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This paper studies the limits of a spatial random field generated by uni-
formly scattered random sets, as the density λ of the sets grows to infinity
and the mean volume ρ of the sets tends to zero. Assuming that the volume
distribution has a regularly varying tail with infinite variance, we show that
the centered and renormalized random field can have three different limits,
depending on the relative speed at which λ and ρ are scaled. If λ grows much
faster than ρ shrinks, the limit is Gaussian with long-range dependence, while
in the opposite case, the limit is independently scattered with infinite second
moments. In a special intermediate scaling regime, there exists a nontrivial
limiting random field that is not stable.

1. Introduction. Fractional Brownian motion often appears as a renormal-
ized limit of independent superpositions of long-memory stochastic processes that
are used in physics and other application areas, such as telecommunications and fi-
nance. Observing fractional Brownian motion in the limit typically requires rescal-
ing of two model parameters, and switching the order of taking the double limit
may lead to approximations with completely different statistical properties [15].
This was also the conclusion of [12], who studied data traffic models with heavy
tails, and identified conditions for convergence to fractional Brownian motion and
stable Lévy motion in terms of relative scaling speeds of model parameters. This
type of results been refined in studies of a special scaling regime that leads to limit
processes that are not stable [2, 4–6].

This paper extends the above trichotomy into a multidimensional context by
studying renormalized limits of a spatial random field generated by independently
and uniformly scattered random sets in R

d . Viewing the random field as a ran-
dom linear functional indexed by suitable test functions or test measures, we find
different limits for the model as the mean density λ of the random sets grows to
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infinity and the mean volume ρ of the sets tends to zero. If λ grows much faster
than ρ shrinks, the model with heavy tails converges to a Gaussian self-similar ran-
dom field with long-range dependence, which in the symmetric case corresponds
to fractional Gaussian noise with Hurst parameter H > 1/2. In the opposite case
where ρ shrinks to zero very rapidly, the limit has infinite second moments and
no spatial dependence. We also describe a special intermediate scaling regime that
leads to limits that are not stable. In dimension one, these findings correspond to
results obtained earlier for a stochastic process known as the infinite source Pois-
son model or the M/G/∞ model [6, 8, 9, 12].

The outline of the paper is as follows. In Section 2 we construct the model and
introduce a functional analytic approach suitable for asymptotic analysis of the
random fields. In Section 3 we discuss the different scaling regimes and state the
main limit theorems. Section 4 contains a discussion on the statistical properties
of the limits, and Section 5 concludes with the proofs.

2. Random grain model. Let C be a bounded measurable set in R
d such that

|C| = 1 and |∂C| = 0, where ∂C is the boundary of C and | · | denotes the Lebesgue
measure. The building blocks of the model are the sets x + v1/dC, called grains,
where x is a point in R

d and v > 0 is the volume of the grain. Our goal is to
study the mass distribution generated by a family of grains Xj + (ρVj )

1/dC with
random locations Xj and random volumes ρVj , j = 1,2, . . .. We assume that Xj

are uniformly distributed in the space according to a Poisson random measure
with mean density λ > 0, and that Vj are independent copies of a positive random
variable V with EV = 1, also independent of the locations Xj . Hence, the scalar
ρ > 0 equals the mean grain volume. The random field Jλ,ρ(x) is defined as the
number of grains covering x,

Jλ,ρ(x) = #{j :x ∈ Xj + (ρVj )
1/dC},

and we let

Jλ,ρ(A) = ∑
j

∣∣A ∩ (
Xj + (ρVj )

1/dC
)∣∣(1)

be the cumulative mass induced by the grains to a measurable set A.

2.1. The random grain field as a random linear functional. The random vari-
ables Jλ,ρ(A) with A ranging over all measurable sets constitute a set-indexed
random function. More generally, we can view Jλ,ρ as a random functional by
replacing the measure |A ∩ ·| in (1) by an arbitrary positive measure φ,

Jλ,ρ(φ) = ∑
j

φ
(
Xj + (ρVj )

1/dC
)
.

Denote by F(v) the probability distribution of V . Then the grain volumes ρVj

are distributed according to Fρ(v) = F(v/ρ), and Jλ,ρ(φ) can be conveniently
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described as a stochastic integral with respect to a Poisson random measure
Nλ,ρ(dx, dv) on R

d × R+ with intensity measure λdxFρ(dv),

Jλ,ρ(φ) =
∫

Rd

∫
R+

φ(x + v1/dC)Nλ,ρ(dx, dv).(2)

To study the linear structure of Jλ,ρ in a natural way, we do not want to restrict
to positive measures. Let M1 be the linear space of signed measures φ on R

d

with finite total variation ‖φ‖1 < ∞. When φ ∈ M1, we see by writing φ(A) =∫
A φ(dx) and changing the order of integration that∫

Rd

∫
R+

|φ(x + v1/dC)|λdxFρ(dv) ≤ λρ‖φ‖1 < ∞,

so the stochastic integral on the right-hand side of (2) converges in probability for
all φ ∈ M1 [7].

To each function φ ∈ L1, one can uniquely associate a signed measure φ̃ ∈ M1

defined by φ̃(dx) = φ(x) dx. We will identify the space L1 with its image in M1

under the map φ �→ φ̃, so that L1 ⊂ M1. Accordingly, when φ ∈ L1, we will from
now on use the same symbol φ to signify both the function φ(x) and the measure
φ(dx). Moreover, if A is a measurable set with |A| < ∞, we identify A with
the indicator function 1A ∈ L1 ⊂ M1. Note that then Jλ,ρ(1A) = Jλ,ρ(A) agrees
with (1).

Denote by Br the open ball centered at the origin with radius r . Then we see
that Jλ,ρ has long-range dependence in the sense that

lim
r→∞

∣∣ Cov
(
Jλ,ρ(B1), Jλ,ρ(Br \ B1)

)∣∣ = ∞(3)

if and only if EV 2 = ∞. To verify this, note first that the left-hand side of (3) can
be written as∫

R+

∫
Rd

|B1 ∩ (x + v1/dC)||Bc
1 ∩ (x + v1/dC)|λdxFρ(dv)(4)

using the covariance formula (10) below. Because |Bc
1 ∩ (x + v1/dC)| ≤ v

and
∫
Rd |B1 ∩ (x + v1/dC)|dx = |B1|v, expression (4) is bounded above by

λρ2|B1|EV 2. For the other direction, |Bc
1 ∩ (x + v1/dC)| ≥ v − |B1| implies that

|Bc
1 ∩ (x + v1/dC)| ≥ v/2 for all v ≥ 2|B1|, so that (4) is finite only if EV 2 is fi-

nite. Observe also that in dimension one, long-range dependence as defined in (3)
is equivalent to

∞∑
n=−∞

|Cov(Y0, Yn)| = ∞,

where Yn = Jλ,ρ((n,n + 1]) is the discretized version of Jλ,ρ .
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2.2. Riesz energy of signed measures. To study the limiting behavior of
Jλ,ρ(φ) as λ → ∞ and ρ → 0, we need to impose some more regularity for the
measures φ ∈ M1. The following subspaces of M1 will turn out to be useful. For
α ∈ (0,1), let us define

