped with a n.f. state ϕ which
induces a n.f. state φ = ϕ ◦E on A and E :A → B is a n.f. conditional expectation.
As usual, dφ denotes the density of the state φ. We will need some preliminary
facts on certain module maps. First, given 2 ≤ p ≤ ∞, we define on A ⊗B Lp(A)

the Lp/2(A)-valued inner product

〈〈x1 ⊗ y1, x2 ⊗ y2〉〉 = y∗
1 E(x∗

1x2)y2.

This allows us to define Lc
p(A ⊗B A,E) and Lr

p(A ⊗B A,E) as the completion
of the space A ⊗B Lp(A) with respect to the norms

‖z‖Lc
p(A⊗BA,E) = ‖〈〈z, z〉〉‖1/2

Lp/2(A),

‖z‖Lr
p(A⊗BA,E) = ‖〈〈z∗, z∗〉〉‖1/2

Lp/2(A).

Let C∞(B) be the column subspace of the B-valued Schatten class S∞(B):

C∞(B) =
{∑

k

ek1 ⊗ bk ∈ B(�2) ⊗min B

}
.
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By [29], there exists a normal right B-module map u :A → C∞(B) satisfying

E(x∗y) =
∞∑

k=1

uk(x)∗uk(y) = u(x)∗u(y) for all x, y ∈ A,(17)

where uk stands for the kth coordinate of u. More rigorously, to be able to apply
[29], we need to assume A countably generated. However, for our purposes here
and by a standard approximation argument, we can reduce the general case to
this special one. Note that, according to [13, 16], this map canonically extends
from Lp(A) into Cp(Lp(B)), still denoted by u. On the other hand, recalling that
amalgamation gives C∞(B) ⊗B Lp(A) = Cp(Lp(A)), we have an isometry

û = u ⊗ idLp(A) :Lc
p(A ⊗B A,E) → Cp(Lp(A)).(18)

Indeed, note that

(
û(x1 ⊗ y1)

)∗(
û(x2 ⊗ y2)

) =
∞∑

k=1

y∗
1uk(x1)

∗uk(x2)y2 = y∗
1 E(x∗

1x2)y2.

Thus, linearity gives

‖û(z)‖Cp(Lp(A)) = ‖〈〈z, z〉〉‖1/2
Lp/2(A) = ‖z‖Lc

p(A⊗BA,E).

A similar argument holds in the row case and by Proposition 2.8 of [13] we deduce
the following:

LEMMA 3.1. Let A and B be as above. Then,

Lr
p(A ⊗B A,E) and Lc

p(A ⊗B A,E)

are contractively complemented in the space Sp(Lp(A)) for any 2 ≤ p ≤ ∞.

In what follows, � will always denote a finite index set.

LEMMA 3.2. Given 2 ≤ p ≤ ∞, let us define

Wp =
{∑

α∈�

n∑
k=1

xk(α) ⊗ wk(α)| xk(α) ∈ ◦
Ak,wk(α) ∈ Lp(A)

}
.

If we denote by W r
p the closure of Wp with respect to the norm of Lr

p(A⊗B A,E),
then W r

p is contractively complemented in Lr
p(A ⊗B A,E). Similarly, the same

holds for the closure W c
p of Wp in Lc

p(A ⊗B A,E).

PROOF. By definition, Lc
p(A ⊗B A,E) is the closure of∑

α∈�

x(α) ⊗ w(α),



ROSENTHAL TYPE INEQUALITIES FOR FREE CHAOS 1407

where x(α) ∈ A and w(α) ∈ Lp(A). Let us recall the notation �A(p, d), intro-
duced in Remark 2.2 for the projection from Lp(A) onto the homogeneous poly-
nomials of degree d . Then we clearly have

x(α) = E(x(α)) + �A(p,1)(x(α)) + ∑
d≥2

�A(p, d)(x(α))

= x(α,0) + x(α,1) + x(α,2).

Now we define

A = ∑
α∈�

x(α,1) ⊗ w(α),

B = ∑
α∈�

1A ⊗ x(α,0)w(α) + ∑
α∈�

x(α,2) ⊗ w(α).

Note that
∑

α x(α) ⊗ w(α) = A + B and A ∈ Wp . On the other hand, by freeness,

〈〈A + B,A + B〉〉 = 〈〈A,A〉〉 + 〈〈B,B〉〉.
Therefore, by positivity,

‖A‖2
Lc

p(A⊗BA,E) = ‖〈〈A,A〉〉‖p/2

≤ ‖〈〈A + B,A + B〉〉‖p/2

=
∥∥∥∥∥∑
α∈�

x(α) ⊗ w(α)

∥∥∥∥∥
2

Lc
p(A⊗BA,E)

.

By continuity, we find a contractive projection from Lc
p(A ⊗B A,E) onto the

space W c
p for any given index 2 ≤ p ≤ ∞. Obviously, the argument above also

works for Lr
p(A ⊗B A,E). This completes the proof. �

LEMMA 3.3. If 2 ≤ p ≤ ∞, the space

Zr
p,d =

{∑
α∈�

n∑
k=1

xk(α) ⊗ wk(α) ∈ W r
p

∣∣∣ wk(α) ∈ PA(p, d),Rk(wk(α)) = 0

}

is complemented in Lr
p(A ⊗B A,E). Similarly, the space

Zc
p,d =

{∑
α∈�

n∑
k=1

xk(α) ⊗ wk(α) ∈ W c
p

∣∣∣wk(α) ∈ PA(p, d),Lk(wk(α)) = 0

}

is complemented in Lc
p(A ⊗B A,E). In both cases, the projection constant

is ≤ cd2.
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PROOF. Both complementation results can be proved using the same argu-
ments. Thus, we only prove the second assertion. According to Lemma 3.2, it
suffices to check that Zc

p,d is complemented (with projection constant ≤ cd2) in
W c

p . To that aim, we consider the intermediate space

W c
p,d =

{∑
α∈�

n∑
k=1

xk(α) ⊗ wk(α) ∈ W c
p

∣∣∣ wk(α) ∈ PA(p, d)

}
.

W c
p,d is complemented in W c

p with constant 4d . Indeed, using one more time the
projection �A(p, d) onto the d-homogeneous polynomials, we write wkd(α) for
�A(p, d)(wk(α)) and obtain from Lemma 3.1 and the discussion preceding it∥∥∥∥∥∑

k,α

xk(α) ⊗ wkd(α)

∥∥∥∥∥
Lc

p(A⊗BA,E)

=
∥∥∥∥∥

∞∑
j=1

ej1 ⊗ ∑
k,α

uj (xk(α))wkd(α)

∥∥∥∥∥
Cp(Lp(A))

=
∥∥∥∥∥

∞∑
j=1

ej1 ⊗ �A(p, d)

(∑
k,α

uj (xk(α))wk(α)

)∥∥∥∥∥
Cp(Lp(A))

≤ ‖idCp ⊗ �A(p, d)‖B(Cp(Lp(A)))

×
∥∥∥∥∥

∞∑
j=1

ej1 ⊗ ∑
k,α

uj (xk(α))wk(α)

∥∥∥∥∥
Cp(Lp(A))

.

On the other hand, combining Remarks 1.1 and 2.2, we deduce that �A(p, d)

is a completely bounded map on Lp(A) with cb-norm less than or equal to 4d .
Therefore, we deduce our claim∥∥∥∥∥∑

k,α

xk(α) ⊗ wkd(α)

∥∥∥∥∥
Lc

p(A⊗BA,E)

≤ 4d

∥∥∥∥∥∑
k,α

xk(α) ⊗ wk(α)

∥∥∥∥∥
Lc

p(A⊗BA,E)

.

It remains to see that Zc
p,d is complemented (with projection constant less than or

equal to cd) in W c
p,d . In other words, we are interested in proving the following

inequality: ∥∥∥∥∥∑
k,α

xk(α) ⊗ (idA − Lk)(wkd(α))

∥∥∥∥∥
Lc

p(A⊗BA,E)

≤ cd

∥∥∥∥∥∑
k,α

xk(α) ⊗ wkd(α)

∥∥∥∥∥
Lc

p(A⊗BA,E)

.
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However, according to the triangle inequality, we may replace idA − Lk by Lk in
the inequality above. Now we use the definition of the space Lc

p(A ⊗B A,E) and
freeness to obtain the following identity:∥∥∥∥∥∑

k,α

xk(α) ⊗ Lk(wkd(α))

∥∥∥∥∥
Lc

p(A⊗BA,E)

=
∥∥∥∥∥ ∑
i,j,α,β

Li (wid(α))∗E(xi(α)∗xj (β))Lj (wjd(β))

∥∥∥∥∥
1/2

Lp/2(A)

=
∥∥∥∥∥ ∑
k,α,β

Lk(wkd(α))∗E(xk(α)∗xk(β))Lk(wkd(β))

∥∥∥∥∥
1/2

Lp/2(A)

=
∥∥∥∥∥ ∑
k,α,β

Lk(u(xk(α))wkd(α))∗Lk(u(xk(β))wkd(β))

∥∥∥∥∥
1/2

Lp/2(A)

,

where the last identity uses (17) and the fact that Lk is a B-module map. Recall
that the Lk’s in the last term on the right-hand side are acting on the amplified
algebra A ⊗̄B(�2) since the range of u is C∞(B). Now the desired inequality fol-
lows after applying Lemma 2.5 and Remark 2.6 (acting on this amplified algebra)
and undoing the identities used above. The proof is complete. �

REMARK 3.4. In our definition of the spaces Lr
p(A ⊗B A,E) and Lc

p(A ⊗B

A,E), as well as in Lemmas 3.2 and 3.3, we have used tensors x ⊗ w with x ∈ A
and w ∈ Lp(A). Note that, according to the definition of the inner product 〈〈·, ·〉〉, it
is relevant to distinguish between the first and second components of these tensors.
However, in some forthcoming results (see, e.g., the proof of Lemma 3.5 below)
we shall need to work with tensors x ⊗w, where x ∈ Lp(A) and w ∈ A. Thus, we
have to understand which element of Lr

p(A ⊗B A,E) or Lc
p(A ⊗B A,E) do we

mean when writing x ⊗ w. Let us consider a sequence (xn)n≥1 in A such that

xnd
1/p
φ → x as n → ∞

in Lp(A). Then we set

x ⊗ w = lim
n→∞xn ⊗ d

1/p
φ w.

