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STATIONARY DISTRIBUTIONS OF MULTI-TYPE TOTALLY
ASYMMETRIC EXCLUSION PROCESSES

BY PABLO A. FERRARI AND JAMES B. MARTIN

Universidade de São Paulo and University of Oxford

We consider totally asymmetric simple exclusion processes with n types
of particle and holes (n-TASEPs) on Z and on the cycle ZN . Angel recently
gave an elegant construction of the stationary measures for the 2-TASEP,
based on a pair of independent product measures. We show that Angel’s
construction can be interpreted in terms of the operation of a discrete-time
M/M/1 queueing server; the two product measures correspond to the arrival
and service processes of the queue. We extend this construction to represent
the stationary measures of an n-TASEP in terms of a system of queues in
tandem. The proof of stationarity involves a system of n 1-TASEPs, whose
evolutions are coupled but whose distributions at any fixed time are inde-
pendent. Using the queueing representation, we give quantitative results for
stationary probabilities of states of the n-TASEP on ZN , and simple proofs
of various independence and regeneration properties for systems on Z.

1. Introduction. Consider first the totally asymmetric simple exclusion pro-
cess (TASEP) on Z or on the cycle ZN . Some sites i ∈ Z (or ZN ) contain a particle;
at the others we say there is a hole. The dynamics of the system are as follows:
a bell rings as a Poisson process of rate 1 at each site independently; when the bell
at site i rings, if there is a particle at site i and a hole at site i − 1, they exchange.
Put another way, each particle in the system tries to jump to the left at rate 1; the
jump succeeds whenever the site to its left is unoccupied. See, for example, [9, 10]
for a wealth of information on the TASEP and its relatives.

We will denote a configuration of the TASEP by u = (u(j), j ∈ Z or ZN) ∈ U1

or U(N)
1 , where U1 = {1,∞}Z and U(N)

1 = {1,∞}ZN . We set u(i) = 1 if there is a
particle at i and u(i) = ∞ if there is a hole at i. (This notation is not standard but
will be convenient later.)

The stationary measures for the TASEP are as follows. On ZN , the number of
particles in the system, p, is conserved by the dynamics. For fixed p, the dynamics
are given by an irreducible Markov chain with finite state-space, whose stationary
measure is uniform over all

(N
p

)
possible states. Any stationary measure for the

system is some linear combination of these uniform distributions.
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On Z there is a one-parameter family of translation-invariant extremal station-
ary measures νλ, λ ∈ [0,1]. Under νλ, each site i is occupied by a particle in-
dependently and with probability λ; the measure νλ is the product measure with
density λ of particles (or the measure of a Bernoulli process with rate λ). The only
other extremal stationary measures are the so-called blocking measures: the mea-
sure concentrated on the configuration with particles at all negative sites and holes
at all nonnegative sites, and its translates.

We now consider a TASEP with n classes of particle or n-TASEP, for n ≥ 1.
Now a configuration u = (u(j), j ∈ Z or ZN) of the system is a member of Un

or U(N)
n , where

Un = ({1,2, . . . , n} ∪ {∞})Z, U(N)
n = ({1,2, . . . , n} ∪ {∞})ZN .

If u(i) = r ≤ n we say that there is a particle of class r at site i, while if u(i) = ∞
we say that there is a hole at i.

The dynamics are as follows. Bells ring at rate 1 at each site independently.
When the bell at site i rings, the values at i − 1 and i swap if u(i − 1) > u(i), and
remain unchanged otherwise. That is, the process jumps from u to the configura-
tion u(i−1,i) where

u(i−1,i)(j) = u(j) if j /∈ {i − 1, i},
u(i−1,i)(i − 1) = min{u(i − 1), u(i)},

u(i−1,i)(i) = max{u(i − 1), u(i)}.
Put another way, each particle in the system tries to jump to the left at rate 1. The
jump succeeds when the site to its left contains a hole or contains a particle with a
higher class (in which case the two particles exchange positions).

(Note that the way we have defined it, the n-type TASEP has n + 1 possible
values for a site: n types of particle and holes. It might be more elegant simply
to regard holes as particles of type n + 1, and to replace the value ∞ by n + 1
throughout; but the distinguished state ∞ will be convenient later for various rea-
sons.)

One natural way in which n-type TASEPs arise is from couplings of several
1-type TASEPs. Let η

(1)
t , η

(2)
t , . . . , η

(n)
t , t ≥ 0 be n processes realizing a TASEP,

started from initial conditions such that η
(1)
0 (j) ≥ η

(2)
0 (j) ≥ · · · ≥ η

(n)
0 (j) for all j .

(I.e., whenever there is a particle at site j in process m, there is also one in
the processes m + 1, m + 2, . . . , n.) Suppose one couples the processes by us-
ing the same processes of bells at each site for all of them. Then the order-
ing η

(1)
t (j) ≥ η

(2)
t (j) ≥ · · · ≥ η

(n)
t (j) continues to hold for all t (this is an in-

stance of the basic coupling of Liggett [8, 9]). Let ut(j) = inf{m :η(m)
t = 1} [with

ut(j) = ∞ if η
(m)
t (j) = ∞ for all m]. Then ut realizes an n-type TASEP.

The 2-TASEP has been studied from several perspectives. The existence of a
translation-invariant stationary measure for the process on Z, with densities λ1
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and λ2 of first- and second-class particles (for 0 < λ1 < λ1 + λ2 < 1), was proved
by Liggett [8] to demonstrate ergodic properties of the TASEP. The uniqueness
and extremality of this measure were shown by Ferrari, Kipnis and Saada [5]
and Speer [12] (the only other extremal invariant distributions are those concen-
trated on a single state—“blocking measures” as for the 1-TASEP above). Derrida,
Janowsky, Lebowitz and Speer [2] and Speer [12] construct the measure explicitly
(both in finite and infinite volume) using a matrix method and show various re-
generation and asymptotic properties; Ferrari, Fontes and Kohayakawa [4] give
probabilistic interpretations and proofs of the measure and its properties.

Recently Angel [1] gave an elegant construction of this stationary measure
based on two independent product measures with densities λ1 and λ1 + λ2 (and
an analogous construction for the case of ZN ); the proof involves providing bijec-
tions between certain families of binary trees and pairs of binary sequences.

We will show that Angel’s construction can be rewritten in terms of the oper-
ation of a queueing server (namely, an M/M/1 queue in discrete time). The two
independent product measures correspond to the arrival process and the service
process of the queue. The stationary measure for the 2-TASEP corresponds to the
output process of the queue. Sites of the TASEP are interpreted as times in the
queueing process. If the queue has a departure at time i, then one puts a first class
particle at site i. If the queue has an “unused service” at time i (i.e., a service is
available but there is no customer present) then one puts a second-class particle at
site i. If there is no service available at time i, then there is a hole at site i. (Full
descriptions are given in the next section.)

We then generalize this result to the n-TASEP with n ≥ 3. First a remark about
the set of stationary measures. Let λ1, . . . , λn ∈ (0,1) with

∑n
r=1 λr < 1. For the

process on Z, there is a unique translation-invariant stationary measure with den-
sity λr of particles of type r , for each r . These stationary measures are extremal,
and the only other stationary measures are blocking measures, concentrated on a
single configuration. These facts can be proved almost identically to the proofs
given in, for example, [5] and [12] for the case n = 2. The case of the n-TASEP
on ZN is analogous; for any p1, . . . , pn ∈ {0,1, . . . ,N} with

∑n
r=1 pn ≤ N , there

is an extremal stationary measure concentrated on configurations with exactly pr

particles of type r , for each r ; these are the only extremal stationary measures.
We construct a representation of these stationary measures based on a system

of n − 1 queues in tandem. Take the case of Z, say. Consider a set of n inde-
pendent Bernoulli processes (product measures), such that the mth has density
λ1 + · · · + λm, for each m. The service process of the mth queue is given by the
(m + 1)st product measure. The first product measure acts as the arrival process
to the first queue. Thereafter, the arrival process to the mth queue, m > 1, is given
by the output process from the (m − 1)st queue. The mth queue is a “priority
queue” with m types of customer; at a service time, the customer who departs is
the one whose class number is lowest out of those present. We will show that the
distribution of the output process of the (n − 1)st queue provides the stationary
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distribution of the n-TASEP with densities λ1, . . . , λn. (We describe the operation
of the system fully in the next section.)