Mα =
{
φ ∈ M1 :

∫
Rd

∫
Rd

|φ|(dx)|φ|(dy)

|x − y|(1−α)d
< ∞

}
,

where |φ| is the total variation measure of φ, and for φ,ψ ∈ Mα , let

〈φ,ψ〉α = cα,d

∫
Rd

∫
Rd

φ(dx)ψ(dy)

|x − y|(1−α)d
,(5)

where

cα,d = π(α−1/2)d�

(
(1 − α)d

2

)/
�

(
αd

2

)
.(6)

A classical result in potential theory states that 〈φ,ψ〉α is an inner product on the
vector space Mα [10]. We denote the corresponding norm by ‖φ‖α = 〈φ,φ〉1/2

α .
The quantity ‖φ‖2

α is often called the Riesz energy of φ. The following proposition
describes how the spaces Mα can be ordered.

PROPOSITION 1. For all 0 < α1 < α2 < 1,

L1 ∩ L2 ⊂ Mα1 ⊂ Mα2 ⊂ M1.

REMARK. Let S′ be the space of tempered distributions on R
d , and denote

the Fourier transform by F :S′ → S′. Then Mα ⊂ S′ and

〈φ,ψ〉α =
∫

Rd
F φ(x)F ψ(x)|x|−αd dx(7)

for all φ,ψ ∈ Mα ([10], Section VI.1). Equation (7) shows that F maps Mα

isometrically into L2
α , the space of square integrable functions with respect to

|x|−αd dx. It is also known that F (Mα) is dense in L2
α , so the Plancherel theorem

implies that the closure of Mα with respect to the norm ‖φ‖α equals F −1(L2
α),

which is called the space of distributions with finite Riesz energy [10].

2.3. Integrals with respect to centered Poisson random measures. Recall that
the centered integral

∫
f (dN − dη) of a nonrandom function f with respect to

a Poisson random measure N with intensity measure η may be defined even for
functions that are not η-integrable. It is known that

∫
f (dN − dη) exists as a limit

in probability if and only if ∫
(|f | ∧ f 2) dη < ∞,(8)
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in which case the distribution of
∫

f (dN − dη) is characterized by

E exp
(
i

∫
f (dN − dη)

)
= exp

∫
(
 ◦ f )dη,(9)

where 
(v) = eiv − 1 − iv for v ∈ R [7]. Moreover,

E
(∫

f (dN − dη)

)(∫
g(dN − dη)

)
=

∫
fg dη,(10)

when f and g are square integrable with respect to η.

3. Scaling behavior and main results.

3.1. Scaling behavior of the random grain model. We will next study the lim-
iting behavior of Jλ,ρ(φ) as the mean grain density λ grows to infinity and the
mean grain volume ρ shrinks to zero. When the grain volume distribution has
finite variance, the following central limit theorem shows that the centered and
renormalized version of Jλ,ρ converges to white Gaussian noise.

THEOREM 1. Let C be a bounded set with |C| = 1 and |∂C| = 0, and assume
EV 2 < ∞. Then as λ → ∞ and ρ → 0, the following limit holds in the sense of
finite-dimensional distributions of random functionals indexed by L1 ∩ L2:

Jλ,ρ(φ) − EJλ,ρ(φ)

ρ(λEV 2)1/2 −→ W(φ),

where W is the centered Gaussian random linear functional on L2 with

EW(φ)W(ψ) =
∫

Rd
φ(x)ψ(x)dx.(11)

However, our main focus will be on the model where the volume distribution
is heavy-tailed with infinite variance. Hence, we will from now assume that the
distribution F(v) of the normalized volume V has a regularly varying tail of index
γ ∈ (1,2), that is,

lim
v→∞

F̄ (av)

F̄ (v)
= a−γ for all a > 0,(12)

where F̄ (v) = 1 − F(v). This implies that EV 2 = ∞. Let us denote f (ρ) ∼ g(ρ),
if f (ρ)/g(ρ) → 1 as ρ → 0. Then (12) implies that the scaled volume distribution
Fρ(v) = F(v/ρ) satisfies

F̄ρ(v) ∼ F̄ρ(1)v−γ as ρ → 0,

and by Karamata’s theorem [see formula (22) in Section 5.1], the expected number
of grains with volume larger than one that cover the origin equals∫ ∫

{(x,v) : 0∈x+v1/dC,v>1}
λdxFρ(dv) = λ

∫ ∞
1

vFρ(dv) ∼ λF̄ρ(1)

1 − γ −1 .
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Consequently, we distinguish the following three scaling regimes:

large-grain scaling λF̄ρ(1) → ∞,

intermediate scaling λF̄ρ(1) → σ0 > 0,

small-grain scaling λF̄ρ(1) → 0.

The regular variation of F̄ (v) implies that the relations λ ∼ (1/ρ)γ+ε and λ ∼
(1/ρ)γ−ε for some ε > 0 belong to large-grain and small-grain regimes, respec-
tively, while in the critical intermediate scaling regime, the size of λ is roughly
proportional to (1/ρ)γ .

Under large-grain scaling, the number of grains that are big enough to carry
statistical dependence over macroscopic distances grows to infinity. Hence, the
limit of Jλ,ρ in this case is expected to have long-range spatial dependence. In the
opposite case of small-grain scaling, no grains survive that are big enough to repre-
sent substantial dependence over spatial distances, so the small-grain limit of Jλ,ρ

should have very weak dependence over space. The intermediate scaling regime is
a blend of the two other, with a balanced mix of large grains providing long-range
spatial dependence and small grains generating nontrivial random variations on
short distances.

3.2. Main results. The following theorem justifies the heuristics in Sec-
tion 3.1. Let γ ∈ (1,2), and recall that the independently scattered γ -stable ran-
dom measure with unit skewness and Lebesgue control measure is the random
linear functional �γ (φ) = ∫

φ(x)�γ (dx) on Lγ characterized by

Eei�γ (φ) = exp
(
−σ

γ
φ

(
1 − iβφ tan

(
πγ

2

)))
,(13)

where σφ = ‖φ‖γ and βφ = ‖φ‖−γ
γ (‖φ+‖γ

γ −‖φ−‖γ
γ ), and where φ+ = max(φ,0)

and φ− = −min(φ,0). For an alternative equivalent definition of �γ as a set-
indexed random function, see [14].