To make sure our definition makes sense, we must see that the sequence on the
right converges in the norms of Lr

p(A ⊗B A,E) and Lc
p(A ⊗B A,E). Let us see

this for the first space, the other follows in the same way. By completeness, it
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suffices to show that we have a Cauchy sequence. This easily follows since

‖(xn − xm) ⊗ d
1/p
φ w‖Lr

p(A⊗BA,E)

= ∥∥w∗d1/p
φ E

(
(xn − xm)∗(xn − xm)

)
d

1/p
φ w

∥∥1/2
Lp/2(A)

≤ ‖w‖A
∥∥d1/p

φ E
(
(xn − xm)∗(xn − xm)

)
d

1/p
φ

∥∥1/2
Lp/2(B)

≤ ‖w‖A‖(xn − xm)d
1/p
φ ‖Lp(A)

and the right-hand side converges to 0 as n,m → ∞.

3.1. Preliminary estimates. This paragraph is devoted to some necessary esti-
mates that will be used below. In the following we shall use the notation already
defined in the Introduction:∥∥∥∥∥∑

k,α

bk(α)〈ak(α)|
∥∥∥∥∥
p

=
∥∥∥∥∥
( ∑

i,j,α,β

bi(α)E(ai(α)aj (β)∗)bj (β)∗
)1/2∥∥∥∥∥

p

,

∥∥∥∥∥∑
k,α

|ak(α)〉bk(α)

∥∥∥∥∥
p

=
∥∥∥∥∥
( ∑

i,j,α,β

bi(α)∗E(ai(α)∗aj (β))bj (β)

)1/2∥∥∥∥∥
p

.

In other words,∥∥∥∥∥∑
k,α

bk(α)〈ak(α)|
∥∥∥∥∥
p

=
∥∥∥∥∥∑

k,α

ak(α) ⊗ bk(α)

∥∥∥∥∥
Lr

p(A⊗BA,E)

,

∥∥∥∥∥∑
k,α

|ak(α)〉bk(α)

∥∥∥∥∥
p

=
∥∥∥∥∥∑

k,α

ak(α) ⊗ bk(α)

∥∥∥∥∥
Lc

p(A⊗BA,E)

.

LEMMA 3.5. Let 2 ≤ p,q ≤ ∞ be two indices related by 1/2 = 1/p + 1/q .
Let xk(α) be a mean-zero element in Ak for each 1 ≤ k ≤ n and α running over a
finite set �. Let wk(α) ∈ PA(d) for some d ≥ 0 and satisfying Rk(wk(α)) = 0 for
all 1 ≤ k ≤ n and every α ∈ �. Then∥∥∥∥∥∑

k,α

wk(α)Lkxk(α)d
1/p
φ

∥∥∥∥∥
B(Lq(A),L2(A))

≤
∥∥∥∥∥∑

k,α

|wk(α)〉xk(α)d
1/p
φ

∥∥∥∥∥
p

,

∥∥∥∥∥∑
k,α

wk(α)(1 − Lk)xk(α)d
1/p
φ

∥∥∥∥∥
B(Lq(A),L2(A))

≤ cd2

∥∥∥∥∥∑
k,α

wk(α)〈xk(α)d
1/p
φ |

∥∥∥∥∥
p

.

PROOF. In what follows we use x′
k(α) = xk(α)d

1/p
φ . Given z ∈ Lq(A), we

have

hk(α) = x′
k(α)z ∈ L2(A)
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and the vector Lkhk(α) is a linear combination of reduced words in L2(A) starting
with a mean-zero letter in Ak . Therefore, since Rk(wk(α)) = 0, the operator wk(α)

acts on Lkhk(α) by tensoring from the left. In particular, the (d + 1)-th letter in
the words of wk(α)Lkhk(α) is always in Ak and the inequality below follows from
freeness by using (3), (17) and that Lk commutes with B like in step 1, Lemma 2.5:∥∥∥∥∥

(∑
k,α

wk(α)Lkx
′
k(α)

)
(z)

∥∥∥∥∥
2

2

= ∑
i,j,α,β

trA(hi(α)∗Liwi(α)∗wj(β)Ljhj (β))

= ∑
k,α,β

trA(hk(α)∗LkE(wk(α)∗wk(β))Lkhk(β))

≤ ∑
k,α,β

trA(hk(α)∗E(wk(α)∗wk(β))hk(β))

= trA

(
z∗ ∑

i,j,α,β

x′
i (α)∗E(wi(α)∗wj(β))x′

j (β)z

)

≤ ‖z‖2
q

∥∥∥∥∥ ∑
i,j,α,β

x′
i (α)∗E(wi(α)∗wj(β))x′

j (β)

∥∥∥∥∥
p/2

.

This proves the first inequality.
Let us prove the second one. According to Lemma 3.1, we know that the spaces

Lr
p(A ⊗B A,E) form an interpolation scale for 2 ≤ p ≤ ∞. Moreover, it follows

from Lemma 3.3 that the spaces Zr
p,d also form (up to a constant cd2) an interpo-

lation scale for 2 ≤ p ≤ ∞. Therefore, since (see Remark 3.4)∥∥∥∥∥∑
k,α

wk(α)〈xk(α)d
1/p
φ |

∥∥∥∥∥
p

=
∥∥∥∥∥∑

k,α

xk(α)d
1/p
φ ⊗ wk(α)

∥∥∥∥∥
Zr

p,d

,

it suffices to see (by complex interpolation) that the assertion holds when p = 2
and p = ∞ with some constant not depending on d . Let us use the same termi-
nology for x′

k(α) as above. If p = 2, we have q = ∞ and the triangle inequality
gives ∥∥∥∥∥∑

k,α

wk(α)(1 − Lk)x
′
k(α)

∥∥∥∥∥
B(L∞(A),L2(A))

≤
∥∥∥∥∥∑

k,α

wk(α)x′
k(α)

∥∥∥∥∥
B(L∞(A),L2(A))

+
∥∥∥∥∥∑

k,α

wk(α)Lkx
′
k(α)

∥∥∥∥∥
B(L∞(A),L2(A))

.
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The first term equals∥∥∥∥∥∑
k,α

wk(α)x′
k(α)

∥∥∥∥∥
2

=
( ∑

i,j,α,β

trA[wi(α)x′
i (α)x′

j (β)∗wj(β)∗]
)1/2

=
( ∑

i,j,α,β

trA[wi(α)E(x′
i (α)x′

j (β)∗)wj (β)∗]
)1/2

=
∥∥∥∥∥∑

k,α

wk(α)〈x′
k(α)|

∥∥∥∥∥
2

.

Indeed, since we have Rk(wk(α)) = 0, the first trace above vanishes for i = j

since in that case wi(α)x′
i (α)x′

j (β)∗wj(β)∗ is a homogeneous free polynomial of
degree (2d + 2). On the other hand, if i = j , the second trace also vanishes since
E(x′

i (α)x′
j (β)∗) does. Thus, to justify the second inequality above, it remains to

consider the case i = j . However, using again the hypothesis Rk(wk(α)) = 0, we
find by freeness

trA
[
wk(α)

(
x′
k(α)x′

k(β)∗ − E(x′
k(α)x′

k(β)∗)
)
wk(β)∗

] = 0.

To estimate the second term, we use the first inequality proved in this lemma:∥∥∥∥∥∑
k,α

wk(α)Lkx
′
k(α)

∥∥∥∥∥
2

B(L∞(A),L2(A))

≤
∥∥∥∥∥∑

k,α

|wk(α)〉x′
k(α)

∥∥∥∥∥
2

2

= ∑
i,j,α,β

trA(x′
i (α)∗E(wi(α)∗wj(β))x′

j (β))

= ∑
i,j,α,β

trA(x′
i (α)∗wi(α)∗wj(β)x′

j (β))

= ∑
i,j,α,β

trA(wj (β)x′
j (β)x′

i (α)∗wi(α)∗)

= ∑
i,j,α,β

trA(wj (β)E(x′
j (β)x′

i (α)∗)wi(α)∗)

=
∥∥∥∥∥∑

k,α

wk(α)〈x′
k(α)|

∥∥∥∥∥
2

2

.

The second and fourth identities above can be justified using again our hypothesis
Rk(wk(α)) = 0 and freeness in the same way we did above to deal with the first
term. Therefore, we have proved that∥∥∥∥∥∑

k,α

wk(α)(1 − Lk)x
′
k(α)

∥∥∥∥∥
B(L∞(A),L2(A))

≤ 2

∥∥∥∥∥∑
k,α

wk(α)〈x′
k(α)|

∥∥∥∥∥
2

.



ROSENTHAL TYPE INEQUALITIES FOR FREE CHAOS 1413

To prove the assertion for p = ∞ and q = 2, we first note that

(1 − Lk)xk(α) = (1 − Lk)xk(α)Lk.

This implies∥∥∥∥∥∑
k,α

wk(α)(1 − Lk)xk(α)

∥∥∥∥∥
2

B(L2(A),L2(A))

=
∥∥∥∥∥∑

k,α

wk(α)(1 − Lk)xk(α)Lk

∥∥∥∥∥
2

∞

=
∥∥∥∥∥ ∑
k,α,β

wk(α)(1 − Lk)xk(α)xk(β)∗(1 − Lk)wk(β)∗
∥∥∥∥∥∞

=
∥∥∥∥∥ ∑
k,α,β

wk(α)(1 − Lk)E(xk(α)xk(β)∗)(1 − Lk)wk(β)∗
∥∥∥∥∥∞

≤
∥∥∥∥∥ ∑
k,α,β

wk(α)E(xk(α)xk(β)∗)wk(β)∗
∥∥∥∥∥∞

,

as Lk commutes with B. Hence, we have seen that∥∥∥∥∥∑
k,α

wk(α)(1 − Lk)xk(α)

∥∥∥∥∥
B(L2(A),L2(A))

≤
∥∥∥∥∥∑

k,α

wk(α)〈xk(α)|
∥∥∥∥∥∞

.