The proof of stationarity has the following structure. First we define dynamics
on a set of n configurations of particles on the line (the “multiline process”). On
each line, the local transitions are those of a TASEP, and the lines are coupled
in such a way that the bells on neighboring lines always ring at the same time,
either at the same site or at neighboring sites. We will show that a collection of n

independent product measures is stationary under these dynamics. (In fact, it will
turn out that in this equilibrium, the multiline process provides a coupling of n

TASEP processes, whose marginal distributions at any fixed time are independent.)
The second step of the proof is to show that, under these dynamics, the final output
process derived as in the previous paragraph is realizing an n-TASEP.

In the case n = 2, the two lines of the multiline process correspond to the ar-
rival and departure processes of the queue. (We note that, especially in the case
n = 2, the structure of the proof is similar to that used in recent work by Duchi
and Schaeffer [3], where a related two-line process is used to study combinatorial
aspects of TASEPs with one or two types of particle, on ZN or on a finite strip with
boundaries.)

In Section 2, we give precise definitions and state the main results, first for n = 2
(Angel’s construction and the queueing interpretation) and then for general n. In
Section 3, the first step of the proof is carried out: the “multiline process” is defined
and it is proved that a collection of independent product measures is stationary un-
der its dynamics. (For the case of ZN , the analogous stationary distribution is a
collection of independent uniform distributions over configurations with a fixed
number of particles.) The second step of the proof described in the previous para-
graph is done in Section 4.

In Section 5 we use the multiline representation to prove a quantitative result
about the probabilities of states in the stationary distribution of an n-TASEP on
the ring ZN . Let p1, . . . , pn ∈ {0,1, . . . ,N} with

∑n
r=1 pr ≤ N and consider the

stationary distribution concentrated on configurations with exactly pr particles of
class r for each r . Then the probability of every state is an integer multiple of
M−1, where

M =
[(

N

p1

)(
N

p1 + p2

)
. . .

(
N

p1 + p2 + · · · + pn

)]
.(1.1)

This confirms a conjecture of Angel [1]. (See also the discussion by Mallick,
Mallick and Rajewsky in [11], where the matrix method is used to investigate the
case n = 3.) We can then identify those states with probability M−1 (the smallest
possible). A configuration u is minimal in this way if the following holds for each
j ∈ ZN : if u(j) = ∞ then u(j + 1) = ∞ or u(j + 1) = n, while if u(j) = m < ∞
then u(j + 1) ≥ m − 1.

For example, consider n = 2, N = 9, p1 = 3, p2 = 3. Possible “minimal states”
include: (∞,∞,∞,2,2,2,1,1,1) and (∞,2,∞,∞,2,1,2,1,1).
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For the extreme case of N types of particle on ZN , with pm = 1 for all m =
1, . . . ,N , the only minimal states are (N,N − 1, . . . ,3,2,1) and its cyclic shifts
(giving N minimal states in all). In this case one has

M = (N !)N−1

(2!3! · · · (N − 1)!)2 .

An important motivation for much of the previous work on the 2-TASEP on Z

was its application to the study of shock measures for the 1-TASEP; see, for ex-
ample, [2, 4, 5, 12]. In Section 6, we show how several results developed in this
context—in particular, concerning the “stationary measure as seen from a second-
class particle”—can be proved very simply, and often strengthened, using the
queueing representation. We also give extensions of some of these results to the
case of the n-TASEP for n > 2.

In passing we mention another paper [6] in which we discuss (partly in survey
form) results related to those in this paper, but with a somewhat different approach.
For example, a proof that product measure is invariant for the multiclass TASEP
on Z is described much more directly in terms of reversibility arguments in infi-
nite volume, in contrast to the combinatorial approach in terms of bijections on
the state-space of the process on ZN , used in Section 3 of this paper. The aim
of [6] is partly to illustrate the key role played by reversibility properties, and also
to show that the same multiclass measures are stationary for a variety of underly-
ing dynamics (including, e.g., a multiclass discrete-space version of the Aldous–
Diaconis–Hammersley process and certain discrete-time versions of the multiclass
TASEP); the method of proof is described independently of the dynamics, as far
as possible. The proof in Sections 3 and 4 of this paper is much more specific to
the TASEP, but (perhaps unlike the approach of [6]) adapts quite naturally to the
case of the process on ZN .

2. Main result.

2.1. n = 2: Angel’s construction and the queueing interpretation. We first de-
scribe Angel’s “collapse” process for the case of ZN .

Choose p1 and p2 with 0 < p1 < p1 + p2 < N . Let A be a subset of
{1,2, . . . ,N} of size p1, chosen uniformly at random, and let S be another subset,
of size p1 + p2, chosen uniformly at random and independently of A.

We will construct a set D ⊆ S as follows. D is initially empty. Consider each
site i ∈ A in turn (in an arbitrary order). Now we add to the set D the first element
in the list {i, i + 1, i + 2, . . .} which is in S and has not yet been added to D . (We
“move i to the right,” until we find an available space for it; the set S is the set
of spaces which are available to be used.) Notice that a space j ∈ S is “filled”—
that is, contained in D—if and only if there is some interval [i, j ] which contains
at least as many members of A as it does members of S (since then, by moving
the members of A to the right until they encounter a free space, one of them will
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inevitably be allocated to the space j ); so indeed, the order in which the sites of A
are considered does not affect the set D which is finally obtained by this procedure.
Thus

j ∈ D iff j ∈ S and, for some i, |A ∩ [i, j ]| ≥ |S ∩ [i, j ]|.(2.1)

The set D constructed in this way (of size p1) gives the locations of first-class
particles. The set S \ D (of size p2) gives the locations of second-class particles.
The set Sc (of size N − p1 − p2) gives the locations of holes.

The distribution of the configuration generated in this way is the stationary dis-
tribution of the TASEP with 2 types of particle on ZN , with p1 and p2 particles of
first and second class, respectively, [1].

In later notation, we will write, for i ∈ ZN , a(i) = 1 if i ∈ A and ∞ otherwise,
s(i) = 1 if i ∈ S and ∞ otherwise, and d(i) = 1 if i ∈ D and ∞ otherwise. Thus
a, s and d are configurations from the set U(N)

1 = {1,∞}ZN defined earlier. If d is

derived from a and s by the process described above we will write d = F
(N)
1 (a, s).

The case of Z is analogous. Now we choose λ1 and λ2 with 0 < λ1 < λ1 +
λ2 < 1. For each i ∈ Z, let i ∈ A with probability λ1, independently for each i.
For each i ∈ Z, let i ∈ S with probability λ1 + λ2, independently for each i and
independently of the set A. As in (2.1) we can then define

j ∈ D iff j ∈ S and, for some i ≤ j, |A ∩ [i, j ]| ≥ |S ∩ [i, j ]|.(2.2)

Equivalently (but rather less formally now that A is infinite), D can be constructed
by taking each site in A in turn (in an arbitrary order), and moving it to the right
until we find an available space in S for it.

Again, the configuration of first-class particles (sites of D), second-class par-
ticles (sites of S \ D), and holes (sites of Sc) is a sample from the stationary
distribution of the TASEP with 2 types of particle on Z, with densities λ1 and λ2
of first- and second-class particles, respectively [1].

As above, we will write a(i) = 1 if i ∈ A and ∞ otherwise, s(i) = 1 if i ∈ S
and ∞ otherwise, and d(i) = 1 if i ∈ D and ∞ otherwise, where now i ∈ Z. Thus
a, s and d are configurations from U1 = {1,∞}Z. Note that by construction the
random variables a(i), i ∈ Z and s(i), i ∈ Z are all independent. If d is derived
from a and s by the process described above we will write d = F1(a, s).

We now explain the interpretation in terms of a queueing server for the case
of Z.