THEOREM 2. Let C be a bounded set with |C| = 1 and |∂C| = 0, and assume
that V has a regularly varying tail with exponent γ ∈ (1,2). Let α ∈ (0,2 − γ ).
Then the following three limits hold in the sense of finite-dimensional distributions
of random functionals as λ → ∞ and ρ → 0:

(i) (Large-grain scaling) If λF̄ρ(1) → ∞, then

Jλ,ρ(φ) − EJλ,ρ(φ)

(γ λF̄ρ(1))1/2
−→ Wγ,C(φ), φ ∈ Mα,

where Wγ,C is the centered Gaussian random linear functional on M2−γ with
EWγ,C(φ)Wγ,C(ψ) = ∫ ∫

φ(dx)Kγ,C(x − y)ψ(dy) and

Kγ,C(x) =
∫ ∞

0
|(v−1/dx + C) ∩ C|v−γ dv.(14)
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(ii) (Intermediate scaling) If λF̄ρ(1) → σ0 > 0, then

Jλ,ρ(φ) − EJλ,ρ(φ) −→ J ∗
γ,C(φσ ), φ ∈ Mα,

where J ∗
γ,C is defined on M2−γ as a centered integral with respect to the Poisson

random measure Nγ (dx, dv) on R
d × R+ with intensity measure dx v−γ−1 dv,

J ∗
γ,C(φ) =

∫
Rd

∫ ∞
0

φ(x + v1/dC)
(
Nγ (dx, dv) − dx v−γ−1 dv

)
,(15)

and where φσ is defined by φσ (A) = φ(σA) with σ = (γ σ0)
1/((γ−1)d).

(iii) (Small-grain scaling) If λF̄ρ(1) → 0, then

Jλ,ρ(φ) − EJλ,ρ(φ)

cγ (1/F̄ρ)←(γ λ)
−→ �γ (φ), φ ∈ L1 ∩ L2,

where �γ is the independently scattered γ -stable random measure on R
d with

Lebesgue control measure and unit skewness, (1/F̄ρ))←(u) = inf{v : 1/F̄ρ(v) ≥ u}
is the quantile function of Fρ , and

cγ =
(
−�(2 − γ )

γ (γ − 1)
cos

(
πγ

2

))−1/γ

.(16)

3.3. Role of symmetry and randomly oriented grains. Fix a parameter H ∈
(1/2,1), and let WH be the centered Gaussian random linear functional on M2H−1

with

EWH(φ)WH (ψ) = c2H−1,d

∫
Rd

∫
Rd

φ(dx)ψ(dy)

|x − y|(2−2H)d
= 〈φ,ψ〉2H−1,(17)

where 〈φ,ψ〉2H−1 is the Riesz inner product defined by (5) and c2H−1,d is given
by (6). When C is symmetric around the origin so that θC = C for all rotations θ

of R
d , the rotation invariance of the Lebesgue measure shows that the covariance

kernel of the large-grain limit Wγ,C satisfies

Kγ,C(x) = Kγ,C(|x|e1) = Kγ,C(e1)|x|−(γ−1)d ,

where e1 is an arbitrary fixed unit vector in R
d . For symmetric grains C, it hence

follows that Wγ,C equals cWH in the sense of finite-dimensional distributions,
where H = (3 − γ )/2 and c = c−1

2H−1,dKγ,C(e1)
1/2.

We can also study the limit behavior for a slightly modified model where the
grains have independent and uniform random orientations. To define this model,
let dθ be the Haar measure on the compact group SO(d) of rotations in R

d , and
let Nλ,ρ(dx, dv, dθ) be a Poisson random measure on R

d × R+ × SO(d) with
intensity measure λdxFρ(dv) dθ . Then

J̃λ,ρ(φ) =
∫

Rd

∫
R+

∫
SO(d)

φ(x + v1/dθC)Nλ,ρ(dx, dv, dθ)
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defines the analogue of Jλ,ρ with randomly rotated grains θC [compare with de-
finition (2) in Section 2.1]. Because dθ is a probability measure on the compact
group SO(d) that is not scaled during λ → ∞ and ρ → 0, the following result can
be verified by copying the proof of Theorem 2. Note that the shape of C reduces
into a constant c in the large-grain limit below.

THEOREM 3. Under the assumptions of Theorem 2, the following three lim-
its hold in the sense of finite-dimensional distributions of random functionals as
λ → ∞ and ρ → 0:

(i) (Large-grain scaling) If λF̄ρ(1) → ∞, then

J̃λ,ρ(φ) − EJ̃λ,ρ(φ)

(γ λF̄ρ(1))1/2
−→ cWH (φ), φ ∈ Mα,

where WH is the Gaussian random linear functional defined in (17) with H =
(3 − γ )/2 and

c = c−1
2H−1,d

(∫
SO(d)

∫ ∞
0

|(v−1/dθe1 + C) ∩ C|v−γ dv dθ

)1/2

.

(ii) (Intermediate scaling) If λF̄ρ(1) → σ0 > 0, then

J̃λ,ρ(φ) − EJ̃λ,ρ(φ)

−→
∫

Rd

∫ ∞
0

∫
SO(d)

φσ (x + v1/dθC)
(
Nγ (dx, dv, dθ) − dx v−γ−1 dv dθ

)
,

φ ∈ Mα , where Nγ (dx, dv, dθ) is a Poisson random measure on R
d × R+ ×

SO(d) with intensity dx v−γ−1dv dθ and φσ is as in Theorem 2.
(iii) (Small-grain scaling) If λF̄ρ(1) → 0, then

J̃λ,ρ(φ) − EJ̃λ,ρ(φ)

cγ (1/F̄ρ)←(γ λ)
−→ �γ (φ), φ ∈ L1 ∩ L2,

where �γ and cγ are as in Theorem 2.

4. Statistical properties of the limits.

4.1. Properties of the large-grain limit. A change of variables shows that
the covariance kernel of Wγ,C given by (14) scales according to Kγ,C(ax) =
a−(γ−1)dKγ,C(x) for a > 0. Hence, for H = (3 − γ )/2,

EWγ,C(φs)Wγ,C(ψs) = s2(1−H)dEWγ,C(φ)Wγ,C(ψ),

where the dilatation φs of the measure φ is defined for s > 0 by

φs(A) = φ(sA).(18)
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Thus, Wγ,C is self-similar in the sense that Wγ,C(φs) and s(1−H)dWγ,C(φ) have
the same finite-dimensional distributions on M2H−1 for all s > 0.

To study the autocovariance properties of Wγ,C over long spatial ranges, note
first that

lim
r→∞

∣∣ Cov
(
Wγ,C(B1),Wγ,C(Br \ B1)

)∣∣ =
∫
B1

∫
Bc

1

Kγ,C(x − y)dy dx.

By changing the order of integration,∫
Bc

1

Kγ,C(x − y)dy =
∫ ∞

0

∫
x−v1/dC

|Bc
1 ∩ (y + v1/dC)|dyv−γ−1 dv,

and because |Bc
1 ∩ (y + v1/dC)| ≥ v − |B1| for all v, we see that the inner integral

on the right-hand side above is greater than or equal to v2/2 for all v ≥ 2|B1|.
Hence, for all x, ∫

Bc
1

Kγ,C(x − y)dy ≥ 1

2

∫ ∞
2|B1|

v−γ+1 dv,

which is infinite for γ ∈ (1,2). From this, we conclude that

lim
r→∞

∣∣ Cov
(
Wγ,C(B1),Wγ,C(Br \ B1)

)∣∣ = ∞,

which means that Wγ,C has long-range dependence in the sense of (3).
The symmetric large-grain limit WH can be represented in terms of the white

Gaussian noise W defined in Theorem 1, when W is viewed as an independently
scattered Gaussian random measure with Lebesgue control measure as in [14].