This proves the assertion for p = ∞. The general case follows by interpolation.
�

3.2. Proofs of Theorems B and C. Now we prove the second major result of
this paper, a length-reduction formula for homogeneous polynomials on free ran-
dom variables. As a consequence, we extend the main results in [27, 37].

PROOF OF THEOREM B. The second reduction formula clearly follows from
the first one by taking adjoints. Thus, it suffices to prove the first reduction formula.
We begin by proving the upper estimate. If 1/p + 1/q = 1/2, we have∥∥∥∥∥∑

k,α

wk(α)xk(α)

∥∥∥∥∥
Lp(A)

=
∥∥∥∥∥∑

k,α

wk(α)xk(α)

∥∥∥∥∥
B(Lq(A),L2(A))

≤
∥∥∥∥∥∑

k,α

wk(α)Lkxk(α)

∥∥∥∥∥
B(Lq(A),L2(A))

+
∥∥∥∥∥∑

k,α

wk(α)(1 − Lk)xk(α)

∥∥∥∥∥
B(Lq(A),L2(A))

.
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If we approximate xk(α) by elements of the form

zk(α)d
1/p
φ with zk(α) ∈ ◦

Ak,

the upper estimate follows from the inequalities in Lemma 3.5:∥∥∥∥∥∑
k,α

wk(α)xk(α)

∥∥∥∥∥
Lp(A)

≤
∥∥∥∥∥∑

k,α

|wk(α)〉xk(α)

∥∥∥∥∥
p

+ cd2

∥∥∥∥∥∑
k,α

wk(α)〈xk(α)|
∥∥∥∥∥
p

.

To prove the lower estimate, we use the projection

	A(p, d) :Lp(A) → QA(p, d),

which, according to Remark 2.2, is bounded by 2d + 1. Then we observe∑
i,j,α,β

xi(α)∗E(wi(α)∗wj(β))xj (β) = 	A(p/2,2)(a∗a)(19)

for a = ∑
k,α wk(α)xk(α) ∈ Lp(A). Indeed, the proof of this fact goes essentially

as the proof of Lemma 2.3, recalling that Rk(wk(α)) = 0. In particular, we deduce∥∥∥∥∥∑
k,α

|wk(α)〉xk(α)

∥∥∥∥∥
p

= ‖	A(p/2,2)(a∗a)‖1/2
p/2 ≤ √

5

∥∥∥∥∥∑
k,α

wk(α)xk(α)

∥∥∥∥∥
p

.

Thus, it remains to prove the estimate∥∥∥∥∥∑
k,α

wk(α)〈xk(α)|
∥∥∥∥∥
p

≤ √
4d + 1

∥∥∥∥∥∑
k,α

wk(α)xk(α)

∥∥∥∥∥
p

.

To that aim, we use again the projection 	A(p/2,2d) and Remark 2.2:∥∥∥∥∥∑
k,α

wk(α)〈xk(α)|
∥∥∥∥∥

2

p

=
∥∥∥∥∥ ∑
i,j,α,β

wi(α)E(xi(α)xj (β)∗)wj (β)∗
∥∥∥∥∥
p/2

=
∥∥∥∥∥	A(p/2,2d)

[(∑
k,α

wk(α)xk(α)

)(∑
k,α

wk(α)xk(α)

)∗]∥∥∥∥∥
p/2

,

where the last identity follows again by the same argument outline above for (19).
Therefore, the assertion follows from the estimate ‖	A(p/2,2d)‖ ≤ 4d + 1. �

Our aim now is to iterate Theorem B to obtain a Khintchine type inequal-
ity, stated as Theorem C in the Introduction, which generalizes the main results
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of [3, 27, 37]. Before that, we analyze in more detail the meaning of the brackets
| 〉 and 〈 |. That is, according to the mapping u :A → C∞(B), we can always write

|a〉 = u(a) and 〈a| = u(a∗)∗.(20)

This remark allows us to combine the brackets | 〉 and 〈 |. In particular, our expres-
sions for the norms �1 and �2 in the statement of Theorem C (cf. the Introduction)
are explained by (18) and (20). Moreover, we can iterate them as we will often do
in the sequel. That is, we shall write ‖x〉z〉 for u(u(x)z), where the first u acts on
the amplified algebra A ⊗̄B(�2) due to the fact that u(x) ∈ C∞(B); see the last
part of the proof of Lemma 3.3 for a similar situation. Of course, taking adjoints,
we also have a meaning for iterated bracket 〈z〈x‖.

LEMMA 3.6. Let 2 ≤ p ≤ ∞ and let xk(α), zk(α) and wk(α) be homogeneous
free polynomials of degree d1, d2 and d3 respectively for all 1 ≤ k ≤ n and α run-
ning over a finite set �. Assume that

∑
k,α xk(α)zk(α)wk(α) ∈ Lp(A). Then, if

Rk(xk(α)) = xk(α) and Lk(zk(α)) = 0 for all (k,α), we have∥∥∥∥∥∑
k,α

∣∣|xk(α)〉zk(α)
〉
wk(α)

∥∥∥∥∥
Cp(Cp(Lp(A)))

=
∥∥∥∥∥∑

k,α

|xk(α)zk(α)〉wk(α)

∥∥∥∥∥
Cp(Lp(A))

.

Similarly, we have the following:

• if Lk(xk(α)) = xk(α) and Rk(zk(α)) = 0,∥∥∥∥∥∑
k,α

wk(α)
〈
zk(α)〈xk(α)|∣∣∥∥∥∥∥

p

=
∥∥∥∥∥∑

k,α

wk(α)〈zk(α)xk(α)|
∥∥∥∥∥
p

;

• if Rk(xk(α)) = 0 and Lk(zk(α)) = zk(α),∥∥∥∥∥∑
k,α

∣∣|xk(α)〉zk(α)
〉
wk(α)

∥∥∥∥∥
p

=
∥∥∥∥∥∑

k,α

|xk(α)zk(α)〉wk(α)

∥∥∥∥∥
p

;

• if Lk(xk(α)) = 0 and Rk(zk(α)) = zk(α),∥∥∥∥∥∑
k,α

wk(α)
〈
zk(α)〈xk(α)|∣∣∥∥∥∥∥

p

=
∥∥∥∥∥∑

k,α

wk(α)〈zk(α)xk(α)|
∥∥∥∥∥
p

.

PROOF. By freeness, we have∥∥∥∥∥∑
k,α

|xk(α)zk(α)〉wk(α)

∥∥∥∥∥
p

=
∥∥∥∥∥
( ∑

i,j,α,β

wi(α)∗E(zi(α)∗xi(α)∗xj (β)zj (β))wj (β)

)1/2∥∥∥∥∥
p

=
∥∥∥∥∥
( ∑

i,j,α,β

wi(α)∗E(zi(α)∗E(xi(α)∗xj (β))zj (β))wj (β)

)1/2∥∥∥∥∥
p

.
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Thus, using the defining property of u :A → C∞(B), we obtain∥∥∥∥∥∑
k,α

|xk(α)zk(α)〉wk(α)

∥∥∥∥∥
p

=
∥∥∥∥∥∑

k,α

u(u(xk(α))zk(α))wk(α)

∥∥∥∥∥
p

=
∥∥∥∥∥∑

k,α

∣∣|xk(α)〉zk(α)
〉
wk(α)

∥∥∥∥∥
p

.

The three remaining identities follow similarly. This completes the proof. �

In the proof of Theorem C below, we shall use a shorter notation to write sums
like those appearing in the term �2 (see the statement of Theorem C in the Intro-
duction) as follows. For a fixed value k of js in {1,2, . . . , n}, we shall write∑

1≤j1 =···=js−1≤n

1≤js+1 =···=jd≤n

js−1 =js=k =js+1

as
∑

j1 =···=jd

[js=k]

.

PROOF OF THEOREM C. The case of degree 1 follows automatically from
Theorem A. Now we proceed by induction on d . Assume the assertion is true for
degree d − 1 with relevant constant Cp(d − 1). Then we apply Theorem B and
obtain

‖x‖p ∼cd2

∥∥∥∥∥∑
α∈�

∑
j1 =···=jd

xj1(α)〈xj2(α) · · ·xjd
(α)|

∥∥∥∥∥
p

+
∥∥∥∥∥∑
α∈�

∑
j1 =···=jd

|xj1(α)〉xj2(α) · · ·xjd
(α)

∥∥∥∥∥
p

= A + B.

The resulting terms are homogeneous polynomials of degree 1 and d − 1 re-
spectively. The first one belongs to Rp(Lp(A)), while the second one lives in
Cp(Lp(A)). We estimate the first term by applying Theorem A (with d = 1) one
more time on the amplified space Sp(Lp(A)):

A ∼c

∥∥∥∥∥∑
α∈�

∑
j1 =···=jd

〈
xj1(α)〈xj2(α) · · ·xjd

(α)|∣∣∥∥∥∥∥
p

+
∥∥∥∥∥∑
α∈�

∑
j1 =···=jd

∣∣xj1(α)〈xj2(α) · · ·xjd
(α)|〉∥∥∥∥∥

p

+
(

n∑
k=1

∥∥∥∥∥∑
α∈�

∑
j1 =···=jd

[j1=k]

xk(α)〈xj2(α) · · ·xjd
(α)|

∥∥∥∥∥
p

p

)1/p

.



ROSENTHAL TYPE INEQUALITIES FOR FREE CHAOS 1417

According to Lemma 3.6 and the fact that u :A → C∞(B) is a right B-module
map, we easily obtain

A ∼c

∥∥∥∥∥∑
α∈�

∑
j1 =···=jd

〈xj1(α)xj2(α) · · ·xjd
(α)|

∥∥∥∥∥
p

+
∥∥∥∥∥∑
α∈�

∑
j1 =···=jd

|xj1(α)〉〈xj2(α) · · ·xjd
(α)|

∥∥∥∥∥
p

(21)

+
(

n∑
k=1

∥∥∥∥∥∑
α∈�

∑
j1 =···=jd

[j1=k]

xk(α)〈xj2(α) · · ·xjd
(α)|

∥∥∥∥∥
p

p

)1/p

.