The sites i ∈ Z represent times. The set A represents the set of arrival times,
when a (single) customer arrives at the queue. The set S is the set of service times
of the queue. At such times it is possible for a (single) customer to depart. The
queue thus has arrival rate λ1 and service rate µ = λ1 + λ2. At each time in S,
a customer departs if any customer is present in the queue (including one that has
just arrived at that same moment). Then D is the set of times at which a customer
departs from the queue. S \ D is the set of unused service times.
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We define

Qj =
[
sup
i≤j

{|A ∩ [i, j ]| − |S ∩ [i, j ]|}
]
+
.(2.3)

Note that since the service rate is larger than the arrival rate, the law of large
numbers yields that the right-hand side of (2.3) is finite with probability 1. From
the definition (2.3), and recalling that a(i) = 1 [resp. s(i) = 1] iff i ∈ A (resp.
i ∈ S), we can deduce a set of “recurrences,” namely that

Qj = [
Qj−1 + I

(
a(j) = 1

) − I
(
s(j) = 1

)]
+(2.4)

for each j ∈ Z. Thus Qj may be interpreted as the queue-length after time j

(since (2.4) has the following interpretation: at each time-step, the queue-length
increases by 1 if there is an arrival and no service, decreases by 1 if it is nonzero
and there is a service and no arrival, and otherwise remains the same). An equiva-
lent formulation of (2.2) above is that

d(j) = 1 iff s(j) = 1 and either Qj−1 > 0 or a(j) = 1.(2.5)

From (2.3), Qj is a function of the variables (a(i), s(i), i ≤ j). Since the vari-
ables a(i), s(i), i ∈ Z are all independent, (2.4) shows that, conditional on the
value of Qj , Qj+1 is independent of (Qr, r < j), so that (Qj , j ∈ Z) is a discrete-
time Markov chain. In fact it is a birth-and-death chain with one-step transition
probabilities given by i → i + 1 with probability λ1(1 − λ1 − λ2), i → i − 1
with probability I (i > 0)(1 − λ1)(λ1 + λ2) and otherwise i → i. The stationary
distribution of this chain is geometric with parameter λ1/(λ1 + λ2). From (2.3)
and the stationarity of a and s, the process (Qj , j ∈ Z) is also stationary [and so
Qj ∼ Geom(λ1/(λ1 + λ2)) for all j ].

A form of Burke’s theorem for the discrete-time M/M/1 queue [7] applies here.
Since the arrival process A is a Bernoulli process with rate λ1, and the service
process S is a Bernoulli process (independent of the arrivals) with rate µ > λ1, the
departure process D is itself a Bernoulli process of rate λ1.

The queueing formalism can also be used to describe the process on ZN . Define

Qj =
[

sup
i∈ZN

{|A ∩ [i, j ]| − |S ∩ [i, j ]|}
]
+
.(2.6)

Because |A| < |S|, the sup on the RHS of (2.6) is attained by some i which satisfies
|[i, j ]| < N ; that is, i 
= j +1 and so the interval [i, j ] is not the whole of ZN . Then,
just as before, one can again deduce the relations in (2.4) for each j ∈ ZN , and the
equivalence of (2.1) and (2.5) also follows. In terms of the collapse process one
could give the following description: each particle starts at some location i in the
process A and is allocated some location k in the process S; then Qj is the number
of particles for which the corresponding i and k satisfy i 
= k and j ∈ [i, k − 1].
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FIG. 1. Queueing representation of the two-type measure. Arrivals are represented by grey parti-
cles. Used services (first-class particles) are represented by black particles and unused ones (sec-
ond-class particles) by white particles.

2.2. Extension to several classes of particle/customer. We now explain how
to extend this framework to construct the stationary distribution of the n-TASEP
for any n. In the queueing context, this will correspond to the output process of
a series of n − 1 queues in tandem with various classes of customer; the output
process of one queue acts as the input to the next.

We begin with the case of Z. We first define the behavior of a queueing server
whose arrival process contains m classes of arrival (and holes) and whose departure
process contains m + 1 classes of departure (along with holes).

Let a = (a(i), i ∈ Z) ∈ Um be the arrival process, with a(i) ∈ {1,2, . . . ,m} ∪
{∞}. The value a(i) = r < ∞ indicates that a customer of class r arrives at time i,
while a(i) = ∞ means that no customer arrives at time i.

Let s = (s(i), i ∈ Z) ∈ U1 be the service process, with s(i) ∈ {1,∞}. A service
is available at time i if s(i) = 1, and no service is possible if s(i) = ∞.

We will derive a departure process d = (d(i), i ∈ Z) ∈ Um+1 from a and s, with
d(i) ∈ {1,2, . . . ,m + 1} ∪ {∞}.

Customers of class 1 have the highest priority, and a customer of class r has
higher priority than one of class s when r < s.

If there is a service possible at time i [i.e., s(i) = 1], then the highest prior-
ity customer of those currently in the queue, including any customer who has
just arrived at time i itself, departs. (If there is currently more than one customer
of jointly highest priority, one of these departs.) If the departing customer has
class k, then d(i) = k. If there is no customer in the queue [in particular this im-
plies a(i) = ∞], then an “unused service” occurs, and we put d(i) = m + 1. (One
could imagine that there is a limitless supply of customers of class m+1 available,
who get served only when the server would otherwise be idle.) If there is no service
at time i [i.e., s(i) = ∞] then put d(i) = ∞. No departure occurs; all customers in
the queue, along with any customer arriving at i, remain in it. Note that d(i) = ∞
iff s(i) = ∞.

In the situations we need, the arrival and departure processes will be station-
ary and independent, and the long-run intensity of arrivals to the queue will be
lower than that of services. In this case, a stationary evolution for the queue, cor-
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FIG. 2. Multi-type representation for 3 types of arrivals. Each arrival has been linked to the cor-
responding service. Note: in this figure and in Figure 3 we have used a “FIFO” (first-in first-out)
discipline between customer of the same class; when two or more customers present have joint high-
est priority, the one that departs is the one that arrived earliest. However, this choice of queueing
discipline is entirely arbitrary since for the purposes of the TASEP construction, all customers of
the same class may be presumed identical. For example, the second and the third of the 2nd-class
customers in the diagram could depart in the opposite order; the departure process d is unchanged.

responding to the verbal description just given, can be defined in a standard way;
see Section 2.3 below.

We define a function (or “queueing operator”) Fm :Um × U1 �→ Um+1, repre-
senting the operation of this queue, by Fm(a, s) = d .

Now fix n > 1. Let X be the state-space, {1,∞}Z×{1,...,n} = U
{1,2,...,n}
1 rep-

resenting configurations of particles on n lines. For x = (xm(i), i ∈ Z,m ∈
{1,2, . . . , n}) ∈ X, we say that x has a particle at site i on line m if xm(i) = 1,
and that x has a hole at site i on line m if xm(i) = ∞.

Let λr ∈ (0,1) for r ∈ {1,2, . . . , n}, with λ1 + · · · + λn < 1. We consider the
product distribution on the space X under which all the xm(i) are independent,
with P(xm(i) = 1) = λ1 + · · · + λm.

Consider a richer state-space V consisting of configurations v = (vm(i), i ∈ Z,
m ∈ {1,2, . . . , n}) with vm(i) ∈ {1,2, . . . ,m} ∪ {∞}. If vm(i) = ∞ we say that v

has a hole at site i on line m, while if vm(i) = r < ∞ then v has a particle of
class r at site i on line m. Thus vm, the mth line of v, is a configuration in Um; All
the particles on line m have classes in {1,2, . . . ,m}.

Given a configuration x ∈ X, we will associate a configuration v = V x ∈ V to
it. We will have vm(i) = ∞ iff xm(i) = ∞; that is, the particles in v and x are in
exactly the same places, and deriving v from x corresponds to assigning classes to
the particles of x.

First set v1(·) = x1(·). (All the particles on the top line have class 1.) Now
recursively, define vm+1(·) = Fm(vm(·), xm+1(·)) for m = 1,2, . . . , n − 1, where
Fm is the multiclass queueing operator defined above. Hence we have a sequence
of n − 1 queues: the mth queue has arrival process vm and service process xm+1,

FIG. 3. Multi-line representation for 3 types of arrivals. Each arrival has been linked to the corre-
sponding service.
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and outputs the departure process vm+1 (which is then used as the arrival process
for queue m + 1).

Note that the intensity of services on line m is λ1 +· · ·+λm, which is increasing
in m. Applying Burke’s theorem repeatedly, one obtains that for r ≤ m ≤ n, the set
of particles of class r or lower on line m is a Bernoulli process, and in particular
has rate (or density) λ1 + · · · + λr . The set of particles of class exactly r on line m

thus has density λr (in the sense that each site has probability λr of containing
such a particle), but may not be a Bernoulli process.