PROPOSITION 2. For H ∈ (1/2,1), the random linear functional WH on
M2H−1 equals

WH(φ) = cH−1/2,d

∫
Rd

∫
Rd

φ(dy)

|x − y|(3/2−H)d
W(dx),(19)

in the sense of finite-dimensional distributions, where cH−1/2,d is given by (6).

Specializing to dimension one, we see that for φ,ψ ∈ L1 ∩ M2H−1,

EWH(φ)WH (ψ) = c2H−1,1

∫ ∞
−∞

∫ ∞
−∞

φ(s)ψ(t)|t − s|2H−2 ds dt,

from which we recognize that WH(φ) equals a constant multiple of the stochastic
integral of φ with respect to fractional Brownian motion with Hurst parameter
H > 1/2 [3]. The functional WH may thus be viewed as a natural extension of
fractional Gaussian noise [11] into multidimensional parameter spaces. Moreover,
choosing φ = 1[0,t] in (19) yields the well-balanced representation of fractional
Brownian motion ([14], Section 7.2.1).
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4.2. Properties of the intermediate limit. Using (10) and changing the order
of integration,

EJ ∗
γ,C(φ)J ∗

γ,C(ψ) =
∫

Rd

∫
R+

φ(x + v1/dC)ψ(x + v1/dC)dx v−γ−1 dv

=
∫

Rd

∫
Rd

φ(dx)Kγ,C(x − y)φ(dy),

which shows that J ∗
γ,C and Wγ,C share the same second order statistical structure.

Especially, this implies that J ∗
γ,C has long-range dependence in the sense of (3).

We will next show that J ∗
γ,C is not self-similar by assuming the contrary and

deriving a contradiction. Assume that J ∗
γ,C(φs) = asJ

∗
γ,C(φ) in distribution for all

s > 0, where φs(A) = φ(sA) as before. Then the self-similarity of Wγ,C implies
that as = s(γ−1)d/2, because EJ ∗

γ,C(φs)
2 = EWγ,C(φs)

2. A change of variables
shows that ∫

Rd

∫
R+



(
φs(x + v1/dC)

)
dx v−γ−1 dv

= s(γ−1)d
∫

Rd

∫
R+



(
φ(x + v1/dC)

)
dx v−γ−1 dv.

Comparing this with the characteristic functional of J ∗
γ,C given by (9) and denoting

t = s(γ−1)d/2 allows us to conclude that∫
Rd

∫
R+


re(tφ(x + v1/dC))

t2 dx v−γ−1 dv

(20)
=

∫
Rd

∫
R+


re
(
φ(x + v1/dC)

)
dx v−γ−1 dv,

where 
re denotes the real part of 
 . Because |
re(v)| ≤ 2 for all v, it follows that
the integrand on the left-hand side of (20) converges to zero as t → ∞. Moreover,
|
re(v)| ≤ v2/2 (Lemma 1) implies that this sequence of integrands is bounded
from above by the function φ(x + v1/dC)2/2, which is integrable with respect
to v−γ−1 dv dx, as verified in (36) below. Hence, by dominated convergence, the
left-hand side of (20) converges to zero as t → ∞. When φ is chosen so that the
right-hand side of (20) is nonzero, this is a contradiction.

A similar reasoning can be used to verify that J ∗
γ,C is not stable. However, the

sum of n independent copies of J ∗
γ,C has the same finite-dimensional distribu-

tions as φ �→ J ∗
γ,C(φs), where s = n1/((γ−1)d). This property is called aggregate-

similarity in [4].

4.3. Properties of the small-grain limit. Note that when φ is a function in
L1 ∩ L2 ⊂ M1, the dilatation φs defined in (18) becomes

φs(A) =
∫
sA

φ(x) dx =
∫
A

sdφ(sx) dx,
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so for functions, φs(x) = sdφ(sx). Inspection of the characteristic functional (13)
of �γ shows that �γ (φs) and s(1−1/γ )d�γ (φ) have the same finite-dimensional
distributions, so �γ is self-similar. The random functional �γ can also be repre-
sented by

�γ (φ) = c−1
γ

∫
Rd

∫ ∞
0

vφ(x)
(
Nγ (dx, dv) − dx v−γ−1 dv

)
,

where Nγ (dx, dv) is the Poisson random measure appearing in (15) and cγ is
given by (16); see [14]. Specializing to dimension one, we remark that the sto-
chastic process

t �→ �γ

(
1[0,t]

) =
∫ t

0
�γ (ds)

is the centered γ -stable Lévy motion with unit skewness.

5. Proofs. By definition, Jλ,ρ together with the four limit fields defined in
Theorem 1 and Theorem 2 are linear in the sense that for all test measures
φ1, . . . , φn and all scalars a1, . . . , an,

Jλ,ρ(a1φ1 + · · · + anφn) = a1Jλ,ρ(φ1) + · · · + anJλ,ρ(φn)

almost surely. Hence, convergence of the finite-dimensional distributions of the
centered and renormalized version of Jλ,ρ is equivalent to the convergence of the
one-dimensional distributions. Recall from (9) that for b > 0, the characteristic
functional of (Jλ,ρ(φ) − EJλ,ρ(φ))/b is given by

E exp
(
i
Jλ,ρ(φ) − EJλ,ρ(φ)

b

)
(21)

= exp
∫

Rd

∫
R+




(
φ(x + v1/dC)

b

)
λFρ(dv) dx,

where 
(v) = eiv − 1 − iv. The following lemma summarizes the properties of 


that are needed in proving the theorems of the paper.

LEMMA 1. The function 
(v) = eiv − 1 − iv satisfies

|
(v) − 
(u)| ≤ (2|v − u| ∧ |v2 − u2|/2)

for all u, v ∈ R. Moreover, for all v ∈ R,

|
(v)| ≤ (2|v| ∧ v2/2) and |
(v) + v2/2| ≤ (v2 ∧ |v|3/6).

PROOF. Observe first that 
(v + 2nπ) − 
(u + 2nπ) = 
(v) − 
(u) for all
integers n. Hence, in proving the first inequality, we may without loss of generality
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assume that u and v are nonnegative. Moreover, by symmetry, it is enough to
consider the case u ≤ v. For 0 ≤ u ≤ v, we have

|
(v) − 
(u)| ≤
∫ v

u
|eis − 1|ds ≤

∫ v

u
(2 ∧ s) ds,

because |eis − 1| ≤ (2 ∧ |s|) for all s. This proves the first inequality. The sec-
ond inequality follows from the first by setting u = 0. Further, the third inequality
follows from the second because 
(v) + v2/2 = i

∫ v
0 
(s) ds. �

Before going to the proofs of the main theorems, we first introduce some pre-
liminary results on regular variation (Section 5.1) and on maximal functions (Sec-
tion 5.2). Proposition 1 is proved in Section 5.3, while in Section 5.4 we develop
the key results on the regularity of the characteristic functional (21). Sections 5.5–
5.8 contain the proofs of the main theorems, and Section 5.9 concludes with the
proof of Proposition 2.