On the other hand, the induction hypothesis gives B ∼Cp(d−1) B1 + B2 with

B1 =
d∑

s=1

∥∥∥∥∥ ∑
α,j1 =···=jd

∣∣|xj1(α)〉 · · ·xjs (α)
〉〈xjs+1(α) · · ·xjd

(α)|
∥∥∥∥∥
p

,

and B2 given by

d∑
s=2

(
n∑

k=1

∥∥∥∥∥∑
α∈�

∑
j1 =···=jd

[js=k]

∣∣|xj1(α)〉 · · ·xjs−1(α)
〉
xjs (α)〈xjs+1(α) · · ·xjd

(α)|
∥∥∥∥∥
p

p

)1/p

.

Moreover, the expressions above are simplified by means of Lemma 3.6 as follows:

B1 =
d∑

s=1

∥∥∥∥∥ ∑
α,j1 =···=jd

|xj1(α) · · ·xjs (α)〉〈xjs+1(α) · · ·xjd
(α)|

∥∥∥∥∥
p

,

B2 =
d∑

s=2

(
n∑

k=1

∥∥∥ ∑
α∈�

∑
j1 =···=jd

[js=k]

|xj1(α) · · ·〉xjs (α)〈· · ·xjd
(α)|

∥∥∥∥∥
p

p

)1/p

.

Then we note that the first and third terms in (21) are the ones which are missing
in B1 and B2 respectively to obtain �1 +�2, while the middle term in (21) already
appears in B1. Thus, we conclude that

‖x‖p ∼Cp(d) �1 + �2,

where, after keeping track of the constants, we see that Cp(d) is controlled by

Cp(d) ≤ cd2Cp(d − 1).

Therefore, the bound Cp(d) ≤ cdd!2 follows from the recurrence above. �
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REMARK 3.7. From a more functional analytical point of view, the right-hand
side of Theorem C can be regarded as the norm of x in an operator space which
is the result of intersecting 2d + 1 operator spaces; see [3, 27, 37] for more ex-
plicit descriptions of these constructions. We do not state this result in detail since
the notation becomes considerably more complicated. However, equipped with the
description given in [37] and with Theorem C, it is not difficult to rephrase The-
orem C as a complete isomorphism between PA(p, d) and certain p-direct sum
of Haagerup tensor products of (subspaces of) Lp-spaces. Moreover, arguing as
in [27], we could extend Theorem C to 1 ≤ p ≤ 2 just replacing intersections by
sums of operator spaces. The same observation is valid for Theorem A.

REMARK 3.8. The constant cdd!2 is far from being optimal. Nevertheless, we
can improve the constant in the lower estimate of Theorem C. To that aim, we use
the projection 	A(p/2,2s) :Lp/2(A) → QA(p/2,2s) so that 	A(p/2,2s)(xx∗)
has the form∑

ik,jk,α,β

xi1(α) · · ·xis (α)E(· · ·xid (α)xjd
(β)∗ · · ·)xjs (β)∗ · · ·xj1(β)∗.

A similar expression holds for 	A(p/2,2(d − s))(x∗x):∑
ik,jk,α,β

xid (α)∗ · · ·xis+1(α)∗E(· · ·xi1(α)∗xj1(β) · · ·)xjs+1(β) · · ·xjd
(β).

Therefore, since 	A(p/2,2d) is bounded with constant 4d + 1, we find∥∥∥∥∥∑
α∈�

∑
j1 =···=jd

xj1(α) · · ·xjs (α)〈xjs+1(α) · · ·xjd
(α)|

∥∥∥∥∥
p

≤ √
4s + 1‖x‖p,

∥∥∥∥∥∑
α∈�

∑
j1 =···=jd

|xj1(α) · · ·xjs (α)〉xjs+1(α) · · ·xjd
(α)

∥∥∥∥∥
p

≤ √
4(d − s) + 1‖x‖p.

In particular, since min(s, d − s) ≤ d/2, we deduce∥∥∥∥∥∑
α∈�

∑
j1 =···=jd

|xj1(α) · · ·xjs (α)〉〈xjs+1(α) · · ·xjd
(α)|

∥∥∥∥∥
p

≤ √
2d + 1‖x‖p.

Therefore, we have proved the estimate

�1 ≤ (d + 1)
√

2d + 1‖x‖p.

Similarly, using 	A(p/2,2) as in the proof of Theorem B, we obtain∥∥∥∥∥
n∑

js=1

∑
α∈�

∑
j1 =···=jd

|xj1(α) · · ·xjs−1(α)〉xjs (α)〈xjs+1(α) · · ·xjd
(α)|

∥∥∥∥∥
p
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≤ √
5

∥∥∥∥∥
n∑

js=1

∑
α∈�

∑
j1 =···=jd

xj1(α) · · ·xjs (α)〈xjs+1(α) · · ·xjd
(α)|

∥∥∥∥∥
p

≤ √
10d + 5‖x‖p.

Hence, according to (12), we deduce

�2 ≤ 12d2
√

10d + 5‖x‖p.

Motivated by the results in [37], we conjecture that the growth of the constant in
the upper estimate of Theorem C should also be polynomial on d . However, at the
time of this writing we cannot prove this.

REMARK 3.9. Theorem C also generalizes the main results in [3, 27]. Indeed,
note that Theorem C uses 2d + 1 terms in contrast with the d + 1 terms in [27].
However, in the particular case of free generators, it is easily seen that the terms
associated to �1 (exactly the d + 1 terms appearing in [27]) dominate the terms
in �2. We refer the reader to the proofs of Lemma 4.1 and Theorem F below for
computations very similar to the ones we are omitting here. Given 2 ≤ p ≤ ∞
and as a consequence of Theorem C and Remark 3.8, we can rephrase the Khint-
chine inequality in [27] as the following equivalence for any operator valued d-
homogeneous polynomial x on the free generators λ(g1), λ(g2), . . . , λ(gn):

cd−3/2�1 ≤ ‖x‖p ≤ cdd!2�1.

4. Square functions. Now we apply our length-reduction formula to study
square functions associated to free martingales. All martingales in this section are
adapted to the free filtration, the natural filtration of a reduced product already de-
fined in the Introduction. More precisely, according to the Khintchine and Rosen-
thal inequalities for free random variables, it is natural to ask whether or not the
Burkholder–Gundy inequality [34] holds in the free setting for p = ∞; see also
[17] for the nonsemifinite case and [28, 36] for the weak type (1,1) inequality
associated to it. In this section we find a counterexample to this question. The
following is the key step.

LEMMA 4.1. Let Ak = L∞(−2,2) for k = 0,1,2, . . . equipped with the
Wigner measure, and let A = A0 ∗ A1 ∗ A2 · · · be the associated reduced free prod-
uct equipped with the n.f. tracial state φ. Consider a free family of semicircular
elements wk ∈ A2k−1 and w′

k ∈ A2k for k ≥ 1. Given an integer n, fix a mean-zero
element f in A0 such that

‖f ‖L2(A0) = 1/
√

n and ‖f ‖L∞(A0) = 1.

Let aij ∈ B(�2) and

x2n = ∑
1≤i,j≤n

aij ⊗ wif w′
j ∈ B(�2) ⊗ A.
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Then

‖x2n‖B(�2)⊗̄A ∼c

∥∥∥∥∥ ∑
1≤i,j≤n

aij ⊗ eij

∥∥∥∥∥
B(�2)⊗minB(�2)

.

PROOF. By Remark 1.1, we have

B(�2) ⊗̄A = (
B(�2) ⊗̄A0

) ∗B(�2)

(
B(�2) ⊗̄A1

) ∗B(�2)

(
B(�2) ⊗̄A2

) ∗B(�2) · · · .
According to this isometry, we rewrite x2n as follows:

x2n = ∑
i,j

aij ⊗ wif w′
j = ∑

i,j

(aij ⊗ wi)(1 ⊗ f )(1 ⊗ w′
j ) = ∑

i,j

xij yzj .

In particular, Theorem C gives the following equivalence for E = φ ⊗ idB(�2):

‖x2n‖B(�2)⊗̄A ∼c ‖E(x2nx
∗
2n)‖1/2∞ + ‖E(x∗

2nx2n)‖1/2∞

+
∥∥∥∥∥

n∑
i,j=1

xij 〈yzj |
∥∥∥∥∥∞

+
∥∥∥∥∥

n∑
i,j=1

|xij y〉zj

∥∥∥∥∥∞

+
∥∥∥∥∥

n∑
i,j=1

|xij y〉〈zj |
∥∥∥∥∥∞

+
∥∥∥∥∥

n∑
i,j=1

|xij 〉〈yzj |
∥∥∥∥∥∞

+
∥∥∥∥∥

n∑
i,j=1

|xij 〉y〈zj |
∥∥∥∥∥∞

= A + B + C + D + E + F + G.

It is clear that

A =
∥∥∥∥∥∑
ijkl

aij a
∗
klφ(wif w′

jw
′
lf

∗wk)

∥∥∥∥∥
1/2

∞
=

∥∥∥∥∥∑
ij

aij a
∗
ijφ(wif w

′2
j f ∗wi)

∥∥∥∥∥
1/2

∞
.

Since φ(w2
k) = φ(w′2

k ) = 1, this gives

A = ‖f ‖2

∥∥∥∥∥
n∑

i,j=1

aij a
∗
ij

∥∥∥∥∥
1/2

∞
= 1√

n

∥∥∥∥∥
n∑

i,j=1

aij ⊗ e1,ij

∥∥∥∥∥
B(�2)⊗minB(�2)

.

The same argument gives rise to the identity

B = 1√
n

∥∥∥∥∥
n∑

i,j=1

aij ⊗ eij,1

∥∥∥∥∥
B(�2)⊗minB(�2)

.
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Let us estimate the term C:

C =
∥∥∥∥∥∑
ijkl

xij E(yzj z
∗
l y

∗)x∗
kl

∥∥∥∥∥
1/2

∞

=
∥∥∥∥∥∑
ijkl

aij a
∗
kl ⊗ wiφ(f w′

jw
′
lf

∗)wk

∥∥∥∥∥
1/2

∞

= ‖f ‖2

∥∥∥∥∥
n∑

j=1

e1j ⊗
(

n∑
i=1

aij ⊗ wi

)∥∥∥∥∥∞

= ‖f ‖2

∥∥∥∥∥
n∑

i=1

(
n∑

j=1

aij ⊗ e1j

)
⊗ wi

∥∥∥∥∥∞
.

