Abstract
We study branching random walks in random i.i.d. environment in ℤd, d≥1. For this model, the population size cannot decrease, and a natural definition of recurrence is introduced. We prove a dichotomy for recurrence/transience, depending only on the support of the environmental law. We give sufficient conditions for recurrence and for transience. In the recurrent case, we study the asymptotics of the tail of the distribution of the hitting times and prove a shape theorem for the set of lattice sites which are visited up to a large time.
Citation
Francis Comets. Serguei Popov. "On multidimensional branching random walks in random environment." Ann. Probab. 35 (1) 68 - 114, January 2007. https://doi.org/10.1214/009117906000000926
Information