5.1. Regular variation. Let F be a probability distribution on R+ with a regu-
larly varying tail of exponent γ > 0, and let 0 < p < γ < q . Then using integration
by parts and Karamata’s theorem ([1], Theorem 1.5.11) it follows that as a → ∞,∫

(a,∞)
vpF (dv) ∼ γ

γ − p
F̄ (a)ap,(22)

∫
[0,a]

vqF (dv) ∼ γ

q − γ
F̄ (a)aq,(23)

where F̄ (a) = 1 − F(a). The next two lemmas summarize the theory on regular
variation that is later used to analyze the distribution of the normalized volume V .

LEMMA 2. Let F be a probability distribution on R+ with a regularly varying
tail of exponent γ > 0, and define the scaled distribution Fρ for ρ > 0 by Fρ(v) =
F(v/ρ). Assume that f (v) is a continuous function on R+ such that, for some
0 < p < γ < q ,

lim sup
v→∞

v−p|f (v)| < ∞ and lim sup
v→0

v−q |f (v)| < ∞.

Then ∫
R+

f (v)Fρ(dv) ∼ F̄ρ(1)

∫ ∞
0

f (v)γ v−γ−1 dv as ρ → 0.

PROOF. Fix a constant a ∈ (0,1). Then (22) implies that, for all v0 > 0,∫
(v0,∞)

vpFρ(dv) ∼ F̄ρ(1)γ

∫ ∞
v0

v−γ−1+p dv,
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which shows that the finite measures F̄ρ(1)−1vpFρ(dv) restricted to (a,∞) con-
verge weakly to the finite measure γ v−γ−1+p dv on (a,∞) as ρ → 0. Because
the function v−pf (v) is continuous and bounded on (a,∞), this implies

F̄ρ(1)−1
∫
(a,∞)

f (v)Fρ(dv) →
∫
(a,∞)

f (v)γ v−γ−1 dv.(24)

Moreover, the second assumption on f implies that |f (v)| ≤ cvq for all v ∈ [0,1],
so (23) implies that∣∣∣∣F̄ρ(1)−1

∫
[0,a]

f (v)Fρ(dv) −
∫ a

0
f (v)γ v−γ−1 dv

∣∣∣∣
≤ cF̄ρ(1)−1

∫
[0,a]

vqFρ(dv) + c

∫ a

0
vqγ v−γ−1 dv ∼ 2c

γ

q − γ
aq−γ .

The claim now follows because the right-hand side above can be made arbitrarily
small by choosing a small enough, and because (24) holds for all a ∈ (0,1). �

LEMMA 3. Let F and Fρ be defined as in Lemma 2, and let fρ(v) be a family
of measurable functions on R+. Assume that for some 0 < p < γ < q , either

lim
ρ→0

sup
v>a

v−pF̄ρ(1)|fρ(v)| = 0 for all a > 0,

(25)
F̄ρ(1)|fρ(v)| ≤ cvq for all ρ, v,

or

lim
ρ→0

sup
a≤v

v−qF̄ρ(1)|fρ(v)| = 0 for all a > 0,

(26)
F̄ρ(1)|fρ(v)| ≤ cvp for all ρ, v.

Then

lim
ρ→0

∫
R+

fρ(v)Fρ(dv) = 0.

PROOF. Assume that the functions fρ(v) satisfy the conditions (25) and fix
a > 0. Denote ca(ρ) = supv>a v−pF̄ρ(1)|fρ(v)|. Then by (22),∫

(a,∞)
|fρ(v)|Fρ(dv) ≤ ca(ρ)F̄ρ(1)−1

∫
(a,∞)

vpFρ(dv) ∼ ca(ρ)
γ

γ − p
ap−γ ,

and by (23),∫
(0,a]

|fρ(v)|Fρ(dv) ≤ cF̄ρ(1)−1
∫
[0,a]

vqFρ(dv) ∼ c
γ

q − γ
aq−γ .

Because ca(ρ) → 0 as ρ → 0, the two above bounds imply that

lim sup
ρ→0

∫
R+

|fρ(v)|Fρ(dv) ≤ c
γ

q − γ
aq−γ .

Since this is true for all a > 0, the claim follows by letting a → 0. The proof under
assumption (26) is analogous. �
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5.2. Maximal functions. Let C be a bounded measurable set in R
d with

|C| = 1. If φ is a locally integrable function, define the averages mφ(x, v) by

mφ(x, v) = v−1
∫
x+v1/dC

φ(y) dy,(27)

and let φ∗ be the maximal function of φ given by

φ∗(x) = sup
v>0

v−1
∫
x+v1/dC

|φ(y)|dy.(28)

The following lemma summarizes the known facts about maximal functions that
are used to find integrable upper bounds for the characteristic functional of Jλ,ρ in
the proofs of Theorem 1 and Theorem 2(iii).

LEMMA 4. Let C be a bounded measurable set in R
d with |C| = 1:

(i) If φ ∈ L1, then limv→0 mφ(x, v) = φ(x) for almost all x.
(ii) If φ ∈ L1, then φ∗(x) < ∞ for almost all x.

(iii) If φ ∈ Lp for some p > 1, then φ∗ ∈ Lp .

PROOF. Let B be the open ball centered at the origin with unit volume, and
fix a > 0 such that C ⊂ a1/dB . Assume first that φ ∈ L1. Then

v−1
∫
x+v1/dC

|φ(y) − φ(x)|dy ≤ a(av)−1
∫
x+(av)1/dB

|φ(y) − φ(x)|dy

for all x ∈ R
d and v > 0. The right-hand side tends to zero as v → 0, because

almost all points x ∈ R
d are Lebesgue points of φ ([13], Theorem 7.7). Thus, the

first claim is valid.
Next, let

φ∗(x) = sup
v>0

v−1
∫
x+v1/dB

|φ(y)|dy

be the Hardy–Littlewood maximal function of φ. Then C ⊂ a1/dB implies that
φ∗(x) ≤ aφ∗(x) for all x. The second claim now follows, because for φ ∈ L1,
φ∗(x) < ∞ almost everywhere ([13], Theorem 7.4). The third claim follows di-
rectly from the Hardy–Littlewood maximal theorem ([13], Theorem 8.18), which
states that if φ ∈ Lp for some p > 1, then φ∗ ∈ Lp . �

5.3. Proof of Proposition 1. Assume 0 < α1 < α2 < 1. When φ ∈ L1 ∩ L2,
then denoting D = {(x, y) : |x − y| ≤ 1}, we see that∫ ∫

Dc

|φ(x)||φ(y)|
|x − y|(1−α1)d

dx dy ≤ ‖φ‖2
1.(29)

Moreover, writing∫ ∫
D

|φ(x)||φ(y)|
|x − y|(1−α1)d

dx dy =
∫ ∫

D

|φ(x)|
|x − y|(1−α1)d/2

|φ(y)|
|x − y|(1−α1)d/2 dx dy
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and applying Hölder’s inequality, we see that∫ ∫
D

|φ(x)||φ(y)|
|x − y|(1−α1)d

dx dy ≤
∫ ∫

D

φ(x)2

|x − y|(1−α1)d
dx dy

= ‖φ‖2
2

∫
{x : |x|≤1}

dx

|x|(1−α1)d
.