Now, applying the Khintchine inequality for free random variables [10],

C ∼ ‖f ‖2 max

{∥∥∥∥∥
n∑

i=1

(
n∑

j=1

aij ⊗ e1j

)
⊗ e1i

∥∥∥∥∥∞
,

∥∥∥∥∥
n∑

i=1

(
n∑

j=1

aij ⊗ e1j

)
⊗ ei1

∥∥∥∥∥∞

}

= ‖f ‖2 max

{∥∥∥∥∥
n∑

i,j=1

aij ⊗ e1,ij

∥∥∥∥∥
B(�2)⊗minB(�2)

,

∥∥∥∥∥
n∑

i,j=1

aij ⊗ eij

∥∥∥∥∥
B(�2)⊗minB(�2)

}
.

Again, the same argument gives

D ∼ ‖f ‖2 max

{∥∥∥∥∥
n∑

i,j=1

aij ⊗ eij,1

∥∥∥∥∥
B(�2)⊗minB(�2)

,

∥∥∥∥∥
n∑

i,j=1

aij ⊗ eij

∥∥∥∥∥
B(�2)⊗minB(�2)

}
.

The term E is calculated as follows:

E =
∥∥∥∥∥∑
ijkl

u(xij y)E(zj z
∗
l )u(xkly)∗

∥∥∥∥∥
1/2

∞

=
∥∥∥∥∥

n∑
j=1

(
n∑

i=1

u(aij ⊗ wif )

)(
n∑

k=1

u(akj ⊗ wkf )

)∗∥∥∥∥∥
1/2

∞

=
∥∥∥∥∥

n∑
j=1

e1j ⊗
(

n∑
i=1

u(aij ⊗ wif )

)∥∥∥∥∥∞

=
∥∥∥∥∥

n∑
i,j=1

eij ⊗
(

n∑
r,s=1

a∗
riφ(f ∗wrwsf )asj

)∥∥∥∥∥
1/2

∞

= ‖f ‖2

∥∥∥∥∥
n∑

i,j=1

aij ⊗ eij

∥∥∥∥∥
B(�2)⊗minB(�2)

= 1√
n

∥∥∥∥∥
n∑

i,j=1

aij ⊗ eij

∥∥∥∥∥
B(�2)⊗minB(�2)

.
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The same identity holds for F:

F = 1√
n

∥∥∥∥∥
n∑

i,j=1

aij ⊗ eij

∥∥∥∥∥
B(�2)⊗minB(�2)

.

The calculation of G is very similar:

G =
∥∥∥∥∥∑
ijkl

u(xij )yE(zj z
∗
l )y

∗u(xkl)
∗
∥∥∥∥∥

1/2

∞

=
∥∥∥∥∥

n∑
j=1

(
n∑

i=1

u(aij ⊗ wi)y

)(
n∑

k=1

u(akj ⊗ wk)y

)∗∥∥∥∥∥
1/2

∞

=
∥∥∥∥∥

n∑
j=1

e1j ⊗
(

n∑
i=1

u(aij ⊗ wi)y

)∥∥∥∥∥∞

=
∥∥∥∥∥

n∑
i,j=1

eij ⊗
(

n∑
r,s=1

a∗
riasj ⊗ f ∗φ(wrws)f

)∥∥∥∥∥
1/2

∞

= ‖f ‖∞
∥∥∥∥∥

n∑
i,j=1

aij ⊗ eij

∥∥∥∥∥
B(�2)⊗minB(�2)

=
∥∥∥∥∥

n∑
i,j=1

aij ⊗ eij

∥∥∥∥∥
B(�2)⊗minB(�2)

.

On the other hand, we observe that the maps on B(�2) ⊗min B(�2) ⊗min B(�2),

n∑
i,j=1

aij ⊗ ei1 ⊗ e1j �→
n∑

i,j=1

aij ⊗ e1i ⊗ e1j ,

n∑
i,j=1

aij ⊗ ei1 ⊗ e1j �→
n∑

i,j=1

aij ⊗ ei1 ⊗ ej1,

have norm
√

n. Indeed, this follows automatically from the well-known fact that
the natural mappings Rn → Cn and Cn → Rn between n-dimensional row and col-
umn Hilbert spaces are completely bounded with cb-norm

√
n; see, for example,

[7] or [32] for the proof. Thus, we deduce∥∥∥∥∥
n∑

i,j=1

aij ⊗ e1,ij

∥∥∥∥∥
B(�2)⊗minB(�2)

≤ √
n

∥∥∥∥∥
n∑

i,j=1

aij ⊗ eij

∥∥∥∥∥
B(�2)⊗minB(�2)

,

∥∥∥∥∥
n∑

i,j=1

aij ⊗ eij,1

∥∥∥∥∥
B(�2)⊗minB(�2)

≤ √
n

∥∥∥∥∥
n∑

i,j=1

aij ⊗ eij

∥∥∥∥∥
B(�2)⊗minB(�2)

.

The assertion follows easily from these inequalities and the estimates above. �
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The idea to find our counterexample follows an argument from [34]. We con-
sider a suitable martingale for which the Burkholder–Gundy inequality implies an
upper estimate for the triangular projection on B(�n

2). This gives the logarithmic
growth stated in Theorem D. After the proof of our counterexample or Theorem D,
we shall study the reverse estimate for free martingales whose martingale differ-
ences are polynomials of a bounded degree.

PROOF OF THEOREM D. Let us define

x2n = ∑
1≤i,j≤n

aijwif w′
j with aij ∈ C.

Here wi,f and w′
j are defined as in Lemma 4.1. Moreover, the enumeration given

in the statement of Lemma 4.1 for the algebras A0,A1,A2, . . . provides a natural
martingale structure for the x2n’s, that is, with respect to the natural filtration (Ak)

defined by Ak = A0 ∗ A1 ∗ A2 ∗ · · · ∗ Ak . An easy inspection gives the following
expressions valid for all k ≥ 0:

dx2k = ∑
1≤i≤k

aikwif w′
k and dx2k−1 = ∑

1≤j<k

akjwkf w′
j .(22)

We are interested in the best constant Kn for

max

{∥∥∥∥∥
( 2n∑

k=1

dxkdx∗
k

)1/2∥∥∥∥∥∞
,

∥∥∥∥∥
( 2n∑

k=1

dx∗
k dxk

)1/2∥∥∥∥∥∞

}
≤ Kn

∥∥∥∥∥
2n∑

k=1

dxk

∥∥∥∥∥∞
.

According to Lemma 4.1, we have∥∥∥∥∥
2n∑

k=1

dxk

∥∥∥∥∥∞
∼c

∥∥∥∥∥
n∑

i,j=1

aij eij

∥∥∥∥∥
B(�2)

.

On the other hand, we observe that∥∥∥∥∥
(

n∑
k=1

dx2kdx∗
2k

)1/2∥∥∥∥∥∞
=

∥∥∥∥∥
n∑

k=1

e1k ⊗ dx2k

∥∥∥∥∥∞
=

∥∥∥∥∥∑
i≤k

aike1k ⊗ wif w′
k

∥∥∥∥∥∞
,

∥∥∥∥∥
(

n∑
k=1

dx∗
2k−1dx2k−1

)1/2∥∥∥∥∥∞
=

∥∥∥∥∥
n∑

k=1

ek1 ⊗ dx2k−1

∥∥∥∥∥∞
=

∥∥∥∥∥∑
k>j

akj ek1 ⊗ wkf w′
j

∥∥∥∥∥∞
.

Thus, we may apply Lemma 4.1 one more time and obtain∥∥∥∥∥
(

n∑
k=1

dx2kdx∗
2k

)1/2∥∥∥∥∥∞
∼c

∥∥∥∥∥∑
i≤j

aij e1j ⊗ eij

∥∥∥∥∥
B(�2⊗�2)

=
∥∥∥∥∥

n∑
i,j=1
i≤j

aij eij

∥∥∥∥∥
B(�2)

,

∥∥∥∥∥
(

n∑
k=1

dx∗
2k−1dx2k−1

)1/2∥∥∥∥∥∞
∼c

∥∥∥∥∥∑
i>j

aij ei1 ⊗ eij

∥∥∥∥∥
B(�2⊗�2)

=
∥∥∥∥∥

n∑
i,j=1
i>j

aij eij

∥∥∥∥∥
B(�2)

.
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That is, Kn is bounded from below by c times the norm of the triangular projection
on B(�n

2). However, it is well known that the norm of the triangular projection
grows like logn; see, for example, [21]. This completes the proof. �

After Theorem D, it remains open to see whether or not the reverse estimate in
the Burkholder–Gundy inequalities holds for free martingales in L∞(A). In the
following result we give a partial solution to this problem. We will work with free
martingales (i.e., adapted to the free filtration) with martingale differences

dxk = ∑
α∈�

∑
j1 =···=jd

ak
j1

(α) · · ·ak
jd

(α) and ak
js

(α) ∈ ◦
Ajs ,(23)

where 1 ≤ j1, j2, . . . , jd ≤ k. Note that since dxk is a martingale difference with
respect to the free filtration, at least one of the jl’s has to be k. That is, we assume
that all the martingale differences are d-homogeneous free polynomials. We shall
refer to these kind of martingales as d-homogeneous free martingales. Moreover,
if x is a free martingale with dxk being a (not necessarily homogeneous) free poly-
nomial of degree d , we shall simply say that x is a d-polynomial free martingale.
We shall also use the following notation:

S∞(x, n) = max

{∥∥∥∥∥
(

n∑
k=1

dxkdx∗
k

)1/2∥∥∥∥∥∞
,

∥∥∥∥∥
(

n∑
k=1

dx∗
k dxk

)1/2∥∥∥∥∥∞

}
.

Our main tools in the following result are again Theorems A and B.

PROPOSITION 4.2. If x is a d-polynomial free martingale,∥∥∥∥∥
n∑

k=1

dxk

∥∥∥∥∥∞
≤ cdd2

√
d!S∞(x, n).