THEOREM 2.1. The distribution of vm (the mth line of the configuration v) is
the stationary distribution of the m-type TASEP on Z, with density λr of particles
of class r .

There is an analogous result for the case of ZN . First we construct operators
F

(N)
m : U(N)

m × U(N)
1 �→ U(N)

m+1 analogous to the queueing operators Fm above.
Suppose we have an “arrival process” (with m types of customer and holes)

a ∈ U(N)
m , and a “service process” s ∈ U(N)

1 . We will derive a “departure process”

(with m + 1 types and holes) d ∈ U(N)
m+1 using an extension of the “collapse” de-

scribed above.
Let Ar = {i ∈ ZN :a(i) = r} for r ≤ m, and let S = {i ∈ ZN : s(i) = 1}.
Assume that |A1 ∪ · · · ∪ Am| ≤ |S|. We will construct the sets

Dr = {i :d(i) = r}, r ≤ m + 1.

First D1 is constructed gradually as follows. D1 starts empty; take each site i ∈ A1
one by one in some arbitrary order, and add to the set D1 the first element of the list
{i, i + 1, i + 2, . . .} which is in the set S and which has not yet been added to D1.
(As before, the order in which the sites in A1 are considered makes no difference
to the set D1 finally obtained.)

Now suppose that 1 < r ≤ m and that the sets Ds have been constructed for
s < r . The set Dr is constructed using the same collapse process, based on the
set Ar and the set S \ (D1 ∪ · · · ∪ Dr−1). Start the set Dr empty. Take each site
i ∈ Ar one by one, and add to Dr the first j in the list {i, i + 1, i + 2, . . .} such that
j ∈ S \ (D1 ∪ · · · ∪ Dr−1) and such that j has not yet been added to the set Dr .

In this way the sets D1, . . . ,Dm are constructed. Finally let Dm+1 = S \ (D1 ∪
· · · ∪ Dm).

Note that |Dr | = |Ar | for each r ≤ m, and |Dm+1| = |S| − |A1| − · · · − |Am|.
We set d(i) = r if i ∈ Dr , for r = 1, . . . ,m + 1, and otherwise d(i) = ∞.
The operator F

(N)
m is then defined by F

(N)
m (a, s) = d .

Fix n > 1. Let X(N) be the state-space {1,∞}ZN×{1,...,n} of configurations of
particles with n lines. For x = (xm(i), i ∈ ZN,m ∈ {1,2, . . . , n}) ∈ X(N), we say
that x has a particle at site i on line m if xm(i) = 1, and that x has a hole at site i

on line m if xm(i) = ∞.
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Consider a richer state space V(N) consisting of configurations v = (vm(i),
i ∈ ZN , m ∈ {1,2, . . . , n}) with vm(i) ∈ {1,2, . . . ,m} ∪ {∞}. If vm(i) = ∞ we
say that v has a hole at site i on line m, while if vm(i) = r < ∞ then v has a par-
ticle of class r at site i on line m. Thus vm, the mth line of v, is a configuration in
U(N)

m ; all the particles on line m have classes in {1,2, . . . ,m}.
Given a configuration x ∈ X(N), we will associate a configuration v = V (N)x ∈

V(N) to it. We will have vm(i) = ∞ iff xm(i) = ∞; that is, the particles in v and x

are in exactly the same places, and deriving v from x corresponds to assigning
classes to the particles of x.

First set v1(·) = x1(·). (All the particles on the top line have class 1.) Now
recursively, define vm+1(·) = F

(N)
m (vm(·), xm+1(·)) for m = 1,2, . . . , n − 1.

THEOREM 2.2. Let pr ∈ N for 1 ≤ r ≤ n, with p1 + · · · + pn ≤ N . Let
qm = p1 + · · · + pm, for 1 ≤ m ≤ n. Define X(N)

q to be the subset of X(N)

consisting of those configurations which have exactly qm particles on line m for
m = 1,2, . . . , n. Suppose that x has the uniform distribution on X(N)

q . The result-
ing distribution of the configuration vm (the mth line of the configuration v) is the
stationary distribution of the m-type TASEP on ZN , with pr particles of class r .

The proofs of Theorems 2.1 and 2.2 are analogous and are done together in the
next two sections.

The proof consists of two steps. First we define a Markov process on the state-
space X (or X(N)) (the “multiline process”) and show that the product distribu-
tion (or the uniform distribution) defined above is a stationary distribution for the
process.

Then we show that if x evolves according to the multiline process, then v = V x

(or V (N)x) evolves in such a way that its bottom line (V x)n realizes a TASEP
with n types of particle.

Thus the image of the bottom line of v under the product distribution (or uniform
distribution) for x is indeed stationary for the n-type TASEP.

2.3. Further details of multi-class queue construction. In this section we give
a more formal construction of the queue-length process for the multiclass queues
described above, and give recurrences analogous to (2.4) for the multiclass case.

First the case of Z. For k ≤ m, let A
≤k
[i,j ] be the number of customers arriving

in the interval [i, j ] whose class is less than or equal to k; that is, A
≤k
[i,j ] = #{r ∈

[i, j ] :a(r) ≤ k}. Let S[i,j ] = #{r ∈ [i, j ] : s(r) = 1} be the number of services oc-
curring in [i, j ]. We now define

Q
≤k
j = sup

i≤j

[
A

≤k
[i,j ] − S[i,j ]

]
+.(2.7)

The quantity Q
≤k
j represents the number of customers in the queue whose class is

less than or equal to k, just after time j . The definition (2.7) corresponds to (2.3),
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applied to the queue in which we consider all customers of class less than or equal
to k as equivalent, and ignore all other customers. Then, analogously to (2.4),

Q
≤k
j = [

Q
≤k
j−1 + I

(
a(j) ≤ k

) − I
(
s(j) = 1

)]
.(2.8)

The interpretation is as follows: at each time step, the number of customers in the
queue of class less than or equal to k increases by 1 if such a customer arrives and
there is no service, decreases by 1 if no such customer arrives and there is a service
(unless it was already zero), and otherwise stays the same.

The departure process d = Fm(a, s) from the queue is given by:

for k ≤ m, d(j) ≤ k, if s(j) = 1 and either Q
≤k
j−1 > 0 or a(j) ≤ k;

d(j) = m + 1, if s(j) = 1,Q
≤m
j−1 = 0 and a(j) = ∞;(2.9)

d(j) = ∞, if s(j) = ∞.

For j ∈ Z, write Qj for the vector (Q
≤1
j ,Q

≤2
j , . . . ,Q

≤m
j ). Note that since

a(i), s(i), i ∈ Z are all independent, and the processes a and s are stationary, we
have from (2.7) and (2.8) that the queue-length process Qj, j ∈ Z is a stationary

Markov chain. Each component Q
≤k
j considered in isolation corresponds to a sim-

ple queue of the sort described in Section 2.1, with arrival rate λ1 + λ2 + · · · + λk

and service rate µ = λ1 + · · · + λm+1.
In the case of ZN one defines A[i,j ] and S[i,j ] in the same way and then

Q
≤k
j = sup

i

[
A

≤k
[i,j ] − S[i,j ]

]
+;(2.10)

one again obtains (2.8) and can define d = F
(N)
m (a, s) by (2.9). For j ∈ ZN , we

again write Qj for the vector (Q
≤1
j ,Q

≤2
j , . . . ,Q

≤m
j ). It can still be helpful to think

of Q
≤k
j as the “number of customers of type less than or equal to k present in the

queue just after time j” in order to interpret the recurrence (2.8) as the operation
of a (priority) queueing server; now this interpretation only holds “locally,” since
the set of “times” is ZN rather than Z.

See Figures 1, 2 and 3 for illustrations of the multiclass and multiline construc-
tions.

3. Multiline process. The multiline process with n lines has state space X
(or X(N)) = {1,∞}Z×{1,...,n} (or {1,∞}ZN×{1,...,n}, resp.). For m ∈ {1, . . . , n} and
i ∈ Z or ZN , we say that xm(i) is the value at site i on line m. The value 1 indicates
a particle and the value ∞ indicates a hole.