This bound together with (29) shows that φ ∈ Mα1 , so the first inclusion has been
shown.

To verify the second inclusion, note that |x − y|(1−α2)d ≥ |x − y|(1−α1)d on D,
and |x − y|(1−α2)d ≥ 1 on Dc. Thus,∫

Rd

∫
Rd

|φ|(dx)|φ|(dy)

|x − y|(1−α2)d
≤

∫ ∫
D

|φ|(dx)|φ|(dy)

|x − y|(1−α1)d
dx dy +

∫ ∫
Dc

|φ|(dx)||φ|(dy),

which is finite for φ ∈ Mα1 . �

5.4. Regularity properties of the characteristic functional. In this section we
prove the key continuity and boundedness properties of the characteristic func-
tional of Jλ,ρ that are required for the asymptotical analysis of the model. We
start with a continuity property of the Lebesgue measure. Denote the symmetric
difference of sets A and B by

A�B = (A \ B) ∪ (B \ A).

LEMMA 5. Let C be a bounded measurable set in R
d such that |∂C| = 0.

Then

lim
r→1

|C�rC| = 0.

PROOF. If y �= 0 belongs to the interior of C, then 1rC(y) = 1C(y/r) con-
verges to 1 as r→1. Moreover, because |∂C| = 0, it follows that limr→1 1rC(y)=1
for almost all y ∈ C. Hence, the dominated convergence theorem implies

lim
r→1

|C ∩ rC| = lim
r→1

∫
C

1rC(y) dy = |C|,
and by writing

|C�rC| = |C| − |C ∩ rC| + |rC| − |C ∩ rC|
= (1 + rd)|C| − 2|C ∩ rC|,

we see that the claim is valid. �

LEMMA 6. Let C be a bounded measurable set in R
d such that |∂C| = 0.

Then for each φ ∈ M1, the functions

v �→
∫

Rd
φ(x + v1/dC)2 dx and v �→

∫
Rd



(
φ(x + v1/dC)

)
dx

are continuous on R+.
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PROOF. Define for u, v ≥ 0,

d(u, v) =
∫

Rd
|φ(x + v1/dC) − φ(x + u1/dC)|dx.

Then, using |v2 − u2| = |u + v||u − v|, we see that∫
Rd

|φ(x + v1/dC)2 − φ(x + u1/dC)2|dx ≤ 2‖φ‖1d(u, v),(30)

while |
(v) − 
(u)| ≤ 2|v − u| (Lemma 1) implies∫
Rd

∣∣
(
φ(x + v1/dC)

) − 

(
φ(x + u1/dC)

)∣∣dx ≤ 2d(u, v).(31)

Next, observe that

|φ(x + v1/dC) − φ(x + u1/dC)| ≤ |φ|((x + u1/dC)�(x + v1/dC)
)

= |φ|(x + (u1/dC�v1/dC)
)
.

Because
∫ |φ|(x+A)dx = ‖φ‖1|A| for all measurable sets A, the above inequality

implies that

d(u, v) ≤ ‖φ‖1|u1/dC�v1/dC|.
Moreover, because |u1/dC�v1/dC| = u|C�(v/u)1/dC|, it follows using Lemma 5
that limu→v d(u, v) = 0 for all v ≥ 0. This fact together with the bounds
(30) and (31) completes the proof. �

LEMMA 7. Let C be a bounded measurable set in R
d , and assume φ ∈ Mα

with α ∈ (0,1). Then there exists a constant c such that, for all v ≥ 0,∫
Rd

φ(x + v1/dC)2 dx ≤ c(v ∧ v2−α).

PROOF. Let φ be a measure in Mα with α ∈ (0,1). Because the total variation
measure |φ| also belongs to Mα , we may assume without loss of generality that φ

is positive. Then by changing the order of integration, we see that∫
Rd

φ(x + v1/dC)2 dx ≤ ‖φ‖1

∫
Rd

φ(x + v1/dC)dx = |C|‖φ‖2
1v.(32)

Next, let a be large enough such that C ⊂ aB , where B is the open unit ball. Then

φ(x + v1/dC)2 ≤ φ
(
x + (av)1/dB

)2
,

so again by changing the order of integration, we see that∫
Rd

φ(x + v1/dC)2 dx

(33)
≤

∫
Rd

∫
Rd

∣∣(x − (av)1/dB
) ∩ (

y − (av)1/dB
)∣∣φ(dx)φ(dy).
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Let e1 be an arbitrary fixed unit vector in R
d . Because the Lebesgue measure is

rotation and translation invariant, we see that, for all x and y,∣∣(x − (av)1/dB
) ∩ (

y − (av)1/dB
)∣∣ = ∣∣(|x − y|e1 + (av)1/dB

) ∩ (av)1/dB
∣∣

≤ av1
(|x − y| < 2(av)1/d)

≤ 2(1−α)d(av)2−α

|x − y|(1−α)d
,

where the first inequality holds because the set (|x − y|e1 + (av)1/dB)∩ (av)1/dB

is empty for (av)1/d ≤ |x − y|/2. Combining the above bound with (33), we get∫
Rd

φ(x + v1/dC)2 dx ≤ 2(1−α)da2−α‖φ‖2
αv2−α.(34)

Combining inequalities (32) and (34) together, we conclude that the claim holds
by taking c = max(|C|‖φ‖2

1,2(1−α)da2−α‖φ‖2
α). �

5.5. Proof of Theorem 1. Let φ ∈ L1 ∩ L2 and define b = ρ(λEV 2)1/2. With-
out loss of generality, choose ρ as the basic model parameter and consider λ and b

as functions of ρ. Because φ ∈ L1 ∩ L2,

φ(x + v1/dC) =
∫
x+v1/dC

φ(y) dy = vmφ(x, v),

where mφ(x, v) is the average of φ defined in (27). Using (21) and the definition
of b, we thus see that

E exp
(
i
Jλ,ρ(φ) − EJλ,ρ(φ)

b

)
= exp

∫
Rd

∫
R+

λ


(
vmφ(x,ρv)

(λEV 2)1/2

)
F(dv)dx.