PROOF. Let us consider the inequality∥∥∥∥∥
n∑

k=1

dxk

∥∥∥∥∥∞
≤ C(d)S∞(x, n)(24)

valid for any d-homogeneous free martingale x with d ≥ 0. To prove (24) and
estimate C(d), we proceed by induction on d . Namely, for d = 0, we have dx1 =
E(x) and dxk = 0 for k = 2,3, . . . . In particular,∥∥∥∥∥

n∑
k=1

dxk

∥∥∥∥∥∞
= ‖dx1‖∞ ≤ S∞(x, n).

Therefore, (24) holds for d = 0 with C(0) = 1. If d = 1, we observe that
n∑

k=1

dxk =
n∑

k=1

Lk(dxk).
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Thus, Proposition 2.8 gives∥∥∥∥∥
n∑

k=1

dxk

∥∥∥∥∥∞
≤ 3 max

{∥∥∥∥∥
n∑

k=1

Lk(dxk)Lk(dxk)
∗
∥∥∥∥∥

1/2

∞
,

∥∥∥∥∥
n∑

k=1

Lk(dxk)
∗Lk(dxk)

∥∥∥∥∥
1/2

∞

}
.

This, combined with the proof of Lemma 2.5, gives rise to∥∥∥∥∥
n∑

k=1

dxk

∥∥∥∥∥∞
≤ 9S∞(x, n).

In particular, (24) holds for d = 1 with C(1) ≤ 9. Now we assume that (24) holds
for (d − 1)-homogeneous free martingales with some constant C(d − 1). To prove
(24) for a d-homogeneous free martingale x, we decompose the martingale differ-
ences by means of the mappings Lk as follows:∥∥∥∥∥

n∑
k=1

dxk

∥∥∥∥∥∞
≤

∥∥∥∥∥
n∑

k=1

Lk(dxk)

∥∥∥∥∥∞
+

∥∥∥∥∥
n∑

k=1

(idA − Lk)(dxk)

∥∥∥∥∥∞
= A + B.

The estimate

A ≤ 9S∞(x, n),(25)

follows as the inequality C(1) ≤ 9 above. On the other hand, we have

(idA − Lk)(dxk) = ∑
α∈�

k−1∑
j=1

xk
j (α)wk

j (α),

with xk
j (α) ∈ ◦

Aj and wk
j (α) ∈ PA(d − 1) satisfying Lj (w

k
j (α)) = 0. Indeed, this

follows from the fact that no word in (idA − Lk)(dxk) starts with a mean-zero
letter in Ak and that dxk ∈ Ak . Thus, we may write B in the form

B =
∥∥∥∥∥ ∑
(α,k)∈�

n−1∑
j=1

xj (α, k)wj (α, k)

∥∥∥∥∥∞
,

with � = � × {1,2, . . . , n} and

xj (α, k)wj (α, k) =
{ 0, if j ≥ k,

xk
j (α)wk

j (α), if j < k.

According to Theorem B, we obtain∥∥∥∥∥ ∑
(α,k),j

xj (α, k)wj (α, k)

∥∥∥∥∥∞
≤

∥∥∥∥∥ ∑
(α,k),j

xj (α, k)〈wj(α, k)|
∥∥∥∥∥∞

+
∥∥∥∥∥ ∑
(α,k),j

|xj (α, k)〉wj(α, k)

∥∥∥∥∥∞
= B1 + B2.
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Note that the constant 1 in the inequality above holds since we are only considering
the case (p, q) = (∞,2) in the proof of Theorem B. Let us start by estimating the
first term B1. We claim that

B2
1 =

∥∥∥∥∥
n∑

k=1

∑
α,β∈�

n−1∑
j1,j2=1

xj1(α, k)E(wj1(α, k)wj2(β, k)∗)xj2(β, k)∗
∥∥∥∥∥∞

.

To see this, it suffices to show that

E(wj1(α, k1)wj2(β, k2)
∗) = 0

for k1 = k2. Indeed, let us assume without lost of generality that k1 < k2. Then we
know by construction that wj1(α, k1) ∈ Ak1 and that wj2(β, k2) contains a mean-
zero letter in Ak2 with k2 > k1. Thus, our claim follows easily by freeness. Hence,
we may write the identity above as follows:

B1 =
∥∥∥∥∥

n∑
k=1

e1k ⊗ ∑
α∈�

k−1∑
j=1

xk
j (α)〈wk

j (α)|
∥∥∥∥∥∞

.

Arguing as in the proof of Theorem B, we obtain

B1 ≤ √
5

∥∥∥∥∥
n∑

k=1

e1k ⊗ ∑
α∈�

k−1∑
j=1

xk
j (α)wk

j (α)

∥∥∥∥∥∞

= √
5

∥∥∥∥∥
n∑

k=1

e1k ⊗ (idA − Lk)(dxk)

∥∥∥∥∥∞
(26)

≤ √
5

[∥∥∥∥∥
n∑

k=1

e1k ⊗ dxk

∥∥∥∥∥∞
+

∥∥∥∥∥
n∑

k=1

e1k ⊗ Lk(dxk)

∥∥∥∥∥∞

]
≤ 4

√
5S∞(x, n),

where the last inequality follows from Lemma 2.5 one more time.
To estimate B2, we observe that

n∑
k=1

∑
α∈�

k−1∑
j=1

|xk
j (α)〉wk

j (α)(27)

can be regarded as a sum of martingale differences on the von Neumann alge-
bra B(�2) ⊗̄A with respect to the index k and the filtration B(�2) ⊗̄A1,B(�2) ⊗̄
A2, . . . . Indeed, we have

idB(�2) ⊗ Ek−1

(∑
α∈�

k−1∑
j=1

|xk
j (α)〉wk

j (α)

)
= ∑

α∈�

k−1∑
j=1

|xk
j (α)〉Ek−1(w

k
j (α)) = 0.

Then, since (27) forms a (d − 1)-homogeneous free martingale, we may apply the
induction hypothesis and obtain in this way the following upper bound for B2:

C(d − 1)max

{∥∥∥∥∥
n∑

k=1

e1k ⊗ ∑
α,j

|xk
j (α)〉wk

j (α)

∥∥∥∥∥∞
,

∥∥∥∥∥
n∑

k=1

ek1 ⊗ ∑
α,j

|xk
j (α)〉wk

j (α)

∥∥∥∥∥∞

}
.
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Then, arguing as in the proof of Theorem B (2(2(d −1))+1 = 4d −3), we deduce

B2 ≤ √
4d − 3C(d − 1)

× max

{∥∥∥∥∥
n∑

k=1

e1k ⊗ (idA − Lk)(dxk)

∥∥∥∥∥∞
,

∥∥∥∥∥
n∑

k=1

ek1 ⊗ (idA − Lk)(dxk)

∥∥∥∥∥∞

}
.

The triangle inequality and Lemma 2.5 produce

B2 ≤ 4
√

4d − 3C(d − 1)S∞(x, n).(28)

Now (25), (26), (28) give

C(d) ≤ (
9 + 4

√
5

) + 4
√

4d − 3C(d − 1) ≤ c
√

dC(d − 1).

Iterating the recurrence and using C0 = 1, we find C(d) ≤ cd
√

d!. Therefore,∥∥∥∥∥
n∑

k=1

dxk

∥∥∥∥∥∞
≤ cd

√
d!S∞(x, n)(29)

for d-homogeneous free martingales.
Now let x be any d-polynomial free martingale x. We may decompose x into its

homogeneous parts dxk = ∑
s dxs

k with 0 ≤ s ≤ d . It is clear that dxs
1, dxs

2, dxs
3, . . .

are the martingale differences of an s-homogeneous free martingale xs . Therefore,
applying (29), we deduce∥∥∥∥∥

n∑
k=1

dxk

∥∥∥∥∥∞
≤

d∑
s=0

∥∥∥∥∥
n∑

k=1

dxs
k

∥∥∥∥∥∞
≤ ‖E(x)‖∞ +

d∑
s=1

cs
√

s!S∞(xs, n).

For the first term, we have

‖E(x)‖∞ = ‖E(E1(x))‖∞ ≤ ‖E1(x)‖∞ = ‖dx1‖∞ ≤ S∞(x, n).

The rest of the terms are estimated by Theorem 2.1:

S∞(xs, n) ∼
∥∥∥∥∥

n∑
k=1

e1k ⊗ dxs
k

∥∥∥∥∥∞
+

∥∥∥∥∥
n∑

k=1

ek1 ⊗ dxs
k

∥∥∥∥∥∞

=
∥∥∥∥∥(

idB(�2) ⊗ �A(∞, s)
)( n∑

k=1

e1k ⊗ dxk

)∥∥∥∥∥∞

+
∥∥∥∥∥(

idB(�2) ⊗ �A(∞, s)
)( n∑

k=1

ek1 ⊗ dxk

)∥∥∥∥∥∞
≤ 4sS∞(x, n).

Our estimates give rise to∥∥∥∥∥
n∑

k=1

dxk

∥∥∥∥∥∞
≤

(
1 + 4

d∑
s=1

css
√

s!
)
S∞(x, n) ≤ cdd2

√
d!S∞(x, n).

This is the desired estimate. The proof is complete. �
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REMARK 4.3. Proposition 4.2 extends to the case 2 ≤ p ≤ ∞. Indeed, we
just need to replace Proposition 2.8 by Corollary 2.14 and apply Theorem B in
full generality. Of course, this would provide a worse constant. The relevance of
Proposition 4.2 lies, however, in the fact that the resulting constants are uniformly
bounded as p → ∞, in contrast with the nonfree setting [34].

5. Generalized circular systems. In this last section we illustrate our results
by investigating Khintchine type inequalities for Shlyakhtenko’s generalized circu-
lar systems and Hiai’s generalized q-Gaussians. Given an infinite dimensional and
separable Hilbert space H equipped with a distinguished unit vector or vacuum �,
we denote by F (H) the associated Fock space

F (H) = C� ⊕ ⊕
n≥1

H⊗n.

Given any vector e ∈ H , we denote by �(e) the left creation operator on F (H)

associated with e, which acts by tensoring from the left. The adjoint map �∗(e)
is called the annihilation operator on F (H); see [45] for more details. Let us fix
an orthonormal basis (e±k)k≥1 in H and two sequences (λk)k≥1 and (µk)k≥1 of
positive numbers. Set

gk = λk�(ek) + µk�
∗(e−k).