In each of the n lines, the transitions that occur are those of the TASEP (with one
type of particle): when a bell rings at site i on line m, the configuration xm(·) moves
to x

(i−1,i)
m (·). Bells on the different lines all ring together (but not necessarily at

the same site).
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We have a process of bells at rate 1 at each site i of the bottom line (line n).
When a bell rings on line n it generates a bell on the line above (line n− 1), which
in turns generates one on the line above that (line n−2) and so on up to 1. The rule
is as follows. Suppose a bell rings at site i on line m. Then if xm(i) = 1 (before
any swap), the bell on line m − 1 also rings at site i, while if xm(i) = ∞, then the
bell on line m − 1 rings at site i + 1.

Formally, we can define as follows. For x ∈ X (or X(N)) and i ∈ Z (or ZN ), de-
fine the sequence bm = bm(x, i),m = 0, . . . , n by bn = i and, for m = n−1, . . . ,0,

bm =
{

bm+1, if xm+1(bm+1) = 1,
bm+1 + 1, if xm+1(bm+1) = ∞.

(3.1)

Thus bm is the location of the bell which rings on line m, for m = 1, . . . , n (and
we have also defined the value b0 for later use). So when the bell rings at site i on
line n, one jumps from the state x to the state y = Y(x, i) defined by

ym(j) = xm(j) for j /∈ (bm − 1, bm),

ym(bm − 1) = min{xm(bm − 1), xm(bm)},(3.2)

ym(bm) = max{xm(bm − 1), xm(bm)},
where bm = bm(x, i) throughout.

The multiline process is illustrated in Figure 4.

THEOREM 3.1. (i) Let qm ∈ {0,1, . . . ,N} for m ∈ {1,2, . . . , n}. As before,
let X(N)

q be the subset of X(N) consisting of those configurations which have ex-
actly qm particles on line m, for m = 1,2, . . . , n. Then the uniform distribution on
X(N)

q is a stationary distribution for the multiline process on Z
(N).

FIG. 4. Multiline process. In this picture we illustrate the effect of two possible bells, at i and i′.
For i, the bells ring at b4 = b3 = i, b2 = i + 1 and b1 = i + 2, and b0 = i + 3. The only par-
ticle which jumps is on the bottom line, due to the bell at i. For i′ the bells ring at b′

4 = i′ and
b′

3 = b′
2 = b′

1 = i′ + 1, and b′
0 = i′ + 2. A particle in the third line jumps due to this bell.
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(ii) Let ρ1, ρ2, . . . , ρn ∈ [0,1]. Let ν be the product distribution on X under
which all the {xm(i)} are independent, and P(xm(i) = 1) = ρm. Then ν is a sta-
tionary distribution for the multiline process on Z.

The following proposition (which is not needed for the main proof) shows that,
in equilibrium, the multiline process provides a coupling of n stationary TASEP
processes (which, by the previous theorem, have independent marginals at any
fixed time). It will follow very easily from our proof of Theorem 3.1; the argument
is given at the end of this section.

PROPOSITION 3.2. Consider the multiline process in one of the stationary
distributions described in Theorem 3.1. The marginal law of each line of the
process is that of a TASEP.

(In fact, it is possible to go further and show that, in equilibrium, the process of
bells on any line of the multiline process consists of a collection of independent
Poisson processes. See [6] for details of this extension in the case of Z.)

The rest of this section is devoted to the proof of Theorem 3.1. We will do the
proof for (i), the process on ZN . Part (ii) then follows by letting N → ∞ and
choosing q

(N)
1 , . . . , q

(N)
n such that q

(N)
m /N → ρm. In that case: (a) the uniform

measure of part (i) converges to the product measure of part (ii); (b) one can con-
struct jointly the processes on Z2N+1 and on Z in such a way that the bells at
sites N + 1, . . . ,2N,0,1, . . . ,N of the process on Z2N+1 are the same as the bells
at sites −N, . . . ,−1,0, . . . ,N of the process on Z. Combining (a) and (b), one
can obtain a coupling of the sequence of finite processes (with initial conditions
according to the uniform measure) and the infinite process (with initial condition
according to the product measure) with the following property: for any fixed time t

and on any fixed finite window [−k, k], the evolution of the processes on Z2N+1
and on Z over the time interval [0, t] are identical at all sites in [−k, k] for all large
enough N , with probability 1. In particular, the expected values of any cylinder
function of the state at time 0 and at time t for the finite processes converge to
the corresponding expected values for the infinite process. Hence since the uni-
form measures are stationary for the finite processes, one has also that the product
measure obtained in the limit is stationary for the infinite process.

So from now on we concentrate on the case of ZN . For convenience we will
write X̃ = X(N)

q .
We can describe the process as follows. From any state, the process chooses, at

rate N , a random i uniformly from {1,2, . . . ,N} and jumps from its current state x

to the state Y(x, i) defined at (3.2). [Note that we may have Y(x, i) = x so that the
process actually stays in its current state.]

Consider the function T from X̃ × {1, . . . ,N} to itself defined by

T (x, i) = (
Y (x, i), b0(x, i)

)
,(3.3)
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where b0 is defined at (3.1).
We will show that T (·, ·) is a bijective function. From this it follows that the

uniform distribution is stationary. To see this, one simply calculates the overall
rate of jumps into and out of each state y. For convenience we include jumps
from y to itself which occur under the description above. Let µ(x) = 1/|X̃| be the
probability of a state x. The rate of jump out of y is simply Nµ(y)=N/|X̃|. For
the rate of jump into y, we have

∑
i

∑
x

µ(x)I
(
y = Y(x, i)

) = 1

|X̃|
∑
i

∑
x

∑
j

I
(
T (x, i) = (y, j)

)

= 1

|X̃|
∑
j

∑
i

∑
x

I
(
(x, i) = T −1(y, j)

)

= 1

|X̃|
∑
j

1

= N/|X̃|.
So the rest of the proof is to show that T is indeed a bijective function. We will

construct its inverse. In fact, this is essentially equivalent to constructing the time-
reversal (in equilibrium) of the process. It turns out that this process can be seen as
the image on the original process, reflected between top and bottom and left and
right.

In the reverse process, the possible transitions on each line are transitions of a
TASEP in which particles move to the right; that is, (1,∞) may swap to (∞,1).
A bell at position j on line m will try to swap positions j − 1 and j on line m in
this way. Bells now ring at each site on the top line (line 1) at rate 1, and each bell
on line m generates a bell on line m + 1, as follows. If in state y a bell rings at
position j on line m, then the bell on line m+1 rings at position j if ym(j −1) = 1
(before any swap) and at position j − 1 if ym(j − 1) = ∞.

Formally, for y ∈ X̃ and j ∈ ZN , define the sequence cm = cm(y, j),m =
1, . . . , n + 1 by c1 = j and, for m = 1,2, . . . , n,

cm+1 =
{

cm, if ym(cm − 1) = 1,
cm − 1, if ym(cm − 1) = ∞.

(3.4)

Thus when the bell rings at site j on line 1, the bells ring also at sites cm(y, j) on
lines m = 2, . . . , n, and the process jumps from the state y to the state x = X(y, j)

defined by

xm(i) = ym(i) for i /∈ (cm − 1, cm),(3.5)

xm(cm − 1) = max{ym(cm − 1), ym(cm)},(3.6)

xm(cm) = min{ym(cm − 1), ym(cm)},(3.7)
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FIG. 5. Reverse multiline process. We illustrate the two reverse jumps which correspond to the
forward jumps in Figure 4. The corresponding reversed bells ring at sites j and j ′. For j , the bells
ring at c1 = j , c2 = j − 1, c3 = j − 2 and c4 = j − 3; also c5 = j − 3. Again, only one particle, on
the bottom line, jumps due to the bell at j . For j ′ the bells ring at c′

1 = j ′ and c′
2 = c′

3 = c′
4 = j ′ − 1,

with c′
5 = j ′ − 2. Again, a particle in the third line jumps due to this bell.

where cm = cm(y, j) throughout. We have also defined cn+1.
This reverse process is illustrated in Figure 5.
Now define the function T ∗ from X̃ × {1, . . . ,N} to itself by

T ∗(y, j) = (
X(y, j), cn+1(y, j)

)
.(3.8)

This is the inverse of T that we need:

PROPOSITION 3.3. If x ∈ X̃ and i ∈ {1, . . . ,N}, then T ∗(T (x, i)) = (x, i).