By Lemma 4, limρ→0 mφ(x,ρv) = φ(x) for all v and almost all x. By Lemma 1,

(v) = −1

2v2 + ε(v), where |ε(v)| ≤ |v|3/6, so that

lim
ρ→0

λ


(
vmφ(x,ρv)

(λEV 2)1/2

)
= −v2φ(x)2

2EV 2 .(35)

Moreover, letting φ∗ be the maximal function of φ defined in Lemma 4, the bound
|
(v)| ≤ v2/2 (Lemma 1) implies that

λ


(
vmφ(x,ρv)

(λEV 2)1/2

)
≤ v2φ∗(x)2

2EV 2 .

Because by Lemma 4 the right-hand side is integrable with respect to dxF(dv),
the dominated convergence theorem combined with (35) shows that

lim
ρ→0

E exp
(
i
Jλ,ρ(φ) − EJλ,ρ(φ)

b

)
= exp

(
−1

2

∫
Rd

φ(x)2 dx

)
,

where the right-hand side is the characteristic functional of the white Gaussian
noise W on L2. Hence, the proof of Theorem 1 is complete. �
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5.6. Proof of Theorem 2, large-grain scaling. Fix γ ∈ (1,2), let φ ∈ M2−γ ,
and assume first that φ is positive. Then by changing the order of integration, it
follows that∫

Rd
φ(x + v1/dC)2 dx =

∫
Rd

∫
Rd

|(x − v1/dC) ∩ (y − v1/dC)|φ(dx)φ(dy),

so by the translation invariance of the Lebesgue measure,∫
Rd

∫
R+

φ(x + v1/dC)2v−γ−1 dv dx

(36)
=

∫
Rd

∫
Rd

φ(dx)Kγ,C(x − y)φ(dy),

where Kγ,C is the covariance kernel defined in (14). Choose a > 0 large enough
so that C ⊂ aB , where B is the open unit ball. Then letting e1 be an arbitrary unit
vector in R

d , we see that

Kγ,C(x) ≤ Kγ,aB(x) = Kγ,aB(e1)|x|(1−γ )d,

so the right-hand side of (36) is bounded by Kγ,aB(e1)‖φ‖2
2−γ and hence, finite.

Thus, by Fubini’s theorem, equation (36) holds also for nonpositive φ ∈ M2−γ .
Because the left-hand side of (36) is nonnegative,

∫ ∫
φ(dx)Kγ,C(x−y)ψ(dy) is a

positive definite bilinear form in M2−γ ×M2−γ , and hence, defines the distribution
of a centered Gaussian random linear functional on M2−γ , which we call Wγ,C .

Assume next that φ ∈ Mα ⊂ M2−γ for some α ∈ (0,2 − γ ) and let b =
(γ λF̄ρ(1))1/2. As before, we choose ρ as the basic model parameter and consider
λ and b as functions of ρ. Define the functions fρ and f on R+ by

fρ(v) =
∫

Rd



(
φ(x + v1/dC)

b

)
dx, f (v) = −1

2

∫
Rd

φ(x + v1/dC)2 dx.

By Lemma 6, the function f (v) is continuous, and |f (v)| ≤ c(v ∧ v2−α)/2 by
Lemma 7. Application of Lemma 2 with p = 1 and q = 2 − α hence yields∫

R+
f (v)Fρ(dv) ∼ F̄ρ(1)

∫ ∞
0

f (v)γ v−γ−1 dv,

so that by the definition of b,

lim
ρ→0

∫
R+

f (v)λb−2Fρ(dv) =
∫ ∞

0
f (v)γ v−γ−1 dv.(37)

Next, define gρ(v) = λfρ(v) − λb−2f (v), and observe that

gρ(v) = λ

∫
Rd

(



(
φ(x + v1/dC)

b

)
+ 1

2

(
φ(x + v1/dC)

b

)2)
dx.
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Because |
(v) − (−v2/2)| ≤ |v|3/6 (Lemma 1) and∫
Rd

|φ(x + v1/dC)|3 dx ≤ ‖φ‖2
1

∫
Rd

|φ|(x + v1/dC)dx = ‖φ‖3
1v,

we see that |gρ(v)| ≤ λb−3‖φ‖3
1v/6. Using the definition of b, we thus see that

F̄ρ(1)v−1|gρ(v)| ≤ ‖φ‖3
1

6γ b
(38)

for all v ≥ 0. Moreover, using |
(v)| ≤ v2/2 and Lemma 7, it follows that
|gρ(v)| ≤ cλb−2v2−α . Hence,

F̄ρ(1)v−(2−α)|gρ(v)| ≤ c/γ

for all v ≥ 0. The large-grain assumption λF̄ρ(1) → ∞ implies that b → ∞, so
that the right-hand side of (38) tends to zero as ρ → 0. Thus, using Lemma 3 with
p = 1 and q = 2 − α, we conclude that

lim
ρ→0

∫
R+

gρ(v)Fρ(dv) = 0.(39)

Combining (37) and (39), we get

lim
ρ→0

∫
R+

fρ(v)λFρ(dv) =
∫ ∞

0
f (v)v−γ−1 dv.

In light of (21) and (36), this is equivalent to

lim
ρ→0

E exp
(
i
Jλ,ρ(φ) − EJλ,ρ(φ)

b

)
= exp

(
−1

2

∫
Rd

∫
Rd

φ(dx)Kγ,C(x)φ(dy)

)
,

which completes the proof of Theorem 2(i). �

5.7. Proof of Theorem 2, intermediate scaling. Let φ be a measure in M2−γ .
In the beginning of the proof of Theorem 2, part (i), we saw that∫

R+

∫
Rd

φ(x + v1/dC)2 dx v−γ−1 dv < ∞.

Thus, by (8), the stochastic integral∫
Rd

∫
R+

φ(x + v1/dC)
(
Nγ (dx, dv) − dx v−γ−1 dv

)
converges in probability, so the right-hand side of (15) is well-defined on M2−γ .

Assume next that φ ∈ Mα for some α ∈ (0,2 − γ ), and choose again ρ as the
basic model parameter and consider λ as a function of ρ. Define

f (v) =
∫

Rd



(
φ(x + v1/dC)

)
dx.
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Note that f (v) is continuous by Lemma 6. Moreover, |
(v)| ≤ v2/2 (Lemma 1)
together with Lemma 7 shows that |f (v)| ≤ c(v ∧ v2−α)/2. Lemma 2 with p = 1
and q = 2 − α thus shows that∫

R+
f (v)λFρ(dv) ∼ λF̄ρ(1)

∫ ∞
0

f (v)γ v−γ−1 dv.

The characteristic functional formula (21) together with the intermediate scaling
assumption λF̄ρ(1) → σ0 now implies that

lim
ρ→0

E exp
(
i
(
Jλ,ρ(φ) − EJλ,ρ(φ)

)) = exp
(
γ σ0

∫ ∞
0

f (v)v−γ−1 dv

)
.