The gk’s are generalized circular random variables studied by Shlyakhtenko [39].
Let 	 denote the von Neumann algebra generated by the generalized circular sys-
tem (gk)k≥1. 	 is equipped with the vacuum state φ given by φ(x) = 〈�,x�〉. Ac-
cording to [39], φ is faithful and the gk’s are free with respect to φ. In fact, if 	k is
the von Neumann subalgebra of 	 generated by gk , then (	,φ) = ∗k≥1(	k,φ	k

).
Shlyakhtenko also calculated in [39] the modular group and showed that σt (gk) =
(λ−1

k µk)
2it gk . In particular, the gk’s are analytic elements of 	 and eigenvectors

of the modular automorphism group σ . Let us write dφ for the density associated
to the state φ on 	. We shall also need the elements

gk,p = d
1/(2p)
φ gkd

1/(2p)
φ = (λ−1

k µk)
1/pgkd

1/p
φ = (λkµ

−1
k )1/pd

1/p
φ gk.(30)

The following is the Khintchine type inequality for 1-homogeneous polynomi-
als on generalized circular random variables. Its proof can be found in [47], where
the third-named author used Theorem A to obtain constants independent of p.
When λk = µk for k ≥ 1, the gk’s become a usual circular system in Voiculescu’s
sense and the result below reduces to Theorem 8.6.5 in [31]. On the other hand,
the case p = ∞ was already proved by Pisier and Shlyakhtenko in [33].

THEOREM 5.1. Let N be a von Neumann algebra and 1 ≤ p ≤ ∞. Let us
consider a finite sequence x1, x2, . . . , xn in Lp(N ). Then, the following equiva-
lences hold up to an absolute constant c independent of n:
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(i) If 1 ≤ p ≤ 2, then∥∥∥∥∥
n∑

k=1

xk ⊗ gk,p

∥∥∥∥∥
p

∼c inf
xk=ak+bk

∥∥∥∥∥
(

n∑
k=1

λ
2/p
k µ

2/p′
k aka

∗
k

)1/2∥∥∥∥∥
p

+
∥∥∥∥∥
(

n∑
k=1

λ
2/p′
k µ

2/p
k b∗

kbk

)1/2∥∥∥∥∥
p

.

(ii) If 2 ≤ p ≤ ∞, then∥∥∥∥∥
n∑

k=1

xk ⊗ gk,p

∥∥∥∥∥
p

∼c max

{∥∥∥∥∥
(

n∑
k=1

λ
2/p
k µ

2/p′
k xkx

∗
k

)1/2∥∥∥∥∥
p

,

∥∥∥∥∥
(

n∑
k=1

λ
2/p′
k µ

2/p
k x∗

k xk

)1/2∥∥∥∥∥
p

}
.

Moreover, let us write Gp for the closed subspace of Lp(	) generated by the sys-
tem of generalized circular variables (gk,p)k≥1. Then, there exists a completely
bounded projection γp :Lp(	) → Gp satisfying

‖γp‖cb ≤ 2|1−2/p|.

REMARK 5.2. It is worthy of mention that Theorem 5.1 improves Theorem C
in the case of generalized circular systems. Indeed, we have only used two terms
while Theorem C needs three terms in the general case of 1-homogeneous polyno-
mials. This phenomenon will also occur in the case of degree 2; see below.

As application, we collect some interpolation identities that arise from Theo-
rem 5.1. Indeed, we consider the spaces Jp and Kp , respectively defined as the
closure of finite sequences in Lp(N ) with respect to the following norms:

‖(xk)‖Kp = inf
xk=ak+bk

∥∥∥∥∥
(

n∑
k=1

λ
2/p
k µ

2/p′
k aka

∗
k

)1/2∥∥∥∥∥
p

+
∥∥∥∥∥
(

n∑
k=1

λ
2/p′
k µ

2/p
k b∗

kbk

)1/2∥∥∥∥∥
p

,

‖(zk)‖Jp = max

{∥∥∥∥∥
(∑

k

λ
2/p
k µ

2/p′
k zkz

∗
k

)1/2∥∥∥∥∥
p

,

∥∥∥∥∥
(∑

k

λ
2/p′
k µ

2/p
k z∗

kzk

)1/2∥∥∥∥∥
p

}
.

Given 1 ≤ p ≤ ∞, we define the spaces

Lp(N ;RCp(λ,µ)) =
{

Kp, for 1 ≤ p ≤ 2,
Jp, for 2 ≤ p ≤ ∞,

and the maps

up : (xk) ∈ Lp(N ;RCp(λ,µ)) �→ ∑
k

xk ⊗ gk,p ∈ Lp(N ⊗̄	).
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COROLLARY 5.3. If 1 ≤ p0,p1 ≤ ∞, 0 < θ < 1 and 1/p = (1 − θ)/p0 +
θ/p1, then

[Lp0(N ;RCp0(λ,µ)),Lp1(N ;RCp1(λ,µ))]θ � Lp(N ;RCp(λ,µ)).

Moreover, the relevant constants are majorized by a universal constant.

PROOF. Let us recall Kosaki’s theorem [20]:

[Lp0(N ⊗̄	),Lp1(N ⊗̄	)]θ = Lp(N ⊗̄	).

More precisely, if the von Neumann algebra N is equipped with the n.f. state ψ

and dψ⊗φ denotes the density associated to ψ ⊗ φ, we use in the interpolation
isometry above the symmetric inclusions

d
1/2p′

0
ψ⊗φ Lp0(N ⊗̄	)d

1/2p′
0

ψ⊗φ ⊂ L1(N ⊗̄	),

d
1/2p′

1
ψ⊗φ Lp1(N ⊗̄	)d

1/2p′
1

ψ⊗φ ⊂ L1(N ⊗̄	).

Then we recall from Theorem 5.1 that the maps up defined above are isomorphic
embeddings. Using in addition the projection γp introduced in Theorem 5.1, we
deduce the assertion. The proof is complete. �

Corollary 5.3 provides interesting applications in the theory of operator spaces.
Given two sequences (ξk)k≥1 and (ρk)k≥1 of positive numbers, we introduce the
operator space Rp(ξ) ∩ Cp(ρ) as the span of the sequence fk = ξke1k + ρkek1 in
the Schatten class Sp . Note that∥∥∥∥∥∑

k

xk ⊗ fk

∥∥∥∥∥
Lp(N ;Rp(ξ)∩Cp(ρ))

∼ max

{∥∥∥∥∥
(∑

k

ξ2
k xkx

∗
k

)1/2∥∥∥∥∥
p

,

∥∥∥∥∥
(∑

k

ρ2
k x∗

k xk

)1/2∥∥∥∥∥
p

}
.

By duality, we understand the sum Rp(ξ)+Cp(ρ) as a quotient space. Indeed, we
consider the subspace Rp ⊕ Cp of Sp as the span of (e1k; ek1)k≥1 in Sp . Then we
have

Rp(ξ) + Cp(ρ) = Rp ⊕ Cp/�(ξ,ρ),

where � is the weighted diagonal �(ξ,ρ) = span{ξke1k − ρkek1| k ≥ 1}. Let π

be the natural quotient map and let us consider the sequence fk = π(ξke1k) =
π(ρkek1) in Rp(ξ) + Cp(ρ). Then we find∥∥∥∥∥∑

k

xk ⊗ fk

∥∥∥∥∥
Lp(N ;Rp(ξ)+Cp(ρ))

∼ inf
xk=ak+bk

∥∥∥∥∥
(∑

k

ξ2
k aka

∗
k

)1/2∥∥∥∥∥
p

+
∥∥∥∥∥
(∑

k

ρ2
k b∗

kbk

)1/2∥∥∥∥∥
p

.
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COROLLARY 5.4. Let (λk)k≥1 and (µk)k≥1 be two sequences in R+ and 1 ≤
p ≤ ∞. Then, the following cb-isomorphisms hold according to the value of θ =
1/p:

[R(λ) ∩ C(µ),R(λ) + C(µ)]θ
�cb

{
Rp(λθµ1−θ ) + Cp(λ1−θµθ ), if 1 ≤ p ≤ 2,
Rp(λθµ1−θ ) ∩ Cp(λ1−θµθ ), if 2 ≤ p ≤ ∞.

The relevant constants are majorized by an absolute constant.

PROOF. This is a reformulation of Corollary 5.3 in operator space terms. �

We now discuss the analogue of Theorem 5.1 for q-Gaussians. We refer to
[1] for the basic definitions on q-deformation and to Hiai’s paper [11] for the
quasi-free q-deformation. Given an infinite dimensional separable Hilbert space
H equipped with an orthonormal basis (e±k)k≥1 and given −1 < q < 1, we de-
note by Fq(H) the associated q-Fock space

Fq(H) = C� ⊕ ⊕
n≥1

H⊗n

equipped with the q-scalar product induced by

〈f1 ⊗ · · · ⊗ fn, g1 ⊗ · · · ⊗ gm〉q = δnm

∑
π∈Sn

qi(π)〈f1, gπ(1)

〉 · · · 〈fn, gπ(n)

〉
,

where Sn denotes the symmetric group of permutations of n elements and i(π)

stands for the number of inversions of π . Given a vector e ∈ H , we write �q(e) for
the left creation operator and �∗

q(e) for the left annihilation; see [1] for the precise
definitions. As in the free case, we define

gqk = λk�q(ek) + µk�
∗
q(e−k)

after having fixed two sequences (λk)k≥1 and (µk)k≥1 of positive numbers. The
gqk’s are q-generalized circular variables. The von Neumann algebra gener-
ated by these variables in the GNS-construction with respect to the vacuum state
φq(·) = 〈�, ·�〉q will be denoted by 	q . A discussion of the modular group of φq

and important properties of these von Neumann algebras can be found in Hiai’s
paper. Indeed, we still have

σt (gqk) = (λ−1
k µk)

2it gqk.

Therefore, gqk is an analytic element and we find as above

gqk,p = d
1/(2p)
φq

gqkd
1/(2p)
φq

= (λ−1
k µk)

1/pgqkd
1/p
φq

= (λkµ
−1
k )1/pd

1/p
φq

gqk.(31)
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PROOF OF THEOREM E. Let us first see that the map

up : (xk) ∈ Kp �→ ∑
k

xk ⊗ gqk,p ∈ Lp(N ⊗̄	q)(32)

is a contraction for 1 ≤ p ≤ 2. According to [17], we have

‖x‖p ≤ min{‖E(xx∗)1/2‖p,‖E(x∗x)1/2‖p} for 1 ≤ p ≤ 2.