PROOF. Let (y, j) = T (x, i), so that y = Y(x, i) and j = b0(x, i). Write bm =
bm(x, i) and cm = cm(y, j).

Then the result we need is that X(y, j) = x and cn+1 = i.
The configurations x and y are identical except in the following way: for

each m, if (xm(bm −1), xm(bm)) = (∞,1) then these values are swapped to (1,∞)

in y.
Similarly, the configurations y and X(y, j) are identical except as follows: for

each m, if (ym(cm −1), ym(cm)) = (1,∞) then these values are swapped to (∞,1)

in X(y, j).
So to show that X(y, j) = x, it is enough to show that, for each m,(

xm(bm − 1), xm(bm)
) = (∞,1) ⇔ (

ym(cm − 1), ym(cm)
) = (1,∞),(3.9)

and that in this case bm = cm.
We first note a few simple implications for later reference. For m = 1, . . . , n:

xm(bm) = 1 ⇒ ym(bm − 1) = 1,(3.10)
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xm(bm) = ∞ ⇒ ym(bm) = ∞,(3.11) (
xm(bm − 1), xm(bm)

) = (∞,1) ⇒ (
ym(bm − 1), ym(bm)

) = (1,∞),(3.12)

xm(bm) = 1 and ym(bm) = ∞ ⇒ xm(bm − 1) = ∞.(3.13)

These all follow immediately from the relationship between x and y observed
above.

Now, let C(m) be the property that

cm = bm−1 =
{

bm, if xm(bm) = 1,
bm + 1, if xm(bm) = ∞.

(3.14)

(The second equality is the definition of bm−1.) We will show by induction that
C(m) holds for m = 1, . . . , n, n + 1.

The property C(1) is true by definition, since c1 = c1(y, b0) = b0.
Suppose r ∈ {1, . . . , n} and C(r) holds, so that

cr = br−1 =
{

br, if xr(br) = 1,
br + 1, if xr(br) = ∞.

(3.15)

There are two cases to check:
Case 1. xr(br) = 1. Then cr = br [from (3.15)], and also yr(br − 1) = 1,

from (3.10). So yr(cr − 1) = 1, and cr+1 = cr = br , using (3.4). Hence C(r + 1)

holds as desired.
Case 2. xr(br) = ∞. Then cr = br + 1 [from (3.15)], and yr(br) = ∞

[from (3.11)]. So yr(cr − 1) = yr(br) = ∞, and (3.4) gives cr+1 = cr − 1 = br ,
giving C(r + 1) as desired.

Thus by induction C(r) holds for all r = 1,2, . . . , n + 1.
In particular putting r = n + 1 we have that cn+1 = bn = i. So it remains to

show that the two sides of (3.9) are equivalent, and that each implies that cm = bm.
First suppose that the left-hand side of (3.9) holds, that is,

(
xm(bm − 1), xm(bm)

) = (∞,1).

We have cm = bm by the property (3.14), and then, using (3.12),
(
ym(cm − 1), ym(cm)

) = (
ym(bm − 1), ym(bm)

)
= (1,∞),

which is the right-hand side of (3.9). In the other direction, suppose that the right-
hand side of (3.9) holds, that is,

(
ym(cm − 1), ym(cm)

) = (1,∞).

Suppose that we also had xm(bm) = ∞. Then we would have ym(bm) = ∞
from (3.11). Also from (3.14) we would have cm = bm + 1, so that ym(bm) =
ym(cm − 1) = 1, which is a contradiction.
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So we must in fact have xm(bm) = 1. Then from (3.14), cm = bm as desired.
We have ym(bm) = ym(cm) = ∞, so from (3.13) we have xm(bm − 1) = ∞. Thus
the left-hand side of (3.9) indeed holds as desired. This completes the proof of
Proposition 3.3 and hence of Theorem 3.1. �

PROOF OF PROPOSITION 3.2. By construction, line 1 of the reverse process
realizes a (reverse) TASEP. Hence line 1 of the forward process realizes a forward
TASEP. Now let 1 < m ≤ n and consider the process consisting just of lines m,m+
1, . . . , n. This is a multiline process with n − m + 1 lines. For exactly the same
reason, the top line of this process realizes a TASEP. But this is exactly line m of
the original process. So (in equilibrium) every line realizes a TASEP, as desired.

�

4. Realization of the multitype TASEP by the multiline process.

THEOREM 4.1 (for both Z and ZN ). If x evolves according to the multiline
process (with n lines) then v = V x (or V (N)x) evolves in such a way that its nth
line vn follows a TASEP with n types.

Since the bells at each site of level n of the multiline process occur at rate 1
independently, it will be enough to show the following:

PROPOSITION 4.2. Let m ∈ {1,2, . . . , n}. When a bell rings at site i on line m

of the multiline process, the effect on vm is also of a bell at site i, that is, vm jumps
to v

(i−1,i)
m .

This is clearly true for m = 1, since v1 = x1.
For m ≥ 2, recall that a bell at site i on level m creates a bell on level m − 1

according to the following rule: if there was a particle at site i on level m, then the
bell on level m − 1 is also at site i; if not, then the bell on level m − 1 is at site
i + 1.

Using this, we can prove the proposition by induction. Under the assumption
that the bell on level m− 1 has the effect of a TASEP bell, we show that the swaps
on level m − 1 and m also have the effect of a TASEP bell on level m. In terms
of the arrival, service and departure processes, the induction step is the following
lemma; to perform the induction, we apply it with a = vm−1, s = xm and d = vm.

LEMMA 4.3. (i) Let m ≥ 2. Let a be an arrival process with m − 1 types,
and let s be a service process. Let d = Fm(a, s) be the corresponding departure
process with m types. Define

b =
{

i, if s(i) = 1,
i + 1, if s(i) = ∞.
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Write ã = a(b−1,b), s̃ = s(i−1,i) and d̃ = Fm(ã, s̃). Then d̃ = d(i−1,i).
(ii) The analogous statement for the process on ZN rather than Z; the operator

Fm is replaced by F
(N)
m .

PROOF. We will word the proof for the case of Z; but an identical argument
applies to the case of ZN , using the framework explained at the end of Section 2.3.
We will check three cases:

Case 1. s(i) = ∞. There is no service at i, and the bell at i leaves the process s

unchanged: s̃ = s. Also d(i) = ∞, so d(i−1,i) = d . We have b = i + 1.
The order of events in the arrival process at i and i + 1 does not matter; since

there is no service at i, any arrivals at i or i + 1 have no opportunity to depart until
i + 1 or later. So d̃ = Fm(ã, s̃) = Fm(ã, s) = Fm(a, s) = d = d(i−1,i), as required.

Case 2. s(i − 1) = ∞ and s(i) = 1. Thus s̃(i − 1) = s(i) and s̃(i) = ∞. Simi-
larly d(i−1,i)(i − 1) = d(i) and d(i−1,i)(i) = d(i − 1) = ∞. We have b = i. Let C
be the collection of all the customers who were either present in the queue just
after time i − 2 or who arrived at time i − 1 or i. The value of d(i) is the class
of the highest priority customer in the collection C (or is equal to m + 1 if C is
empty).

After the swaps, the higher priority out of the particles arriving at (i − 1) and i

(if any) has moved to place (i − 1) in the arrival process. So the particle which
previously departed at time i (if any) is now already present at time i − 1. Since
s̃(i − 1) = 1, this particle will depart at time i − 1. That is, d̃(i − 1) = d(i), and
since s̃(i) = ∞, we have also d̃(i) = ∞ = d(i − 1). Overall, the collections of
particles arriving and departing in [i −1, i] are unchanged and so Qi , and hence all
later values in the queue-length process and the departure process, are unchanged.
Thus d̃ = d(i−1,i) as desired.

Case 3. s(i − 1) = s(i) = 1. There are services available at both i − 1 and i.
Consider the collection C as in case 2 above. The values of d(i − 1) and d(i) are,
in some order, the highest and second highest priorities out of this collection C.
[The two values may be the same. Also, if this collection has fewer than 2 particles,
then one or both of d(i − 1) and d(i) will be equal to m + 1.]