Denoting σ = (γ σ0)
1/((γ−1)d) and defining φσ (A) = φ(σA), a change of variables

shows that the right-hand side above equals

exp
(∫

Rd

∫ ∞
0



(
φσ (x + v1/dC)

)
dx v−γ−1 dv

)
.

By (9), this agrees with the characteristic functional of (15), so the proof of Theo-
rem 2(ii) is complete. �

5.8. Proof of Theorem 2, small-grain scaling. Define b = (1/F̄ρ)←(γ λ) (for
notational convenience, we do not include the constant cγ into b). As before,
λ and b are considered to be functions of ρ. Because λ → ∞, it follows from
(1/F̄ρ)←(γ λ) = ρ(1/F̄ )←(γ λ) that b/ρ → ∞, and by Theorem 1.5.12 in [1],

λF̄ (b/ρ) ∼ γ −1 as ρ → 0.(40)

The small-grain scaling assumption λF̄ρ(1) → 0 implies that λF̄ρ(ε) → 0 for all
ε > 0. Observe that for all ρ such that b ≥ ε, we have

γ −1 ∼ λF̄ρ(b) ≤ λF̄ρ(ε).

Because the right-hand side above converges to zero, b must eventually become
less than ε as ρ → 0. In other words, b → 0.

Let φ ∈ L1 ∩ L2. We start by showing that, for almost all x,

lim
ρ→0

∫
R+



(
vmφ(x, bv)

)
λFρ/b(dv) =

∫ ∞
0


(vφ(x))v−γ−1 dv.(41)

Observe first that because 
(v) is continuous and |
(v)| ≤ (2|v| ∧ v2/2) by
Lemma 1, we can apply Lemma 2 with p = 1 and q = 2 (and with ρ/b → 0
in place of ρ) to the function v �→ 
(vφ(x)) and conclude that∫

R+

(vφ(x))λFρ/b(dv) ∼ λF̄ρ/b(1)

∫ ∞
0


(vφ(x))γ v−γ−1 dv.

Using (40), this shows that, for all x,

lim
ρ→0

∫
R+


(vφ(x))λFρ/b(dv) =
∫ ∞

0

(vφ(x))v−γ−1 dv.(42)
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Next, let

gρ(v) = 

(
vmφ(x, bv)

) − 
(vφ(x)).

By Lemma 1, |
(v) − 
(u)| ≤ |v2 − u2|/2. Hence, by using (v − u)2 = (v −
u)(v + u), we see that, for all a > 0,

sup
0<v≤a

v−2F̄ρ/b(1)|gρ(v)| ≤ (
φ∗(x) + |φ(x)|) sup

0<v≤a

|mφ(x, bv) − φ(x)|/2.

By Lemma 4, the right-hand side tends to zero for almost all x, as ρ → 0 (recall
that b tends to zero together with ρ). Moreover, |
(v)| ≤ 2|v| shows that

v−1F̄ρ/b(1)|gρ(v)| ≤ 2
(
φ∗(x) + |φ(x)|)

for all ρ and v. Thus, we can now use Lemma 3 with p = 1 and q = 2 (and
ρ/b → 0 in place of ρ) to conclude that

lim
ρ→0

∫
R+

gρ(v)Fρ/b(dv) = 0.

Combining this with (42) now shows the validity of (41).
Property (41) implies that

lim
ρ→0

∫
Rd

∫
R+



(
vmφ(x, bv)

)
λFρ/b(dv) dx

(43)
=

∫
Rd

∫ ∞
0


(vφ(x))v−γ−1 dv dx,

provided we can take the limit in (43) inside the dx-integral. To justify this in-
terchange of the limit and the integral, choose a small enough ε > 0 such that
γ ∈ (1 + ε,2 − ε). Then |
(v)| ≤ 2 min(|v|, v2) ≤ 2 min(|v|γ−ε, |v|γ+ε) and
|mφ(x, bv)| ≤ φ∗(x) imply that∣∣
(

vmφ(x, bv)
)∣∣ ≤ 2

(
φ∗(x)γ−ε + φ∗(x)γ+ε)(vγ−ε ∧ vγ+ε).

Moreover, by Lemma 2 (with ρ/b in place of ρ),∫
R+

(vγ−ε ∧ vγ+ε)λFρ/b(dv) ∼ λF̄ρ/b(1)

∫ ∞
0

(vγ−ε ∧ vγ+ε)γ v−γ−1 dv,

so by (40), we see that the integral on the left-hand side converges to 2ε−1, and
hence, becomes eventually less than 1 + 2ε−1 as ρ → 0. Thus, for all ρ small
enough,∫

R+

∣∣
(
vmφ(x, bv)

)∣∣λFρ/b(dv) ≤ 2(1 + 2ε−1)
(
φ∗(x)γ−ε + φ∗(x)γ+ε).

By Lemma 4, the right-hand side above is dx-integrable. Thus, the dominated
convergence theorem shows the validity of (43). Further, using (21),

lim
ρ→0

E exp
(
i
Jλ,ρ(φ) − EJλ,ρ(φ)

b

)
= exp

(∫
Rd

∫ ∞
0


(vφ(x))v−γ−1 dv dx

)
.
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By splitting the integration over R
d into {x :φ(x) ≥ 0} and {x :φ(x) < 0} and

performing a change of variables, one can verify that the right-hand side above
equals

exp(dγ ‖φ+‖γ
γ + d̄γ ‖φ−‖γ

γ ),

where d̄γ is the complex conjugate of dγ = ∫ ∞
0 
(v)v−γ−1 dv. Moreover,

dγ = �(2 − γ )

γ (γ − 1)
cos

(
πγ

2

)(
1 − i tan

(
πγ

2

))
;

see Exercise 3.24 in [14]. Comparing the definition of cγ given in (16) with the
characteristic functional of �γ in (13), we conclude that

lim
ρ→0

E exp
(
i
Jλ,ρ(φ) − EJλ,ρ(φ)

b

)
= Eeicγ �γ (φ),

which completes the proof of Theorem 2(iii). �

5.9. Proof of Proposition 2. Assume that φ is a positive measure in M(2H−1),
let α = 2H − 1, and define

f (x) = cα/2,d

∫
Rd

φ(dy)

|x − y|(1−α/2)d
.

Then the composition rule for Riesz kernels ([10] Section 1.1) shows that

c2
α/2,d

∫
Rd

1

|x − y|(1−α/2)d

1

|x − y′|(1−α/2)d
dx = cα,d

1

|y − y′|(1−α)d
.

Hence, by changing the order of integration, we see that∫
Rd

f (x)2 dx = cα,d

∫
Rd

∫
Rd

φ(dy)φ(dy′)
|y − y′|(1−α)d

= 〈φ,φ〉α,

where 〈φ,ψ〉α is the Riesz inner product defined by (5). Comparing this with (11)
shows that the Gaussian random variables on the left and the right-hand side
of (19) have the same variance, and thus equal in distribution. Equality of the
finite-dimensional distributions follows by linearity. �
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