Taking x = ∑
k xk ⊗ gqk,p , the Lp-norm of x is bounded above by

min

{∥∥∥∥∥
(∑

i,j

E(xix
∗
j ⊗ gqi,pgq∗

j,p)

)1/2∥∥∥∥∥
p

,

∥∥∥∥∥
(∑

i,j

E(x∗
i xj ⊗ gq∗

i,pgqj,p)

)1/2∥∥∥∥∥
p

}
,

where E = idN ⊗ φq in our case. Therefore, recalling from (31) that

gqi,pgq∗
j,p = d

1/(2p)
φq

gqid
1/p
φq

gq∗
j d

1/(2p)
φq

= (λiµ
−1
i λjµ

−1
j )1/pd

1/p
φq

gqigq∗
j d

1/p
φq

,

gq∗
i,pgqj,p = d

1/(2p)
φq

gq∗
i d

1/p
φq

gqjd
1/(2p)
φq

= (λ−1
i µiλ

−1
j µj )

1/pd
1/p
φq

gq∗
i gqjd

1/p
φq

,

and using the identities φq(gqigq∗
j ) = δijµ

2
i and φq(gq∗

i gqj ) = δijλ
2
i , we deduce

E(xix
∗
j ⊗ gqi,pgq∗

j,p) = δijλ
2/p
i µ

2/p′
i xix

∗
i ,

E(x∗
i xj ⊗ gq∗

i,pgqj,p) = δijλ
2/p′
i µ

2/p
i x∗

i xi .

Therefore, the triangle inequality yields∥∥∥∥∥
n∑

k=1

xk ⊗ gqk,p

∥∥∥∥∥
p

≤ min

{∥∥∥∥∥
(

n∑
k=1

λ
2/p
k µ

2/p′
k xkx

∗
k

)1/2∥∥∥∥∥
p

,

∥∥∥∥∥
(

n∑
k=1

λ
2/p′
k µ

2/p
k x∗

k xk

)1/2∥∥∥∥∥
p

}
.

This proves the contractivity of (32) for 1 ≤ p ≤ 2. Now we show that

up : (xk) ∈ Jp �→ ∑
k

xk ⊗ gqk,p ∈ Lp(N ⊗̄	q)(33)

is bounded for 2 ≤ p ≤ ∞ with a constant cq depending only on q . If p = 2, the
result follows by the orthogonality of the gqk,2’s in L2(	q). Therefore, according
to Corollary 5.3, it suffices to estimate the norm of u∞ :J∞ → N ⊗̄	q and apply
complex interpolation. By the definition of gqk , we have∑

k

xk ⊗ gqk = ∑
k

λkxk ⊗ �q(ek) + ∑
k

µkxk ⊗ �∗
q(e−k).
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By the Cauchy–Schwarz inequality,∥∥∥∥∥∑
k

λkxk ⊗ �q(ek)

∥∥∥∥∥∞
≤

∥∥∥∥∥
(∑

k

λ2
kx

∗
k xk

)1/2∥∥∥∥∥∞

∥∥∥∥∥
(∑

k

�q(ek)�q(ek)
∗
)1/2∥∥∥∥∥∞

≤ 1√
1 − |q|

∥∥∥∥∥
(∑

k

λ2
kx

∗
k xk

)1/2∥∥∥∥∥∞
,

where the last inequality follows from [2]. Similarly, we have∥∥∥∥∥∑
k

µkxk ⊗ �∗
q(e−k)

∥∥∥∥∥∞
≤ 1√

1 − |q|

∥∥∥∥∥
(∑

k

µ2
kxkx

∗
k

)1/2∥∥∥∥∥∞
.

Thus, we obtain ‖u∞‖ ≤ 2/
√

1 − |q| and

‖up :Jp → Lp(N ⊗̄	q)‖ ≤
(

2√
1 − |q|

)1−2/p

for 2 ≤ p ≤ ∞.

The crucial observation here is that

〈up((xk)), up′((zk))〉
= ∑

i,j

trN (x∗
i zj )tr	q (gq∗

i,pgqj,p′)

= ∑
i,j

trN (x∗
i zj )(λ

−1
i µi)

1/p(λ−1
j µj )

1/p′
tr	q (d

1/p
φ gq∗

i gqjd
1/p′
φ )(34)

= ∑
i,j

trN (x∗
i zj )(λ

−1
i µi)

1/p(λ−1
j µj )

1/p′
φq(gq∗

i gqj )

= ∑
k

λkµk trN (x∗
k yk) = 〈(xk), (zk)〉.

This relation and the boundedness of the maps (32) and (33) immediately imply
the inequalities stated in (i) and (ii).

On the other hand, according to (34), we know that u∗
p′up is the identity map

and we may construct the following projection for every index 1 ≤ p ≤ ∞:

upu∗
p′ = idLp(N ) ⊗ γ qp :Lp(N ⊗̄	q) → Lp(N ;Gqp).

By elementary properties from [31] of vector-valued noncommutative Lp spaces,
it suffices to prove that the maps above are bounded with the following constants
for 1 ≤ p ≤ 2 ≤ p′ ≤ ∞:

max{‖γ qp‖cb,‖γ qp′‖cb} = max{‖upu∗
p′‖,‖up′u∗

p‖} ≤
(

2√
1 − |q|

)2/p−1

.
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Recalling that the second estimate follows from the first by taking adjoints and
that the estimate for p = 2 is trivial, it suffices to prove the estimate for u1u

∗∞ and
apply complex interpolation. However, according to our previous estimates, we
find ‖u1u

∗∞‖ ≤ 2/
√

1 − |q|, as desired. This completes the proof. �

After this intermezzo on q-Gaussians, we conclude by illustrating our inequali-
ties for 2-homogeneous polynomials on generalized circular variables. Again, our
result in this particular case improves Theorem C since we obtain only three terms
out of the five given there.

SKETCH OF THE PROOF OF THEOREM F. Following the arguments in The-
orem E, it suffices to prove the assertion for 2 ≤ p ≤ ∞ since the case 1 ≤ p ≤ 2
and the complementation result follow from the same duality arguments. In order
to prove the assertion for 2 ≤ p ≤ ∞, we first consider a finite index set � to
factorize∑

i =j

xij ⊗ d
1/(2p)
φ gigjd

1/(2p)
φ = ∑

i =j

(
xij ⊗ d

1/(2p)
φ gi

)(
1 ⊗ gjd

1/(2p)) = ∑
i =j

αijβj .

According to Theorem B, we have, for 2 ≤ p ≤ ∞,∥∥∥∥∥∑
i =j

αijβj

∥∥∥∥∥
p

∼c

∥∥∥∥∥∑
i =j

|αij 〉βj

∥∥∥∥∥
p

+
∥∥∥∥∥∑
i =j

αij 〈βj |
∥∥∥∥∥
p

.

Let us denote the terms on the right-hand side by A and B respectively. To sim-
plify the expressions for A and B, we need to calculate E(α∗

ij αkl) and E(βjβ
∗
l ).

According to (30), we easily find

E(α∗
ij αkl) = δik(x

∗
ij xil ⊗ λ

2/p′
i µ

2/p
i d

1/p
φ ),

E(bjb
∗
l ) = δjl(1 ⊗ λ

2/p
j µ

2/p′
j d

1/p
φ ).

Using these relations and recalling the factorization above of xij , we obtain

A =
∥∥∥∥∥
(∑

i

λ
2/p′
i µ

2/p
i

∑
j1,j2

x∗
ij1

xij2 ⊗ g∗
j1,p

gj2,p

)1/2∥∥∥∥∥
p

,

B =
∥∥∥∥∥
(∑

j

λ
2/p
j µ

2/p′
j

∑
i1,i2

xi1j x
∗
i2j

⊗ gi1,pg∗
i2,p

)1/2∥∥∥∥∥
p

.

Equivalently, we have

A =
∥∥∥∥∥∑

i

λ
1/p′
i µ

1/p
i

(∑
j

xij ⊗ gj,p

)
⊗ ei1

∥∥∥∥∥
p

=
∥∥∥∥∥∑

k

ak ⊗ gk,p

∥∥∥∥∥
p

,

B =
∥∥∥∥∥∑

j

λ
1/p
j µ

1/p′
j

(∑
i

xij ⊗ gi,p

)
⊗ e1j

∥∥∥∥∥
p

=
∥∥∥∥∥∑

k

bk ⊗ gk,p

∥∥∥∥∥
p

,
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where ak and bk are respectively given by

ak = ∑
i

λ
1/p′
i µ

1/p
i xik ⊗ ei1 and bk = ∑

j

λ
1/p
j µ

1/p′
j xkj ⊗ e1j .

According to Theorem 5.1, we obtain

A ∼c

∥∥∥∥∥
(

n∑
k=1

λ
2/p
k µ

2/p′
k aka

∗
k

)1/2∥∥∥∥∥
p

+
∥∥∥∥∥
(

n∑
k=1

λ
2/p′
k µ

2/p
k a∗

k ak

)1/2∥∥∥∥∥
p

= A1 + A2,

B ∼c

∥∥∥∥∥
(

n∑
k=1

λ
2/p
k µ

2/p′
k bkb

∗
k

)1/2∥∥∥∥∥
p

+
∥∥∥∥∥
(

n∑
k=1

λ
2/p′
k µ

2/p
k b∗

kbk

)1/2∥∥∥∥∥
p

= B1 + B2.

Finally, using the terminology introduced in the statement of Theorem F, we have

B1 = Rp(x), A1 = Mp(x) = B2, A2 = Cp(x).

Details of the identities above are left to the reader. This completes the proof. �

REMARK 5.5. Although it is out of the scope of this paper, the methods used
in the proof of Theorem F are also valid for any degree d ≥ 1. In this way, the Lp

norm of an operator-valued d-homogeneous polynomial on generalized circular
random variables behaves as the asymmetric version of the main result in [27]; see
Theorem 2.6 there. Thus, we obtain d + 1 terms instead of the 2d + 1 given by
Theorem C.
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