The bell has no effect on the service process: s̃ = s. For the arrival process, we
have b = i, and the swap at (i − 1, i) ensures that ã(i − 1) ≤ ã(i), so that the
highest priority customer out of the collection C is available to depart at time i − 1
(since this customer is either already present in the queue after time i −2 or arrives
at time i −1). Thus this customer (which was the higher priority of those departing
at times i − 1 and i in the process d) will now depart at i − 1. The second-highest
now departs at i. Again Qi is left unchanged. Thus d̃ = d(i−1,i). �

5. Common denominators and states of minimal weight for the process
on ZN .

THEOREM 5.1. Consider the n-type process on ZN , with pm particles of
type m, for m = 1,2, . . . , n, where p1 + p2 + · · · + pn ≤ N .
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(i) In the stationary distribution, the probability of any state is an integer mul-
tiple of M−1, where

M =
[(

N

p1

)(
N

p1 + p2

)
. . .

(
N

p1 + p2 + · · · + pn

)]
.(5.1)

(ii) A state u has probability M−1 (the smallest possible) in the stationary dis-
tribution iff the following holds for each j ∈ ZN : if u(j) = ∞ then u(j + 1) = ∞
or u(j + 1) = n, while if u(j) = m < ∞ then u(j + 1) ≥ m − 1.

We write W (N)
n for the set of states satisfying the condition of part (ii). The

proof of the first part is immediate:

PROOF OF THEOREM 5.1(i). M is the number of configurations of the mul-
tiline process, with (p1 + · · · + pm) particles on line m. By Theorem 2.2, the
stationary distribution for the n-TASEP is given by the image, under the map
x → (V (N)x)n, of the uniform distribution for the multiline process. Thus the
probability of any state is a multiple of M−1, as required for part (i). �

Before proving the second part, we need a couple of definitions and lem-
mas. Recall the “queueing operator” F

(N)
m :U(N)

m × U(N)
1 �→ U(N)

m+1. The next

two results concern solutions of the relation d = F
(N)
m (a, s). Here a ∈ U(N)

m is
an “arrival process” (consisting of m classes of arrival, corresponding to values
a(j) ∈ {1,2, . . . ,m}, and holes, corresponding to the value ∞); s ∈ U(N)

1 is a
“service process” (consisting of values 1, where service is possible, and values ∞,
where no service is possible), and d ∈ U(N)

m+1 is a “departure process” (consisting
of m classes of departure, corresponding to values in {1,2, . . . ,m}, of “unused
services,” corresponding to the value m + 1, and holes or “nonservices,” corre-
sponding to the value ∞).

The first lemma shows in effect that s is uniquely determined by d , and that
there one can always find at least one appropriate a:

LEMMA 5.2. Let d ∈ U(N)
m+1.

(i) Define H(d) ∈ U(N)
1 by

(H(d))(j) =
{∞, if d(j) = ∞,

1, if d(j) < ∞.

If F
(N)
m (a, s) = d for some a, s, then s = H(d).
(ii) Define further Gm(d) ∈ U(N)

m by

(Gm(d))(j) =
{∞, if d(j) = m + 1 or d(j) = ∞,

d(j), if d(j) ≤ m.

Then F
(N)
m (Gm(d),H(d)) = d .
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PROOF. Part (i) follows directly from the definition of F
(N)
m , since if d =

F
(N)
m (a, s), then d(j) = ∞ iff s(j) = ∞. Part (ii) is easy to check. In terms of

the collapse process, there is a space available directly below the starting position
of every particle; so each particle remains at the same site where it starts. In terms
of the queue, there is a service at every time when an arrival occurs; thus each
arrival departs immediately and the queue is always empty. �

The following lemma now shows that a = Gm(d) gives the unique solution
whenever d ∈ W (N)

m+1, and that the property defined in Theorem 5.1(ii) is inherited
by Gm(d):

LEMMA 5.3. If d ∈ W (N)
m+1 and F

(N)
m (a, s) = d , then a = Gm(d) and s =

H(d). Furthermore, Gm(d) ∈ W (N)
m .

PROOF. The fact that s = H(d) is already given by the Lemma 5.2(i), so it
remains to look at the process a.

Divide the configuration d into blocks, each of which consists of a string
of holes followed by a string of particles. Suppose that the block occupies the
sites i0, . . . , i1, . . . , i2, with i0 ≤ i1 < i2, that d(j) = ∞ for j ∈ [i0, i1], and that
d(j) < ∞ for j ∈ [i1 + 1, i2]. Note that the definition of W (N)

m+1 implies that
d(i1 + 1) = m + 1.

Since there is an “unused service” at i1 + 1, and no services in [i0, i1], there
can be no “arrivals” in [i0, i1]; that is, a(j) = ∞ for j ∈ [i0, i1]; and the “queue”
is empty after time i1. Since there are no more “nonservices” in [i1 + 1, i2], every
customer arriving during that time departs immediately. Thus for j ∈ [i1 + 1, i2],
we have a(j) = d(j) if d(j) ≤ m, and a(j) = ∞ if d(j) = m+1 (unused service).

Hence the block (a(i0), . . . , a(i2)) is identical to the string (d(i0), . . . , d(i2)),
except that any value d(j) = m+ 1 is replaced by the value a(j) = ∞. Putting the
blocks together, one has exactly that a = Gm(d) as asserted.

Finally, recall that for a configuration in W (N)
m+1 the set of “allowable pairs” of

values for sites j and j + 1 are (∞,∞), (∞,m + 1) or (r, k) for some k ≥ r − 1.
It’s easy to check that replacing all the values m + 1 by ∞ transforms any such
allowable pair for W (N)

m+1 into an allowable pair for W (N)
m . Hence Gm(d) ∈ W (N)

m

as required. �

PROOF OF THEOREM 5.1(ii). A state u has probability exactly M−1 iff there
is a unique x such that vn = u, where v = V (N)x. From the definition of V (N) this
means that vm+1 = F

(N)
m (vm, xm+1) for each m = 1,2, . . . , n − 1, and v1 = x1.

First, we show how to construct one such x directly. Starting from u = vn, we
can recursively set vm = Gm(vm+1) for m = n − 1, . . . ,1, and xm = H(vm) for
each m. Lemma 5.2(ii) then gives that indeed v = V (N)x.
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The configuration vn is a “minimal state” if this is the only possible x. It now
follows, by applying Lemma 5.3 repeatedly that this is indeed the case whenever
vn ∈ W (N)

n , since then we can construct vm uniquely from vm+1 for each m, and xm

uniquely from vm.
It now remains to show the converse: if u /∈ W (N)

n , then there are at least two x

such that (V (N)x)n = u. It’s enough to show the following: if we are given vm+1 /∈
W (N)

m+1 and are looking for vm such that F
(N)
m (vm, xm+1) = vm+1, then either (a)

there are two choices for vm or (b) m > 1 and the unique choice for vm gives vm /∈
W (N)

m . This way, starting from u /∈ W (N)
n we can construct all of v (and hence x)

recursively starting from vn = u, and be guaranteed to have a nonunique choice at
some stage.

So, choose vm+1 /∈ W (N)
m+1. Choose some j such that the pair (vm+1(j − 1),

vm+1(j)) violates the conditions defining W (N)
m+1.

Case 1. vm+1(j − 1) = ∞ and vm+1(j) ≤ m. No service occurs at j − 1, and
a customer departs at j . Then vm = Gm(vm+1) satisfies vm(j − 1) = ∞ and
vm(j) ≤ m also. But swapping the values vm(j − 1) and vm(j) in the arrival
process will have no effect on the departure process (since there is no service at
j − 1). Thus the choice of arrival process vm is nonunique, and (a) holds.

Case 2. vm+1(j) = k ≤ m + 1 and vm+1(j + 1) = r ≤ k − 2. Certainly m > 1.
Let vm = Gm(vm+1). Then vm(j) ∈ {k,∞}, and vm(j + 1) ≤ k − 2 ≤ m − 1. So
vm /∈ W (N)

m , and (b) holds. �

6. Independence and comparison properties for the process on Z. Many
important properties of the 2-TASEP on Z concern the process “as seen from a
second-class” particle.

One central result, proved in [4] and [12] may be stated as follows. Let u(j),

j ∈ Z be a sample from the stationary distribution (with some densities ρ1 and ρ2
of first- and second-class particles). Then conditioned on u(0) = 2, the configu-
rations (u(j), j < 0) and (u(j), j > 0) are independent. It is sometimes said that
the configuration “factorizes” around the position of a second-class particle. Put
another way, the state 2 is a renewal state for the process u(j).

As observed by Angel [1], there is a simple proof of this fact via the collapse
process, or, equivalently, via the queueing process. Recall that the stationary mea-
sure of the 2-TASEP is realized by the departure and service process of a single
queue. As explained in Section 2, the queueing system is Markovian; in particu-
lar, given the current queue-length, the future and past evolutions of the system
are independent (as before, a “time” in the queue corresponds to a site of Z for
the particle system—the “future” and “past” correspond to sites to the right and
left respectively). The state u(0) = 2 corresponds to an unused service at time 0,
and therefore implies that the queue is empty just after time 0; this information
“decouples” the past and future as desired.
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For the n-TASEP with n ≥ 3, there is no such single renewal state. However,
one can find longer “renewal strings.” Let r > 0 and let (w(0),w(1), . . . ,w(r)) be
a sequence taking values in {1,2, . . . , n} satisfying the following conditions:

(i) w(0) = n;
(ii) w(r) = 2;

(iii) if n ≥ 4: for each m ∈ {3, . . . , n − 1}, there exists jm < r such that
w(jm) = m and such that w(j) ≤ m for all j ∈ {jm + 1, . . . , r}.

Call such a sequence a renewal string for the n-TASEP. For example, for n = 4,
the string (4,1,2,3,1,2) qualifies, with r = 5 and j3 = 3. One can show the fol-
lowing:

PROPOSITION 6.1. Let w be such a renewal string. Conditional on u(i) =
w(i) for 0 ≤ i ≤ r , the configurations (u(j), j < 0) and (u(j), j > r) are inde-
pendent.

PROOF. We do not give the proof in full, but the outline is as follows. Recall
that we can write u = (V x)n, where x is a sample from the stationary distribu-
tion of the appropriate multiline process; namely, x is a collection of n Bernoulli
processes with appropriate rates. We defined a collection of n − 1 queueing
processes; the mth queue had an arrival process vm (with m−1 types of customer),
service process xm+1, and departure process vm+1 (with m types of customer). Let
C(m)

j denote the collection of customers present in queue m after time j . Since
the queue-length processes form a Markov chain as described in Section 2, one
has that, given the vector of queue-lengths (C(1)

j , . . . ,C(n−1)
j ) after time j , the past

and future evolution of the process v (and in particular its nth line) are indepen-
dent. Now, the key step is to show that if (u(0), . . . , u(r)) is a renewal string, then
C(m)

r is empty for all m ∈ {1,2, . . . , n− 1}. This can be done by arguments similar
to those used in the proof of Theorem 5.1; one constructs vm, m = n − 1, . . . ,1
recursively starting from vn, and uses the information that if a particle of type m

occurs on line m at site j , then the corresponding (m− 1)st queue is empty imme-
diately after j . (These arguments are still valid for the case of Z, since the proofs
of Lemma 5.2 and Lemma 5.3 do not use the cyclic structure of ZN .) From this
one obtains that C(m)

j is empty for all jm ≤ j ≤ r , where j3, . . . , jn−1 are defined
above and we take j2 = r , jn = 0. �

A related property for the 2-TASEP, stated in [2] and proved in [12] and [4]
may be stated as follows: the set {j > 0 :u(j) = ∞} is independent of the event
{u(0) = 2}. Similarly, by symmetry, the set {j < 0 :u(j) = 1} is independent of
the event {u(0) = 2}. (The relevant symmetry is the following: if one reverses left
and right for an n-TASEP and also reverses the order of the states {1,2, . . . , n,∞},
then one again obtains an n-TASEP, with the densities appropriately reversed.)
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The following version provides a stronger independence property (and also ex-
tends to n > 2); it is an immediate consequence of the queueing representation.

PROPOSITION 6.2. Let u be a configuration distributed according to a
translation-invariant stationary distribution for the n-TASEP on Z. Then the set
{j > 0 :u(j) = ∞} is independent of the entire configuration (u(j) : j ≤ 0). Simi-
larly, the set {j < 0 :u(j) = 1} is independent of the configuration (u(j), j ≥ 0).

PROOF. Write u = (V x)n as above. The configuration (u(j), j ≤ 0) de-
pends only on (xm(j), j < 0,m ∈ {1, . . . , n}), and so is independent of the set
{j > 0 :u(j) = ∞}={j > 0 :xn(j) = ∞} (since the state x consists of n indepen-
dent Bernoulli processes). �

In [2, 4] and [12], the densities of particles and holes around a second class
particle are explored. It is shown that for all j > 0

P
(
u(j) = 1

)
< P

(
u(j) = 1

∣∣u(0) = 2
)

and similarly (by symmetry), for all j < 0

P
(
u(j) = ∞)

< P
(
u(j) = ∞∣∣u(0) = 2

)
.

Using the queueing representation, we can extend this to a pathwise stochastic
comparison of the stationary measure with the measure conditioned to have a
second-class particle at the origin:

PROPOSITION 6.3. Let u be distributed according to a stationary distribution
for the 2-TASEP on Z, with positive density of first- and second-class particles.
Let u′ be drawn from the same distribution but conditional on the presence of a
second-class particle at site 0. Then there is a coupling of u and u′ such that, with
probability 1, one has u(j) ≤ u′(j) for all j > 0 and u(j) ≥ u′(j) for all j < 0.

PROOF. Let µ < 1 be the rate of the service process S and λ < µ the rate of
the arrival process A, used to construct the stationary distribution of the 2-TASEP
in Section 2. We have

Qj = [Qj−1 + I (j ∈ A) − I (j ∈ S)]+,

and if we set

u(j) =



1, if j ∈ S and either Qj−1 > 0 or j ∈ A,
2, if j ∈ S, Qj−1 = 0 and j /∈ A,
∞, if j /∈ S,

then u is distributed according to the stationary distribution of the 2-TASEP with
densities λ and µ − λ of first- and second-class particles.
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Note that Q0 depends only on A ∩ (−∞,0] and S ∩ (−∞,0]; since A and S
are Bernoulli processes, Q0 is independent of A ∩ [1,∞) and S ∩ [1,∞).

Let Q0 be drawn from the stationary queue-length distribution for the queue
(which is geometric with parameter λ/µ).

Under the condition u(0) = 2 we have that the queue-length at time 0 is 0. So
let Q′

0 = 0 and let Q′
j evolve according to

Q′
j = [Q′

j−1 + I (j ∈ A) − I (j ∈ S)]+.

Set also

u′(j) =



1, if j ∈ S and either Q′
j−1 > 0 or j ∈ A,

2, if j ∈ S, Q′
j−1 = 0 and j /∈ A,

∞, if j /∈ S.

Then (u′(j), j > 0) follows the stationary distribution conditioned on the presence
of a second-class particle at 0, as desired. Comparing the two sets of recurrences,
one has Qj ≥ Q′

j for all j > 0. The definitions of u and u′ then give u(j) ≤ u′(j)

for all j > 0 as desired.
The same argument gives the symmetric statement about the processes on j < 0.

Since the processes for positive and negative j are independent given Q0, the two
couplings can in fact be carried out simultaneously as claimed. �

Note that if T = inf{j ≥ 0 :Qj = 0} then Qj = Q′
j and u(j) = u′(j) for all

j ≥ T . The distribution of T decays exponentially; thus so does the probability
that u(j) 
= u′(j). Explicit representations for these probabilities can be found
in [2].

We conclude with one more remark concerning the representation of the sta-
tionary measure of the 2-TASEP by the M/M/1 queueing process. We assigned
first-class particles to the sites of departures and second-class particles to the sites
of unused services. Using the reversibility of the queue-length process, one can
obtain that the joint process of arrivals and unused services is the time-reversal of
the joint process of departures and unused services. Thus one could equally assign
first-class particles to the sites of arrivals and second-class particles to the sites of
unused services, to obtain the stationary measure for a 2-TASEP with jumps to the
right rather than to the left. However, it is less clear how to extend this representa-
tion naturally to the case n > 2.
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